Termination w.r.t. Q of the following Term Rewriting System could be disproven:
Q restricted rewrite system:
The TRS R consists of the following rules:
__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt) → tt
U21(tt) → U22(isList)
U22(tt) → tt
U31(tt) → tt
U41(tt) → U42(isNeList)
U42(tt) → tt
U51(tt) → U52(isList)
U52(tt) → tt
U61(tt) → tt
U71(tt) → U72(isPal)
U72(tt) → tt
U81(tt) → tt
isList → U11(isNeList)
isList → tt
isList → U21(isList)
isNeList → U31(isQid)
isNeList → U41(isList)
isNeList → U51(isNeList)
isNePal → U61(isQid)
isNePal → U71(isQid)
isPal → U81(isNePal)
isPal → tt
isQid → tt
The set Q consists of the following terms:
__(__(x0, x1), x2)
U21(tt)
U81(tt)
isList
isQid
U22(tt)
U52(tt)
U42(tt)
U61(tt)
U72(tt)
U31(tt)
__(x0, nil)
__(nil, x0)
isPal
U71(tt)
U41(tt)
U51(tt)
isNePal
isNeList
U11(tt)
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt) → tt
U21(tt) → U22(isList)
U22(tt) → tt
U31(tt) → tt
U41(tt) → U42(isNeList)
U42(tt) → tt
U51(tt) → U52(isList)
U52(tt) → tt
U61(tt) → tt
U71(tt) → U72(isPal)
U72(tt) → tt
U81(tt) → tt
isList → U11(isNeList)
isList → tt
isList → U21(isList)
isNeList → U31(isQid)
isNeList → U41(isList)
isNeList → U51(isNeList)
isNePal → U61(isQid)
isNePal → U71(isQid)
isPal → U81(isNePal)
isPal → tt
isQid → tt
The set Q consists of the following terms:
__(__(x0, x1), x2)
U21(tt)
U81(tt)
isList
isQid
U22(tt)
U52(tt)
U42(tt)
U61(tt)
U72(tt)
U31(tt)
__(x0, nil)
__(nil, x0)
isPal
U71(tt)
U41(tt)
U51(tt)
isNePal
isNeList
U11(tt)
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt) → tt
U21(tt) → U22(isList)
U22(tt) → tt
U31(tt) → tt
U41(tt) → U42(isNeList)
U42(tt) → tt
U51(tt) → U52(isList)
U52(tt) → tt
U61(tt) → tt
U71(tt) → U72(isPal)
U72(tt) → tt
U81(tt) → tt
isList → U11(isNeList)
isList → tt
isList → U21(isList)
isNeList → U31(isQid)
isNeList → U41(isList)
isNeList → U51(isNeList)
isNePal → U61(isQid)
isNePal → U71(isQid)
isPal → U81(isNePal)
isPal → tt
isQid → tt
The set Q consists of the following terms:
__(__(x0, x1), x2)
U21(tt)
U81(tt)
isList
isQid
U22(tt)
U52(tt)
U42(tt)
U61(tt)
U72(tt)
U31(tt)
__(x0, nil)
__(nil, x0)
isPal
U71(tt)
U41(tt)
U51(tt)
isNePal
isNeList
U11(tt)
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
Used ordering:
Polynomial interpretation [25]:
POL(U11(x1)) = 2·x1
POL(U21(x1)) = 2·x1
POL(U22(x1)) = 2·x1
POL(U31(x1)) = 2·x1
POL(U41(x1)) = 2·x1
POL(U42(x1)) = x1
POL(U51(x1)) = x1
POL(U52(x1)) = x1
POL(U61(x1)) = x1
POL(U71(x1)) = 2·x1
POL(U72(x1)) = 2·x1
POL(U81(x1)) = 2·x1
POL(__(x1, x2)) = 2 + 2·x1 + x2
POL(isList) = 0
POL(isNeList) = 0
POL(isNePal) = 0
POL(isPal) = 0
POL(isQid) = 0
POL(nil) = 1
POL(tt) = 0
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
U11(tt) → tt
U21(tt) → U22(isList)
U22(tt) → tt
U31(tt) → tt
U41(tt) → U42(isNeList)
U42(tt) → tt
U51(tt) → U52(isList)
U52(tt) → tt
U61(tt) → tt
U71(tt) → U72(isPal)
U72(tt) → tt
U81(tt) → tt
isList → U11(isNeList)
isList → tt
isList → U21(isList)
isNeList → U31(isQid)
isNeList → U41(isList)
isNeList → U51(isNeList)
isNePal → U61(isQid)
isNePal → U71(isQid)
isPal → U81(isNePal)
isPal → tt
isQid → tt
The set Q consists of the following terms:
__(__(x0, x1), x2)
U21(tt)
U81(tt)
isList
isQid
U22(tt)
U52(tt)
U42(tt)
U61(tt)
U72(tt)
U31(tt)
__(x0, nil)
__(nil, x0)
isPal
U71(tt)
U41(tt)
U51(tt)
isNePal
isNeList
U11(tt)
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
U11(tt) → tt
U21(tt) → U22(isList)
U22(tt) → tt
U31(tt) → tt
U41(tt) → U42(isNeList)
U42(tt) → tt
U51(tt) → U52(isList)
U52(tt) → tt
U61(tt) → tt
U71(tt) → U72(isPal)
U72(tt) → tt
U81(tt) → tt
isList → U11(isNeList)
isList → tt
isList → U21(isList)
isNeList → U31(isQid)
isNeList → U41(isList)
isNeList → U51(isNeList)
isNePal → U61(isQid)
isNePal → U71(isQid)
isPal → U81(isNePal)
isPal → tt
isQid → tt
The set Q consists of the following terms:
__(__(x0, x1), x2)
U21(tt)
U81(tt)
isList
isQid
U22(tt)
U52(tt)
U42(tt)
U61(tt)
U72(tt)
U31(tt)
__(x0, nil)
__(nil, x0)
isPal
U71(tt)
U41(tt)
U51(tt)
isNePal
isNeList
U11(tt)
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
isNePal → U61(isQid)
isPal → tt
Used ordering:
Polynomial interpretation [25]:
POL(U11(x1)) = 2·x1
POL(U21(x1)) = 2·x1
POL(U22(x1)) = x1
POL(U31(x1)) = x1
POL(U41(x1)) = 2·x1
POL(U42(x1)) = 2·x1
POL(U51(x1)) = 2·x1
POL(U52(x1)) = 2·x1
POL(U61(x1)) = 2·x1
POL(U71(x1)) = 1 + 2·x1
POL(U72(x1)) = x1
POL(U81(x1)) = x1
POL(isList) = 0
POL(isNeList) = 0
POL(isNePal) = 1
POL(isPal) = 1
POL(isQid) = 0
POL(tt) = 0
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
U11(tt) → tt
U21(tt) → U22(isList)
U22(tt) → tt
U31(tt) → tt
U41(tt) → U42(isNeList)
U42(tt) → tt
U51(tt) → U52(isList)
U52(tt) → tt
U61(tt) → tt
U71(tt) → U72(isPal)
U72(tt) → tt
U81(tt) → tt
isList → U11(isNeList)
isList → tt
isList → U21(isList)
isNeList → U31(isQid)
isNeList → U41(isList)
isNeList → U51(isNeList)
isNePal → U71(isQid)
isPal → U81(isNePal)
isQid → tt
The set Q consists of the following terms:
__(__(x0, x1), x2)
U21(tt)
U81(tt)
isList
isQid
U22(tt)
U52(tt)
U42(tt)
U61(tt)
U72(tt)
U31(tt)
__(x0, nil)
__(nil, x0)
isPal
U71(tt)
U41(tt)
U51(tt)
isNePal
isNeList
U11(tt)
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
U11(tt) → tt
U21(tt) → U22(isList)
U22(tt) → tt
U31(tt) → tt
U41(tt) → U42(isNeList)
U42(tt) → tt
U51(tt) → U52(isList)
U52(tt) → tt
U61(tt) → tt
U71(tt) → U72(isPal)
U72(tt) → tt
U81(tt) → tt
isList → U11(isNeList)
isList → tt
isList → U21(isList)
isNeList → U31(isQid)
isNeList → U41(isList)
isNeList → U51(isNeList)
isNePal → U71(isQid)
isPal → U81(isNePal)
isQid → tt
The set Q consists of the following terms:
__(__(x0, x1), x2)
U21(tt)
U81(tt)
isList
isQid
U22(tt)
U52(tt)
U42(tt)
U61(tt)
U72(tt)
U31(tt)
__(x0, nil)
__(nil, x0)
isPal
U71(tt)
U41(tt)
U51(tt)
isNePal
isNeList
U11(tt)
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
U61(tt) → tt
Used ordering:
Polynomial interpretation [25]:
POL(U11(x1)) = 2·x1
POL(U21(x1)) = 2·x1
POL(U22(x1)) = x1
POL(U31(x1)) = x1
POL(U41(x1)) = x1
POL(U42(x1)) = 2·x1
POL(U51(x1)) = 2·x1
POL(U52(x1)) = 2·x1
POL(U61(x1)) = 1 + x1
POL(U71(x1)) = 2·x1
POL(U72(x1)) = x1
POL(U81(x1)) = 2·x1
POL(isList) = 0
POL(isNeList) = 0
POL(isNePal) = 0
POL(isPal) = 0
POL(isQid) = 0
POL(tt) = 0
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
U11(tt) → tt
U21(tt) → U22(isList)
U22(tt) → tt
U31(tt) → tt
U41(tt) → U42(isNeList)
U42(tt) → tt
U51(tt) → U52(isList)
U52(tt) → tt
U71(tt) → U72(isPal)
U72(tt) → tt
U81(tt) → tt
isList → U11(isNeList)
isList → tt
isList → U21(isList)
isNeList → U31(isQid)
isNeList → U41(isList)
isNeList → U51(isNeList)
isNePal → U71(isQid)
isPal → U81(isNePal)
isQid → tt
The set Q consists of the following terms:
__(__(x0, x1), x2)
U21(tt)
U81(tt)
isList
isQid
U22(tt)
U52(tt)
U42(tt)
U61(tt)
U72(tt)
U31(tt)
__(x0, nil)
__(nil, x0)
isPal
U71(tt)
U41(tt)
U51(tt)
isNePal
isNeList
U11(tt)
Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
ISPAL → ISNEPAL
U711(tt) → U721(isPal)
ISNELIST → ISNELIST
ISNELIST → ISLIST
ISLIST → ISLIST
U711(tt) → ISPAL
ISLIST → ISNELIST
U211(tt) → U221(isList)
U411(tt) → U421(isNeList)
U511(tt) → U521(isList)
ISNELIST → U411(isList)
ISPAL → U811(isNePal)
ISNEPAL → U711(isQid)
U211(tt) → ISLIST
ISNELIST → U511(isNeList)
U511(tt) → ISLIST
U411(tt) → ISNELIST
ISLIST → U111(isNeList)
ISNELIST → U311(isQid)
ISNELIST → ISQID
ISNEPAL → ISQID
ISLIST → U211(isList)
The TRS R consists of the following rules:
U11(tt) → tt
U21(tt) → U22(isList)
U22(tt) → tt
U31(tt) → tt
U41(tt) → U42(isNeList)
U42(tt) → tt
U51(tt) → U52(isList)
U52(tt) → tt
U71(tt) → U72(isPal)
U72(tt) → tt
U81(tt) → tt
isList → U11(isNeList)
isList → tt
isList → U21(isList)
isNeList → U31(isQid)
isNeList → U41(isList)
isNeList → U51(isNeList)
isNePal → U71(isQid)
isPal → U81(isNePal)
isQid → tt
The set Q consists of the following terms:
__(__(x0, x1), x2)
U21(tt)
U81(tt)
isList
isQid
U22(tt)
U52(tt)
U42(tt)
U61(tt)
U72(tt)
U31(tt)
__(x0, nil)
__(nil, x0)
isPal
U71(tt)
U41(tt)
U51(tt)
isNePal
isNeList
U11(tt)
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
ISPAL → ISNEPAL
U711(tt) → U721(isPal)
ISNELIST → ISNELIST
ISNELIST → ISLIST
ISLIST → ISLIST
U711(tt) → ISPAL
ISLIST → ISNELIST
U211(tt) → U221(isList)
U411(tt) → U421(isNeList)
U511(tt) → U521(isList)
ISNELIST → U411(isList)
ISPAL → U811(isNePal)
ISNEPAL → U711(isQid)
U211(tt) → ISLIST
ISNELIST → U511(isNeList)
U511(tt) → ISLIST
U411(tt) → ISNELIST
ISLIST → U111(isNeList)
ISNELIST → U311(isQid)
ISNELIST → ISQID
ISNEPAL → ISQID
ISLIST → U211(isList)
The TRS R consists of the following rules:
U11(tt) → tt
U21(tt) → U22(isList)
U22(tt) → tt
U31(tt) → tt
U41(tt) → U42(isNeList)
U42(tt) → tt
U51(tt) → U52(isList)
U52(tt) → tt
U71(tt) → U72(isPal)
U72(tt) → tt
U81(tt) → tt
isList → U11(isNeList)
isList → tt
isList → U21(isList)
isNeList → U31(isQid)
isNeList → U41(isList)
isNeList → U51(isNeList)
isNePal → U71(isQid)
isPal → U81(isNePal)
isQid → tt
The set Q consists of the following terms:
__(__(x0, x1), x2)
U21(tt)
U81(tt)
isList
isQid
U22(tt)
U52(tt)
U42(tt)
U61(tt)
U72(tt)
U31(tt)
__(x0, nil)
__(nil, x0)
isPal
U71(tt)
U41(tt)
U51(tt)
isNePal
isNeList
U11(tt)
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 9 less nodes.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISPAL → ISNEPAL
U711(tt) → ISPAL
ISNEPAL → U711(isQid)
The TRS R consists of the following rules:
U11(tt) → tt
U21(tt) → U22(isList)
U22(tt) → tt
U31(tt) → tt
U41(tt) → U42(isNeList)
U42(tt) → tt
U51(tt) → U52(isList)
U52(tt) → tt
U71(tt) → U72(isPal)
U72(tt) → tt
U81(tt) → tt
isList → U11(isNeList)
isList → tt
isList → U21(isList)
isNeList → U31(isQid)
isNeList → U41(isList)
isNeList → U51(isNeList)
isNePal → U71(isQid)
isPal → U81(isNePal)
isQid → tt
The set Q consists of the following terms:
__(__(x0, x1), x2)
U21(tt)
U81(tt)
isList
isQid
U22(tt)
U52(tt)
U42(tt)
U61(tt)
U72(tt)
U31(tt)
__(x0, nil)
__(nil, x0)
isPal
U71(tt)
U41(tt)
U51(tt)
isNePal
isNeList
U11(tt)
We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISPAL → ISNEPAL
U711(tt) → ISPAL
ISNEPAL → U711(isQid)
The TRS R consists of the following rules:
isQid → tt
The set Q consists of the following terms:
__(__(x0, x1), x2)
U21(tt)
U81(tt)
isList
isQid
U22(tt)
U52(tt)
U42(tt)
U61(tt)
U72(tt)
U31(tt)
__(x0, nil)
__(nil, x0)
isPal
U71(tt)
U41(tt)
U51(tt)
isNePal
isNeList
U11(tt)
We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.
__(__(x0, x1), x2)
U21(tt)
U81(tt)
isList
U22(tt)
U52(tt)
U42(tt)
U61(tt)
U72(tt)
U31(tt)
__(x0, nil)
__(nil, x0)
isPal
U71(tt)
U41(tt)
U51(tt)
isNePal
isNeList
U11(tt)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISPAL → ISNEPAL
U711(tt) → ISPAL
ISNEPAL → U711(isQid)
The TRS R consists of the following rules:
isQid → tt
The set Q consists of the following terms:
isQid
We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule ISNEPAL → U711(isQid) at position [0] we obtained the following new rules:
ISNEPAL → U711(tt)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISPAL → ISNEPAL
U711(tt) → ISPAL
ISNEPAL → U711(tt)
The TRS R consists of the following rules:
isQid → tt
The set Q consists of the following terms:
isQid
We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISPAL → ISNEPAL
U711(tt) → ISPAL
ISNEPAL → U711(tt)
R is empty.
The set Q consists of the following terms:
isQid
We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.
isQid
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ NonTerminationProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISPAL → ISNEPAL
U711(tt) → ISPAL
ISNEPAL → U711(tt)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by narrowing to the left:
The TRS P consists of the following rules:
ISPAL → ISNEPAL
U711(tt) → ISPAL
ISNEPAL → U711(tt)
The TRS R consists of the following rules:none
s = ISNEPAL evaluates to t =ISNEPAL
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Semiunifier: [ ]
- Matcher: [ ]
Rewriting sequence
ISNEPAL → U711(tt)
with rule ISNEPAL → U711(tt) at position [] and matcher [ ]
U711(tt) → ISPAL
with rule U711(tt) → ISPAL at position [] and matcher [ ]
ISPAL → ISNEPAL
with rule ISPAL → ISNEPAL
Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence
All these steps are and every following step will be a correct step w.r.t to Q.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ UsableRulesProof
Q DP problem:
The TRS P consists of the following rules:
ISNELIST → ISNELIST
ISLIST → ISLIST
ISNELIST → ISLIST
ISLIST → ISNELIST
ISNELIST → U511(isNeList)
U511(tt) → ISLIST
U411(tt) → ISNELIST
ISNELIST → U411(isList)
ISLIST → U211(isList)
U211(tt) → ISLIST
The TRS R consists of the following rules:
U11(tt) → tt
U21(tt) → U22(isList)
U22(tt) → tt
U31(tt) → tt
U41(tt) → U42(isNeList)
U42(tt) → tt
U51(tt) → U52(isList)
U52(tt) → tt
U71(tt) → U72(isPal)
U72(tt) → tt
U81(tt) → tt
isList → U11(isNeList)
isList → tt
isList → U21(isList)
isNeList → U31(isQid)
isNeList → U41(isList)
isNeList → U51(isNeList)
isNePal → U71(isQid)
isPal → U81(isNePal)
isQid → tt
The set Q consists of the following terms:
__(__(x0, x1), x2)
U21(tt)
U81(tt)
isList
isQid
U22(tt)
U52(tt)
U42(tt)
U61(tt)
U72(tt)
U31(tt)
__(x0, nil)
__(nil, x0)
isPal
U71(tt)
U41(tt)
U51(tt)
isNePal
isNeList
U11(tt)
We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ UsableRulesProof
Q DP problem:
The TRS P consists of the following rules:
ISNELIST → ISNELIST
ISLIST → ISLIST
ISNELIST → ISLIST
ISLIST → ISNELIST
ISNELIST → U511(isNeList)
U511(tt) → ISLIST
U411(tt) → ISNELIST
ISNELIST → U411(isList)
ISLIST → U211(isList)
U211(tt) → ISLIST
The TRS R consists of the following rules:
isList → U11(isNeList)
isList → tt
isList → U21(isList)
U21(tt) → U22(isList)
U22(tt) → tt
isNeList → U31(isQid)
isNeList → U41(isList)
isNeList → U51(isNeList)
U11(tt) → tt
U51(tt) → U52(isList)
U52(tt) → tt
U41(tt) → U42(isNeList)
U42(tt) → tt
isQid → tt
U31(tt) → tt
The set Q consists of the following terms:
__(__(x0, x1), x2)
U21(tt)
U81(tt)
isList
isQid
U22(tt)
U52(tt)
U42(tt)
U61(tt)
U72(tt)
U31(tt)
__(x0, nil)
__(nil, x0)
isPal
U71(tt)
U41(tt)
U51(tt)
isNePal
isNeList
U11(tt)
We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.
__(__(x0, x1), x2)
U81(tt)
U61(tt)
U72(tt)
__(x0, nil)
__(nil, x0)
isPal
U71(tt)
isNePal
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ UsableRulesProof
Q DP problem:
The TRS P consists of the following rules:
ISNELIST → ISLIST
ISLIST → ISLIST
ISNELIST → ISNELIST
ISLIST → ISNELIST
ISNELIST → U511(isNeList)
U511(tt) → ISLIST
ISNELIST → U411(isList)
U411(tt) → ISNELIST
U211(tt) → ISLIST
ISLIST → U211(isList)
The TRS R consists of the following rules:
isList → U11(isNeList)
isList → tt
isList → U21(isList)
U21(tt) → U22(isList)
U22(tt) → tt
isNeList → U31(isQid)
isNeList → U41(isList)
isNeList → U51(isNeList)
U11(tt) → tt
U51(tt) → U52(isList)
U52(tt) → tt
U41(tt) → U42(isNeList)
U42(tt) → tt
isQid → tt
U31(tt) → tt
The set Q consists of the following terms:
U21(tt)
isList
isQid
U22(tt)
U52(tt)
U42(tt)
U31(tt)
U41(tt)
U51(tt)
isNeList
U11(tt)
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ISNELIST → U511(isNeList) at position [0] we obtained the following new rules:
ISNELIST → U511(U51(isNeList))
ISNELIST → U511(U41(isList))
ISNELIST → U511(U31(isQid))
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ UsableRulesProof
Q DP problem:
The TRS P consists of the following rules:
ISNELIST → U511(U51(isNeList))
ISNELIST → ISLIST
ISLIST → ISLIST
ISNELIST → ISNELIST
ISLIST → ISNELIST
ISNELIST → U511(U41(isList))
ISNELIST → U411(isList)
U211(tt) → ISLIST
ISNELIST → U511(U31(isQid))
U511(tt) → ISLIST
U411(tt) → ISNELIST
ISLIST → U211(isList)
The TRS R consists of the following rules:
isList → U11(isNeList)
isList → tt
isList → U21(isList)
U21(tt) → U22(isList)
U22(tt) → tt
isNeList → U31(isQid)
isNeList → U41(isList)
isNeList → U51(isNeList)
U11(tt) → tt
U51(tt) → U52(isList)
U52(tt) → tt
U41(tt) → U42(isNeList)
U42(tt) → tt
isQid → tt
U31(tt) → tt
The set Q consists of the following terms:
U21(tt)
isList
isQid
U22(tt)
U52(tt)
U42(tt)
U31(tt)
U41(tt)
U51(tt)
isNeList
U11(tt)
We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule ISNELIST → U511(U31(isQid)) at position [0,0] we obtained the following new rules:
ISNELIST → U511(U31(tt))
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ UsableRulesProof
Q DP problem:
The TRS P consists of the following rules:
ISNELIST → U511(U31(tt))
ISNELIST → U511(U51(isNeList))
ISNELIST → ISNELIST
ISLIST → ISLIST
ISNELIST → ISLIST
ISLIST → ISNELIST
ISNELIST → U511(U41(isList))
ISNELIST → U411(isList)
U211(tt) → ISLIST
U511(tt) → ISLIST
U411(tt) → ISNELIST
ISLIST → U211(isList)
The TRS R consists of the following rules:
isList → U11(isNeList)
isList → tt
isList → U21(isList)
U21(tt) → U22(isList)
U22(tt) → tt
isNeList → U31(isQid)
isNeList → U41(isList)
isNeList → U51(isNeList)
U11(tt) → tt
U51(tt) → U52(isList)
U52(tt) → tt
U41(tt) → U42(isNeList)
U42(tt) → tt
isQid → tt
U31(tt) → tt
The set Q consists of the following terms:
U21(tt)
isList
isQid
U22(tt)
U52(tt)
U42(tt)
U31(tt)
U41(tt)
U51(tt)
isNeList
U11(tt)
We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule ISNELIST → U511(U31(tt)) at position [0] we obtained the following new rules:
ISNELIST → U511(tt)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ UsableRulesProof
Q DP problem:
The TRS P consists of the following rules:
ISNELIST → U511(U51(isNeList))
ISNELIST → ISLIST
ISLIST → ISLIST
ISNELIST → ISNELIST
ISLIST → ISNELIST
ISNELIST → U511(U41(isList))
ISNELIST → U411(isList)
U211(tt) → ISLIST
ISNELIST → U511(tt)
U511(tt) → ISLIST
U411(tt) → ISNELIST
ISLIST → U211(isList)
The TRS R consists of the following rules:
isList → U11(isNeList)
isList → tt
isList → U21(isList)
U21(tt) → U22(isList)
U22(tt) → tt
isNeList → U31(isQid)
isNeList → U41(isList)
isNeList → U51(isNeList)
U11(tt) → tt
U51(tt) → U52(isList)
U52(tt) → tt
U41(tt) → U42(isNeList)
U42(tt) → tt
isQid → tt
U31(tt) → tt
The set Q consists of the following terms:
U21(tt)
isList
isQid
U22(tt)
U52(tt)
U42(tt)
U31(tt)
U41(tt)
U51(tt)
isNeList
U11(tt)
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ISNELIST → U411(isList) at position [0] we obtained the following new rules:
ISNELIST → U411(U21(isList))
ISNELIST → U411(tt)
ISNELIST → U411(U11(isNeList))
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ UsableRulesProof
Q DP problem:
The TRS P consists of the following rules:
ISNELIST → U511(U51(isNeList))
ISNELIST → ISNELIST
ISLIST → ISLIST
ISNELIST → ISLIST
ISNELIST → U411(U11(isNeList))
ISLIST → ISNELIST
ISNELIST → U511(U41(isList))
U211(tt) → ISLIST
ISNELIST → U411(U21(isList))
ISNELIST → U511(tt)
U511(tt) → ISLIST
ISNELIST → U411(tt)
U411(tt) → ISNELIST
ISLIST → U211(isList)
The TRS R consists of the following rules:
isList → U11(isNeList)
isList → tt
isList → U21(isList)
U21(tt) → U22(isList)
U22(tt) → tt
isNeList → U31(isQid)
isNeList → U41(isList)
isNeList → U51(isNeList)
U11(tt) → tt
U51(tt) → U52(isList)
U52(tt) → tt
U41(tt) → U42(isNeList)
U42(tt) → tt
isQid → tt
U31(tt) → tt
The set Q consists of the following terms:
U21(tt)
isList
isQid
U22(tt)
U52(tt)
U42(tt)
U31(tt)
U41(tt)
U51(tt)
isNeList
U11(tt)
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ISLIST → U211(isList) at position [0] we obtained the following new rules:
ISLIST → U211(U21(isList))
ISLIST → U211(tt)
ISLIST → U211(U11(isNeList))
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ NonTerminationProof
↳ UsableRulesProof
Q DP problem:
The TRS P consists of the following rules:
ISNELIST → U511(U51(isNeList))
ISNELIST → ISLIST
ISLIST → ISLIST
ISNELIST → ISNELIST
ISLIST → ISNELIST
ISNELIST → U411(U11(isNeList))
ISLIST → U211(U11(isNeList))
ISNELIST → U511(U41(isList))
ISLIST → U211(U21(isList))
U211(tt) → ISLIST
ISNELIST → U411(U21(isList))
ISNELIST → U511(tt)
U511(tt) → ISLIST
U411(tt) → ISNELIST
ISNELIST → U411(tt)
ISLIST → U211(tt)
The TRS R consists of the following rules:
isList → U11(isNeList)
isList → tt
isList → U21(isList)
U21(tt) → U22(isList)
U22(tt) → tt
isNeList → U31(isQid)
isNeList → U41(isList)
isNeList → U51(isNeList)
U11(tt) → tt
U51(tt) → U52(isList)
U52(tt) → tt
U41(tt) → U42(isNeList)
U42(tt) → tt
isQid → tt
U31(tt) → tt
The set Q consists of the following terms:
U21(tt)
isList
isQid
U22(tt)
U52(tt)
U42(tt)
U31(tt)
U41(tt)
U51(tt)
isNeList
U11(tt)
We have to consider all minimal (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.
The TRS P consists of the following rules:
ISNELIST → U511(U51(isNeList))
ISNELIST → ISLIST
ISLIST → ISLIST
ISNELIST → ISNELIST
ISLIST → ISNELIST
ISNELIST → U411(U11(isNeList))
ISLIST → U211(U11(isNeList))
ISNELIST → U511(U41(isList))
ISLIST → U211(U21(isList))
U211(tt) → ISLIST
ISNELIST → U411(U21(isList))
ISNELIST → U511(tt)
U511(tt) → ISLIST
U411(tt) → ISNELIST
ISNELIST → U411(tt)
ISLIST → U211(tt)
The TRS R consists of the following rules:
isList → U11(isNeList)
isList → tt
isList → U21(isList)
U21(tt) → U22(isList)
U22(tt) → tt
isNeList → U31(isQid)
isNeList → U41(isList)
isNeList → U51(isNeList)
U11(tt) → tt
U51(tt) → U52(isList)
U52(tt) → tt
U41(tt) → U42(isNeList)
U42(tt) → tt
isQid → tt
U31(tt) → tt
s = ISLIST evaluates to t =ISLIST
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Semiunifier: [ ]
- Matcher: [ ]
Rewriting sequence
The DP semiunifies directly so there is only one rewrite step from ISLIST to ISLIST.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
Q DP problem:
The TRS P consists of the following rules:
ISNELIST → ISNELIST
ISLIST → ISLIST
ISNELIST → ISLIST
ISLIST → ISNELIST
ISNELIST → U511(isNeList)
U511(tt) → ISLIST
U411(tt) → ISNELIST
ISNELIST → U411(isList)
ISLIST → U211(isList)
U211(tt) → ISLIST
The TRS R consists of the following rules:
isList → U11(isNeList)
isList → tt
isList → U21(isList)
U21(tt) → U22(isList)
U22(tt) → tt
isNeList → U31(isQid)
isNeList → U41(isList)
isNeList → U51(isNeList)
U11(tt) → tt
U51(tt) → U52(isList)
U52(tt) → tt
U41(tt) → U42(isNeList)
U42(tt) → tt
isQid → tt
U31(tt) → tt
The set Q consists of the following terms:
__(__(x0, x1), x2)
U21(tt)
U81(tt)
isList
isQid
U22(tt)
U52(tt)
U42(tt)
U61(tt)
U72(tt)
U31(tt)
__(x0, nil)
__(nil, x0)
isPal
U71(tt)
U41(tt)
U51(tt)
isNePal
isNeList
U11(tt)
We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.
__(__(x0, x1), x2)
U81(tt)
U61(tt)
U72(tt)
__(x0, nil)
__(nil, x0)
isPal
U71(tt)
isNePal
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ NonTerminationProof
Q DP problem:
The TRS P consists of the following rules:
ISNELIST → ISLIST
ISLIST → ISLIST
ISNELIST → ISNELIST
ISLIST → ISNELIST
ISNELIST → U511(isNeList)
U511(tt) → ISLIST
ISNELIST → U411(isList)
U411(tt) → ISNELIST
U211(tt) → ISLIST
ISLIST → U211(isList)
The TRS R consists of the following rules:
isList → U11(isNeList)
isList → tt
isList → U21(isList)
U21(tt) → U22(isList)
U22(tt) → tt
isNeList → U31(isQid)
isNeList → U41(isList)
isNeList → U51(isNeList)
U11(tt) → tt
U51(tt) → U52(isList)
U52(tt) → tt
U41(tt) → U42(isNeList)
U42(tt) → tt
isQid → tt
U31(tt) → tt
The set Q consists of the following terms:
U21(tt)
isList
isQid
U22(tt)
U52(tt)
U42(tt)
U31(tt)
U41(tt)
U51(tt)
isNeList
U11(tt)
We have to consider all minimal (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.
The TRS P consists of the following rules:
ISNELIST → ISLIST
ISLIST → ISLIST
ISNELIST → ISNELIST
ISLIST → ISNELIST
ISNELIST → U511(isNeList)
U511(tt) → ISLIST
ISNELIST → U411(isList)
U411(tt) → ISNELIST
U211(tt) → ISLIST
ISLIST → U211(isList)
The TRS R consists of the following rules:
isList → U11(isNeList)
isList → tt
isList → U21(isList)
U21(tt) → U22(isList)
U22(tt) → tt
isNeList → U31(isQid)
isNeList → U41(isList)
isNeList → U51(isNeList)
U11(tt) → tt
U51(tt) → U52(isList)
U52(tt) → tt
U41(tt) → U42(isNeList)
U42(tt) → tt
isQid → tt
U31(tt) → tt
s = ISLIST evaluates to t =ISLIST
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Semiunifier: [ ]
- Matcher: [ ]
Rewriting sequence
The DP semiunifies directly so there is only one rewrite step from ISLIST to ISLIST.