YES(?, 3*a + 3*b + 1) Initial complexity problem: 1: T: (?, 1) eval(a, b) -> eval(a - 1, b) [ a + b >= 1 /\ a >= b + 1 ] (?, 1) eval(a, b) -> eval(a - 1, b) [ 2*a >= 1 /\ b = a ] (?, 1) eval(a, b) -> eval(a, b - 1) [ a + b >= 1 /\ b >= a /\ b >= a + 1 ] (?, 1) eval(a, b) -> eval(a, b - 1) [ a + b >= 1 /\ b >= a /\ a >= b + 1 ] (1, 1) start(a, b) -> eval(a, b) start location: start leaf cost: 0 Testing for unsatisfiable constraints removes the following transition from problem 1: eval(a, b) -> eval(a, b - 1) [ a + b >= 1 /\ b >= a /\ a >= b + 1 ] We thus obtain the following problem: 2: T: (?, 1) eval(a, b) -> eval(a - 1, b) [ a + b >= 1 /\ a >= b + 1 ] (?, 1) eval(a, b) -> eval(a - 1, b) [ 2*a >= 1 /\ b = a ] (?, 1) eval(a, b) -> eval(a, b - 1) [ a + b >= 1 /\ b >= a /\ b >= a + 1 ] (1, 1) start(a, b) -> eval(a, b) start location: start leaf cost: 0 A polynomial rank function with Pol(eval) = V_1 + V_2 Pol(start) = V_1 + V_2 orients all transitions weakly and the transitions eval(a, b) -> eval(a, b - 1) [ a + b >= 1 /\ b >= a /\ b >= a + 1 ] eval(a, b) -> eval(a - 1, b) [ a + b >= 1 /\ a >= b + 1 ] eval(a, b) -> eval(a - 1, b) [ 2*a >= 1 /\ b = a ] strictly and produces the following problem: 3: T: (a + b, 1) eval(a, b) -> eval(a - 1, b) [ a + b >= 1 /\ a >= b + 1 ] (a + b, 1) eval(a, b) -> eval(a - 1, b) [ 2*a >= 1 /\ b = a ] (a + b, 1) eval(a, b) -> eval(a, b - 1) [ a + b >= 1 /\ b >= a /\ b >= a + 1 ] (1, 1) start(a, b) -> eval(a, b) start location: start leaf cost: 0 Complexity upper bound 3*a + 3*b + 1 Time: 0.220 sec (SMT: 0.210 sec)