Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
f(g(x), s(0)) → f(g(x), g(x))
g(s(x)) → s(g(x))
g(0) → 0
The set Q consists of the following terms:
f(g(x0), s(0))
g(0)
g(s(x0))
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
f(g(x), s(0)) → f(g(x), g(x))
g(s(x)) → s(g(x))
g(0) → 0
The set Q consists of the following terms:
f(g(x0), s(0))
g(0)
g(s(x0))
Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
G(s(x)) → G(x)
F(g(x), s(0)) → F(g(x), g(x))
The TRS R consists of the following rules:
f(g(x), s(0)) → f(g(x), g(x))
g(s(x)) → s(g(x))
g(0) → 0
The set Q consists of the following terms:
f(g(x0), s(0))
g(0)
g(s(x0))
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
G(s(x)) → G(x)
F(g(x), s(0)) → F(g(x), g(x))
The TRS R consists of the following rules:
f(g(x), s(0)) → f(g(x), g(x))
g(s(x)) → s(g(x))
g(0) → 0
The set Q consists of the following terms:
f(g(x0), s(0))
g(0)
g(s(x0))
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
Q DP problem:
The TRS P consists of the following rules:
G(s(x)) → G(x)
The TRS R consists of the following rules:
f(g(x), s(0)) → f(g(x), g(x))
g(s(x)) → s(g(x))
g(0) → 0
The set Q consists of the following terms:
f(g(x0), s(0))
g(0)
g(s(x0))
We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
Q DP problem:
The TRS P consists of the following rules:
G(s(x)) → G(x)
R is empty.
The set Q consists of the following terms:
f(g(x0), s(0))
g(0)
g(s(x0))
We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.
f(g(x0), s(0))
g(0)
g(s(x0))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPSizeChangeProof
Q DP problem:
The TRS P consists of the following rules:
G(s(x)) → G(x)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- G(s(x)) → G(x)
The graph contains the following edges 1 > 1