MAYBE Initial complexity problem: 1: T: (1, 1) f0(a, b) -> f1(3000, b) (?, 1) f1(a, b) -> f1(a, b + 1000) [ b + 889 >= 0 /\ 3999 >= a ] start location: f0 leaf cost: 0 Applied AI with 'oct' on problem 1 to obtain the following invariants: For symbol f1: -X_1 + 3000 >= 0 /\ X_1 - 3000 >= 0 This yielded the following problem: 2: T: (?, 1) f1(a, b) -> f1(a, b + 1000) [ -a + 3000 >= 0 /\ a - 3000 >= 0 /\ b + 889 >= 0 /\ 3999 >= a ] (1, 1) f0(a, b) -> f1(3000, b) start location: f0 leaf cost: 0 By chaining the transition f0(a, b) -> f1(3000, b) with all transitions in problem 2, the following new transition is obtained: f0(a, b) -> f1(3000, b + 1000) [ 0 >= 0 /\ b + 889 >= 0 /\ 3999 >= 3000 ] We thus obtain the following problem: 3: T: (1, 2) f0(a, b) -> f1(3000, b + 1000) [ 0 >= 0 /\ b + 889 >= 0 /\ 3999 >= 3000 ] (?, 1) f1(a, b) -> f1(a, b + 1000) [ -a + 3000 >= 0 /\ a - 3000 >= 0 /\ b + 889 >= 0 /\ 3999 >= a ] start location: f0 leaf cost: 0 By chaining the transition f0(a, b) -> f1(3000, b + 1000) [ 0 >= 0 /\ b + 889 >= 0 /\ 3999 >= 3000 ] with all transitions in problem 3, the following new transition is obtained: f0(a, b) -> f1(3000, b + 2000) [ 0 >= 0 /\ b + 889 >= 0 /\ 3999 >= 3000 /\ b + 1889 >= 0 ] We thus obtain the following problem: 4: T: (1, 3) f0(a, b) -> f1(3000, b + 2000) [ 0 >= 0 /\ b + 889 >= 0 /\ 3999 >= 3000 /\ b + 1889 >= 0 ] (?, 1) f1(a, b) -> f1(a, b + 1000) [ -a + 3000 >= 0 /\ a - 3000 >= 0 /\ b + 889 >= 0 /\ 3999 >= a ] start location: f0 leaf cost: 0 By chaining the transition f0(a, b) -> f1(3000, b + 2000) [ 0 >= 0 /\ b + 889 >= 0 /\ 3999 >= 3000 /\ b + 1889 >= 0 ] with all transitions in problem 4, the following new transition is obtained: f0(a, b) -> f1(3000, b + 3000) [ 0 >= 0 /\ b + 889 >= 0 /\ 3999 >= 3000 /\ b + 1889 >= 0 /\ b + 2889 >= 0 ] We thus obtain the following problem: 5: T: (1, 4) f0(a, b) -> f1(3000, b + 3000) [ 0 >= 0 /\ b + 889 >= 0 /\ 3999 >= 3000 /\ b + 1889 >= 0 /\ b + 2889 >= 0 ] (?, 1) f1(a, b) -> f1(a, b + 1000) [ -a + 3000 >= 0 /\ a - 3000 >= 0 /\ b + 889 >= 0 /\ 3999 >= a ] start location: f0 leaf cost: 0 By chaining the transition f0(a, b) -> f1(3000, b + 3000) [ 0 >= 0 /\ b + 889 >= 0 /\ 3999 >= 3000 /\ b + 1889 >= 0 /\ b + 2889 >= 0 ] with all transitions in problem 5, the following new transition is obtained: f0(a, b) -> f1(3000, b + 4000) [ 0 >= 0 /\ b + 889 >= 0 /\ 3999 >= 3000 /\ b + 1889 >= 0 /\ b + 2889 >= 0 /\ b + 3889 >= 0 ] We thus obtain the following problem: 6: T: (1, 5) f0(a, b) -> f1(3000, b + 4000) [ 0 >= 0 /\ b + 889 >= 0 /\ 3999 >= 3000 /\ b + 1889 >= 0 /\ b + 2889 >= 0 /\ b + 3889 >= 0 ] (?, 1) f1(a, b) -> f1(a, b + 1000) [ -a + 3000 >= 0 /\ a - 3000 >= 0 /\ b + 889 >= 0 /\ 3999 >= a ] start location: f0 leaf cost: 0 By chaining the transition f0(a, b) -> f1(3000, b + 4000) [ 0 >= 0 /\ b + 889 >= 0 /\ 3999 >= 3000 /\ b + 1889 >= 0 /\ b + 2889 >= 0 /\ b + 3889 >= 0 ] with all transitions in problem 6, the following new transition is obtained: f0(a, b) -> f1(3000, b + 5000) [ 0 >= 0 /\ b + 889 >= 0 /\ 3999 >= 3000 /\ b + 1889 >= 0 /\ b + 2889 >= 0 /\ b + 3889 >= 0 /\ b + 4889 >= 0 ] We thus obtain the following problem: 7: T: (1, 6) f0(a, b) -> f1(3000, b + 5000) [ 0 >= 0 /\ b + 889 >= 0 /\ 3999 >= 3000 /\ b + 1889 >= 0 /\ b + 2889 >= 0 /\ b + 3889 >= 0 /\ b + 4889 >= 0 ] (?, 1) f1(a, b) -> f1(a, b + 1000) [ -a + 3000 >= 0 /\ a - 3000 >= 0 /\ b + 889 >= 0 /\ 3999 >= a ] start location: f0 leaf cost: 0 By chaining the transition f0(a, b) -> f1(3000, b + 5000) [ 0 >= 0 /\ b + 889 >= 0 /\ 3999 >= 3000 /\ b + 1889 >= 0 /\ b + 2889 >= 0 /\ b + 3889 >= 0 /\ b + 4889 >= 0 ] with all transitions in problem 7, the following new transition is obtained: f0(a, b) -> f1(3000, b + 6000) [ 0 >= 0 /\ b + 889 >= 0 /\ 3999 >= 3000 /\ b + 1889 >= 0 /\ b + 2889 >= 0 /\ b + 3889 >= 0 /\ b + 4889 >= 0 /\ b + 5889 >= 0 ] We thus obtain the following problem: 8: T: (1, 7) f0(a, b) -> f1(3000, b + 6000) [ 0 >= 0 /\ b + 889 >= 0 /\ 3999 >= 3000 /\ b + 1889 >= 0 /\ b + 2889 >= 0 /\ b + 3889 >= 0 /\ b + 4889 >= 0 /\ b + 5889 >= 0 ] (?, 1) f1(a, b) -> f1(a, b + 1000) [ -a + 3000 >= 0 /\ a - 3000 >= 0 /\ b + 889 >= 0 /\ 3999 >= a ] start location: f0 leaf cost: 0 By chaining the transition f0(a, b) -> f1(3000, b + 6000) [ 0 >= 0 /\ b + 889 >= 0 /\ 3999 >= 3000 /\ b + 1889 >= 0 /\ b + 2889 >= 0 /\ b + 3889 >= 0 /\ b + 4889 >= 0 /\ b + 5889 >= 0 ] with all transitions in problem 8, the following new transition is obtained: f0(a, b) -> f1(3000, b + 7000) [ 0 >= 0 /\ b + 889 >= 0 /\ 3999 >= 3000 /\ b + 1889 >= 0 /\ b + 2889 >= 0 /\ b + 3889 >= 0 /\ b + 4889 >= 0 /\ b + 5889 >= 0 /\ b + 6889 >= 0 ] We thus obtain the following problem: 9: T: (1, 8) f0(a, b) -> f1(3000, b + 7000) [ 0 >= 0 /\ b + 889 >= 0 /\ 3999 >= 3000 /\ b + 1889 >= 0 /\ b + 2889 >= 0 /\ b + 3889 >= 0 /\ b + 4889 >= 0 /\ b + 5889 >= 0 /\ b + 6889 >= 0 ] (?, 1) f1(a, b) -> f1(a, b + 1000) [ -a + 3000 >= 0 /\ a - 3000 >= 0 /\ b + 889 >= 0 /\ 3999 >= a ] start location: f0 leaf cost: 0 By chaining the transition f0(a, b) -> f1(3000, b + 7000) [ 0 >= 0 /\ b + 889 >= 0 /\ 3999 >= 3000 /\ b + 1889 >= 0 /\ b + 2889 >= 0 /\ b + 3889 >= 0 /\ b + 4889 >= 0 /\ b + 5889 >= 0 /\ b + 6889 >= 0 ] with all transitions in problem 9, the following new transition is obtained: f0(a, b) -> f1(3000, b + 8000) [ 0 >= 0 /\ b + 889 >= 0 /\ 3999 >= 3000 /\ b + 1889 >= 0 /\ b + 2889 >= 0 /\ b + 3889 >= 0 /\ b + 4889 >= 0 /\ b + 5889 >= 0 /\ b + 6889 >= 0 /\ b + 7889 >= 0 ] We thus obtain the following problem: 10: T: (1, 9) f0(a, b) -> f1(3000, b + 8000) [ 0 >= 0 /\ b + 889 >= 0 /\ 3999 >= 3000 /\ b + 1889 >= 0 /\ b + 2889 >= 0 /\ b + 3889 >= 0 /\ b + 4889 >= 0 /\ b + 5889 >= 0 /\ b + 6889 >= 0 /\ b + 7889 >= 0 ] (?, 1) f1(a, b) -> f1(a, b + 1000) [ -a + 3000 >= 0 /\ a - 3000 >= 0 /\ b + 889 >= 0 /\ 3999 >= a ] start location: f0 leaf cost: 0 By chaining the transition f0(a, b) -> f1(3000, b + 8000) [ 0 >= 0 /\ b + 889 >= 0 /\ 3999 >= 3000 /\ b + 1889 >= 0 /\ b + 2889 >= 0 /\ b + 3889 >= 0 /\ b + 4889 >= 0 /\ b + 5889 >= 0 /\ b + 6889 >= 0 /\ b + 7889 >= 0 ] with all transitions in problem 10, the following new transition is obtained: f0(a, b) -> f1(3000, b + 9000) [ 0 >= 0 /\ b + 889 >= 0 /\ 3999 >= 3000 /\ b + 1889 >= 0 /\ b + 2889 >= 0 /\ b + 3889 >= 0 /\ b + 4889 >= 0 /\ b + 5889 >= 0 /\ b + 6889 >= 0 /\ b + 7889 >= 0 /\ b + 8889 >= 0 ] We thus obtain the following problem: 11: T: (1, 10) f0(a, b) -> f1(3000, b + 9000) [ 0 >= 0 /\ b + 889 >= 0 /\ 3999 >= 3000 /\ b + 1889 >= 0 /\ b + 2889 >= 0 /\ b + 3889 >= 0 /\ b + 4889 >= 0 /\ b + 5889 >= 0 /\ b + 6889 >= 0 /\ b + 7889 >= 0 /\ b + 8889 >= 0 ] (?, 1) f1(a, b) -> f1(a, b + 1000) [ -a + 3000 >= 0 /\ a - 3000 >= 0 /\ b + 889 >= 0 /\ 3999 >= a ] start location: f0 leaf cost: 0 By chaining the transition f0(a, b) -> f1(3000, b + 9000) [ 0 >= 0 /\ b + 889 >= 0 /\ 3999 >= 3000 /\ b + 1889 >= 0 /\ b + 2889 >= 0 /\ b + 3889 >= 0 /\ b + 4889 >= 0 /\ b + 5889 >= 0 /\ b + 6889 >= 0 /\ b + 7889 >= 0 /\ b + 8889 >= 0 ] with all transitions in problem 11, the following new transition is obtained: f0(a, b) -> f1(3000, b + 10000) [ 0 >= 0 /\ b + 889 >= 0 /\ 3999 >= 3000 /\ b + 1889 >= 0 /\ b + 2889 >= 0 /\ b + 3889 >= 0 /\ b + 4889 >= 0 /\ b + 5889 >= 0 /\ b + 6889 >= 0 /\ b + 7889 >= 0 /\ b + 8889 >= 0 /\ b + 9889 >= 0 ] We thus obtain the following problem: 12: T: (1, 11) f0(a, b) -> f1(3000, b + 10000) [ 0 >= 0 /\ b + 889 >= 0 /\ 3999 >= 3000 /\ b + 1889 >= 0 /\ b + 2889 >= 0 /\ b + 3889 >= 0 /\ b + 4889 >= 0 /\ b + 5889 >= 0 /\ b + 6889 >= 0 /\ b + 7889 >= 0 /\ b + 8889 >= 0 /\ b + 9889 >= 0 ] (?, 1) f1(a, b) -> f1(a, b + 1000) [ -a + 3000 >= 0 /\ a - 3000 >= 0 /\ b + 889 >= 0 /\ 3999 >= a ] start location: f0 leaf cost: 0 By chaining the transition f0(a, b) -> f1(3000, b + 10000) [ 0 >= 0 /\ b + 889 >= 0 /\ 3999 >= 3000 /\ b + 1889 >= 0 /\ b + 2889 >= 0 /\ b + 3889 >= 0 /\ b + 4889 >= 0 /\ b + 5889 >= 0 /\ b + 6889 >= 0 /\ b + 7889 >= 0 /\ b + 8889 >= 0 /\ b + 9889 >= 0 ] with all transitions in problem 12, the following new transition is obtained: f0(a, b) -> f1(3000, b + 11000) [ 0 >= 0 /\ b + 889 >= 0 /\ 3999 >= 3000 /\ b + 1889 >= 0 /\ b + 2889 >= 0 /\ b + 3889 >= 0 /\ b + 4889 >= 0 /\ b + 5889 >= 0 /\ b + 6889 >= 0 /\ b + 7889 >= 0 /\ b + 8889 >= 0 /\ b + 9889 >= 0 /\ b + 10889 >= 0 ] We thus obtain the following problem: 13: T: (1, 12) f0(a, b) -> f1(3000, b + 11000) [ 0 >= 0 /\ b + 889 >= 0 /\ 3999 >= 3000 /\ b + 1889 >= 0 /\ b + 2889 >= 0 /\ b + 3889 >= 0 /\ b + 4889 >= 0 /\ b + 5889 >= 0 /\ b + 6889 >= 0 /\ b + 7889 >= 0 /\ b + 8889 >= 0 /\ b + 9889 >= 0 /\ b + 10889 >= 0 ] (?, 1) f1(a, b) -> f1(a, b + 1000) [ -a + 3000 >= 0 /\ a - 3000 >= 0 /\ b + 889 >= 0 /\ 3999 >= a ] start location: f0 leaf cost: 0 By chaining the transition f0(a, b) -> f1(3000, b + 11000) [ 0 >= 0 /\ b + 889 >= 0 /\ 3999 >= 3000 /\ b + 1889 >= 0 /\ b + 2889 >= 0 /\ b + 3889 >= 0 /\ b + 4889 >= 0 /\ b + 5889 >= 0 /\ b + 6889 >= 0 /\ b + 7889 >= 0 /\ b + 8889 >= 0 /\ b + 9889 >= 0 /\ b + 10889 >= 0 ] with all transitions in problem 13, the following new transition is obtained: f0(a, b) -> f1(3000, b + 12000) [ 0 >= 0 /\ b + 889 >= 0 /\ 3999 >= 3000 /\ b + 1889 >= 0 /\ b + 2889 >= 0 /\ b + 3889 >= 0 /\ b + 4889 >= 0 /\ b + 5889 >= 0 /\ b + 6889 >= 0 /\ b + 7889 >= 0 /\ b + 8889 >= 0 /\ b + 9889 >= 0 /\ b + 10889 >= 0 /\ b + 11889 >= 0 ] We thus obtain the following problem: 14: T: (1, 13) f0(a, b) -> f1(3000, b + 12000) [ 0 >= 0 /\ b + 889 >= 0 /\ 3999 >= 3000 /\ b + 1889 >= 0 /\ b + 2889 >= 0 /\ b + 3889 >= 0 /\ b + 4889 >= 0 /\ b + 5889 >= 0 /\ b + 6889 >= 0 /\ b + 7889 >= 0 /\ b + 8889 >= 0 /\ b + 9889 >= 0 /\ b + 10889 >= 0 /\ b + 11889 >= 0 ] (?, 1) f1(a, b) -> f1(a, b + 1000) [ -a + 3000 >= 0 /\ a - 3000 >= 0 /\ b + 889 >= 0 /\ 3999 >= a ] start location: f0 leaf cost: 0 By chaining the transition f0(a, b) -> f1(3000, b + 12000) [ 0 >= 0 /\ b + 889 >= 0 /\ 3999 >= 3000 /\ b + 1889 >= 0 /\ b + 2889 >= 0 /\ b + 3889 >= 0 /\ b + 4889 >= 0 /\ b + 5889 >= 0 /\ b + 6889 >= 0 /\ b + 7889 >= 0 /\ b + 8889 >= 0 /\ b + 9889 >= 0 /\ b + 10889 >= 0 /\ b + 11889 >= 0 ] with all transitions in problem 14, the following new transition is obtained: f0(a, b) -> f1(3000, b + 13000) [ 0 >= 0 /\ b + 889 >= 0 /\ 3999 >= 3000 /\ b + 1889 >= 0 /\ b + 2889 >= 0 /\ b + 3889 >= 0 /\ b + 4889 >= 0 /\ b + 5889 >= 0 /\ b + 6889 >= 0 /\ b + 7889 >= 0 /\ b + 8889 >= 0 /\ b + 9889 >= 0 /\ b + 10889 >= 0 /\ b + 11889 >= 0 /\ b + 12889 >= 0 ] We thus obtain the following problem: 15: T: (1, 14) f0(a, b) -> f1(3000, b + 13000) [ 0 >= 0 /\ b + 889 >= 0 /\ 3999 >= 3000 /\ b + 1889 >= 0 /\ b + 2889 >= 0 /\ b + 3889 >= 0 /\ b + 4889 >= 0 /\ b + 5889 >= 0 /\ b + 6889 >= 0 /\ b + 7889 >= 0 /\ b + 8889 >= 0 /\ b + 9889 >= 0 /\ b + 10889 >= 0 /\ b + 11889 >= 0 /\ b + 12889 >= 0 ] (?, 1) f1(a, b) -> f1(a, b + 1000) [ -a + 3000 >= 0 /\ a - 3000 >= 0 /\ b + 889 >= 0 /\ 3999 >= a ] start location: f0 leaf cost: 0 By chaining the transition f0(a, b) -> f1(3000, b + 13000) [ 0 >= 0 /\ b + 889 >= 0 /\ 3999 >= 3000 /\ b + 1889 >= 0 /\ b + 2889 >= 0 /\ b + 3889 >= 0 /\ b + 4889 >= 0 /\ b + 5889 >= 0 /\ b + 6889 >= 0 /\ b + 7889 >= 0 /\ b + 8889 >= 0 /\ b + 9889 >= 0 /\ b + 10889 >= 0 /\ b + 11889 >= 0 /\ b + 12889 >= 0 ] with all transitions in problem 15, the following new transition is obtained: f0(a, b) -> f1(3000, b + 14000) [ 0 >= 0 /\ b + 889 >= 0 /\ 3999 >= 3000 /\ b + 1889 >= 0 /\ b + 2889 >= 0 /\ b + 3889 >= 0 /\ b + 4889 >= 0 /\ b + 5889 >= 0 /\ b + 6889 >= 0 /\ b + 7889 >= 0 /\ b + 8889 >= 0 /\ b + 9889 >= 0 /\ b + 10889 >= 0 /\ b + 11889 >= 0 /\ b + 12889 >= 0 /\ b + 13889 >= 0 ] We thus obtain the following problem: 16: T: (1, 15) f0(a, b) -> f1(3000, b + 14000) [ 0 >= 0 /\ b + 889 >= 0 /\ 3999 >= 3000 /\ b + 1889 >= 0 /\ b + 2889 >= 0 /\ b + 3889 >= 0 /\ b + 4889 >= 0 /\ b + 5889 >= 0 /\ b + 6889 >= 0 /\ b + 7889 >= 0 /\ b + 8889 >= 0 /\ b + 9889 >= 0 /\ b + 10889 >= 0 /\ b + 11889 >= 0 /\ b + 12889 >= 0 /\ b + 13889 >= 0 ] (?, 1) f1(a, b) -> f1(a, b + 1000) [ -a + 3000 >= 0 /\ a - 3000 >= 0 /\ b + 889 >= 0 /\ 3999 >= a ] start location: f0 leaf cost: 0 By chaining the transition f0(a, b) -> f1(3000, b + 14000) [ 0 >= 0 /\ b + 889 >= 0 /\ 3999 >= 3000 /\ b + 1889 >= 0 /\ b + 2889 >= 0 /\ b + 3889 >= 0 /\ b + 4889 >= 0 /\ b + 5889 >= 0 /\ b + 6889 >= 0 /\ b + 7889 >= 0 /\ b + 8889 >= 0 /\ b + 9889 >= 0 /\ b + 10889 >= 0 /\ b + 11889 >= 0 /\ b + 12889 >= 0 /\ b + 13889 >= 0 ] with all transitions in problem 16, the following new transition is obtained: f0(a, b) -> f1(3000, b + 15000) [ 0 >= 0 /\ b + 889 >= 0 /\ 3999 >= 3000 /\ b + 1889 >= 0 /\ b + 2889 >= 0 /\ b + 3889 >= 0 /\ b + 4889 >= 0 /\ b + 5889 >= 0 /\ b + 6889 >= 0 /\ b + 7889 >= 0 /\ b + 8889 >= 0 /\ b + 9889 >= 0 /\ b + 10889 >= 0 /\ b + 11889 >= 0 /\ b + 12889 >= 0 /\ b + 13889 >= 0 /\ b + 14889 >= 0 ] We thus obtain the following problem: 17: T: (1, 16) f0(a, b) -> f1(3000, b + 15000) [ 0 >= 0 /\ b + 889 >= 0 /\ 3999 >= 3000 /\ b + 1889 >= 0 /\ b + 2889 >= 0 /\ b + 3889 >= 0 /\ b + 4889 >= 0 /\ b + 5889 >= 0 /\ b + 6889 >= 0 /\ b + 7889 >= 0 /\ b + 8889 >= 0 /\ b + 9889 >= 0 /\ b + 10889 >= 0 /\ b + 11889 >= 0 /\ b + 12889 >= 0 /\ b + 13889 >= 0 /\ b + 14889 >= 0 ] (?, 1) f1(a, b) -> f1(a, b + 1000) [ -a + 3000 >= 0 /\ a - 3000 >= 0 /\ b + 889 >= 0 /\ 3999 >= a ] start location: f0 leaf cost: 0 Complexity upper bound ? Time: 1.390 sec (SMT: 1.311 sec)