YES(?, 2*a + 3*b + c + 2) Initial complexity problem: 1: T: (?, 1) eval(a, b, c) -> eval(a - 1, b, c) [ a >= b + 1 ] (?, 1) eval(a, b, c) -> eval(a - 1, b, c) [ c >= b + 1 /\ a >= b + 1 ] (?, 1) eval(a, b, c) -> eval(a, b, c - 1) [ a >= b + 1 /\ b >= a /\ c >= b + 1 ] (?, 1) eval(a, b, c) -> eval(a, b, c - 1) [ c >= b + 1 /\ b >= a ] (?, 1) eval(a, b, c) -> eval(a, b, c) [ a >= b + 1 /\ b >= a /\ b >= c ] (?, 1) eval(a, b, c) -> eval(a, b, c) [ c >= b + 1 /\ b >= a /\ b >= c ] (1, 1) start(a, b, c) -> eval(a, b, c) start location: start leaf cost: 0 Testing for unsatisfiable constraints removes the following transitions from problem 1: eval(a, b, c) -> eval(a, b, c - 1) [ a >= b + 1 /\ b >= a /\ c >= b + 1 ] eval(a, b, c) -> eval(a, b, c) [ a >= b + 1 /\ b >= a /\ b >= c ] eval(a, b, c) -> eval(a, b, c) [ c >= b + 1 /\ b >= a /\ b >= c ] We thus obtain the following problem: 2: T: (?, 1) eval(a, b, c) -> eval(a - 1, b, c) [ a >= b + 1 ] (?, 1) eval(a, b, c) -> eval(a - 1, b, c) [ c >= b + 1 /\ a >= b + 1 ] (?, 1) eval(a, b, c) -> eval(a, b, c - 1) [ c >= b + 1 /\ b >= a ] (1, 1) start(a, b, c) -> eval(a, b, c) start location: start leaf cost: 0 A polynomial rank function with Pol(eval) = -V_2 + V_3 + 1 Pol(start) = -V_2 + V_3 + 1 orients all transitions weakly and the transition eval(a, b, c) -> eval(a, b, c - 1) [ c >= b + 1 /\ b >= a ] strictly and produces the following problem: 3: T: (?, 1) eval(a, b, c) -> eval(a - 1, b, c) [ a >= b + 1 ] (?, 1) eval(a, b, c) -> eval(a - 1, b, c) [ c >= b + 1 /\ a >= b + 1 ] (b + c + 1, 1) eval(a, b, c) -> eval(a, b, c - 1) [ c >= b + 1 /\ b >= a ] (1, 1) start(a, b, c) -> eval(a, b, c) start location: start leaf cost: 0 A polynomial rank function with Pol(eval) = V_1 - V_2 Pol(start) = V_1 - V_2 orients all transitions weakly and the transitions eval(a, b, c) -> eval(a - 1, b, c) [ c >= b + 1 /\ a >= b + 1 ] eval(a, b, c) -> eval(a - 1, b, c) [ a >= b + 1 ] strictly and produces the following problem: 4: T: (a + b, 1) eval(a, b, c) -> eval(a - 1, b, c) [ a >= b + 1 ] (a + b, 1) eval(a, b, c) -> eval(a - 1, b, c) [ c >= b + 1 /\ a >= b + 1 ] (b + c + 1, 1) eval(a, b, c) -> eval(a, b, c - 1) [ c >= b + 1 /\ b >= a ] (1, 1) start(a, b, c) -> eval(a, b, c) start location: start leaf cost: 0 Complexity upper bound 2*a + 3*b + c + 2 Time: 0.243 sec (SMT: 0.231 sec)