MAYBE Initial complexity problem: 1: T: (1, 1) f0(a) -> f2(a + 200) [ a + 99 >= 0 ] (1, 1) f0(a) -> f2(a + 500) [ a >= 1 ] (?, 1) f2(a) -> f2(a + 700) [ a + 199 >= 0 ] start location: f0 leaf cost: 0 Applied AI with 'oct' on problem 1 to obtain the following invariants: For symbol f2: X_1 - 101 >= 0 This yielded the following problem: 2: T: (?, 1) f2(a) -> f2(a + 700) [ a - 101 >= 0 /\ a + 199 >= 0 ] (1, 1) f0(a) -> f2(a + 500) [ a >= 1 ] (1, 1) f0(a) -> f2(a + 200) [ a + 99 >= 0 ] start location: f0 leaf cost: 0 By chaining the transition f0(a) -> f2(a + 500) [ a >= 1 ] with all transitions in problem 2, the following new transition is obtained: f0(a) -> f2(a + 1200) [ a >= 1 /\ a + 399 >= 0 /\ a + 699 >= 0 ] We thus obtain the following problem: 3: T: (1, 2) f0(a) -> f2(a + 1200) [ a >= 1 /\ a + 399 >= 0 /\ a + 699 >= 0 ] (?, 1) f2(a) -> f2(a + 700) [ a - 101 >= 0 /\ a + 199 >= 0 ] (1, 1) f0(a) -> f2(a + 200) [ a + 99 >= 0 ] start location: f0 leaf cost: 0 By chaining the transition f0(a) -> f2(a + 1200) [ a >= 1 /\ a + 399 >= 0 /\ a + 699 >= 0 ] with all transitions in problem 3, the following new transition is obtained: f0(a) -> f2(a + 1900) [ a >= 1 /\ a + 399 >= 0 /\ a + 699 >= 0 /\ a + 1099 >= 0 /\ a + 1399 >= 0 ] We thus obtain the following problem: 4: T: (1, 3) f0(a) -> f2(a + 1900) [ a >= 1 /\ a + 399 >= 0 /\ a + 699 >= 0 /\ a + 1099 >= 0 /\ a + 1399 >= 0 ] (?, 1) f2(a) -> f2(a + 700) [ a - 101 >= 0 /\ a + 199 >= 0 ] (1, 1) f0(a) -> f2(a + 200) [ a + 99 >= 0 ] start location: f0 leaf cost: 0 By chaining the transition f0(a) -> f2(a + 1900) [ a >= 1 /\ a + 399 >= 0 /\ a + 699 >= 0 /\ a + 1099 >= 0 /\ a + 1399 >= 0 ] with all transitions in problem 4, the following new transition is obtained: f0(a) -> f2(a + 2600) [ a >= 1 /\ a + 399 >= 0 /\ a + 699 >= 0 /\ a + 1099 >= 0 /\ a + 1399 >= 0 /\ a + 1799 >= 0 /\ a + 2099 >= 0 ] We thus obtain the following problem: 5: T: (1, 4) f0(a) -> f2(a + 2600) [ a >= 1 /\ a + 399 >= 0 /\ a + 699 >= 0 /\ a + 1099 >= 0 /\ a + 1399 >= 0 /\ a + 1799 >= 0 /\ a + 2099 >= 0 ] (?, 1) f2(a) -> f2(a + 700) [ a - 101 >= 0 /\ a + 199 >= 0 ] (1, 1) f0(a) -> f2(a + 200) [ a + 99 >= 0 ] start location: f0 leaf cost: 0 By chaining the transition f0(a) -> f2(a + 2600) [ a >= 1 /\ a + 399 >= 0 /\ a + 699 >= 0 /\ a + 1099 >= 0 /\ a + 1399 >= 0 /\ a + 1799 >= 0 /\ a + 2099 >= 0 ] with all transitions in problem 5, the following new transition is obtained: f0(a) -> f2(a + 3300) [ a >= 1 /\ a + 399 >= 0 /\ a + 699 >= 0 /\ a + 1099 >= 0 /\ a + 1399 >= 0 /\ a + 1799 >= 0 /\ a + 2099 >= 0 /\ a + 2499 >= 0 /\ a + 2799 >= 0 ] We thus obtain the following problem: 6: T: (1, 5) f0(a) -> f2(a + 3300) [ a >= 1 /\ a + 399 >= 0 /\ a + 699 >= 0 /\ a + 1099 >= 0 /\ a + 1399 >= 0 /\ a + 1799 >= 0 /\ a + 2099 >= 0 /\ a + 2499 >= 0 /\ a + 2799 >= 0 ] (?, 1) f2(a) -> f2(a + 700) [ a - 101 >= 0 /\ a + 199 >= 0 ] (1, 1) f0(a) -> f2(a + 200) [ a + 99 >= 0 ] start location: f0 leaf cost: 0 By chaining the transition f0(a) -> f2(a + 3300) [ a >= 1 /\ a + 399 >= 0 /\ a + 699 >= 0 /\ a + 1099 >= 0 /\ a + 1399 >= 0 /\ a + 1799 >= 0 /\ a + 2099 >= 0 /\ a + 2499 >= 0 /\ a + 2799 >= 0 ] with all transitions in problem 6, the following new transition is obtained: f0(a) -> f2(a + 4000) [ a >= 1 /\ a + 399 >= 0 /\ a + 699 >= 0 /\ a + 1099 >= 0 /\ a + 1399 >= 0 /\ a + 1799 >= 0 /\ a + 2099 >= 0 /\ a + 2499 >= 0 /\ a + 2799 >= 0 /\ a + 3199 >= 0 /\ a + 3499 >= 0 ] We thus obtain the following problem: 7: T: (1, 6) f0(a) -> f2(a + 4000) [ a >= 1 /\ a + 399 >= 0 /\ a + 699 >= 0 /\ a + 1099 >= 0 /\ a + 1399 >= 0 /\ a + 1799 >= 0 /\ a + 2099 >= 0 /\ a + 2499 >= 0 /\ a + 2799 >= 0 /\ a + 3199 >= 0 /\ a + 3499 >= 0 ] (?, 1) f2(a) -> f2(a + 700) [ a - 101 >= 0 /\ a + 199 >= 0 ] (1, 1) f0(a) -> f2(a + 200) [ a + 99 >= 0 ] start location: f0 leaf cost: 0 By chaining the transition f0(a) -> f2(a + 4000) [ a >= 1 /\ a + 399 >= 0 /\ a + 699 >= 0 /\ a + 1099 >= 0 /\ a + 1399 >= 0 /\ a + 1799 >= 0 /\ a + 2099 >= 0 /\ a + 2499 >= 0 /\ a + 2799 >= 0 /\ a + 3199 >= 0 /\ a + 3499 >= 0 ] with all transitions in problem 7, the following new transition is obtained: f0(a) -> f2(a + 4700) [ a >= 1 /\ a + 399 >= 0 /\ a + 699 >= 0 /\ a + 1099 >= 0 /\ a + 1399 >= 0 /\ a + 1799 >= 0 /\ a + 2099 >= 0 /\ a + 2499 >= 0 /\ a + 2799 >= 0 /\ a + 3199 >= 0 /\ a + 3499 >= 0 /\ a + 3899 >= 0 /\ a + 4199 >= 0 ] We thus obtain the following problem: 8: T: (1, 7) f0(a) -> f2(a + 4700) [ a >= 1 /\ a + 399 >= 0 /\ a + 699 >= 0 /\ a + 1099 >= 0 /\ a + 1399 >= 0 /\ a + 1799 >= 0 /\ a + 2099 >= 0 /\ a + 2499 >= 0 /\ a + 2799 >= 0 /\ a + 3199 >= 0 /\ a + 3499 >= 0 /\ a + 3899 >= 0 /\ a + 4199 >= 0 ] (?, 1) f2(a) -> f2(a + 700) [ a - 101 >= 0 /\ a + 199 >= 0 ] (1, 1) f0(a) -> f2(a + 200) [ a + 99 >= 0 ] start location: f0 leaf cost: 0 By chaining the transition f0(a) -> f2(a + 4700) [ a >= 1 /\ a + 399 >= 0 /\ a + 699 >= 0 /\ a + 1099 >= 0 /\ a + 1399 >= 0 /\ a + 1799 >= 0 /\ a + 2099 >= 0 /\ a + 2499 >= 0 /\ a + 2799 >= 0 /\ a + 3199 >= 0 /\ a + 3499 >= 0 /\ a + 3899 >= 0 /\ a + 4199 >= 0 ] with all transitions in problem 8, the following new transition is obtained: f0(a) -> f2(a + 5400) [ a >= 1 /\ a + 399 >= 0 /\ a + 699 >= 0 /\ a + 1099 >= 0 /\ a + 1399 >= 0 /\ a + 1799 >= 0 /\ a + 2099 >= 0 /\ a + 2499 >= 0 /\ a + 2799 >= 0 /\ a + 3199 >= 0 /\ a + 3499 >= 0 /\ a + 3899 >= 0 /\ a + 4199 >= 0 /\ a + 4599 >= 0 /\ a + 4899 >= 0 ] We thus obtain the following problem: 9: T: (1, 8) f0(a) -> f2(a + 5400) [ a >= 1 /\ a + 399 >= 0 /\ a + 699 >= 0 /\ a + 1099 >= 0 /\ a + 1399 >= 0 /\ a + 1799 >= 0 /\ a + 2099 >= 0 /\ a + 2499 >= 0 /\ a + 2799 >= 0 /\ a + 3199 >= 0 /\ a + 3499 >= 0 /\ a + 3899 >= 0 /\ a + 4199 >= 0 /\ a + 4599 >= 0 /\ a + 4899 >= 0 ] (?, 1) f2(a) -> f2(a + 700) [ a - 101 >= 0 /\ a + 199 >= 0 ] (1, 1) f0(a) -> f2(a + 200) [ a + 99 >= 0 ] start location: f0 leaf cost: 0 By chaining the transition f0(a) -> f2(a + 5400) [ a >= 1 /\ a + 399 >= 0 /\ a + 699 >= 0 /\ a + 1099 >= 0 /\ a + 1399 >= 0 /\ a + 1799 >= 0 /\ a + 2099 >= 0 /\ a + 2499 >= 0 /\ a + 2799 >= 0 /\ a + 3199 >= 0 /\ a + 3499 >= 0 /\ a + 3899 >= 0 /\ a + 4199 >= 0 /\ a + 4599 >= 0 /\ a + 4899 >= 0 ] with all transitions in problem 9, the following new transition is obtained: f0(a) -> f2(a + 6100) [ a >= 1 /\ a + 399 >= 0 /\ a + 699 >= 0 /\ a + 1099 >= 0 /\ a + 1399 >= 0 /\ a + 1799 >= 0 /\ a + 2099 >= 0 /\ a + 2499 >= 0 /\ a + 2799 >= 0 /\ a + 3199 >= 0 /\ a + 3499 >= 0 /\ a + 3899 >= 0 /\ a + 4199 >= 0 /\ a + 4599 >= 0 /\ a + 4899 >= 0 /\ a + 5299 >= 0 /\ a + 5599 >= 0 ] We thus obtain the following problem: 10: T: (1, 9) f0(a) -> f2(a + 6100) [ a >= 1 /\ a + 399 >= 0 /\ a + 699 >= 0 /\ a + 1099 >= 0 /\ a + 1399 >= 0 /\ a + 1799 >= 0 /\ a + 2099 >= 0 /\ a + 2499 >= 0 /\ a + 2799 >= 0 /\ a + 3199 >= 0 /\ a + 3499 >= 0 /\ a + 3899 >= 0 /\ a + 4199 >= 0 /\ a + 4599 >= 0 /\ a + 4899 >= 0 /\ a + 5299 >= 0 /\ a + 5599 >= 0 ] (?, 1) f2(a) -> f2(a + 700) [ a - 101 >= 0 /\ a + 199 >= 0 ] (1, 1) f0(a) -> f2(a + 200) [ a + 99 >= 0 ] start location: f0 leaf cost: 0 By chaining the transition f0(a) -> f2(a + 6100) [ a >= 1 /\ a + 399 >= 0 /\ a + 699 >= 0 /\ a + 1099 >= 0 /\ a + 1399 >= 0 /\ a + 1799 >= 0 /\ a + 2099 >= 0 /\ a + 2499 >= 0 /\ a + 2799 >= 0 /\ a + 3199 >= 0 /\ a + 3499 >= 0 /\ a + 3899 >= 0 /\ a + 4199 >= 0 /\ a + 4599 >= 0 /\ a + 4899 >= 0 /\ a + 5299 >= 0 /\ a + 5599 >= 0 ] with all transitions in problem 10, the following new transition is obtained: f0(a) -> f2(a + 6800) [ a >= 1 /\ a + 399 >= 0 /\ a + 699 >= 0 /\ a + 1099 >= 0 /\ a + 1399 >= 0 /\ a + 1799 >= 0 /\ a + 2099 >= 0 /\ a + 2499 >= 0 /\ a + 2799 >= 0 /\ a + 3199 >= 0 /\ a + 3499 >= 0 /\ a + 3899 >= 0 /\ a + 4199 >= 0 /\ a + 4599 >= 0 /\ a + 4899 >= 0 /\ a + 5299 >= 0 /\ a + 5599 >= 0 /\ a + 5999 >= 0 /\ a + 6299 >= 0 ] We thus obtain the following problem: 11: T: (1, 10) f0(a) -> f2(a + 6800) [ a >= 1 /\ a + 399 >= 0 /\ a + 699 >= 0 /\ a + 1099 >= 0 /\ a + 1399 >= 0 /\ a + 1799 >= 0 /\ a + 2099 >= 0 /\ a + 2499 >= 0 /\ a + 2799 >= 0 /\ a + 3199 >= 0 /\ a + 3499 >= 0 /\ a + 3899 >= 0 /\ a + 4199 >= 0 /\ a + 4599 >= 0 /\ a + 4899 >= 0 /\ a + 5299 >= 0 /\ a + 5599 >= 0 /\ a + 5999 >= 0 /\ a + 6299 >= 0 ] (?, 1) f2(a) -> f2(a + 700) [ a - 101 >= 0 /\ a + 199 >= 0 ] (1, 1) f0(a) -> f2(a + 200) [ a + 99 >= 0 ] start location: f0 leaf cost: 0 By chaining the transition f0(a) -> f2(a + 6800) [ a >= 1 /\ a + 399 >= 0 /\ a + 699 >= 0 /\ a + 1099 >= 0 /\ a + 1399 >= 0 /\ a + 1799 >= 0 /\ a + 2099 >= 0 /\ a + 2499 >= 0 /\ a + 2799 >= 0 /\ a + 3199 >= 0 /\ a + 3499 >= 0 /\ a + 3899 >= 0 /\ a + 4199 >= 0 /\ a + 4599 >= 0 /\ a + 4899 >= 0 /\ a + 5299 >= 0 /\ a + 5599 >= 0 /\ a + 5999 >= 0 /\ a + 6299 >= 0 ] with all transitions in problem 11, the following new transition is obtained: f0(a) -> f2(a + 7500) [ a >= 1 /\ a + 399 >= 0 /\ a + 699 >= 0 /\ a + 1099 >= 0 /\ a + 1399 >= 0 /\ a + 1799 >= 0 /\ a + 2099 >= 0 /\ a + 2499 >= 0 /\ a + 2799 >= 0 /\ a + 3199 >= 0 /\ a + 3499 >= 0 /\ a + 3899 >= 0 /\ a + 4199 >= 0 /\ a + 4599 >= 0 /\ a + 4899 >= 0 /\ a + 5299 >= 0 /\ a + 5599 >= 0 /\ a + 5999 >= 0 /\ a + 6299 >= 0 /\ a + 6699 >= 0 /\ a + 6999 >= 0 ] We thus obtain the following problem: 12: T: (1, 11) f0(a) -> f2(a + 7500) [ a >= 1 /\ a + 399 >= 0 /\ a + 699 >= 0 /\ a + 1099 >= 0 /\ a + 1399 >= 0 /\ a + 1799 >= 0 /\ a + 2099 >= 0 /\ a + 2499 >= 0 /\ a + 2799 >= 0 /\ a + 3199 >= 0 /\ a + 3499 >= 0 /\ a + 3899 >= 0 /\ a + 4199 >= 0 /\ a + 4599 >= 0 /\ a + 4899 >= 0 /\ a + 5299 >= 0 /\ a + 5599 >= 0 /\ a + 5999 >= 0 /\ a + 6299 >= 0 /\ a + 6699 >= 0 /\ a + 6999 >= 0 ] (?, 1) f2(a) -> f2(a + 700) [ a - 101 >= 0 /\ a + 199 >= 0 ] (1, 1) f0(a) -> f2(a + 200) [ a + 99 >= 0 ] start location: f0 leaf cost: 0 By chaining the transition f0(a) -> f2(a + 7500) [ a >= 1 /\ a + 399 >= 0 /\ a + 699 >= 0 /\ a + 1099 >= 0 /\ a + 1399 >= 0 /\ a + 1799 >= 0 /\ a + 2099 >= 0 /\ a + 2499 >= 0 /\ a + 2799 >= 0 /\ a + 3199 >= 0 /\ a + 3499 >= 0 /\ a + 3899 >= 0 /\ a + 4199 >= 0 /\ a + 4599 >= 0 /\ a + 4899 >= 0 /\ a + 5299 >= 0 /\ a + 5599 >= 0 /\ a + 5999 >= 0 /\ a + 6299 >= 0 /\ a + 6699 >= 0 /\ a + 6999 >= 0 ] with all transitions in problem 12, the following new transition is obtained: f0(a) -> f2(a + 8200) [ a >= 1 /\ a + 399 >= 0 /\ a + 699 >= 0 /\ a + 1099 >= 0 /\ a + 1399 >= 0 /\ a + 1799 >= 0 /\ a + 2099 >= 0 /\ a + 2499 >= 0 /\ a + 2799 >= 0 /\ a + 3199 >= 0 /\ a + 3499 >= 0 /\ a + 3899 >= 0 /\ a + 4199 >= 0 /\ a + 4599 >= 0 /\ a + 4899 >= 0 /\ a + 5299 >= 0 /\ a + 5599 >= 0 /\ a + 5999 >= 0 /\ a + 6299 >= 0 /\ a + 6699 >= 0 /\ a + 6999 >= 0 /\ a + 7399 >= 0 /\ a + 7699 >= 0 ] We thus obtain the following problem: 13: T: (1, 12) f0(a) -> f2(a + 8200) [ a >= 1 /\ a + 399 >= 0 /\ a + 699 >= 0 /\ a + 1099 >= 0 /\ a + 1399 >= 0 /\ a + 1799 >= 0 /\ a + 2099 >= 0 /\ a + 2499 >= 0 /\ a + 2799 >= 0 /\ a + 3199 >= 0 /\ a + 3499 >= 0 /\ a + 3899 >= 0 /\ a + 4199 >= 0 /\ a + 4599 >= 0 /\ a + 4899 >= 0 /\ a + 5299 >= 0 /\ a + 5599 >= 0 /\ a + 5999 >= 0 /\ a + 6299 >= 0 /\ a + 6699 >= 0 /\ a + 6999 >= 0 /\ a + 7399 >= 0 /\ a + 7699 >= 0 ] (?, 1) f2(a) -> f2(a + 700) [ a - 101 >= 0 /\ a + 199 >= 0 ] (1, 1) f0(a) -> f2(a + 200) [ a + 99 >= 0 ] start location: f0 leaf cost: 0 By chaining the transition f0(a) -> f2(a + 8200) [ a >= 1 /\ a + 399 >= 0 /\ a + 699 >= 0 /\ a + 1099 >= 0 /\ a + 1399 >= 0 /\ a + 1799 >= 0 /\ a + 2099 >= 0 /\ a + 2499 >= 0 /\ a + 2799 >= 0 /\ a + 3199 >= 0 /\ a + 3499 >= 0 /\ a + 3899 >= 0 /\ a + 4199 >= 0 /\ a + 4599 >= 0 /\ a + 4899 >= 0 /\ a + 5299 >= 0 /\ a + 5599 >= 0 /\ a + 5999 >= 0 /\ a + 6299 >= 0 /\ a + 6699 >= 0 /\ a + 6999 >= 0 /\ a + 7399 >= 0 /\ a + 7699 >= 0 ] with all transitions in problem 13, the following new transition is obtained: f0(a) -> f2(a + 8900) [ a >= 1 /\ a + 399 >= 0 /\ a + 699 >= 0 /\ a + 1099 >= 0 /\ a + 1399 >= 0 /\ a + 1799 >= 0 /\ a + 2099 >= 0 /\ a + 2499 >= 0 /\ a + 2799 >= 0 /\ a + 3199 >= 0 /\ a + 3499 >= 0 /\ a + 3899 >= 0 /\ a + 4199 >= 0 /\ a + 4599 >= 0 /\ a + 4899 >= 0 /\ a + 5299 >= 0 /\ a + 5599 >= 0 /\ a + 5999 >= 0 /\ a + 6299 >= 0 /\ a + 6699 >= 0 /\ a + 6999 >= 0 /\ a + 7399 >= 0 /\ a + 7699 >= 0 /\ a + 8099 >= 0 /\ a + 8399 >= 0 ] We thus obtain the following problem: 14: T: (1, 13) f0(a) -> f2(a + 8900) [ a >= 1 /\ a + 399 >= 0 /\ a + 699 >= 0 /\ a + 1099 >= 0 /\ a + 1399 >= 0 /\ a + 1799 >= 0 /\ a + 2099 >= 0 /\ a + 2499 >= 0 /\ a + 2799 >= 0 /\ a + 3199 >= 0 /\ a + 3499 >= 0 /\ a + 3899 >= 0 /\ a + 4199 >= 0 /\ a + 4599 >= 0 /\ a + 4899 >= 0 /\ a + 5299 >= 0 /\ a + 5599 >= 0 /\ a + 5999 >= 0 /\ a + 6299 >= 0 /\ a + 6699 >= 0 /\ a + 6999 >= 0 /\ a + 7399 >= 0 /\ a + 7699 >= 0 /\ a + 8099 >= 0 /\ a + 8399 >= 0 ] (?, 1) f2(a) -> f2(a + 700) [ a - 101 >= 0 /\ a + 199 >= 0 ] (1, 1) f0(a) -> f2(a + 200) [ a + 99 >= 0 ] start location: f0 leaf cost: 0 By chaining the transition f0(a) -> f2(a + 8900) [ a >= 1 /\ a + 399 >= 0 /\ a + 699 >= 0 /\ a + 1099 >= 0 /\ a + 1399 >= 0 /\ a + 1799 >= 0 /\ a + 2099 >= 0 /\ a + 2499 >= 0 /\ a + 2799 >= 0 /\ a + 3199 >= 0 /\ a + 3499 >= 0 /\ a + 3899 >= 0 /\ a + 4199 >= 0 /\ a + 4599 >= 0 /\ a + 4899 >= 0 /\ a + 5299 >= 0 /\ a + 5599 >= 0 /\ a + 5999 >= 0 /\ a + 6299 >= 0 /\ a + 6699 >= 0 /\ a + 6999 >= 0 /\ a + 7399 >= 0 /\ a + 7699 >= 0 /\ a + 8099 >= 0 /\ a + 8399 >= 0 ] with all transitions in problem 14, the following new transition is obtained: f0(a) -> f2(a + 9600) [ a >= 1 /\ a + 399 >= 0 /\ a + 699 >= 0 /\ a + 1099 >= 0 /\ a + 1399 >= 0 /\ a + 1799 >= 0 /\ a + 2099 >= 0 /\ a + 2499 >= 0 /\ a + 2799 >= 0 /\ a + 3199 >= 0 /\ a + 3499 >= 0 /\ a + 3899 >= 0 /\ a + 4199 >= 0 /\ a + 4599 >= 0 /\ a + 4899 >= 0 /\ a + 5299 >= 0 /\ a + 5599 >= 0 /\ a + 5999 >= 0 /\ a + 6299 >= 0 /\ a + 6699 >= 0 /\ a + 6999 >= 0 /\ a + 7399 >= 0 /\ a + 7699 >= 0 /\ a + 8099 >= 0 /\ a + 8399 >= 0 /\ a + 8799 >= 0 /\ a + 9099 >= 0 ] We thus obtain the following problem: 15: T: (1, 14) f0(a) -> f2(a + 9600) [ a >= 1 /\ a + 399 >= 0 /\ a + 699 >= 0 /\ a + 1099 >= 0 /\ a + 1399 >= 0 /\ a + 1799 >= 0 /\ a + 2099 >= 0 /\ a + 2499 >= 0 /\ a + 2799 >= 0 /\ a + 3199 >= 0 /\ a + 3499 >= 0 /\ a + 3899 >= 0 /\ a + 4199 >= 0 /\ a + 4599 >= 0 /\ a + 4899 >= 0 /\ a + 5299 >= 0 /\ a + 5599 >= 0 /\ a + 5999 >= 0 /\ a + 6299 >= 0 /\ a + 6699 >= 0 /\ a + 6999 >= 0 /\ a + 7399 >= 0 /\ a + 7699 >= 0 /\ a + 8099 >= 0 /\ a + 8399 >= 0 /\ a + 8799 >= 0 /\ a + 9099 >= 0 ] (?, 1) f2(a) -> f2(a + 700) [ a - 101 >= 0 /\ a + 199 >= 0 ] (1, 1) f0(a) -> f2(a + 200) [ a + 99 >= 0 ] start location: f0 leaf cost: 0 By chaining the transition f0(a) -> f2(a + 9600) [ a >= 1 /\ a + 399 >= 0 /\ a + 699 >= 0 /\ a + 1099 >= 0 /\ a + 1399 >= 0 /\ a + 1799 >= 0 /\ a + 2099 >= 0 /\ a + 2499 >= 0 /\ a + 2799 >= 0 /\ a + 3199 >= 0 /\ a + 3499 >= 0 /\ a + 3899 >= 0 /\ a + 4199 >= 0 /\ a + 4599 >= 0 /\ a + 4899 >= 0 /\ a + 5299 >= 0 /\ a + 5599 >= 0 /\ a + 5999 >= 0 /\ a + 6299 >= 0 /\ a + 6699 >= 0 /\ a + 6999 >= 0 /\ a + 7399 >= 0 /\ a + 7699 >= 0 /\ a + 8099 >= 0 /\ a + 8399 >= 0 /\ a + 8799 >= 0 /\ a + 9099 >= 0 ] with all transitions in problem 15, the following new transition is obtained: f0(a) -> f2(a + 10300) [ a >= 1 /\ a + 399 >= 0 /\ a + 699 >= 0 /\ a + 1099 >= 0 /\ a + 1399 >= 0 /\ a + 1799 >= 0 /\ a + 2099 >= 0 /\ a + 2499 >= 0 /\ a + 2799 >= 0 /\ a + 3199 >= 0 /\ a + 3499 >= 0 /\ a + 3899 >= 0 /\ a + 4199 >= 0 /\ a + 4599 >= 0 /\ a + 4899 >= 0 /\ a + 5299 >= 0 /\ a + 5599 >= 0 /\ a + 5999 >= 0 /\ a + 6299 >= 0 /\ a + 6699 >= 0 /\ a + 6999 >= 0 /\ a + 7399 >= 0 /\ a + 7699 >= 0 /\ a + 8099 >= 0 /\ a + 8399 >= 0 /\ a + 8799 >= 0 /\ a + 9099 >= 0 /\ a + 9499 >= 0 /\ a + 9799 >= 0 ] We thus obtain the following problem: 16: T: (1, 15) f0(a) -> f2(a + 10300) [ a >= 1 /\ a + 399 >= 0 /\ a + 699 >= 0 /\ a + 1099 >= 0 /\ a + 1399 >= 0 /\ a + 1799 >= 0 /\ a + 2099 >= 0 /\ a + 2499 >= 0 /\ a + 2799 >= 0 /\ a + 3199 >= 0 /\ a + 3499 >= 0 /\ a + 3899 >= 0 /\ a + 4199 >= 0 /\ a + 4599 >= 0 /\ a + 4899 >= 0 /\ a + 5299 >= 0 /\ a + 5599 >= 0 /\ a + 5999 >= 0 /\ a + 6299 >= 0 /\ a + 6699 >= 0 /\ a + 6999 >= 0 /\ a + 7399 >= 0 /\ a + 7699 >= 0 /\ a + 8099 >= 0 /\ a + 8399 >= 0 /\ a + 8799 >= 0 /\ a + 9099 >= 0 /\ a + 9499 >= 0 /\ a + 9799 >= 0 ] (?, 1) f2(a) -> f2(a + 700) [ a - 101 >= 0 /\ a + 199 >= 0 ] (1, 1) f0(a) -> f2(a + 200) [ a + 99 >= 0 ] start location: f0 leaf cost: 0 By chaining the transition f0(a) -> f2(a + 10300) [ a >= 1 /\ a + 399 >= 0 /\ a + 699 >= 0 /\ a + 1099 >= 0 /\ a + 1399 >= 0 /\ a + 1799 >= 0 /\ a + 2099 >= 0 /\ a + 2499 >= 0 /\ a + 2799 >= 0 /\ a + 3199 >= 0 /\ a + 3499 >= 0 /\ a + 3899 >= 0 /\ a + 4199 >= 0 /\ a + 4599 >= 0 /\ a + 4899 >= 0 /\ a + 5299 >= 0 /\ a + 5599 >= 0 /\ a + 5999 >= 0 /\ a + 6299 >= 0 /\ a + 6699 >= 0 /\ a + 6999 >= 0 /\ a + 7399 >= 0 /\ a + 7699 >= 0 /\ a + 8099 >= 0 /\ a + 8399 >= 0 /\ a + 8799 >= 0 /\ a + 9099 >= 0 /\ a + 9499 >= 0 /\ a + 9799 >= 0 ] with all transitions in problem 16, the following new transition is obtained: f0(a) -> f2(a + 11000) [ a >= 1 /\ a + 399 >= 0 /\ a + 699 >= 0 /\ a + 1099 >= 0 /\ a + 1399 >= 0 /\ a + 1799 >= 0 /\ a + 2099 >= 0 /\ a + 2499 >= 0 /\ a + 2799 >= 0 /\ a + 3199 >= 0 /\ a + 3499 >= 0 /\ a + 3899 >= 0 /\ a + 4199 >= 0 /\ a + 4599 >= 0 /\ a + 4899 >= 0 /\ a + 5299 >= 0 /\ a + 5599 >= 0 /\ a + 5999 >= 0 /\ a + 6299 >= 0 /\ a + 6699 >= 0 /\ a + 6999 >= 0 /\ a + 7399 >= 0 /\ a + 7699 >= 0 /\ a + 8099 >= 0 /\ a + 8399 >= 0 /\ a + 8799 >= 0 /\ a + 9099 >= 0 /\ a + 9499 >= 0 /\ a + 9799 >= 0 /\ a + 10199 >= 0 /\ a + 10499 >= 0 ] We thus obtain the following problem: 17: T: (1, 16) f0(a) -> f2(a + 11000) [ a >= 1 /\ a + 399 >= 0 /\ a + 699 >= 0 /\ a + 1099 >= 0 /\ a + 1399 >= 0 /\ a + 1799 >= 0 /\ a + 2099 >= 0 /\ a + 2499 >= 0 /\ a + 2799 >= 0 /\ a + 3199 >= 0 /\ a + 3499 >= 0 /\ a + 3899 >= 0 /\ a + 4199 >= 0 /\ a + 4599 >= 0 /\ a + 4899 >= 0 /\ a + 5299 >= 0 /\ a + 5599 >= 0 /\ a + 5999 >= 0 /\ a + 6299 >= 0 /\ a + 6699 >= 0 /\ a + 6999 >= 0 /\ a + 7399 >= 0 /\ a + 7699 >= 0 /\ a + 8099 >= 0 /\ a + 8399 >= 0 /\ a + 8799 >= 0 /\ a + 9099 >= 0 /\ a + 9499 >= 0 /\ a + 9799 >= 0 /\ a + 10199 >= 0 /\ a + 10499 >= 0 ] (?, 1) f2(a) -> f2(a + 700) [ a - 101 >= 0 /\ a + 199 >= 0 ] (1, 1) f0(a) -> f2(a + 200) [ a + 99 >= 0 ] start location: f0 leaf cost: 0 Complexity upper bound ? Time: 1.480 sec (SMT: 1.391 sec)