MAYBE Initial complexity problem: 1: T: (?, 1) f11(a, b, c) -> f14(a, b, c) [ a >= 6 ] (?, 1) f11(a, b, c) -> f14(a, b, c) [ 5 >= a /\ 0 >= b ] (?, 1) f14(a, b, c) -> f11(a + 1, d, c) [ a >= 6 ] (?, 1) f26(a, b, c) -> f27(a, b, c) (?, 1) f27(a, b, c) -> f27(a, b, c) (?, 1) f29(a, b, c) -> f32(a, b, c) (?, 1) f20(a, b, c) -> f20(a - 1, b, c) [ a >= 3 ] (?, 1) f20(a, b, c) -> f11(a, d, c) [ 2 >= a ] (?, 1) f14(a, b, c) -> f11(a + 1, d, c) [ 5 >= a ] (?, 1) f11(a, b, c) -> f20(a, b, c) [ 5 >= a /\ b >= 1 ] (1, 1) f0(a, b, c) -> f11(d, e, d) start location: f0 leaf cost: 0 Repeatedly removing leaves of the complexity graph in problem 1 produces the following problem: 2: T: (?, 1) f11(a, b, c) -> f14(a, b, c) [ a >= 6 ] (?, 1) f11(a, b, c) -> f14(a, b, c) [ 5 >= a /\ 0 >= b ] (?, 1) f14(a, b, c) -> f11(a + 1, d, c) [ a >= 6 ] (?, 1) f26(a, b, c) -> f27(a, b, c) (?, 1) f27(a, b, c) -> f27(a, b, c) (?, 1) f20(a, b, c) -> f20(a - 1, b, c) [ a >= 3 ] (?, 1) f20(a, b, c) -> f11(a, d, c) [ 2 >= a ] (?, 1) f14(a, b, c) -> f11(a + 1, d, c) [ 5 >= a ] (?, 1) f11(a, b, c) -> f20(a, b, c) [ 5 >= a /\ b >= 1 ] (1, 1) f0(a, b, c) -> f11(d, e, d) start location: f0 leaf cost: 1 Testing for reachability in the complexity graph removes the following transitions from problem 2: f26(a, b, c) -> f27(a, b, c) f27(a, b, c) -> f27(a, b, c) We thus obtain the following problem: 3: T: (?, 1) f20(a, b, c) -> f11(a, d, c) [ 2 >= a ] (?, 1) f20(a, b, c) -> f20(a - 1, b, c) [ a >= 3 ] (?, 1) f14(a, b, c) -> f11(a + 1, d, c) [ 5 >= a ] (?, 1) f14(a, b, c) -> f11(a + 1, d, c) [ a >= 6 ] (?, 1) f11(a, b, c) -> f20(a, b, c) [ 5 >= a /\ b >= 1 ] (?, 1) f11(a, b, c) -> f14(a, b, c) [ 5 >= a /\ 0 >= b ] (?, 1) f11(a, b, c) -> f14(a, b, c) [ a >= 6 ] (1, 1) f0(a, b, c) -> f11(d, e, d) start location: f0 leaf cost: 1 Applied AI with 'oct' on problem 3 to obtain the following invariants: For symbol f20: X_2 - 1 >= 0 /\ -X_1 + X_2 + 4 >= 0 /\ -X_1 + 5 >= 0 This yielded the following problem: 4: T: (1, 1) f0(a, b, c) -> f11(d, e, d) (?, 1) f11(a, b, c) -> f14(a, b, c) [ a >= 6 ] (?, 1) f11(a, b, c) -> f14(a, b, c) [ 5 >= a /\ 0 >= b ] (?, 1) f11(a, b, c) -> f20(a, b, c) [ 5 >= a /\ b >= 1 ] (?, 1) f14(a, b, c) -> f11(a + 1, d, c) [ a >= 6 ] (?, 1) f14(a, b, c) -> f11(a + 1, d, c) [ 5 >= a ] (?, 1) f20(a, b, c) -> f20(a - 1, b, c) [ b - 1 >= 0 /\ -a + b + 4 >= 0 /\ -a + 5 >= 0 /\ a >= 3 ] (?, 1) f20(a, b, c) -> f11(a, d, c) [ b - 1 >= 0 /\ -a + b + 4 >= 0 /\ -a + 5 >= 0 /\ 2 >= a ] start location: f0 leaf cost: 1 By chaining the transition f11(a, b, c) -> f14(a, b, c) [ a >= 6 ] with all transitions in problem 4, the following new transition is obtained: f11(a, b, c) -> f11(a + 1, d, c) [ a >= 6 ] We thus obtain the following problem: 5: T: (?, 2) f11(a, b, c) -> f11(a + 1, d, c) [ a >= 6 ] (1, 1) f0(a, b, c) -> f11(d, e, d) (?, 1) f11(a, b, c) -> f14(a, b, c) [ 5 >= a /\ 0 >= b ] (?, 1) f11(a, b, c) -> f20(a, b, c) [ 5 >= a /\ b >= 1 ] (?, 1) f14(a, b, c) -> f11(a + 1, d, c) [ a >= 6 ] (?, 1) f14(a, b, c) -> f11(a + 1, d, c) [ 5 >= a ] (?, 1) f20(a, b, c) -> f20(a - 1, b, c) [ b - 1 >= 0 /\ -a + b + 4 >= 0 /\ -a + 5 >= 0 /\ a >= 3 ] (?, 1) f20(a, b, c) -> f11(a, d, c) [ b - 1 >= 0 /\ -a + b + 4 >= 0 /\ -a + 5 >= 0 /\ 2 >= a ] start location: f0 leaf cost: 1 Testing for reachability in the complexity graph removes the following transition from problem 5: f14(a, b, c) -> f11(a + 1, d, c) [ a >= 6 ] We thus obtain the following problem: 6: T: (?, 1) f20(a, b, c) -> f11(a, d, c) [ b - 1 >= 0 /\ -a + b + 4 >= 0 /\ -a + 5 >= 0 /\ 2 >= a ] (?, 1) f20(a, b, c) -> f20(a - 1, b, c) [ b - 1 >= 0 /\ -a + b + 4 >= 0 /\ -a + 5 >= 0 /\ a >= 3 ] (?, 1) f14(a, b, c) -> f11(a + 1, d, c) [ 5 >= a ] (?, 2) f11(a, b, c) -> f11(a + 1, d, c) [ a >= 6 ] (?, 1) f11(a, b, c) -> f20(a, b, c) [ 5 >= a /\ b >= 1 ] (?, 1) f11(a, b, c) -> f14(a, b, c) [ 5 >= a /\ 0 >= b ] (1, 1) f0(a, b, c) -> f11(d, e, d) start location: f0 leaf cost: 1 By chaining the transition f11(a, b, c) -> f14(a, b, c) [ 5 >= a /\ 0 >= b ] with all transitions in problem 6, the following new transition is obtained: f11(a, b, c) -> f11(a + 1, d, c) [ 5 >= a /\ 0 >= b ] We thus obtain the following problem: 7: T: (?, 2) f11(a, b, c) -> f11(a + 1, d, c) [ 5 >= a /\ 0 >= b ] (?, 1) f20(a, b, c) -> f11(a, d, c) [ b - 1 >= 0 /\ -a + b + 4 >= 0 /\ -a + 5 >= 0 /\ 2 >= a ] (?, 1) f20(a, b, c) -> f20(a - 1, b, c) [ b - 1 >= 0 /\ -a + b + 4 >= 0 /\ -a + 5 >= 0 /\ a >= 3 ] (?, 1) f14(a, b, c) -> f11(a + 1, d, c) [ 5 >= a ] (?, 2) f11(a, b, c) -> f11(a + 1, d, c) [ a >= 6 ] (?, 1) f11(a, b, c) -> f20(a, b, c) [ 5 >= a /\ b >= 1 ] (1, 1) f0(a, b, c) -> f11(d, e, d) start location: f0 leaf cost: 1 Testing for reachability in the complexity graph removes the following transition from problem 7: f14(a, b, c) -> f11(a + 1, d, c) [ 5 >= a ] We thus obtain the following problem: 8: T: (?, 1) f20(a, b, c) -> f11(a, d, c) [ b - 1 >= 0 /\ -a + b + 4 >= 0 /\ -a + 5 >= 0 /\ 2 >= a ] (?, 1) f20(a, b, c) -> f20(a - 1, b, c) [ b - 1 >= 0 /\ -a + b + 4 >= 0 /\ -a + 5 >= 0 /\ a >= 3 ] (?, 2) f11(a, b, c) -> f11(a + 1, d, c) [ 5 >= a /\ 0 >= b ] (?, 2) f11(a, b, c) -> f11(a + 1, d, c) [ a >= 6 ] (?, 1) f11(a, b, c) -> f20(a, b, c) [ 5 >= a /\ b >= 1 ] (1, 1) f0(a, b, c) -> f11(d, e, d) start location: f0 leaf cost: 1 By chaining the transition f20(a, b, c) -> f11(a, d, c) [ b - 1 >= 0 /\ -a + b + 4 >= 0 /\ -a + 5 >= 0 /\ 2 >= a ] with all transitions in problem 8, the following new transitions are obtained: f20(a, b, c) -> f11(a + 1, d', c) [ b - 1 >= 0 /\ -a + b + 4 >= 0 /\ -a + 5 >= 0 /\ 2 >= a /\ 5 >= a /\ 0 >= d ] f20(a, b, c) -> f20(a, d, c) [ b - 1 >= 0 /\ -a + b + 4 >= 0 /\ -a + 5 >= 0 /\ 2 >= a /\ 5 >= a /\ d >= 1 ] We thus obtain the following problem: 9: T: (?, 3) f20(a, b, c) -> f11(a + 1, d', c) [ b - 1 >= 0 /\ -a + b + 4 >= 0 /\ -a + 5 >= 0 /\ 2 >= a /\ 5 >= a /\ 0 >= d ] (?, 2) f20(a, b, c) -> f20(a, d, c) [ b - 1 >= 0 /\ -a + b + 4 >= 0 /\ -a + 5 >= 0 /\ 2 >= a /\ 5 >= a /\ d >= 1 ] (?, 1) f20(a, b, c) -> f20(a - 1, b, c) [ b - 1 >= 0 /\ -a + b + 4 >= 0 /\ -a + 5 >= 0 /\ a >= 3 ] (?, 2) f11(a, b, c) -> f11(a + 1, d, c) [ 5 >= a /\ 0 >= b ] (?, 2) f11(a, b, c) -> f11(a + 1, d, c) [ a >= 6 ] (?, 1) f11(a, b, c) -> f20(a, b, c) [ 5 >= a /\ b >= 1 ] (1, 1) f0(a, b, c) -> f11(d, e, d) start location: f0 leaf cost: 1 By chaining the transition f20(a, b, c) -> f11(a + 1, d', c) [ b - 1 >= 0 /\ -a + b + 4 >= 0 /\ -a + 5 >= 0 /\ 2 >= a /\ 5 >= a /\ 0 >= d ] with all transitions in problem 9, the following new transitions are obtained: f20(a, b, c) -> f11(a + 2, d'', c) [ b - 1 >= 0 /\ -a + b + 4 >= 0 /\ -a + 5 >= 0 /\ 2 >= a /\ 5 >= a /\ 0 >= d /\ 5 >= a + 1 /\ 0 >= d' ] f20(a, b, c) -> f20(a + 1, d', c) [ b - 1 >= 0 /\ -a + b + 4 >= 0 /\ -a + 5 >= 0 /\ 2 >= a /\ 5 >= a /\ 0 >= d /\ 5 >= a + 1 /\ d' >= 1 ] We thus obtain the following problem: 10: T: (?, 5) f20(a, b, c) -> f11(a + 2, d'', c) [ b - 1 >= 0 /\ -a + b + 4 >= 0 /\ -a + 5 >= 0 /\ 2 >= a /\ 5 >= a /\ 0 >= d /\ 5 >= a + 1 /\ 0 >= d' ] (?, 4) f20(a, b, c) -> f20(a + 1, d', c) [ b - 1 >= 0 /\ -a + b + 4 >= 0 /\ -a + 5 >= 0 /\ 2 >= a /\ 5 >= a /\ 0 >= d /\ 5 >= a + 1 /\ d' >= 1 ] (?, 2) f20(a, b, c) -> f20(a, d, c) [ b - 1 >= 0 /\ -a + b + 4 >= 0 /\ -a + 5 >= 0 /\ 2 >= a /\ 5 >= a /\ d >= 1 ] (?, 1) f20(a, b, c) -> f20(a - 1, b, c) [ b - 1 >= 0 /\ -a + b + 4 >= 0 /\ -a + 5 >= 0 /\ a >= 3 ] (?, 2) f11(a, b, c) -> f11(a + 1, d, c) [ 5 >= a /\ 0 >= b ] (?, 2) f11(a, b, c) -> f11(a + 1, d, c) [ a >= 6 ] (?, 1) f11(a, b, c) -> f20(a, b, c) [ 5 >= a /\ b >= 1 ] (1, 1) f0(a, b, c) -> f11(d, e, d) start location: f0 leaf cost: 1 By chaining the transition f20(a, b, c) -> f11(a + 2, d'', c) [ b - 1 >= 0 /\ -a + b + 4 >= 0 /\ -a + 5 >= 0 /\ 2 >= a /\ 5 >= a /\ 0 >= d /\ 5 >= a + 1 /\ 0 >= d' ] with all transitions in problem 10, the following new transitions are obtained: f20(a, b, c) -> f11(a + 3, d''', c) [ b - 1 >= 0 /\ -a + b + 4 >= 0 /\ -a + 5 >= 0 /\ 2 >= a /\ 5 >= a /\ 0 >= d /\ 5 >= a + 1 /\ 0 >= d' /\ 5 >= a + 2 /\ 0 >= d'' ] f20(a, b, c) -> f20(a + 2, d'', c) [ b - 1 >= 0 /\ -a + b + 4 >= 0 /\ -a + 5 >= 0 /\ 2 >= a /\ 5 >= a /\ 0 >= d /\ 5 >= a + 1 /\ 0 >= d' /\ 5 >= a + 2 /\ d'' >= 1 ] We thus obtain the following problem: 11: T: (?, 7) f20(a, b, c) -> f11(a + 3, d''', c) [ b - 1 >= 0 /\ -a + b + 4 >= 0 /\ -a + 5 >= 0 /\ 2 >= a /\ 5 >= a /\ 0 >= d /\ 5 >= a + 1 /\ 0 >= d' /\ 5 >= a + 2 /\ 0 >= d'' ] (?, 6) f20(a, b, c) -> f20(a + 2, d'', c) [ b - 1 >= 0 /\ -a + b + 4 >= 0 /\ -a + 5 >= 0 /\ 2 >= a /\ 5 >= a /\ 0 >= d /\ 5 >= a + 1 /\ 0 >= d' /\ 5 >= a + 2 /\ d'' >= 1 ] (?, 4) f20(a, b, c) -> f20(a + 1, d', c) [ b - 1 >= 0 /\ -a + b + 4 >= 0 /\ -a + 5 >= 0 /\ 2 >= a /\ 5 >= a /\ 0 >= d /\ 5 >= a + 1 /\ d' >= 1 ] (?, 2) f20(a, b, c) -> f20(a, d, c) [ b - 1 >= 0 /\ -a + b + 4 >= 0 /\ -a + 5 >= 0 /\ 2 >= a /\ 5 >= a /\ d >= 1 ] (?, 1) f20(a, b, c) -> f20(a - 1, b, c) [ b - 1 >= 0 /\ -a + b + 4 >= 0 /\ -a + 5 >= 0 /\ a >= 3 ] (?, 2) f11(a, b, c) -> f11(a + 1, d, c) [ 5 >= a /\ 0 >= b ] (?, 2) f11(a, b, c) -> f11(a + 1, d, c) [ a >= 6 ] (?, 1) f11(a, b, c) -> f20(a, b, c) [ 5 >= a /\ b >= 1 ] (1, 1) f0(a, b, c) -> f11(d, e, d) start location: f0 leaf cost: 1 By chaining the transition f20(a, b, c) -> f11(a + 3, d''', c) [ b - 1 >= 0 /\ -a + b + 4 >= 0 /\ -a + 5 >= 0 /\ 2 >= a /\ 5 >= a /\ 0 >= d /\ 5 >= a + 1 /\ 0 >= d' /\ 5 >= a + 2 /\ 0 >= d'' ] with all transitions in problem 11, the following new transitions are obtained: f20(a, b, c) -> f11(a + 4, d'''', c) [ b - 1 >= 0 /\ -a + b + 4 >= 0 /\ -a + 5 >= 0 /\ 2 >= a /\ 5 >= a /\ 0 >= d /\ 5 >= a + 1 /\ 0 >= d' /\ 5 >= a + 2 /\ 0 >= d'' /\ 5 >= a + 3 /\ 0 >= d''' ] f20(a, b, c) -> f20(a + 3, d''', c) [ b - 1 >= 0 /\ -a + b + 4 >= 0 /\ -a + 5 >= 0 /\ 2 >= a /\ 5 >= a /\ 0 >= d /\ 5 >= a + 1 /\ 0 >= d' /\ 5 >= a + 2 /\ 0 >= d'' /\ 5 >= a + 3 /\ d''' >= 1 ] We thus obtain the following problem: 12: T: (?, 9) f20(a, b, c) -> f11(a + 4, d'''', c) [ b - 1 >= 0 /\ -a + b + 4 >= 0 /\ -a + 5 >= 0 /\ 2 >= a /\ 5 >= a /\ 0 >= d /\ 5 >= a + 1 /\ 0 >= d' /\ 5 >= a + 2 /\ 0 >= d'' /\ 5 >= a + 3 /\ 0 >= d''' ] (?, 8) f20(a, b, c) -> f20(a + 3, d''', c) [ b - 1 >= 0 /\ -a + b + 4 >= 0 /\ -a + 5 >= 0 /\ 2 >= a /\ 5 >= a /\ 0 >= d /\ 5 >= a + 1 /\ 0 >= d' /\ 5 >= a + 2 /\ 0 >= d'' /\ 5 >= a + 3 /\ d''' >= 1 ] (?, 6) f20(a, b, c) -> f20(a + 2, d'', c) [ b - 1 >= 0 /\ -a + b + 4 >= 0 /\ -a + 5 >= 0 /\ 2 >= a /\ 5 >= a /\ 0 >= d /\ 5 >= a + 1 /\ 0 >= d' /\ 5 >= a + 2 /\ d'' >= 1 ] (?, 4) f20(a, b, c) -> f20(a + 1, d', c) [ b - 1 >= 0 /\ -a + b + 4 >= 0 /\ -a + 5 >= 0 /\ 2 >= a /\ 5 >= a /\ 0 >= d /\ 5 >= a + 1 /\ d' >= 1 ] (?, 2) f20(a, b, c) -> f20(a, d, c) [ b - 1 >= 0 /\ -a + b + 4 >= 0 /\ -a + 5 >= 0 /\ 2 >= a /\ 5 >= a /\ d >= 1 ] (?, 1) f20(a, b, c) -> f20(a - 1, b, c) [ b - 1 >= 0 /\ -a + b + 4 >= 0 /\ -a + 5 >= 0 /\ a >= 3 ] (?, 2) f11(a, b, c) -> f11(a + 1, d, c) [ 5 >= a /\ 0 >= b ] (?, 2) f11(a, b, c) -> f11(a + 1, d, c) [ a >= 6 ] (?, 1) f11(a, b, c) -> f20(a, b, c) [ 5 >= a /\ b >= 1 ] (1, 1) f0(a, b, c) -> f11(d, e, d) start location: f0 leaf cost: 1 Complexity upper bound ? Time: 1.872 sec (SMT: 1.762 sec)