YES(?, 422*c + 20*c^2 + 591) Initial complexity problem: 1: T: (1, 1) f0(a, b, c, d, e, f, g) -> f10(h, 0, c, d, e, f, g) (?, 1) f10(a, b, c, d, e, f, g) -> f10(a, b + 1, c, d, e, f, g) [ c >= b + 1 ] (?, 1) f18(a, b, c, d, e, f, g) -> f21(a, b, c, d, e, 0, g) [ d >= e + 2 ] (?, 1) f21(a, b, c, d, e, f, g) -> f21(a, b, c, d, e, f + 1, g) [ d >= e + f + 2 ] (?, 1) f21(a, b, c, d, e, f, g) -> f21(a, b, c, d, e, f + 1, h) [ d >= e + f + 2 ] (?, 1) f32(a, b, c, d, e, f, g) -> f32(a, b, c, d, e + 1, f, g) [ d >= e + 2 ] (?, 1) f32(a, b, c, d, e, f, g) -> f41(a, b, c, d, e, f, g) [ e + 1 >= d ] (?, 1) f21(a, b, c, d, e, f, g) -> f18(a, b, c, d, e + 1, f, g) [ f + e + 1 >= d ] (?, 1) f18(a, b, c, d, e, f, g) -> f32(a, b, c, d, 0, f, g) [ e + 1 >= d ] (?, 1) f10(a, b, c, d, e, f, g) -> f18(a, b, c, c, 0, f, g) [ b >= c ] start location: f0 leaf cost: 0 Slicing away variables that do not contribute to conditions from problem 1 leaves variables [b, c, d, e, f]. We thus obtain the following problem: 2: T: (?, 1) f10(b, c, d, e, f) -> f18(b, c, c, 0, f) [ b >= c ] (?, 1) f18(b, c, d, e, f) -> f32(b, c, d, 0, f) [ e + 1 >= d ] (?, 1) f21(b, c, d, e, f) -> f18(b, c, d, e + 1, f) [ f + e + 1 >= d ] (?, 1) f32(b, c, d, e, f) -> f41(b, c, d, e, f) [ e + 1 >= d ] (?, 1) f32(b, c, d, e, f) -> f32(b, c, d, e + 1, f) [ d >= e + 2 ] (?, 1) f21(b, c, d, e, f) -> f21(b, c, d, e, f + 1) [ d >= e + f + 2 ] (?, 1) f21(b, c, d, e, f) -> f21(b, c, d, e, f + 1) [ d >= e + f + 2 ] (?, 1) f18(b, c, d, e, f) -> f21(b, c, d, e, 0) [ d >= e + 2 ] (?, 1) f10(b, c, d, e, f) -> f10(b + 1, c, d, e, f) [ c >= b + 1 ] (1, 1) f0(b, c, d, e, f) -> f10(0, c, d, e, f) start location: f0 leaf cost: 0 Repeatedly removing leaves of the complexity graph in problem 2 produces the following problem: 3: T: (?, 1) f10(b, c, d, e, f) -> f18(b, c, c, 0, f) [ b >= c ] (?, 1) f18(b, c, d, e, f) -> f32(b, c, d, 0, f) [ e + 1 >= d ] (?, 1) f21(b, c, d, e, f) -> f18(b, c, d, e + 1, f) [ f + e + 1 >= d ] (?, 1) f32(b, c, d, e, f) -> f32(b, c, d, e + 1, f) [ d >= e + 2 ] (?, 1) f21(b, c, d, e, f) -> f21(b, c, d, e, f + 1) [ d >= e + f + 2 ] (?, 1) f21(b, c, d, e, f) -> f21(b, c, d, e, f + 1) [ d >= e + f + 2 ] (?, 1) f18(b, c, d, e, f) -> f21(b, c, d, e, 0) [ d >= e + 2 ] (?, 1) f10(b, c, d, e, f) -> f10(b + 1, c, d, e, f) [ c >= b + 1 ] (1, 1) f0(b, c, d, e, f) -> f10(0, c, d, e, f) start location: f0 leaf cost: 1 A polynomial rank function with Pol(f10) = 1 Pol(f18) = -2 Pol(f32) = -3 Pol(f21) = -2 Pol(f0) = 1 orients all transitions weakly and the transition f10(b, c, d, e, f) -> f18(b, c, c, 0, f) [ b >= c ] strictly and produces the following problem: 4: T: (1, 1) f10(b, c, d, e, f) -> f18(b, c, c, 0, f) [ b >= c ] (?, 1) f18(b, c, d, e, f) -> f32(b, c, d, 0, f) [ e + 1 >= d ] (?, 1) f21(b, c, d, e, f) -> f18(b, c, d, e + 1, f) [ f + e + 1 >= d ] (?, 1) f32(b, c, d, e, f) -> f32(b, c, d, e + 1, f) [ d >= e + 2 ] (?, 1) f21(b, c, d, e, f) -> f21(b, c, d, e, f + 1) [ d >= e + f + 2 ] (?, 1) f21(b, c, d, e, f) -> f21(b, c, d, e, f + 1) [ d >= e + f + 2 ] (?, 1) f18(b, c, d, e, f) -> f21(b, c, d, e, 0) [ d >= e + 2 ] (?, 1) f10(b, c, d, e, f) -> f10(b + 1, c, d, e, f) [ c >= b + 1 ] (1, 1) f0(b, c, d, e, f) -> f10(0, c, d, e, f) start location: f0 leaf cost: 1 A polynomial rank function with Pol(f10) = 2 Pol(f18) = 2 Pol(f32) = -2 Pol(f21) = 2 Pol(f0) = 2 orients all transitions weakly and the transition f18(b, c, d, e, f) -> f32(b, c, d, 0, f) [ e + 1 >= d ] strictly and produces the following problem: 5: T: (1, 1) f10(b, c, d, e, f) -> f18(b, c, c, 0, f) [ b >= c ] (2, 1) f18(b, c, d, e, f) -> f32(b, c, d, 0, f) [ e + 1 >= d ] (?, 1) f21(b, c, d, e, f) -> f18(b, c, d, e + 1, f) [ f + e + 1 >= d ] (?, 1) f32(b, c, d, e, f) -> f32(b, c, d, e + 1, f) [ d >= e + 2 ] (?, 1) f21(b, c, d, e, f) -> f21(b, c, d, e, f + 1) [ d >= e + f + 2 ] (?, 1) f21(b, c, d, e, f) -> f21(b, c, d, e, f + 1) [ d >= e + f + 2 ] (?, 1) f18(b, c, d, e, f) -> f21(b, c, d, e, 0) [ d >= e + 2 ] (?, 1) f10(b, c, d, e, f) -> f10(b + 1, c, d, e, f) [ c >= b + 1 ] (1, 1) f0(b, c, d, e, f) -> f10(0, c, d, e, f) start location: f0 leaf cost: 1 A polynomial rank function with Pol(f10) = -V_1 + V_2 Pol(f18) = -4*V_1 + V_2 + 3*V_3 - 2 Pol(f32) = -4*V_1 + V_2 + 3*V_3 - V_4 - 4 Pol(f21) = -4*V_1 + V_2 + 3*V_3 - 2 Pol(f0) = V_2 orients all transitions weakly and the transition f10(b, c, d, e, f) -> f10(b + 1, c, d, e, f) [ c >= b + 1 ] strictly and produces the following problem: 6: T: (1, 1) f10(b, c, d, e, f) -> f18(b, c, c, 0, f) [ b >= c ] (2, 1) f18(b, c, d, e, f) -> f32(b, c, d, 0, f) [ e + 1 >= d ] (?, 1) f21(b, c, d, e, f) -> f18(b, c, d, e + 1, f) [ f + e + 1 >= d ] (?, 1) f32(b, c, d, e, f) -> f32(b, c, d, e + 1, f) [ d >= e + 2 ] (?, 1) f21(b, c, d, e, f) -> f21(b, c, d, e, f + 1) [ d >= e + f + 2 ] (?, 1) f21(b, c, d, e, f) -> f21(b, c, d, e, f + 1) [ d >= e + f + 2 ] (?, 1) f18(b, c, d, e, f) -> f21(b, c, d, e, 0) [ d >= e + 2 ] (c, 1) f10(b, c, d, e, f) -> f10(b + 1, c, d, e, f) [ c >= b + 1 ] (1, 1) f0(b, c, d, e, f) -> f10(0, c, d, e, f) start location: f0 leaf cost: 1 A polynomial rank function with Pol(f10) = V_2 - 1 Pol(f18) = V_3 - 1 Pol(f32) = V_3 - V_4 - 1 Pol(f21) = V_3 - 1 Pol(f0) = V_2 - 1 orients all transitions weakly and the transition f32(b, c, d, e, f) -> f32(b, c, d, e + 1, f) [ d >= e + 2 ] strictly and produces the following problem: 7: T: (1, 1) f10(b, c, d, e, f) -> f18(b, c, c, 0, f) [ b >= c ] (2, 1) f18(b, c, d, e, f) -> f32(b, c, d, 0, f) [ e + 1 >= d ] (?, 1) f21(b, c, d, e, f) -> f18(b, c, d, e + 1, f) [ f + e + 1 >= d ] (c + 1, 1) f32(b, c, d, e, f) -> f32(b, c, d, e + 1, f) [ d >= e + 2 ] (?, 1) f21(b, c, d, e, f) -> f21(b, c, d, e, f + 1) [ d >= e + f + 2 ] (?, 1) f21(b, c, d, e, f) -> f21(b, c, d, e, f + 1) [ d >= e + f + 2 ] (?, 1) f18(b, c, d, e, f) -> f21(b, c, d, e, 0) [ d >= e + 2 ] (c, 1) f10(b, c, d, e, f) -> f10(b + 1, c, d, e, f) [ c >= b + 1 ] (1, 1) f0(b, c, d, e, f) -> f10(0, c, d, e, f) start location: f0 leaf cost: 1 A polynomial rank function with Pol(f21) = 2*V_3 - 2*V_4 - 4 Pol(f18) = 2*V_3 - 2*V_4 - 3 and size complexities S("f0(b, c, d, e, f) -> f10(0, c, d, e, f)", 0-0) = 0 S("f0(b, c, d, e, f) -> f10(0, c, d, e, f)", 0-1) = c S("f0(b, c, d, e, f) -> f10(0, c, d, e, f)", 0-2) = d S("f0(b, c, d, e, f) -> f10(0, c, d, e, f)", 0-3) = e S("f0(b, c, d, e, f) -> f10(0, c, d, e, f)", 0-4) = f S("f10(b, c, d, e, f) -> f10(b + 1, c, d, e, f) [ c >= b + 1 ]", 0-0) = c S("f10(b, c, d, e, f) -> f10(b + 1, c, d, e, f) [ c >= b + 1 ]", 0-1) = c S("f10(b, c, d, e, f) -> f10(b + 1, c, d, e, f) [ c >= b + 1 ]", 0-2) = d S("f10(b, c, d, e, f) -> f10(b + 1, c, d, e, f) [ c >= b + 1 ]", 0-3) = e S("f10(b, c, d, e, f) -> f10(b + 1, c, d, e, f) [ c >= b + 1 ]", 0-4) = f S("f18(b, c, d, e, f) -> f21(b, c, d, e, 0) [ d >= e + 2 ]", 0-0) = c S("f18(b, c, d, e, f) -> f21(b, c, d, e, 0) [ d >= e + 2 ]", 0-1) = c S("f18(b, c, d, e, f) -> f21(b, c, d, e, 0) [ d >= e + 2 ]", 0-2) = c S("f18(b, c, d, e, f) -> f21(b, c, d, e, 0) [ d >= e + 2 ]", 0-3) = ? S("f18(b, c, d, e, f) -> f21(b, c, d, e, 0) [ d >= e + 2 ]", 0-4) = 0 S("f21(b, c, d, e, f) -> f21(b, c, d, e, f + 1) [ d >= e + f + 2 ]", 0-0) = c S("f21(b, c, d, e, f) -> f21(b, c, d, e, f + 1) [ d >= e + f + 2 ]", 0-1) = c S("f21(b, c, d, e, f) -> f21(b, c, d, e, f + 1) [ d >= e + f + 2 ]", 0-2) = c S("f21(b, c, d, e, f) -> f21(b, c, d, e, f + 1) [ d >= e + f + 2 ]", 0-3) = ? S("f21(b, c, d, e, f) -> f21(b, c, d, e, f + 1) [ d >= e + f + 2 ]", 0-4) = ? S("f21(b, c, d, e, f) -> f21(b, c, d, e, f + 1) [ d >= e + f + 2 ]", 0-0) = c S("f21(b, c, d, e, f) -> f21(b, c, d, e, f + 1) [ d >= e + f + 2 ]", 0-1) = c S("f21(b, c, d, e, f) -> f21(b, c, d, e, f + 1) [ d >= e + f + 2 ]", 0-2) = c S("f21(b, c, d, e, f) -> f21(b, c, d, e, f + 1) [ d >= e + f + 2 ]", 0-3) = ? S("f21(b, c, d, e, f) -> f21(b, c, d, e, f + 1) [ d >= e + f + 2 ]", 0-4) = ? S("f32(b, c, d, e, f) -> f32(b, c, d, e + 1, f) [ d >= e + 2 ]", 0-0) = c S("f32(b, c, d, e, f) -> f32(b, c, d, e + 1, f) [ d >= e + 2 ]", 0-1) = c S("f32(b, c, d, e, f) -> f32(b, c, d, e + 1, f) [ d >= e + 2 ]", 0-2) = c S("f32(b, c, d, e, f) -> f32(b, c, d, e + 1, f) [ d >= e + 2 ]", 0-3) = c + 1 S("f32(b, c, d, e, f) -> f32(b, c, d, e + 1, f) [ d >= e + 2 ]", 0-4) = ? S("f21(b, c, d, e, f) -> f18(b, c, d, e + 1, f) [ f + e + 1 >= d ]", 0-0) = c S("f21(b, c, d, e, f) -> f18(b, c, d, e + 1, f) [ f + e + 1 >= d ]", 0-1) = c S("f21(b, c, d, e, f) -> f18(b, c, d, e + 1, f) [ f + e + 1 >= d ]", 0-2) = c S("f21(b, c, d, e, f) -> f18(b, c, d, e + 1, f) [ f + e + 1 >= d ]", 0-3) = ? S("f21(b, c, d, e, f) -> f18(b, c, d, e + 1, f) [ f + e + 1 >= d ]", 0-4) = ? S("f18(b, c, d, e, f) -> f32(b, c, d, 0, f) [ e + 1 >= d ]", 0-0) = c S("f18(b, c, d, e, f) -> f32(b, c, d, 0, f) [ e + 1 >= d ]", 0-1) = c S("f18(b, c, d, e, f) -> f32(b, c, d, 0, f) [ e + 1 >= d ]", 0-2) = c S("f18(b, c, d, e, f) -> f32(b, c, d, 0, f) [ e + 1 >= d ]", 0-3) = 0 S("f18(b, c, d, e, f) -> f32(b, c, d, 0, f) [ e + 1 >= d ]", 0-4) = ? S("f10(b, c, d, e, f) -> f18(b, c, c, 0, f) [ b >= c ]", 0-0) = c S("f10(b, c, d, e, f) -> f18(b, c, c, 0, f) [ b >= c ]", 0-1) = c S("f10(b, c, d, e, f) -> f18(b, c, c, 0, f) [ b >= c ]", 0-2) = c S("f10(b, c, d, e, f) -> f18(b, c, c, 0, f) [ b >= c ]", 0-3) = 0 S("f10(b, c, d, e, f) -> f18(b, c, c, 0, f) [ b >= c ]", 0-4) = f orients the transitions f21(b, c, d, e, f) -> f21(b, c, d, e, f + 1) [ d >= e + f + 2 ] f21(b, c, d, e, f) -> f18(b, c, d, e + 1, f) [ f + e + 1 >= d ] f18(b, c, d, e, f) -> f21(b, c, d, e, 0) [ d >= e + 2 ] weakly and the transition f18(b, c, d, e, f) -> f21(b, c, d, e, 0) [ d >= e + 2 ] strictly and produces the following problem: 8: T: (1, 1) f10(b, c, d, e, f) -> f18(b, c, c, 0, f) [ b >= c ] (2, 1) f18(b, c, d, e, f) -> f32(b, c, d, 0, f) [ e + 1 >= d ] (?, 1) f21(b, c, d, e, f) -> f18(b, c, d, e + 1, f) [ f + e + 1 >= d ] (c + 1, 1) f32(b, c, d, e, f) -> f32(b, c, d, e + 1, f) [ d >= e + 2 ] (?, 1) f21(b, c, d, e, f) -> f21(b, c, d, e, f + 1) [ d >= e + f + 2 ] (?, 1) f21(b, c, d, e, f) -> f21(b, c, d, e, f + 1) [ d >= e + f + 2 ] (2*c + 3, 1) f18(b, c, d, e, f) -> f21(b, c, d, e, 0) [ d >= e + 2 ] (c, 1) f10(b, c, d, e, f) -> f10(b + 1, c, d, e, f) [ c >= b + 1 ] (1, 1) f0(b, c, d, e, f) -> f10(0, c, d, e, f) start location: f0 leaf cost: 1 A polynomial rank function with Pol(f21) = 2 Pol(f18) = 1 and size complexities S("f0(b, c, d, e, f) -> f10(0, c, d, e, f)", 0-0) = 0 S("f0(b, c, d, e, f) -> f10(0, c, d, e, f)", 0-1) = c S("f0(b, c, d, e, f) -> f10(0, c, d, e, f)", 0-2) = d S("f0(b, c, d, e, f) -> f10(0, c, d, e, f)", 0-3) = e S("f0(b, c, d, e, f) -> f10(0, c, d, e, f)", 0-4) = f S("f10(b, c, d, e, f) -> f10(b + 1, c, d, e, f) [ c >= b + 1 ]", 0-0) = c S("f10(b, c, d, e, f) -> f10(b + 1, c, d, e, f) [ c >= b + 1 ]", 0-1) = c S("f10(b, c, d, e, f) -> f10(b + 1, c, d, e, f) [ c >= b + 1 ]", 0-2) = d S("f10(b, c, d, e, f) -> f10(b + 1, c, d, e, f) [ c >= b + 1 ]", 0-3) = e S("f10(b, c, d, e, f) -> f10(b + 1, c, d, e, f) [ c >= b + 1 ]", 0-4) = f S("f18(b, c, d, e, f) -> f21(b, c, d, e, 0) [ d >= e + 2 ]", 0-0) = c S("f18(b, c, d, e, f) -> f21(b, c, d, e, 0) [ d >= e + 2 ]", 0-1) = c S("f18(b, c, d, e, f) -> f21(b, c, d, e, 0) [ d >= e + 2 ]", 0-2) = c S("f18(b, c, d, e, f) -> f21(b, c, d, e, 0) [ d >= e + 2 ]", 0-3) = ? S("f18(b, c, d, e, f) -> f21(b, c, d, e, 0) [ d >= e + 2 ]", 0-4) = 0 S("f21(b, c, d, e, f) -> f21(b, c, d, e, f + 1) [ d >= e + f + 2 ]", 0-0) = c S("f21(b, c, d, e, f) -> f21(b, c, d, e, f + 1) [ d >= e + f + 2 ]", 0-1) = c S("f21(b, c, d, e, f) -> f21(b, c, d, e, f + 1) [ d >= e + f + 2 ]", 0-2) = c S("f21(b, c, d, e, f) -> f21(b, c, d, e, f + 1) [ d >= e + f + 2 ]", 0-3) = ? S("f21(b, c, d, e, f) -> f21(b, c, d, e, f + 1) [ d >= e + f + 2 ]", 0-4) = ? S("f21(b, c, d, e, f) -> f21(b, c, d, e, f + 1) [ d >= e + f + 2 ]", 0-0) = c S("f21(b, c, d, e, f) -> f21(b, c, d, e, f + 1) [ d >= e + f + 2 ]", 0-1) = c S("f21(b, c, d, e, f) -> f21(b, c, d, e, f + 1) [ d >= e + f + 2 ]", 0-2) = c S("f21(b, c, d, e, f) -> f21(b, c, d, e, f + 1) [ d >= e + f + 2 ]", 0-3) = ? S("f21(b, c, d, e, f) -> f21(b, c, d, e, f + 1) [ d >= e + f + 2 ]", 0-4) = ? S("f32(b, c, d, e, f) -> f32(b, c, d, e + 1, f) [ d >= e + 2 ]", 0-0) = c S("f32(b, c, d, e, f) -> f32(b, c, d, e + 1, f) [ d >= e + 2 ]", 0-1) = c S("f32(b, c, d, e, f) -> f32(b, c, d, e + 1, f) [ d >= e + 2 ]", 0-2) = c S("f32(b, c, d, e, f) -> f32(b, c, d, e + 1, f) [ d >= e + 2 ]", 0-3) = c + 1 S("f32(b, c, d, e, f) -> f32(b, c, d, e + 1, f) [ d >= e + 2 ]", 0-4) = ? S("f21(b, c, d, e, f) -> f18(b, c, d, e + 1, f) [ f + e + 1 >= d ]", 0-0) = c S("f21(b, c, d, e, f) -> f18(b, c, d, e + 1, f) [ f + e + 1 >= d ]", 0-1) = c S("f21(b, c, d, e, f) -> f18(b, c, d, e + 1, f) [ f + e + 1 >= d ]", 0-2) = c S("f21(b, c, d, e, f) -> f18(b, c, d, e + 1, f) [ f + e + 1 >= d ]", 0-3) = ? S("f21(b, c, d, e, f) -> f18(b, c, d, e + 1, f) [ f + e + 1 >= d ]", 0-4) = ? S("f18(b, c, d, e, f) -> f32(b, c, d, 0, f) [ e + 1 >= d ]", 0-0) = c S("f18(b, c, d, e, f) -> f32(b, c, d, 0, f) [ e + 1 >= d ]", 0-1) = c S("f18(b, c, d, e, f) -> f32(b, c, d, 0, f) [ e + 1 >= d ]", 0-2) = c S("f18(b, c, d, e, f) -> f32(b, c, d, 0, f) [ e + 1 >= d ]", 0-3) = 0 S("f18(b, c, d, e, f) -> f32(b, c, d, 0, f) [ e + 1 >= d ]", 0-4) = ? S("f10(b, c, d, e, f) -> f18(b, c, c, 0, f) [ b >= c ]", 0-0) = c S("f10(b, c, d, e, f) -> f18(b, c, c, 0, f) [ b >= c ]", 0-1) = c S("f10(b, c, d, e, f) -> f18(b, c, c, 0, f) [ b >= c ]", 0-2) = c S("f10(b, c, d, e, f) -> f18(b, c, c, 0, f) [ b >= c ]", 0-3) = 0 S("f10(b, c, d, e, f) -> f18(b, c, c, 0, f) [ b >= c ]", 0-4) = f orients the transitions f21(b, c, d, e, f) -> f21(b, c, d, e, f + 1) [ d >= e + f + 2 ] f21(b, c, d, e, f) -> f18(b, c, d, e + 1, f) [ f + e + 1 >= d ] weakly and the transition f21(b, c, d, e, f) -> f18(b, c, d, e + 1, f) [ f + e + 1 >= d ] strictly and produces the following problem: 9: T: (1, 1) f10(b, c, d, e, f) -> f18(b, c, c, 0, f) [ b >= c ] (2, 1) f18(b, c, d, e, f) -> f32(b, c, d, 0, f) [ e + 1 >= d ] (4*c + 6, 1) f21(b, c, d, e, f) -> f18(b, c, d, e + 1, f) [ f + e + 1 >= d ] (c + 1, 1) f32(b, c, d, e, f) -> f32(b, c, d, e + 1, f) [ d >= e + 2 ] (?, 1) f21(b, c, d, e, f) -> f21(b, c, d, e, f + 1) [ d >= e + f + 2 ] (?, 1) f21(b, c, d, e, f) -> f21(b, c, d, e, f + 1) [ d >= e + f + 2 ] (2*c + 3, 1) f18(b, c, d, e, f) -> f21(b, c, d, e, 0) [ d >= e + 2 ] (c, 1) f10(b, c, d, e, f) -> f10(b + 1, c, d, e, f) [ c >= b + 1 ] (1, 1) f0(b, c, d, e, f) -> f10(0, c, d, e, f) start location: f0 leaf cost: 1 A polynomial rank function with Pol(f21) = V_3 - V_4 - V_5 and size complexities S("f0(b, c, d, e, f) -> f10(0, c, d, e, f)", 0-0) = 0 S("f0(b, c, d, e, f) -> f10(0, c, d, e, f)", 0-1) = c S("f0(b, c, d, e, f) -> f10(0, c, d, e, f)", 0-2) = d S("f0(b, c, d, e, f) -> f10(0, c, d, e, f)", 0-3) = e S("f0(b, c, d, e, f) -> f10(0, c, d, e, f)", 0-4) = f S("f10(b, c, d, e, f) -> f10(b + 1, c, d, e, f) [ c >= b + 1 ]", 0-0) = c S("f10(b, c, d, e, f) -> f10(b + 1, c, d, e, f) [ c >= b + 1 ]", 0-1) = c S("f10(b, c, d, e, f) -> f10(b + 1, c, d, e, f) [ c >= b + 1 ]", 0-2) = d S("f10(b, c, d, e, f) -> f10(b + 1, c, d, e, f) [ c >= b + 1 ]", 0-3) = e S("f10(b, c, d, e, f) -> f10(b + 1, c, d, e, f) [ c >= b + 1 ]", 0-4) = f S("f18(b, c, d, e, f) -> f21(b, c, d, e, 0) [ d >= e + 2 ]", 0-0) = c S("f18(b, c, d, e, f) -> f21(b, c, d, e, 0) [ d >= e + 2 ]", 0-1) = c S("f18(b, c, d, e, f) -> f21(b, c, d, e, 0) [ d >= e + 2 ]", 0-2) = c S("f18(b, c, d, e, f) -> f21(b, c, d, e, 0) [ d >= e + 2 ]", 0-3) = 4*c + 96 S("f18(b, c, d, e, f) -> f21(b, c, d, e, 0) [ d >= e + 2 ]", 0-4) = 0 S("f21(b, c, d, e, f) -> f21(b, c, d, e, f + 1) [ d >= e + f + 2 ]", 0-0) = c S("f21(b, c, d, e, f) -> f21(b, c, d, e, f + 1) [ d >= e + f + 2 ]", 0-1) = c S("f21(b, c, d, e, f) -> f21(b, c, d, e, f + 1) [ d >= e + f + 2 ]", 0-2) = c S("f21(b, c, d, e, f) -> f21(b, c, d, e, f + 1) [ d >= e + f + 2 ]", 0-3) = 4*c + 96 S("f21(b, c, d, e, f) -> f21(b, c, d, e, f + 1) [ d >= e + f + 2 ]", 0-4) = ? S("f21(b, c, d, e, f) -> f21(b, c, d, e, f + 1) [ d >= e + f + 2 ]", 0-0) = c S("f21(b, c, d, e, f) -> f21(b, c, d, e, f + 1) [ d >= e + f + 2 ]", 0-1) = c S("f21(b, c, d, e, f) -> f21(b, c, d, e, f + 1) [ d >= e + f + 2 ]", 0-2) = c S("f21(b, c, d, e, f) -> f21(b, c, d, e, f + 1) [ d >= e + f + 2 ]", 0-3) = 4*c + 96 S("f21(b, c, d, e, f) -> f21(b, c, d, e, f + 1) [ d >= e + f + 2 ]", 0-4) = ? S("f32(b, c, d, e, f) -> f32(b, c, d, e + 1, f) [ d >= e + 2 ]", 0-0) = c S("f32(b, c, d, e, f) -> f32(b, c, d, e + 1, f) [ d >= e + 2 ]", 0-1) = c S("f32(b, c, d, e, f) -> f32(b, c, d, e + 1, f) [ d >= e + 2 ]", 0-2) = c S("f32(b, c, d, e, f) -> f32(b, c, d, e + 1, f) [ d >= e + 2 ]", 0-3) = c + 1 S("f32(b, c, d, e, f) -> f32(b, c, d, e + 1, f) [ d >= e + 2 ]", 0-4) = ? S("f21(b, c, d, e, f) -> f18(b, c, d, e + 1, f) [ f + e + 1 >= d ]", 0-0) = c S("f21(b, c, d, e, f) -> f18(b, c, d, e + 1, f) [ f + e + 1 >= d ]", 0-1) = c S("f21(b, c, d, e, f) -> f18(b, c, d, e + 1, f) [ f + e + 1 >= d ]", 0-2) = c S("f21(b, c, d, e, f) -> f18(b, c, d, e + 1, f) [ f + e + 1 >= d ]", 0-3) = 4*c + 96 S("f21(b, c, d, e, f) -> f18(b, c, d, e + 1, f) [ f + e + 1 >= d ]", 0-4) = ? S("f18(b, c, d, e, f) -> f32(b, c, d, 0, f) [ e + 1 >= d ]", 0-0) = c S("f18(b, c, d, e, f) -> f32(b, c, d, 0, f) [ e + 1 >= d ]", 0-1) = c S("f18(b, c, d, e, f) -> f32(b, c, d, 0, f) [ e + 1 >= d ]", 0-2) = c S("f18(b, c, d, e, f) -> f32(b, c, d, 0, f) [ e + 1 >= d ]", 0-3) = 0 S("f18(b, c, d, e, f) -> f32(b, c, d, 0, f) [ e + 1 >= d ]", 0-4) = ? S("f10(b, c, d, e, f) -> f18(b, c, c, 0, f) [ b >= c ]", 0-0) = c S("f10(b, c, d, e, f) -> f18(b, c, c, 0, f) [ b >= c ]", 0-1) = c S("f10(b, c, d, e, f) -> f18(b, c, c, 0, f) [ b >= c ]", 0-2) = c S("f10(b, c, d, e, f) -> f18(b, c, c, 0, f) [ b >= c ]", 0-3) = 0 S("f10(b, c, d, e, f) -> f18(b, c, c, 0, f) [ b >= c ]", 0-4) = f orients the transition f21(b, c, d, e, f) -> f21(b, c, d, e, f + 1) [ d >= e + f + 2 ] weakly and the transition f21(b, c, d, e, f) -> f21(b, c, d, e, f + 1) [ d >= e + f + 2 ] strictly and produces the following problem: 10: T: (1, 1) f10(b, c, d, e, f) -> f18(b, c, c, 0, f) [ b >= c ] (2, 1) f18(b, c, d, e, f) -> f32(b, c, d, 0, f) [ e + 1 >= d ] (4*c + 6, 1) f21(b, c, d, e, f) -> f18(b, c, d, e + 1, f) [ f + e + 1 >= d ] (c + 1, 1) f32(b, c, d, e, f) -> f32(b, c, d, e + 1, f) [ d >= e + 2 ] (10*c^2 + 207*c + 288, 1) f21(b, c, d, e, f) -> f21(b, c, d, e, f + 1) [ d >= e + f + 2 ] (10*c^2 + 207*c + 288, 1) f21(b, c, d, e, f) -> f21(b, c, d, e, f + 1) [ d >= e + f + 2 ] (2*c + 3, 1) f18(b, c, d, e, f) -> f21(b, c, d, e, 0) [ d >= e + 2 ] (c, 1) f10(b, c, d, e, f) -> f10(b + 1, c, d, e, f) [ c >= b + 1 ] (1, 1) f0(b, c, d, e, f) -> f10(0, c, d, e, f) start location: f0 leaf cost: 1 Complexity upper bound 422*c + 20*c^2 + 591 Time: 0.382 sec (SMT: 0.351 sec)