primes → sieve(from(s(s(0))))
from(X) → cons(X, from(s(X)))
head(cons(X, Y)) → X
tail(cons(X, Y)) → Y
if(true, X, Y) → X
if(false, X, Y) → Y
filter(s(s(X)), cons(Y, Z)) → if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y))))
sieve(cons(X, Y)) → cons(X, filter(X, sieve(Y)))
if(true, x0, x1)
from(x0)
filter(s(s(x0)), cons(x1, x2))
primes
tail(cons(x0, x1))
sieve(cons(x0, x1))
head(cons(x0, x1))
if(false, x0, x1)
↳ QTRS
↳ DependencyPairsProof
primes → sieve(from(s(s(0))))
from(X) → cons(X, from(s(X)))
head(cons(X, Y)) → X
tail(cons(X, Y)) → Y
if(true, X, Y) → X
if(false, X, Y) → Y
filter(s(s(X)), cons(Y, Z)) → if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y))))
sieve(cons(X, Y)) → cons(X, filter(X, sieve(Y)))
if(true, x0, x1)
from(x0)
filter(s(s(x0)), cons(x1, x2))
primes
tail(cons(x0, x1))
sieve(cons(x0, x1))
head(cons(x0, x1))
if(false, x0, x1)
SIEVE(cons(X, Y)) → FILTER(X, sieve(Y))
FILTER(s(s(X)), cons(Y, Z)) → IF(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y))))
SIEVE(cons(X, Y)) → SIEVE(Y)
FILTER(s(s(X)), cons(Y, Z)) → SIEVE(Y)
FILTER(s(s(X)), cons(Y, Z)) → FILTER(s(s(X)), Z)
FILTER(s(s(X)), cons(Y, Z)) → FILTER(X, sieve(Y))
PRIMES → FROM(s(s(0)))
PRIMES → SIEVE(from(s(s(0))))
FROM(X) → FROM(s(X))
primes → sieve(from(s(s(0))))
from(X) → cons(X, from(s(X)))
head(cons(X, Y)) → X
tail(cons(X, Y)) → Y
if(true, X, Y) → X
if(false, X, Y) → Y
filter(s(s(X)), cons(Y, Z)) → if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y))))
sieve(cons(X, Y)) → cons(X, filter(X, sieve(Y)))
if(true, x0, x1)
from(x0)
filter(s(s(x0)), cons(x1, x2))
primes
tail(cons(x0, x1))
sieve(cons(x0, x1))
head(cons(x0, x1))
if(false, x0, x1)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
SIEVE(cons(X, Y)) → FILTER(X, sieve(Y))
FILTER(s(s(X)), cons(Y, Z)) → IF(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y))))
SIEVE(cons(X, Y)) → SIEVE(Y)
FILTER(s(s(X)), cons(Y, Z)) → SIEVE(Y)
FILTER(s(s(X)), cons(Y, Z)) → FILTER(s(s(X)), Z)
FILTER(s(s(X)), cons(Y, Z)) → FILTER(X, sieve(Y))
PRIMES → FROM(s(s(0)))
PRIMES → SIEVE(from(s(s(0))))
FROM(X) → FROM(s(X))
primes → sieve(from(s(s(0))))
from(X) → cons(X, from(s(X)))
head(cons(X, Y)) → X
tail(cons(X, Y)) → Y
if(true, X, Y) → X
if(false, X, Y) → Y
filter(s(s(X)), cons(Y, Z)) → if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y))))
sieve(cons(X, Y)) → cons(X, filter(X, sieve(Y)))
if(true, x0, x1)
from(x0)
filter(s(s(x0)), cons(x1, x2))
primes
tail(cons(x0, x1))
sieve(cons(x0, x1))
head(cons(x0, x1))
if(false, x0, x1)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
SIEVE(cons(X, Y)) → FILTER(X, sieve(Y))
SIEVE(cons(X, Y)) → SIEVE(Y)
FILTER(s(s(X)), cons(Y, Z)) → SIEVE(Y)
FILTER(s(s(X)), cons(Y, Z)) → FILTER(s(s(X)), Z)
FILTER(s(s(X)), cons(Y, Z)) → FILTER(X, sieve(Y))
primes → sieve(from(s(s(0))))
from(X) → cons(X, from(s(X)))
head(cons(X, Y)) → X
tail(cons(X, Y)) → Y
if(true, X, Y) → X
if(false, X, Y) → Y
filter(s(s(X)), cons(Y, Z)) → if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y))))
sieve(cons(X, Y)) → cons(X, filter(X, sieve(Y)))
if(true, x0, x1)
from(x0)
filter(s(s(x0)), cons(x1, x2))
primes
tail(cons(x0, x1))
sieve(cons(x0, x1))
head(cons(x0, x1))
if(false, x0, x1)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
SIEVE(cons(X, Y)) → FILTER(X, sieve(Y))
SIEVE(cons(X, Y)) → SIEVE(Y)
FILTER(s(s(X)), cons(Y, Z)) → SIEVE(Y)
FILTER(s(s(X)), cons(Y, Z)) → FILTER(s(s(X)), Z)
FILTER(s(s(X)), cons(Y, Z)) → FILTER(X, sieve(Y))
sieve(cons(X, Y)) → cons(X, filter(X, sieve(Y)))
filter(s(s(X)), cons(Y, Z)) → if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y))))
if(true, x0, x1)
from(x0)
filter(s(s(x0)), cons(x1, x2))
primes
tail(cons(x0, x1))
sieve(cons(x0, x1))
head(cons(x0, x1))
if(false, x0, x1)
from(x0)
primes
tail(cons(x0, x1))
head(cons(x0, x1))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPOrderProof
↳ QDP
SIEVE(cons(X, Y)) → FILTER(X, sieve(Y))
FILTER(s(s(X)), cons(Y, Z)) → FILTER(s(s(X)), Z)
FILTER(s(s(X)), cons(Y, Z)) → SIEVE(Y)
SIEVE(cons(X, Y)) → SIEVE(Y)
FILTER(s(s(X)), cons(Y, Z)) → FILTER(X, sieve(Y))
sieve(cons(X, Y)) → cons(X, filter(X, sieve(Y)))
filter(s(s(X)), cons(Y, Z)) → if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y))))
if(true, x0, x1)
filter(s(s(x0)), cons(x1, x2))
sieve(cons(x0, x1))
if(false, x0, x1)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
FILTER(s(s(X)), cons(Y, Z)) → SIEVE(Y)
FILTER(s(s(X)), cons(Y, Z)) → FILTER(X, sieve(Y))
Used ordering: Polynomial interpretation [25]:
SIEVE(cons(X, Y)) → FILTER(X, sieve(Y))
FILTER(s(s(X)), cons(Y, Z)) → FILTER(s(s(X)), Z)
SIEVE(cons(X, Y)) → SIEVE(Y)
POL(FILTER(x1, x2)) = x1 + x2
POL(SIEVE(x1)) = x1
POL(cons(x1, x2)) = x1 + x2
POL(divides(x1, x2)) = 0
POL(filter(x1, x2)) = x2
POL(if(x1, x2, x3)) = 0
POL(s(x1)) = 1 + x1
POL(sieve(x1)) = x1
filter(s(s(X)), cons(Y, Z)) → if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y))))
sieve(cons(X, Y)) → cons(X, filter(X, sieve(Y)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
SIEVE(cons(X, Y)) → FILTER(X, sieve(Y))
SIEVE(cons(X, Y)) → SIEVE(Y)
FILTER(s(s(X)), cons(Y, Z)) → FILTER(s(s(X)), Z)
sieve(cons(X, Y)) → cons(X, filter(X, sieve(Y)))
filter(s(s(X)), cons(Y, Z)) → if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y))))
if(true, x0, x1)
filter(s(s(x0)), cons(x1, x2))
sieve(cons(x0, x1))
if(false, x0, x1)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
FILTER(s(s(X)), cons(Y, Z)) → FILTER(s(s(X)), Z)
sieve(cons(X, Y)) → cons(X, filter(X, sieve(Y)))
filter(s(s(X)), cons(Y, Z)) → if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y))))
if(true, x0, x1)
filter(s(s(x0)), cons(x1, x2))
sieve(cons(x0, x1))
if(false, x0, x1)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDP
FILTER(s(s(X)), cons(Y, Z)) → FILTER(s(s(X)), Z)
if(true, x0, x1)
filter(s(s(x0)), cons(x1, x2))
sieve(cons(x0, x1))
if(false, x0, x1)
if(true, x0, x1)
filter(s(s(x0)), cons(x1, x2))
sieve(cons(x0, x1))
if(false, x0, x1)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
FILTER(s(s(X)), cons(Y, Z)) → FILTER(s(s(X)), Z)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
SIEVE(cons(X, Y)) → SIEVE(Y)
sieve(cons(X, Y)) → cons(X, filter(X, sieve(Y)))
filter(s(s(X)), cons(Y, Z)) → if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y))))
if(true, x0, x1)
filter(s(s(x0)), cons(x1, x2))
sieve(cons(x0, x1))
if(false, x0, x1)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
SIEVE(cons(X, Y)) → SIEVE(Y)
if(true, x0, x1)
filter(s(s(x0)), cons(x1, x2))
sieve(cons(x0, x1))
if(false, x0, x1)
if(true, x0, x1)
filter(s(s(x0)), cons(x1, x2))
sieve(cons(x0, x1))
if(false, x0, x1)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
SIEVE(cons(X, Y)) → SIEVE(Y)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
FROM(X) → FROM(s(X))
primes → sieve(from(s(s(0))))
from(X) → cons(X, from(s(X)))
head(cons(X, Y)) → X
tail(cons(X, Y)) → Y
if(true, X, Y) → X
if(false, X, Y) → Y
filter(s(s(X)), cons(Y, Z)) → if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y))))
sieve(cons(X, Y)) → cons(X, filter(X, sieve(Y)))
if(true, x0, x1)
from(x0)
filter(s(s(x0)), cons(x1, x2))
primes
tail(cons(x0, x1))
sieve(cons(x0, x1))
head(cons(x0, x1))
if(false, x0, x1)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
FROM(X) → FROM(s(X))
if(true, x0, x1)
from(x0)
filter(s(s(x0)), cons(x1, x2))
primes
tail(cons(x0, x1))
sieve(cons(x0, x1))
head(cons(x0, x1))
if(false, x0, x1)
if(true, x0, x1)
from(x0)
filter(s(s(x0)), cons(x1, x2))
primes
tail(cons(x0, x1))
sieve(cons(x0, x1))
head(cons(x0, x1))
if(false, x0, x1)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Instantiation
FROM(X) → FROM(s(X))
FROM(s(z0)) → FROM(s(s(z0)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
FROM(s(z0)) → FROM(s(s(z0)))
FROM(s(s(z0))) → FROM(s(s(s(z0))))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ NonTerminationProof
FROM(s(s(z0))) → FROM(s(s(s(z0))))
FROM(s(s(z0))) → FROM(s(s(s(z0))))