warning: Ignored call to f29/7 in equation f26/7 warning: Ignored call to loop_cont_f24/7 in equation loop_cont_f14/7 Warning: the following predicates are never called:[f26/7] Inferred cost of f14(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O): f14(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O):[18]: 0 with precondition: [C=0,H=1,K=0,A=2*G+1,A=2*O+1,L=D,B=E,A=F,A=I,B=J,B=M,A=N,A>=1,B>=1] f14(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O):[[15,16],17]: 1+it1*(1)+it2*(1) Such that:it1=<1*A,it1=<1*F,it1=<1*K,it1=<1*N,it1=<-1*J+1*E,it1=<-1*J+1*M,it1=<1*B+ -1*J,it1=<1*F+ -1*C,it1=<2*G+1,it1=<2*O+1,it1=<-1*K+1*A+1*F,it1=<1*E+ -1*C+ -1*J,it1=<2*O+1*B+ -1*M+1,it1+it2=<1*A,it1+it2=<1*F,it1+it2=<1*N,it1+it2=<2*G+1,it1+it2=<2*O+1,it1+it2=<-1*C+2*O+1,it1+it2=<-1*E+1*B+2*O+1,it2=<2*G,it2=<2*O,it2=<-1*C+1*N,it2=<-1*K+1*N,it2=<1*F+ -1,it2=<1*N+ -1,it2=<-1*E+1*F+1*J,it2=<-1*E+2*O+1,it2=<-1*M+1*J+1*N,it2=<-1*M+2*O+1,it2=<1*A+1*C+ -1*K,it2=<1*A+1*C+ -1*M,it2=<-1*B+ -1*C+2*O+1,it2=<-1*J+ -1*K+2*O+1,it2=<-1*B+ -1*C+1*J+2*O+1 with precondition: [H=0,I=0,2*O+1=F,O=G,2*O+1=N,B+C=E,B+C=M,B+C=J+K,A>=1,C>=0,K>=1,K>=C,B+C>=1,2*O+1>=A+C,A+C>=K] f14(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O):[[15,16],18]: 0+it1*(1)+it2*(1) Such that:it1=<1*F,it1=<1*K,it1=<1*N,it1=<-1*I+1*A,it1=<-1*I+1*F,it1=<-1*J+1*E,it1=<-1*J+1*M,it1=<1*B+ -1*J,it1=<1*F+ -1*C,it1=<2*G+1,it1=<2*O+1,it1=<-1*I+2*G+1,it1=<1*E+ -1*C+ -1*J,it1=<-1*I+ -1*K+1*A+1*F,it1=<2*O+1*B+ -1*E+1,it1+it2=<1*A,it1+it2=<1*F,it1+it2=<1*N,it1+it2=<2*O,it1+it2=<-1*I+1*F,it1+it2=<1*A+ -1*I,it1+it2=<1*N+ -1,it1+it2=<2*G+1,it1+it2=<2*O+1,it1+it2=<-1*C+2*O+1,it1+it2=<-1*I+2*G+1,it1+it2=<-1*I+2*O+1,it1+it2=<-1*C+ -1*I+2*O+1,it1+it2=<-1*E+1*B+2*O+1,it1+it2=<-1*E+ -1*I+1*B+2*O+1,it2=<2*G,it2=<2*O,it2=<1*F+ -1,it2=<1*N+ -1,it2=<-1*C+1*N+ -1,it2=<-1*E+2*O+1,it2=<-1*I+ -1*K+1*F,it2=<-1*K+1*N+ -1,it2=<-1*M+1*J+2*O,it2=<-1*M+2*O+1,it2=<1*A+1*C+ -1*E,it2=<-1*B+ -1*C+2*O+1,it2=<-1*E+ -1*I+1*F+1*J,it2=<-1*I+ -1*K+2*G+1,it2=<-1*I+ -1*K+2*O+1,it2=<-1*J+ -1*K+2*O+1,it2=<1*A+1*C+ -1*I+ -1*K,it2=<-1*B+ -1*C+ -1*I+1*J+2*O+1 with precondition: [H=1,2*O+1=F,O=G,2*O+1=N,B+C=E,B+C=M,B+C=J+K,C>=0,I>=1,A>=I+1,B>=J,B+C>=1,2*O+1>=A+C,A+J>=B+I] Inferred cost of f24(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O): f24(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O):[21]: 0 with precondition: [H=1,I=A,J=B,K=C,L=D,M=E,N=F,O=G] f24(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O):[[20],21]: inf with precondition: [H=1,A=I,B=J,C=K,D=L,E=M,F=N,G=O] f24(A,B,C,D,E,F,G,H,I,J,K,L,M,N,O):[[20],22]...: inf with precondition: [1>=H,H>=0] Inferred cost of loop_cont_f14(A,B,C,D,E,F,G): loop_cont_f14(A,B,C,D,E,F,G):[23]: 0 with precondition: [] loop_cont_f14(A,B,C,D,E,F,G):[24]: inf with precondition: [] loop_cont_f14(A,B,C,D,E,F,G):[25]...: inf with precondition: [] loop_cont_f14(A,B,C,D,E,F,G):[26]...: inf with precondition: [] Inferred cost of f0(A,B,C,D,E,F,G): f0(A,B,C,D,E,F,G):[28]: inf with precondition: [] f0(A,B,C,D,E,F,G):[29]: inf with precondition: [] f0(A,B,C,D,E,F,G):[30]: 1 with precondition: [] f0(A,B,C,D,E,F,G):[31]: inf with precondition: [] f0(A,B,C,D,E,F,G):[32]...: inf with precondition: [] f0(A,B,C,D,E,F,G):[33]...: inf with precondition: [] Solved cost expressions of f0(A,B,C,D,E,F,G): f0(A,B,C,D,E,F,G):[28]: inf with precondition: [] f0(A,B,C,D,E,F,G):[29]: inf with precondition: [] f0(A,B,C,D,E,F,G):[30]: 1 with precondition: [] f0(A,B,C,D,E,F,G):[31]: inf with precondition: [] f0(A,B,C,D,E,F,G):[32]...: inf with precondition: [] f0(A,B,C,D,E,F,G):[33]...: inf with precondition: [] Maximum cost of f0(A,B,C,D,E,F,G): inf Asymptotic class: infinity Time statistics: Partial evaluation computed in 11 ms. Invariants computed in 73 ms. ----Backward Invariants 38 ms. ----Transitive Invariants 10 ms. Refinement performed in 58 ms. Termination proved in 34 ms. Upper bounds computed in 250 ms. ----Phase cost structures 106 ms. --------Equation cost structures 105 ms. --------Inductive compression(1) 0 ms. --------Inductive compression(2) 0 ms. --------Black Cost 0 ms. ----Chain cost structures 138 ms. ----Solving cost expressions 0 ms. Compressed phase information: 3 Compressed Chains: 0 Compressed invariants: 0 Total analysis performed in 459 ms.