YES(?, 2*a + 2*b + 2) Initial complexity problem: 1: T: (?, 1) eval(a, b) -> eval(a, b + 1) [ a >= b + 1 ] (?, 1) eval(a, b) -> eval(a, b + 1) [ b >= a + 1 /\ a >= b + 1 ] (?, 1) eval(a, b) -> eval(a + 1, b) [ a >= b + 1 /\ b >= a ] (?, 1) eval(a, b) -> eval(a + 1, b) [ b >= a + 1 /\ b >= a ] (1, 1) start(a, b) -> eval(a, b) start location: start leaf cost: 0 Testing for unsatisfiable constraints removes the following transitions from problem 1: eval(a, b) -> eval(a, b + 1) [ b >= a + 1 /\ a >= b + 1 ] eval(a, b) -> eval(a + 1, b) [ a >= b + 1 /\ b >= a ] We thus obtain the following problem: 2: T: (?, 1) eval(a, b) -> eval(a, b + 1) [ a >= b + 1 ] (?, 1) eval(a, b) -> eval(a + 1, b) [ b >= a + 1 /\ b >= a ] (1, 1) start(a, b) -> eval(a, b) start location: start leaf cost: 0 A polynomial rank function with Pol(eval) = V_1 - V_2 and size complexities S("start(a, b) -> eval(a, b)", 0-0) = a S("start(a, b) -> eval(a, b)", 0-1) = b S("eval(a, b) -> eval(a + 1, b) [ b >= a + 1 /\\ b >= a ]", 0-0) = ? S("eval(a, b) -> eval(a + 1, b) [ b >= a + 1 /\\ b >= a ]", 0-1) = b S("eval(a, b) -> eval(a, b + 1) [ a >= b + 1 ]", 0-0) = a S("eval(a, b) -> eval(a, b + 1) [ a >= b + 1 ]", 0-1) = ? orients the transition eval(a, b) -> eval(a, b + 1) [ a >= b + 1 ] weakly and the transition eval(a, b) -> eval(a, b + 1) [ a >= b + 1 ] strictly and produces the following problem: 3: T: (a + b, 1) eval(a, b) -> eval(a, b + 1) [ a >= b + 1 ] (?, 1) eval(a, b) -> eval(a + 1, b) [ b >= a + 1 /\ b >= a ] (1, 1) start(a, b) -> eval(a, b) start location: start leaf cost: 0 A polynomial rank function with Pol(eval) = -V_1 + V_2 + 1 and size complexities S("start(a, b) -> eval(a, b)", 0-0) = a S("start(a, b) -> eval(a, b)", 0-1) = b S("eval(a, b) -> eval(a + 1, b) [ b >= a + 1 /\\ b >= a ]", 0-0) = ? S("eval(a, b) -> eval(a + 1, b) [ b >= a + 1 /\\ b >= a ]", 0-1) = b S("eval(a, b) -> eval(a, b + 1) [ a >= b + 1 ]", 0-0) = a S("eval(a, b) -> eval(a, b + 1) [ a >= b + 1 ]", 0-1) = 2*a + 2*b orients the transition eval(a, b) -> eval(a + 1, b) [ b >= a + 1 /\ b >= a ] weakly and the transition eval(a, b) -> eval(a + 1, b) [ b >= a + 1 /\ b >= a ] strictly and produces the following problem: 4: T: (a + b, 1) eval(a, b) -> eval(a, b + 1) [ a >= b + 1 ] (a + b + 1, 1) eval(a, b) -> eval(a + 1, b) [ b >= a + 1 /\ b >= a ] (1, 1) start(a, b) -> eval(a, b) start location: start leaf cost: 0 Complexity upper bound 2*a + 2*b + 2 Time: 0.150 sec (SMT: 0.141 sec)