from(X) → cons(X, from(s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, Z))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, Z))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
2ndspos(0, x0)
times(0, x0)
2ndspos(s(x0), cons(x1, x2))
times(s(x0), x1)
2ndspos(s(x0), cons2(x1, cons(x2, x3)))
2ndsneg(0, x0)
square(x0)
2ndsneg(s(x0), cons(x1, x2))
from(x0)
2ndsneg(s(x0), cons2(x1, cons(x2, x3)))
plus(s(x0), x1)
pi(x0)
plus(0, x0)
↳ QTRS
↳ DependencyPairsProof
from(X) → cons(X, from(s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, Z))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, Z))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
2ndspos(0, x0)
times(0, x0)
2ndspos(s(x0), cons(x1, x2))
times(s(x0), x1)
2ndspos(s(x0), cons2(x1, cons(x2, x3)))
2ndsneg(0, x0)
square(x0)
2ndsneg(s(x0), cons(x1, x2))
from(x0)
2ndsneg(s(x0), cons2(x1, cons(x2, x3)))
plus(s(x0), x1)
pi(x0)
plus(0, x0)
TIMES(s(X), Y) → PLUS(Y, times(X, Y))
2NDSPOS(s(N), cons2(X, cons(Y, Z))) → 2NDSNEG(N, Z)
2NDSNEG(s(N), cons2(X, cons(Y, Z))) → 2NDSPOS(N, Z)
PI(X) → 2NDSPOS(X, from(0))
PI(X) → FROM(0)
TIMES(s(X), Y) → TIMES(X, Y)
2NDSPOS(s(N), cons(X, Z)) → 2NDSPOS(s(N), cons2(X, Z))
SQUARE(X) → TIMES(X, X)
2NDSNEG(s(N), cons(X, Z)) → 2NDSNEG(s(N), cons2(X, Z))
FROM(X) → FROM(s(X))
PLUS(s(X), Y) → PLUS(X, Y)
from(X) → cons(X, from(s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, Z))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, Z))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
2ndspos(0, x0)
times(0, x0)
2ndspos(s(x0), cons(x1, x2))
times(s(x0), x1)
2ndspos(s(x0), cons2(x1, cons(x2, x3)))
2ndsneg(0, x0)
square(x0)
2ndsneg(s(x0), cons(x1, x2))
from(x0)
2ndsneg(s(x0), cons2(x1, cons(x2, x3)))
plus(s(x0), x1)
pi(x0)
plus(0, x0)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
TIMES(s(X), Y) → PLUS(Y, times(X, Y))
2NDSPOS(s(N), cons2(X, cons(Y, Z))) → 2NDSNEG(N, Z)
2NDSNEG(s(N), cons2(X, cons(Y, Z))) → 2NDSPOS(N, Z)
PI(X) → 2NDSPOS(X, from(0))
PI(X) → FROM(0)
TIMES(s(X), Y) → TIMES(X, Y)
2NDSPOS(s(N), cons(X, Z)) → 2NDSPOS(s(N), cons2(X, Z))
SQUARE(X) → TIMES(X, X)
2NDSNEG(s(N), cons(X, Z)) → 2NDSNEG(s(N), cons2(X, Z))
FROM(X) → FROM(s(X))
PLUS(s(X), Y) → PLUS(X, Y)
from(X) → cons(X, from(s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, Z))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, Z))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
2ndspos(0, x0)
times(0, x0)
2ndspos(s(x0), cons(x1, x2))
times(s(x0), x1)
2ndspos(s(x0), cons2(x1, cons(x2, x3)))
2ndsneg(0, x0)
square(x0)
2ndsneg(s(x0), cons(x1, x2))
from(x0)
2ndsneg(s(x0), cons2(x1, cons(x2, x3)))
plus(s(x0), x1)
pi(x0)
plus(0, x0)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
PLUS(s(X), Y) → PLUS(X, Y)
from(X) → cons(X, from(s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, Z))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, Z))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
2ndspos(0, x0)
times(0, x0)
2ndspos(s(x0), cons(x1, x2))
times(s(x0), x1)
2ndspos(s(x0), cons2(x1, cons(x2, x3)))
2ndsneg(0, x0)
square(x0)
2ndsneg(s(x0), cons(x1, x2))
from(x0)
2ndsneg(s(x0), cons2(x1, cons(x2, x3)))
plus(s(x0), x1)
pi(x0)
plus(0, x0)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDP
↳ QDP
PLUS(s(X), Y) → PLUS(X, Y)
2ndspos(0, x0)
times(0, x0)
2ndspos(s(x0), cons(x1, x2))
times(s(x0), x1)
2ndspos(s(x0), cons2(x1, cons(x2, x3)))
2ndsneg(0, x0)
square(x0)
2ndsneg(s(x0), cons(x1, x2))
from(x0)
2ndsneg(s(x0), cons2(x1, cons(x2, x3)))
plus(s(x0), x1)
pi(x0)
plus(0, x0)
2ndspos(0, x0)
times(0, x0)
2ndspos(s(x0), cons(x1, x2))
times(s(x0), x1)
2ndspos(s(x0), cons2(x1, cons(x2, x3)))
2ndsneg(0, x0)
square(x0)
2ndsneg(s(x0), cons(x1, x2))
from(x0)
2ndsneg(s(x0), cons2(x1, cons(x2, x3)))
plus(s(x0), x1)
pi(x0)
plus(0, x0)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
PLUS(s(X), Y) → PLUS(X, Y)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
TIMES(s(X), Y) → TIMES(X, Y)
from(X) → cons(X, from(s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, Z))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, Z))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
2ndspos(0, x0)
times(0, x0)
2ndspos(s(x0), cons(x1, x2))
times(s(x0), x1)
2ndspos(s(x0), cons2(x1, cons(x2, x3)))
2ndsneg(0, x0)
square(x0)
2ndsneg(s(x0), cons(x1, x2))
from(x0)
2ndsneg(s(x0), cons2(x1, cons(x2, x3)))
plus(s(x0), x1)
pi(x0)
plus(0, x0)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDP
TIMES(s(X), Y) → TIMES(X, Y)
2ndspos(0, x0)
times(0, x0)
2ndspos(s(x0), cons(x1, x2))
times(s(x0), x1)
2ndspos(s(x0), cons2(x1, cons(x2, x3)))
2ndsneg(0, x0)
square(x0)
2ndsneg(s(x0), cons(x1, x2))
from(x0)
2ndsneg(s(x0), cons2(x1, cons(x2, x3)))
plus(s(x0), x1)
pi(x0)
plus(0, x0)
2ndspos(0, x0)
times(0, x0)
2ndspos(s(x0), cons(x1, x2))
times(s(x0), x1)
2ndspos(s(x0), cons2(x1, cons(x2, x3)))
2ndsneg(0, x0)
square(x0)
2ndsneg(s(x0), cons(x1, x2))
from(x0)
2ndsneg(s(x0), cons2(x1, cons(x2, x3)))
plus(s(x0), x1)
pi(x0)
plus(0, x0)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
TIMES(s(X), Y) → TIMES(X, Y)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
2NDSPOS(s(N), cons2(X, cons(Y, Z))) → 2NDSNEG(N, Z)
2NDSNEG(s(N), cons2(X, cons(Y, Z))) → 2NDSPOS(N, Z)
2NDSPOS(s(N), cons(X, Z)) → 2NDSPOS(s(N), cons2(X, Z))
2NDSNEG(s(N), cons(X, Z)) → 2NDSNEG(s(N), cons2(X, Z))
from(X) → cons(X, from(s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, Z))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, Z))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
2ndspos(0, x0)
times(0, x0)
2ndspos(s(x0), cons(x1, x2))
times(s(x0), x1)
2ndspos(s(x0), cons2(x1, cons(x2, x3)))
2ndsneg(0, x0)
square(x0)
2ndsneg(s(x0), cons(x1, x2))
from(x0)
2ndsneg(s(x0), cons2(x1, cons(x2, x3)))
plus(s(x0), x1)
pi(x0)
plus(0, x0)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
2NDSPOS(s(N), cons2(X, cons(Y, Z))) → 2NDSNEG(N, Z)
2NDSNEG(s(N), cons2(X, cons(Y, Z))) → 2NDSPOS(N, Z)
2NDSPOS(s(N), cons(X, Z)) → 2NDSPOS(s(N), cons2(X, Z))
2NDSNEG(s(N), cons(X, Z)) → 2NDSNEG(s(N), cons2(X, Z))
2ndspos(0, x0)
times(0, x0)
2ndspos(s(x0), cons(x1, x2))
times(s(x0), x1)
2ndspos(s(x0), cons2(x1, cons(x2, x3)))
2ndsneg(0, x0)
square(x0)
2ndsneg(s(x0), cons(x1, x2))
from(x0)
2ndsneg(s(x0), cons2(x1, cons(x2, x3)))
plus(s(x0), x1)
pi(x0)
plus(0, x0)
2ndspos(0, x0)
times(0, x0)
2ndspos(s(x0), cons(x1, x2))
times(s(x0), x1)
2ndspos(s(x0), cons2(x1, cons(x2, x3)))
2ndsneg(0, x0)
square(x0)
2ndsneg(s(x0), cons(x1, x2))
from(x0)
2ndsneg(s(x0), cons2(x1, cons(x2, x3)))
plus(s(x0), x1)
pi(x0)
plus(0, x0)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
2NDSPOS(s(N), cons2(X, cons(Y, Z))) → 2NDSNEG(N, Z)
2NDSNEG(s(N), cons2(X, cons(Y, Z))) → 2NDSPOS(N, Z)
2NDSPOS(s(N), cons(X, Z)) → 2NDSPOS(s(N), cons2(X, Z))
2NDSNEG(s(N), cons(X, Z)) → 2NDSNEG(s(N), cons2(X, Z))
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
FROM(X) → FROM(s(X))
from(X) → cons(X, from(s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, Z))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, Z))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, Z))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, Z))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
2ndspos(0, x0)
times(0, x0)
2ndspos(s(x0), cons(x1, x2))
times(s(x0), x1)
2ndspos(s(x0), cons2(x1, cons(x2, x3)))
2ndsneg(0, x0)
square(x0)
2ndsneg(s(x0), cons(x1, x2))
from(x0)
2ndsneg(s(x0), cons2(x1, cons(x2, x3)))
plus(s(x0), x1)
pi(x0)
plus(0, x0)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
FROM(X) → FROM(s(X))
2ndspos(0, x0)
times(0, x0)
2ndspos(s(x0), cons(x1, x2))
times(s(x0), x1)
2ndspos(s(x0), cons2(x1, cons(x2, x3)))
2ndsneg(0, x0)
square(x0)
2ndsneg(s(x0), cons(x1, x2))
from(x0)
2ndsneg(s(x0), cons2(x1, cons(x2, x3)))
plus(s(x0), x1)
pi(x0)
plus(0, x0)
2ndspos(0, x0)
times(0, x0)
2ndspos(s(x0), cons(x1, x2))
times(s(x0), x1)
2ndspos(s(x0), cons2(x1, cons(x2, x3)))
2ndsneg(0, x0)
square(x0)
2ndsneg(s(x0), cons(x1, x2))
from(x0)
2ndsneg(s(x0), cons2(x1, cons(x2, x3)))
plus(s(x0), x1)
pi(x0)
plus(0, x0)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Instantiation
FROM(X) → FROM(s(X))
FROM(s(z0)) → FROM(s(s(z0)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
FROM(s(z0)) → FROM(s(s(z0)))
FROM(s(s(z0))) → FROM(s(s(s(z0))))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Instantiation
↳ QDP
↳ Instantiation
↳ QDP
↳ NonTerminationProof
FROM(s(s(z0))) → FROM(s(s(s(z0))))
FROM(s(s(z0))) → FROM(s(s(s(z0))))