YES(?, 2*a + 2*b + 3) Initial complexity problem: 1: T: (?, 1) eval(a, b) -> eval(a - b, b) [ a >= b + 1 /\ a >= 1 /\ b >= 1 ] (?, 1) eval(a, b) -> eval(a - b, b) [ b >= a + 1 /\ a >= 1 /\ b >= 1 /\ a >= b + 1 ] (?, 1) eval(a, b) -> eval(a, b - a) [ a >= b + 1 /\ a >= 1 /\ b >= 1 /\ b >= a ] (?, 1) eval(a, b) -> eval(a, b - a) [ b >= a + 1 /\ a >= 1 /\ b >= 1 /\ b >= a ] (1, 1) start(a, b) -> eval(a, b) start location: start leaf cost: 0 Testing for unsatisfiable constraints removes the following transitions from problem 1: eval(a, b) -> eval(a - b, b) [ b >= a + 1 /\ a >= 1 /\ b >= 1 /\ a >= b + 1 ] eval(a, b) -> eval(a, b - a) [ a >= b + 1 /\ a >= 1 /\ b >= 1 /\ b >= a ] We thus obtain the following problem: 2: T: (?, 1) eval(a, b) -> eval(a - b, b) [ a >= b + 1 /\ a >= 1 /\ b >= 1 ] (?, 1) eval(a, b) -> eval(a, b - a) [ b >= a + 1 /\ a >= 1 /\ b >= 1 /\ b >= a ] (1, 1) start(a, b) -> eval(a, b) start location: start leaf cost: 0 A polynomial rank function with Pol(eval) = V_1 + V_2 - 1 Pol(start) = V_1 + V_2 - 1 orients all transitions weakly and the transitions eval(a, b) -> eval(a - b, b) [ a >= b + 1 /\ a >= 1 /\ b >= 1 ] eval(a, b) -> eval(a, b - a) [ b >= a + 1 /\ a >= 1 /\ b >= 1 /\ b >= a ] strictly and produces the following problem: 3: T: (a + b + 1, 1) eval(a, b) -> eval(a - b, b) [ a >= b + 1 /\ a >= 1 /\ b >= 1 ] (a + b + 1, 1) eval(a, b) -> eval(a, b - a) [ b >= a + 1 /\ a >= 1 /\ b >= 1 /\ b >= a ] (1, 1) start(a, b) -> eval(a, b) start location: start leaf cost: 0 Complexity upper bound 2*a + 2*b + 3 Time: 0.172 sec (SMT: 0.164 sec)