Termination w.r.t. Q of the following Term Rewriting System could be disproven:

Q restricted rewrite system:
The TRS R consists of the following rules:

zeroscons(0, n__zeros)
and(tt, X) → activate(X)
length(nil) → 0
length(cons(N, L)) → s(length(activate(L)))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
zerosn__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(X) → X

The set Q consists of the following terms:

and(tt, x0)
take(x0, x1)
activate(x0)
length(cons(x0, x1))
zeros
length(nil)



QTRS
  ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

zeroscons(0, n__zeros)
and(tt, X) → activate(X)
length(nil) → 0
length(cons(N, L)) → s(length(activate(L)))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
zerosn__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(X) → X

The set Q consists of the following terms:

and(tt, x0)
take(x0, x1)
activate(x0)
length(cons(x0, x1))
zeros
length(nil)


The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

zeroscons(0, n__zeros)
and(tt, X) → activate(X)
length(nil) → 0
length(cons(N, L)) → s(length(activate(L)))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
zerosn__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(X) → X

The set Q consists of the following terms:

and(tt, x0)
take(x0, x1)
activate(x0)
length(cons(x0, x1))
zeros
length(nil)

The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

and(tt, X) → activate(X)
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(activate(x1)) = x1   
POL(and(x1, x2)) = 2·x1 + 2·x2   
POL(cons(x1, x2)) = 2·x1 + x2   
POL(length(x1)) = x1   
POL(n__take(x1, x2)) = x1 + 2·x2   
POL(n__zeros) = 0   
POL(nil) = 0   
POL(s(x1)) = x1   
POL(take(x1, x2)) = x1 + 2·x2   
POL(tt) = 2   
POL(zeros) = 0   




↳ QTRS
  ↳ RRRPoloQTRSProof
QTRS
      ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

zeroscons(0, n__zeros)
length(nil) → 0
length(cons(N, L)) → s(length(activate(L)))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
zerosn__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(X) → X

The set Q consists of the following terms:

and(tt, x0)
take(x0, x1)
activate(x0)
length(cons(x0, x1))
zeros
length(nil)


The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

zeroscons(0, n__zeros)
length(nil) → 0
length(cons(N, L)) → s(length(activate(L)))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
zerosn__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(X) → X

The set Q consists of the following terms:

and(tt, x0)
take(x0, x1)
activate(x0)
length(cons(x0, x1))
zeros
length(nil)

The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

length(nil) → 0
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(activate(x1)) = x1   
POL(cons(x1, x2)) = 2·x1 + x2   
POL(length(x1)) = 1 + 2·x1   
POL(n__take(x1, x2)) = 2·x1 + x2   
POL(n__zeros) = 0   
POL(nil) = 0   
POL(s(x1)) = x1   
POL(take(x1, x2)) = 2·x1 + x2   
POL(zeros) = 0   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
QTRS
          ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

zeroscons(0, n__zeros)
length(cons(N, L)) → s(length(activate(L)))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
zerosn__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(X) → X

The set Q consists of the following terms:

and(tt, x0)
take(x0, x1)
activate(x0)
length(cons(x0, x1))
zeros
length(nil)


The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

zeroscons(0, n__zeros)
length(cons(N, L)) → s(length(activate(L)))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
zerosn__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(X) → X

The set Q consists of the following terms:

and(tt, x0)
take(x0, x1)
activate(x0)
length(cons(x0, x1))
zeros
length(nil)

The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

take(X1, X2) → n__take(X1, X2)
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(activate(x1)) = 2·x1   
POL(cons(x1, x2)) = 2·x1 + 2·x2   
POL(length(x1)) = 2·x1   
POL(n__take(x1, x2)) = 1 + x1 + x2   
POL(n__zeros) = 0   
POL(nil) = 2   
POL(s(x1)) = x1   
POL(take(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(zeros) = 0   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
QTRS
              ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

zeroscons(0, n__zeros)
length(cons(N, L)) → s(length(activate(L)))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
zerosn__zeros
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(X) → X

The set Q consists of the following terms:

and(tt, x0)
take(x0, x1)
activate(x0)
length(cons(x0, x1))
zeros
length(nil)


The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

zeroscons(0, n__zeros)
length(cons(N, L)) → s(length(activate(L)))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
zerosn__zeros
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(X) → X

The set Q consists of the following terms:

and(tt, x0)
take(x0, x1)
activate(x0)
length(cons(x0, x1))
zeros
length(nil)

The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

take(0, IL) → nil
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(activate(x1)) = 2·x1   
POL(cons(x1, x2)) = 2·x1 + 2·x2   
POL(length(x1)) = x1   
POL(n__take(x1, x2)) = 1 + x1 + x2   
POL(n__zeros) = 0   
POL(nil) = 1   
POL(s(x1)) = x1   
POL(take(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(zeros) = 0   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
QTRS
                  ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

zeroscons(0, n__zeros)
length(cons(N, L)) → s(length(activate(L)))
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
zerosn__zeros
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(X) → X

The set Q consists of the following terms:

and(tt, x0)
take(x0, x1)
activate(x0)
length(cons(x0, x1))
zeros
length(nil)


The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

zeroscons(0, n__zeros)
length(cons(N, L)) → s(length(activate(L)))
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
zerosn__zeros
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(X) → X

The set Q consists of the following terms:

and(tt, x0)
take(x0, x1)
activate(x0)
length(cons(x0, x1))
zeros
length(nil)

The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

zerosn__zeros
activate(X) → X
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(activate(x1)) = 1 + 2·x1   
POL(cons(x1, x2)) = 1 + 2·x1 + 2·x2   
POL(length(x1)) = x1   
POL(n__take(x1, x2)) = x1 + x2   
POL(n__zeros) = 0   
POL(s(x1)) = x1   
POL(take(x1, x2)) = 1 + 2·x1 + 2·x2   
POL(zeros) = 1   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
QTRS
                      ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

zeroscons(0, n__zeros)
length(cons(N, L)) → s(length(activate(L)))
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)

The set Q consists of the following terms:

and(tt, x0)
take(x0, x1)
activate(x0)
length(cons(x0, x1))
zeros
length(nil)


Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

LENGTH(cons(N, L)) → LENGTH(activate(L))
LENGTH(cons(N, L)) → ACTIVATE(L)
ACTIVATE(n__take(X1, X2)) → TAKE(X1, X2)
ACTIVATE(n__zeros) → ZEROS
TAKE(s(M), cons(N, IL)) → ACTIVATE(IL)

The TRS R consists of the following rules:

zeroscons(0, n__zeros)
length(cons(N, L)) → s(length(activate(L)))
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)

The set Q consists of the following terms:

and(tt, x0)
take(x0, x1)
activate(x0)
length(cons(x0, x1))
zeros
length(nil)

We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
QDP
                          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

LENGTH(cons(N, L)) → LENGTH(activate(L))
LENGTH(cons(N, L)) → ACTIVATE(L)
ACTIVATE(n__take(X1, X2)) → TAKE(X1, X2)
ACTIVATE(n__zeros) → ZEROS
TAKE(s(M), cons(N, IL)) → ACTIVATE(IL)

The TRS R consists of the following rules:

zeroscons(0, n__zeros)
length(cons(N, L)) → s(length(activate(L)))
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)

The set Q consists of the following terms:

and(tt, x0)
take(x0, x1)
activate(x0)
length(cons(x0, x1))
zeros
length(nil)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 2 less nodes.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
QDP
                                ↳ UsableRulesProof
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__take(X1, X2)) → TAKE(X1, X2)
TAKE(s(M), cons(N, IL)) → ACTIVATE(IL)

The TRS R consists of the following rules:

zeroscons(0, n__zeros)
length(cons(N, L)) → s(length(activate(L)))
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)

The set Q consists of the following terms:

and(tt, x0)
take(x0, x1)
activate(x0)
length(cons(x0, x1))
zeros
length(nil)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                                ↳ UsableRulesProof
QDP
                                    ↳ QReductionProof
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__take(X1, X2)) → TAKE(X1, X2)
TAKE(s(M), cons(N, IL)) → ACTIVATE(IL)

R is empty.
The set Q consists of the following terms:

and(tt, x0)
take(x0, x1)
activate(x0)
length(cons(x0, x1))
zeros
length(nil)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

and(tt, x0)
take(x0, x1)
activate(x0)
length(cons(x0, x1))
zeros
length(nil)



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
QDP
                                        ↳ QDPSizeChangeProof
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__take(X1, X2)) → TAKE(X1, X2)
TAKE(s(M), cons(N, IL)) → ACTIVATE(IL)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
QDP
                                ↳ UsableRulesProof
                                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

LENGTH(cons(N, L)) → LENGTH(activate(L))

The TRS R consists of the following rules:

zeroscons(0, n__zeros)
length(cons(N, L)) → s(length(activate(L)))
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)

The set Q consists of the following terms:

and(tt, x0)
take(x0, x1)
activate(x0)
length(cons(x0, x1))
zeros
length(nil)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                                ↳ UsableRulesProof
QDP
                                    ↳ QReductionProof
                                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

LENGTH(cons(N, L)) → LENGTH(activate(L))

The TRS R consists of the following rules:

activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
zeroscons(0, n__zeros)

The set Q consists of the following terms:

and(tt, x0)
take(x0, x1)
activate(x0)
length(cons(x0, x1))
zeros
length(nil)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

and(tt, x0)
length(cons(x0, x1))
length(nil)



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
QDP
                                        ↳ UsableRulesReductionPairsProof
                                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

LENGTH(cons(N, L)) → LENGTH(activate(L))

The TRS R consists of the following rules:

activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
zeroscons(0, n__zeros)

The set Q consists of the following terms:

take(x0, x1)
activate(x0)
zeros

We have to consider all minimal (P,Q,R)-chains.
By using the usable rules with reduction pair processor [15] with a polynomial ordering [25], all dependency pairs and the corresponding usable rules [17] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

No dependency pairs are removed.

The following rules are removed from R:

activate(n__take(X1, X2)) → take(X1, X2)
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
Used ordering: POLO with Polynomial interpretation [25]:

POL(0) = 0   
POL(LENGTH(x1)) = x1   
POL(activate(x1)) = x1   
POL(cons(x1, x2)) = x1 + 2·x2   
POL(n__take(x1, x2)) = 1 + 2·x1 + x2   
POL(n__zeros) = 0   
POL(s(x1)) = 2 + 2·x1   
POL(take(x1, x2)) = 2·x1 + x2   
POL(zeros) = 0   



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
                                      ↳ QDP
                                        ↳ UsableRulesReductionPairsProof
QDP
                                            ↳ QReductionProof
                                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

LENGTH(cons(N, L)) → LENGTH(activate(L))

The TRS R consists of the following rules:

activate(n__zeros) → zeros
zeroscons(0, n__zeros)

The set Q consists of the following terms:

take(x0, x1)
activate(x0)
zeros

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

take(x0, x1)



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
                                      ↳ QDP
                                        ↳ UsableRulesReductionPairsProof
                                          ↳ QDP
                                            ↳ QReductionProof
QDP
                                                ↳ Narrowing
                                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

LENGTH(cons(N, L)) → LENGTH(activate(L))

The TRS R consists of the following rules:

activate(n__zeros) → zeros
zeroscons(0, n__zeros)

The set Q consists of the following terms:

activate(x0)
zeros

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule LENGTH(cons(N, L)) → LENGTH(activate(L)) at position [0] we obtained the following new rules:

LENGTH(cons(y0, n__zeros)) → LENGTH(zeros)



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
                                      ↳ QDP
                                        ↳ UsableRulesReductionPairsProof
                                          ↳ QDP
                                            ↳ QReductionProof
                                              ↳ QDP
                                                ↳ Narrowing
QDP
                                                    ↳ UsableRulesProof
                                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

LENGTH(cons(y0, n__zeros)) → LENGTH(zeros)

The TRS R consists of the following rules:

activate(n__zeros) → zeros
zeroscons(0, n__zeros)

The set Q consists of the following terms:

activate(x0)
zeros

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
                                      ↳ QDP
                                        ↳ UsableRulesReductionPairsProof
                                          ↳ QDP
                                            ↳ QReductionProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
QDP
                                                        ↳ QReductionProof
                                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

LENGTH(cons(y0, n__zeros)) → LENGTH(zeros)

The TRS R consists of the following rules:

zeroscons(0, n__zeros)

The set Q consists of the following terms:

activate(x0)
zeros

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

activate(x0)



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
                                      ↳ QDP
                                        ↳ UsableRulesReductionPairsProof
                                          ↳ QDP
                                            ↳ QReductionProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
QDP
                                                            ↳ Rewriting
                                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

LENGTH(cons(y0, n__zeros)) → LENGTH(zeros)

The TRS R consists of the following rules:

zeroscons(0, n__zeros)

The set Q consists of the following terms:

zeros

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule LENGTH(cons(y0, n__zeros)) → LENGTH(zeros) at position [0] we obtained the following new rules:

LENGTH(cons(y0, n__zeros)) → LENGTH(cons(0, n__zeros))



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
                                      ↳ QDP
                                        ↳ UsableRulesReductionPairsProof
                                          ↳ QDP
                                            ↳ QReductionProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
                                                          ↳ QDP
                                                            ↳ Rewriting
QDP
                                                                ↳ UsableRulesProof
                                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

LENGTH(cons(y0, n__zeros)) → LENGTH(cons(0, n__zeros))

The TRS R consists of the following rules:

zeroscons(0, n__zeros)

The set Q consists of the following terms:

zeros

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
                                      ↳ QDP
                                        ↳ UsableRulesReductionPairsProof
                                          ↳ QDP
                                            ↳ QReductionProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
QDP
                                                                    ↳ QReductionProof
                                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

LENGTH(cons(y0, n__zeros)) → LENGTH(cons(0, n__zeros))

R is empty.
The set Q consists of the following terms:

zeros

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

zeros



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
                                      ↳ QDP
                                        ↳ UsableRulesReductionPairsProof
                                          ↳ QDP
                                            ↳ QReductionProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ QReductionProof
QDP
                                                                        ↳ Instantiation
                                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

LENGTH(cons(y0, n__zeros)) → LENGTH(cons(0, n__zeros))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule LENGTH(cons(y0, n__zeros)) → LENGTH(cons(0, n__zeros)) we obtained the following new rules:

LENGTH(cons(0, n__zeros)) → LENGTH(cons(0, n__zeros))



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
                                      ↳ QDP
                                        ↳ UsableRulesReductionPairsProof
                                          ↳ QDP
                                            ↳ QReductionProof
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ QReductionProof
                                                                      ↳ QDP
                                                                        ↳ Instantiation
QDP
                                                                            ↳ NonTerminationProof
                                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

LENGTH(cons(0, n__zeros)) → LENGTH(cons(0, n__zeros))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

The TRS P consists of the following rules:

LENGTH(cons(0, n__zeros)) → LENGTH(cons(0, n__zeros))

The TRS R consists of the following rules:none


s = LENGTH(cons(0, n__zeros)) evaluates to t =LENGTH(cons(0, n__zeros))

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from LENGTH(cons(0, n__zeros)) to LENGTH(cons(0, n__zeros)).




As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                                ↳ UsableRulesProof
                                ↳ UsableRulesProof
QDP
                                    ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

LENGTH(cons(N, L)) → LENGTH(activate(L))

The TRS R consists of the following rules:

activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
zeroscons(0, n__zeros)

The set Q consists of the following terms:

and(tt, x0)
take(x0, x1)
activate(x0)
length(cons(x0, x1))
zeros
length(nil)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

and(tt, x0)
length(cons(x0, x1))
length(nil)



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ RRRPoloQTRSProof
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                                ↳ UsableRulesProof
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
QDP
                                        ↳ NonTerminationProof

Q DP problem:
The TRS P consists of the following rules:

LENGTH(cons(N, L)) → LENGTH(activate(L))

The TRS R consists of the following rules:

activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
zeroscons(0, n__zeros)

The set Q consists of the following terms:

take(x0, x1)
activate(x0)
zeros

We have to consider all minimal (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by narrowing to the left:

The TRS P consists of the following rules:

LENGTH(cons(N, L)) → LENGTH(activate(L))

The TRS R consists of the following rules:

activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
zeroscons(0, n__zeros)


s = LENGTH(activate(n__zeros)) evaluates to t =LENGTH(activate(n__zeros))

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:




Rewriting sequence

LENGTH(activate(n__zeros))LENGTH(zeros)
with rule activate(n__zeros) → zeros at position [0] and matcher [ ]

LENGTH(zeros)LENGTH(cons(0, n__zeros))
with rule zeroscons(0, n__zeros) at position [0] and matcher [ ]

LENGTH(cons(0, n__zeros))LENGTH(activate(n__zeros))
with rule LENGTH(cons(N, L)) → LENGTH(activate(L))

Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence


All these steps are and every following step will be a correct step w.r.t to Q.