Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

zeroscons(0, n__zeros)
U11(tt, L) → U12(tt, activate(L))
U12(tt, L) → s(length(activate(L)))
length(nil) → 0
length(cons(N, L)) → U11(tt, activate(L))
zerosn__zeros
activate(n__zeros) → zeros
activate(X) → X

The set Q consists of the following terms:

activate(x0)
length(cons(x0, x1))
zeros
length(nil)
U12(tt, x0)
U11(tt, x0)



QTRS
  ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

zeroscons(0, n__zeros)
U11(tt, L) → U12(tt, activate(L))
U12(tt, L) → s(length(activate(L)))
length(nil) → 0
length(cons(N, L)) → U11(tt, activate(L))
zerosn__zeros
activate(n__zeros) → zeros
activate(X) → X

The set Q consists of the following terms:

activate(x0)
length(cons(x0, x1))
zeros
length(nil)
U12(tt, x0)
U11(tt, x0)


The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

zeroscons(0, n__zeros)
U11(tt, L) → U12(tt, activate(L))
U12(tt, L) → s(length(activate(L)))
length(nil) → 0
length(cons(N, L)) → U11(tt, activate(L))
zerosn__zeros
activate(n__zeros) → zeros
activate(X) → X

The set Q consists of the following terms:

activate(x0)
length(cons(x0, x1))
zeros
length(nil)
U12(tt, x0)
U11(tt, x0)

The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

length(nil) → 0
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(U11(x1, x2)) = 2·x1 + 2·x2   
POL(U12(x1, x2)) = 2·x1 + 2·x2   
POL(activate(x1)) = x1   
POL(cons(x1, x2)) = 2·x1 + 2·x2   
POL(length(x1)) = 2·x1   
POL(n__zeros) = 0   
POL(nil) = 1   
POL(s(x1)) = x1   
POL(tt) = 0   
POL(zeros) = 0   




↳ QTRS
  ↳ RRRPoloQTRSProof
QTRS
      ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

zeroscons(0, n__zeros)
U11(tt, L) → U12(tt, activate(L))
U12(tt, L) → s(length(activate(L)))
length(cons(N, L)) → U11(tt, activate(L))
zerosn__zeros
activate(n__zeros) → zeros
activate(X) → X

The set Q consists of the following terms:

activate(x0)
length(cons(x0, x1))
zeros
length(nil)
U12(tt, x0)
U11(tt, x0)


Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

U121(tt, L) → ACTIVATE(L)
LENGTH(cons(N, L)) → ACTIVATE(L)
U121(tt, L) → LENGTH(activate(L))
U111(tt, L) → U121(tt, activate(L))
U111(tt, L) → ACTIVATE(L)
LENGTH(cons(N, L)) → U111(tt, activate(L))
ACTIVATE(n__zeros) → ZEROS

The TRS R consists of the following rules:

zeroscons(0, n__zeros)
U11(tt, L) → U12(tt, activate(L))
U12(tt, L) → s(length(activate(L)))
length(cons(N, L)) → U11(tt, activate(L))
zerosn__zeros
activate(n__zeros) → zeros
activate(X) → X

The set Q consists of the following terms:

activate(x0)
length(cons(x0, x1))
zeros
length(nil)
U12(tt, x0)
U11(tt, x0)

We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

U121(tt, L) → ACTIVATE(L)
LENGTH(cons(N, L)) → ACTIVATE(L)
U121(tt, L) → LENGTH(activate(L))
U111(tt, L) → U121(tt, activate(L))
U111(tt, L) → ACTIVATE(L)
LENGTH(cons(N, L)) → U111(tt, activate(L))
ACTIVATE(n__zeros) → ZEROS

The TRS R consists of the following rules:

zeroscons(0, n__zeros)
U11(tt, L) → U12(tt, activate(L))
U12(tt, L) → s(length(activate(L)))
length(cons(N, L)) → U11(tt, activate(L))
zerosn__zeros
activate(n__zeros) → zeros
activate(X) → X

The set Q consists of the following terms:

activate(x0)
length(cons(x0, x1))
zeros
length(nil)
U12(tt, x0)
U11(tt, x0)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 4 less nodes.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
QDP
              ↳ UsableRulesProof
              ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

U121(tt, L) → LENGTH(activate(L))
U111(tt, L) → U121(tt, activate(L))
LENGTH(cons(N, L)) → U111(tt, activate(L))

The TRS R consists of the following rules:

zeroscons(0, n__zeros)
U11(tt, L) → U12(tt, activate(L))
U12(tt, L) → s(length(activate(L)))
length(cons(N, L)) → U11(tt, activate(L))
zerosn__zeros
activate(n__zeros) → zeros
activate(X) → X

The set Q consists of the following terms:

activate(x0)
length(cons(x0, x1))
zeros
length(nil)
U12(tt, x0)
U11(tt, x0)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ UsableRulesProof
QDP
                  ↳ QReductionProof
              ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

U121(tt, L) → LENGTH(activate(L))
U111(tt, L) → U121(tt, activate(L))
LENGTH(cons(N, L)) → U111(tt, activate(L))

The TRS R consists of the following rules:

activate(n__zeros) → zeros
activate(X) → X
zeroscons(0, n__zeros)
zerosn__zeros

The set Q consists of the following terms:

activate(x0)
length(cons(x0, x1))
zeros
length(nil)
U12(tt, x0)
U11(tt, x0)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

length(cons(x0, x1))
length(nil)
U12(tt, x0)
U11(tt, x0)



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ UsableRulesProof
                ↳ QDP
                  ↳ QReductionProof
QDP
                      ↳ Narrowing
              ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

U121(tt, L) → LENGTH(activate(L))
U111(tt, L) → U121(tt, activate(L))
LENGTH(cons(N, L)) → U111(tt, activate(L))

The TRS R consists of the following rules:

activate(n__zeros) → zeros
activate(X) → X
zeroscons(0, n__zeros)
zerosn__zeros

The set Q consists of the following terms:

activate(x0)
zeros

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule U121(tt, L) → LENGTH(activate(L)) at position [0] we obtained the following new rules:

U121(tt, n__zeros) → LENGTH(zeros)
U121(tt, x0) → LENGTH(x0)



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ UsableRulesProof
                ↳ QDP
                  ↳ QReductionProof
                    ↳ QDP
                      ↳ Narrowing
QDP
                          ↳ Narrowing
              ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

U111(tt, L) → U121(tt, activate(L))
U121(tt, n__zeros) → LENGTH(zeros)
LENGTH(cons(N, L)) → U111(tt, activate(L))
U121(tt, x0) → LENGTH(x0)

The TRS R consists of the following rules:

activate(n__zeros) → zeros
activate(X) → X
zeroscons(0, n__zeros)
zerosn__zeros

The set Q consists of the following terms:

activate(x0)
zeros

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule U111(tt, L) → U121(tt, activate(L)) at position [1] we obtained the following new rules:

U111(tt, x0) → U121(tt, x0)
U111(tt, n__zeros) → U121(tt, zeros)



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ UsableRulesProof
                ↳ QDP
                  ↳ QReductionProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ Narrowing
QDP
                              ↳ Narrowing
              ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

U111(tt, n__zeros) → U121(tt, zeros)
U121(tt, n__zeros) → LENGTH(zeros)
LENGTH(cons(N, L)) → U111(tt, activate(L))
U111(tt, x0) → U121(tt, x0)
U121(tt, x0) → LENGTH(x0)

The TRS R consists of the following rules:

activate(n__zeros) → zeros
activate(X) → X
zeroscons(0, n__zeros)
zerosn__zeros

The set Q consists of the following terms:

activate(x0)
zeros

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule LENGTH(cons(N, L)) → U111(tt, activate(L)) at position [1] we obtained the following new rules:

LENGTH(cons(y0, x0)) → U111(tt, x0)
LENGTH(cons(y0, n__zeros)) → U111(tt, zeros)



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ UsableRulesProof
                ↳ QDP
                  ↳ QReductionProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ Narrowing
                            ↳ QDP
                              ↳ Narrowing
QDP
                                  ↳ UsableRulesProof
              ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

LENGTH(cons(y0, n__zeros)) → U111(tt, zeros)
U111(tt, n__zeros) → U121(tt, zeros)
LENGTH(cons(y0, x0)) → U111(tt, x0)
U121(tt, n__zeros) → LENGTH(zeros)
U121(tt, x0) → LENGTH(x0)
U111(tt, x0) → U121(tt, x0)

The TRS R consists of the following rules:

activate(n__zeros) → zeros
activate(X) → X
zeroscons(0, n__zeros)
zerosn__zeros

The set Q consists of the following terms:

activate(x0)
zeros

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ UsableRulesProof
                ↳ QDP
                  ↳ QReductionProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ Narrowing
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ UsableRulesProof
QDP
                                      ↳ QReductionProof
              ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

LENGTH(cons(y0, n__zeros)) → U111(tt, zeros)
U111(tt, n__zeros) → U121(tt, zeros)
LENGTH(cons(y0, x0)) → U111(tt, x0)
U121(tt, n__zeros) → LENGTH(zeros)
U111(tt, x0) → U121(tt, x0)
U121(tt, x0) → LENGTH(x0)

The TRS R consists of the following rules:

zeroscons(0, n__zeros)
zerosn__zeros

The set Q consists of the following terms:

activate(x0)
zeros

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

activate(x0)



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ UsableRulesProof
                ↳ QDP
                  ↳ QReductionProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ Narrowing
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ UsableRulesProof
                                    ↳ QDP
                                      ↳ QReductionProof
QDP
                                          ↳ Narrowing
              ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

LENGTH(cons(y0, n__zeros)) → U111(tt, zeros)
U111(tt, n__zeros) → U121(tt, zeros)
LENGTH(cons(y0, x0)) → U111(tt, x0)
U121(tt, n__zeros) → LENGTH(zeros)
U121(tt, x0) → LENGTH(x0)
U111(tt, x0) → U121(tt, x0)

The TRS R consists of the following rules:

zeroscons(0, n__zeros)
zerosn__zeros

The set Q consists of the following terms:

zeros

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule LENGTH(cons(y0, n__zeros)) → U111(tt, zeros) at position [1] we obtained the following new rules:

LENGTH(cons(y0, n__zeros)) → U111(tt, cons(0, n__zeros))
LENGTH(cons(y0, n__zeros)) → U111(tt, n__zeros)



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ UsableRulesProof
                ↳ QDP
                  ↳ QReductionProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ Narrowing
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ UsableRulesProof
                                    ↳ QDP
                                      ↳ QReductionProof
                                        ↳ QDP
                                          ↳ Narrowing
QDP
                                              ↳ Narrowing
              ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

U111(tt, n__zeros) → U121(tt, zeros)
LENGTH(cons(y0, n__zeros)) → U111(tt, n__zeros)
LENGTH(cons(y0, x0)) → U111(tt, x0)
U121(tt, n__zeros) → LENGTH(zeros)
LENGTH(cons(y0, n__zeros)) → U111(tt, cons(0, n__zeros))
U111(tt, x0) → U121(tt, x0)
U121(tt, x0) → LENGTH(x0)

The TRS R consists of the following rules:

zeroscons(0, n__zeros)
zerosn__zeros

The set Q consists of the following terms:

zeros

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule U111(tt, n__zeros) → U121(tt, zeros) at position [1] we obtained the following new rules:

U111(tt, n__zeros) → U121(tt, n__zeros)
U111(tt, n__zeros) → U121(tt, cons(0, n__zeros))



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ UsableRulesProof
                ↳ QDP
                  ↳ QReductionProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ Narrowing
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ UsableRulesProof
                                    ↳ QDP
                                      ↳ QReductionProof
                                        ↳ QDP
                                          ↳ Narrowing
                                            ↳ QDP
                                              ↳ Narrowing
QDP
                                                  ↳ Narrowing
              ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

U111(tt, n__zeros) → U121(tt, cons(0, n__zeros))
LENGTH(cons(y0, n__zeros)) → U111(tt, n__zeros)
LENGTH(cons(y0, x0)) → U111(tt, x0)
U111(tt, n__zeros) → U121(tt, n__zeros)
U121(tt, n__zeros) → LENGTH(zeros)
U121(tt, x0) → LENGTH(x0)
U111(tt, x0) → U121(tt, x0)
LENGTH(cons(y0, n__zeros)) → U111(tt, cons(0, n__zeros))

The TRS R consists of the following rules:

zeroscons(0, n__zeros)
zerosn__zeros

The set Q consists of the following terms:

zeros

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule U121(tt, n__zeros) → LENGTH(zeros) at position [0] we obtained the following new rules:

U121(tt, n__zeros) → LENGTH(cons(0, n__zeros))
U121(tt, n__zeros) → LENGTH(n__zeros)



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ UsableRulesProof
                ↳ QDP
                  ↳ QReductionProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ Narrowing
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ UsableRulesProof
                                    ↳ QDP
                                      ↳ QReductionProof
                                        ↳ QDP
                                          ↳ Narrowing
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ Narrowing
QDP
                                                      ↳ DependencyGraphProof
              ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

U121(tt, n__zeros) → LENGTH(cons(0, n__zeros))
U121(tt, n__zeros) → LENGTH(n__zeros)
U111(tt, n__zeros) → U121(tt, cons(0, n__zeros))
LENGTH(cons(y0, n__zeros)) → U111(tt, n__zeros)
LENGTH(cons(y0, x0)) → U111(tt, x0)
U111(tt, n__zeros) → U121(tt, n__zeros)
LENGTH(cons(y0, n__zeros)) → U111(tt, cons(0, n__zeros))
U111(tt, x0) → U121(tt, x0)
U121(tt, x0) → LENGTH(x0)

The TRS R consists of the following rules:

zeroscons(0, n__zeros)
zerosn__zeros

The set Q consists of the following terms:

zeros

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ UsableRulesProof
                ↳ QDP
                  ↳ QReductionProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ Narrowing
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ UsableRulesProof
                                    ↳ QDP
                                      ↳ QReductionProof
                                        ↳ QDP
                                          ↳ Narrowing
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
QDP
                                                          ↳ UsableRulesProof
              ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

U121(tt, n__zeros) → LENGTH(cons(0, n__zeros))
U111(tt, n__zeros) → U121(tt, cons(0, n__zeros))
LENGTH(cons(y0, n__zeros)) → U111(tt, n__zeros)
LENGTH(cons(y0, x0)) → U111(tt, x0)
U111(tt, n__zeros) → U121(tt, n__zeros)
LENGTH(cons(y0, n__zeros)) → U111(tt, cons(0, n__zeros))
U121(tt, x0) → LENGTH(x0)
U111(tt, x0) → U121(tt, x0)

The TRS R consists of the following rules:

zeroscons(0, n__zeros)
zerosn__zeros

The set Q consists of the following terms:

zeros

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ UsableRulesProof
                ↳ QDP
                  ↳ QReductionProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ Narrowing
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ UsableRulesProof
                                    ↳ QDP
                                      ↳ QReductionProof
                                        ↳ QDP
                                          ↳ Narrowing
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ QDP
                                                          ↳ UsableRulesProof
QDP
                                                              ↳ QReductionProof
              ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

U121(tt, n__zeros) → LENGTH(cons(0, n__zeros))
U111(tt, n__zeros) → U121(tt, cons(0, n__zeros))
LENGTH(cons(y0, n__zeros)) → U111(tt, n__zeros)
LENGTH(cons(y0, x0)) → U111(tt, x0)
U111(tt, n__zeros) → U121(tt, n__zeros)
LENGTH(cons(y0, n__zeros)) → U111(tt, cons(0, n__zeros))
U121(tt, x0) → LENGTH(x0)
U111(tt, x0) → U121(tt, x0)

R is empty.
The set Q consists of the following terms:

zeros

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

zeros



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ UsableRulesProof
                ↳ QDP
                  ↳ QReductionProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ Narrowing
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ UsableRulesProof
                                    ↳ QDP
                                      ↳ QReductionProof
                                        ↳ QDP
                                          ↳ Narrowing
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ QDP
                                                          ↳ UsableRulesProof
                                                            ↳ QDP
                                                              ↳ QReductionProof
QDP
                                                                  ↳ ForwardInstantiation
              ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

U121(tt, n__zeros) → LENGTH(cons(0, n__zeros))
U111(tt, n__zeros) → U121(tt, cons(0, n__zeros))
LENGTH(cons(y0, n__zeros)) → U111(tt, n__zeros)
LENGTH(cons(y0, x0)) → U111(tt, x0)
U111(tt, n__zeros) → U121(tt, n__zeros)
U111(tt, x0) → U121(tt, x0)
U121(tt, x0) → LENGTH(x0)
LENGTH(cons(y0, n__zeros)) → U111(tt, cons(0, n__zeros))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule U121(tt, x0) → LENGTH(x0) we obtained the following new rules:

U121(tt, cons(y_0, n__zeros)) → LENGTH(cons(y_0, n__zeros))
U121(tt, cons(y_0, y_1)) → LENGTH(cons(y_0, y_1))



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ UsableRulesProof
                ↳ QDP
                  ↳ QReductionProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ Narrowing
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ UsableRulesProof
                                    ↳ QDP
                                      ↳ QReductionProof
                                        ↳ QDP
                                          ↳ Narrowing
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ QDP
                                                          ↳ UsableRulesProof
                                                            ↳ QDP
                                                              ↳ QReductionProof
                                                                ↳ QDP
                                                                  ↳ ForwardInstantiation
QDP
                                                                      ↳ ForwardInstantiation
              ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

U121(tt, n__zeros) → LENGTH(cons(0, n__zeros))
U121(tt, cons(y_0, n__zeros)) → LENGTH(cons(y_0, n__zeros))
U111(tt, n__zeros) → U121(tt, cons(0, n__zeros))
LENGTH(cons(y0, n__zeros)) → U111(tt, n__zeros)
LENGTH(cons(y0, x0)) → U111(tt, x0)
U121(tt, cons(y_0, y_1)) → LENGTH(cons(y_0, y_1))
U111(tt, n__zeros) → U121(tt, n__zeros)
LENGTH(cons(y0, n__zeros)) → U111(tt, cons(0, n__zeros))
U111(tt, x0) → U121(tt, x0)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule U111(tt, x0) → U121(tt, x0) we obtained the following new rules:

U111(tt, cons(y_0, y_1)) → U121(tt, cons(y_0, y_1))
U111(tt, cons(y_0, n__zeros)) → U121(tt, cons(y_0, n__zeros))
U111(tt, n__zeros) → U121(tt, n__zeros)



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ UsableRulesProof
                ↳ QDP
                  ↳ QReductionProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ Narrowing
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ UsableRulesProof
                                    ↳ QDP
                                      ↳ QReductionProof
                                        ↳ QDP
                                          ↳ Narrowing
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ QDP
                                                          ↳ UsableRulesProof
                                                            ↳ QDP
                                                              ↳ QReductionProof
                                                                ↳ QDP
                                                                  ↳ ForwardInstantiation
                                                                    ↳ QDP
                                                                      ↳ ForwardInstantiation
QDP
                                                                          ↳ ForwardInstantiation
              ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

U121(tt, n__zeros) → LENGTH(cons(0, n__zeros))
U121(tt, cons(y_0, n__zeros)) → LENGTH(cons(y_0, n__zeros))
U111(tt, cons(y_0, y_1)) → U121(tt, cons(y_0, y_1))
U111(tt, n__zeros) → U121(tt, cons(0, n__zeros))
LENGTH(cons(y0, n__zeros)) → U111(tt, n__zeros)
U111(tt, cons(y_0, n__zeros)) → U121(tt, cons(y_0, n__zeros))
LENGTH(cons(y0, x0)) → U111(tt, x0)
U111(tt, n__zeros) → U121(tt, n__zeros)
U121(tt, cons(y_0, y_1)) → LENGTH(cons(y_0, y_1))
LENGTH(cons(y0, n__zeros)) → U111(tt, cons(0, n__zeros))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule LENGTH(cons(y0, x0)) → U111(tt, x0) we obtained the following new rules:

LENGTH(cons(x0, cons(y_0, y_1))) → U111(tt, cons(y_0, y_1))
LENGTH(cons(x0, cons(y_0, n__zeros))) → U111(tt, cons(y_0, n__zeros))
LENGTH(cons(x0, n__zeros)) → U111(tt, n__zeros)



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ UsableRulesProof
                ↳ QDP
                  ↳ QReductionProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ Narrowing
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ UsableRulesProof
                                    ↳ QDP
                                      ↳ QReductionProof
                                        ↳ QDP
                                          ↳ Narrowing
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ QDP
                                                          ↳ UsableRulesProof
                                                            ↳ QDP
                                                              ↳ QReductionProof
                                                                ↳ QDP
                                                                  ↳ ForwardInstantiation
                                                                    ↳ QDP
                                                                      ↳ ForwardInstantiation
                                                                        ↳ QDP
                                                                          ↳ ForwardInstantiation
QDP
                                                                              ↳ QDPOrderProof
              ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

LENGTH(cons(x0, cons(y_0, y_1))) → U111(tt, cons(y_0, y_1))
U121(tt, n__zeros) → LENGTH(cons(0, n__zeros))
U121(tt, cons(y_0, n__zeros)) → LENGTH(cons(y_0, n__zeros))
U111(tt, cons(y_0, y_1)) → U121(tt, cons(y_0, y_1))
LENGTH(cons(x0, cons(y_0, n__zeros))) → U111(tt, cons(y_0, n__zeros))
U111(tt, n__zeros) → U121(tt, cons(0, n__zeros))
LENGTH(cons(y0, n__zeros)) → U111(tt, n__zeros)
U111(tt, cons(y_0, n__zeros)) → U121(tt, cons(y_0, n__zeros))
U121(tt, cons(y_0, y_1)) → LENGTH(cons(y_0, y_1))
U111(tt, n__zeros) → U121(tt, n__zeros)
LENGTH(cons(y0, n__zeros)) → U111(tt, cons(0, n__zeros))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


LENGTH(cons(x0, cons(y_0, y_1))) → U111(tt, cons(y_0, y_1))
LENGTH(cons(x0, cons(y_0, n__zeros))) → U111(tt, cons(y_0, n__zeros))
The remaining pairs can at least be oriented weakly.

U121(tt, n__zeros) → LENGTH(cons(0, n__zeros))
U121(tt, cons(y_0, n__zeros)) → LENGTH(cons(y_0, n__zeros))
U111(tt, cons(y_0, y_1)) → U121(tt, cons(y_0, y_1))
U111(tt, n__zeros) → U121(tt, cons(0, n__zeros))
LENGTH(cons(y0, n__zeros)) → U111(tt, n__zeros)
U111(tt, cons(y_0, n__zeros)) → U121(tt, cons(y_0, n__zeros))
U121(tt, cons(y_0, y_1)) → LENGTH(cons(y_0, y_1))
U111(tt, n__zeros) → U121(tt, n__zeros)
LENGTH(cons(y0, n__zeros)) → U111(tt, cons(0, n__zeros))
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( cons(x1, x2) ) =
/1\
\0/
+
/10\
\00/
·x1+
/00\
\11/
·x2

M( tt ) =
/0\
\0/

M( n__zeros ) =
/0\
\0/

M( 0 ) =
/1\
\0/

Tuple symbols:
M( LENGTH(x1) ) = 0+
[0,1]
·x1

M( U121(x1, x2) ) = 0+
[0,0]
·x1+
[0,1]
·x2

M( U111(x1, x2) ) = 0+
[0,0]
·x1+
[0,1]
·x2


Matrix type:
We used a basic matrix type which is not further parametrizeable.


As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ UsableRulesProof
                ↳ QDP
                  ↳ QReductionProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ Narrowing
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ UsableRulesProof
                                    ↳ QDP
                                      ↳ QReductionProof
                                        ↳ QDP
                                          ↳ Narrowing
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ QDP
                                                          ↳ UsableRulesProof
                                                            ↳ QDP
                                                              ↳ QReductionProof
                                                                ↳ QDP
                                                                  ↳ ForwardInstantiation
                                                                    ↳ QDP
                                                                      ↳ ForwardInstantiation
                                                                        ↳ QDP
                                                                          ↳ ForwardInstantiation
                                                                            ↳ QDP
                                                                              ↳ QDPOrderProof
QDP
                                                                                  ↳ Instantiation
              ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

U121(tt, n__zeros) → LENGTH(cons(0, n__zeros))
U121(tt, cons(y_0, n__zeros)) → LENGTH(cons(y_0, n__zeros))
U111(tt, cons(y_0, y_1)) → U121(tt, cons(y_0, y_1))
U111(tt, n__zeros) → U121(tt, cons(0, n__zeros))
LENGTH(cons(y0, n__zeros)) → U111(tt, n__zeros)
U111(tt, cons(y_0, n__zeros)) → U121(tt, cons(y_0, n__zeros))
U111(tt, n__zeros) → U121(tt, n__zeros)
U121(tt, cons(y_0, y_1)) → LENGTH(cons(y_0, y_1))
LENGTH(cons(y0, n__zeros)) → U111(tt, cons(0, n__zeros))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule U111(tt, cons(y_0, y_1)) → U121(tt, cons(y_0, y_1)) we obtained the following new rules:

U111(tt, cons(0, n__zeros)) → U121(tt, cons(0, n__zeros))



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ UsableRulesProof
                ↳ QDP
                  ↳ QReductionProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ Narrowing
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ UsableRulesProof
                                    ↳ QDP
                                      ↳ QReductionProof
                                        ↳ QDP
                                          ↳ Narrowing
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ QDP
                                                          ↳ UsableRulesProof
                                                            ↳ QDP
                                                              ↳ QReductionProof
                                                                ↳ QDP
                                                                  ↳ ForwardInstantiation
                                                                    ↳ QDP
                                                                      ↳ ForwardInstantiation
                                                                        ↳ QDP
                                                                          ↳ ForwardInstantiation
                                                                            ↳ QDP
                                                                              ↳ QDPOrderProof
                                                                                ↳ QDP
                                                                                  ↳ Instantiation
QDP
                                                                                      ↳ Instantiation
              ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

U121(tt, n__zeros) → LENGTH(cons(0, n__zeros))
U121(tt, cons(y_0, n__zeros)) → LENGTH(cons(y_0, n__zeros))
U111(tt, cons(0, n__zeros)) → U121(tt, cons(0, n__zeros))
U111(tt, n__zeros) → U121(tt, cons(0, n__zeros))
LENGTH(cons(y0, n__zeros)) → U111(tt, n__zeros)
U111(tt, cons(y_0, n__zeros)) → U121(tt, cons(y_0, n__zeros))
U121(tt, cons(y_0, y_1)) → LENGTH(cons(y_0, y_1))
U111(tt, n__zeros) → U121(tt, n__zeros)
LENGTH(cons(y0, n__zeros)) → U111(tt, cons(0, n__zeros))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule U111(tt, cons(y_0, n__zeros)) → U121(tt, cons(y_0, n__zeros)) we obtained the following new rules:

U111(tt, cons(0, n__zeros)) → U121(tt, cons(0, n__zeros))



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ UsableRulesProof
                ↳ QDP
                  ↳ QReductionProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ Narrowing
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ UsableRulesProof
                                    ↳ QDP
                                      ↳ QReductionProof
                                        ↳ QDP
                                          ↳ Narrowing
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ QDP
                                                          ↳ UsableRulesProof
                                                            ↳ QDP
                                                              ↳ QReductionProof
                                                                ↳ QDP
                                                                  ↳ ForwardInstantiation
                                                                    ↳ QDP
                                                                      ↳ ForwardInstantiation
                                                                        ↳ QDP
                                                                          ↳ ForwardInstantiation
                                                                            ↳ QDP
                                                                              ↳ QDPOrderProof
                                                                                ↳ QDP
                                                                                  ↳ Instantiation
                                                                                    ↳ QDP
                                                                                      ↳ Instantiation
QDP
                                                                                          ↳ Instantiation
              ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

U121(tt, n__zeros) → LENGTH(cons(0, n__zeros))
U121(tt, cons(y_0, n__zeros)) → LENGTH(cons(y_0, n__zeros))
U111(tt, n__zeros) → U121(tt, cons(0, n__zeros))
U111(tt, cons(0, n__zeros)) → U121(tt, cons(0, n__zeros))
LENGTH(cons(y0, n__zeros)) → U111(tt, n__zeros)
U111(tt, n__zeros) → U121(tt, n__zeros)
U121(tt, cons(y_0, y_1)) → LENGTH(cons(y_0, y_1))
LENGTH(cons(y0, n__zeros)) → U111(tt, cons(0, n__zeros))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule U121(tt, cons(y_0, n__zeros)) → LENGTH(cons(y_0, n__zeros)) we obtained the following new rules:

U121(tt, cons(0, n__zeros)) → LENGTH(cons(0, n__zeros))



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ UsableRulesProof
                ↳ QDP
                  ↳ QReductionProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ Narrowing
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ UsableRulesProof
                                    ↳ QDP
                                      ↳ QReductionProof
                                        ↳ QDP
                                          ↳ Narrowing
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ QDP
                                                          ↳ UsableRulesProof
                                                            ↳ QDP
                                                              ↳ QReductionProof
                                                                ↳ QDP
                                                                  ↳ ForwardInstantiation
                                                                    ↳ QDP
                                                                      ↳ ForwardInstantiation
                                                                        ↳ QDP
                                                                          ↳ ForwardInstantiation
                                                                            ↳ QDP
                                                                              ↳ QDPOrderProof
                                                                                ↳ QDP
                                                                                  ↳ Instantiation
                                                                                    ↳ QDP
                                                                                      ↳ Instantiation
                                                                                        ↳ QDP
                                                                                          ↳ Instantiation
QDP
                                                                                              ↳ Instantiation
              ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

U121(tt, cons(0, n__zeros)) → LENGTH(cons(0, n__zeros))
U121(tt, n__zeros) → LENGTH(cons(0, n__zeros))
U111(tt, cons(0, n__zeros)) → U121(tt, cons(0, n__zeros))
U111(tt, n__zeros) → U121(tt, cons(0, n__zeros))
LENGTH(cons(y0, n__zeros)) → U111(tt, n__zeros)
U121(tt, cons(y_0, y_1)) → LENGTH(cons(y_0, y_1))
U111(tt, n__zeros) → U121(tt, n__zeros)
LENGTH(cons(y0, n__zeros)) → U111(tt, cons(0, n__zeros))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule U121(tt, cons(y_0, y_1)) → LENGTH(cons(y_0, y_1)) we obtained the following new rules:

U121(tt, cons(0, n__zeros)) → LENGTH(cons(0, n__zeros))



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ UsableRulesProof
                ↳ QDP
                  ↳ QReductionProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ Narrowing
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ UsableRulesProof
                                    ↳ QDP
                                      ↳ QReductionProof
                                        ↳ QDP
                                          ↳ Narrowing
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ QDP
                                                          ↳ UsableRulesProof
                                                            ↳ QDP
                                                              ↳ QReductionProof
                                                                ↳ QDP
                                                                  ↳ ForwardInstantiation
                                                                    ↳ QDP
                                                                      ↳ ForwardInstantiation
                                                                        ↳ QDP
                                                                          ↳ ForwardInstantiation
                                                                            ↳ QDP
                                                                              ↳ QDPOrderProof
                                                                                ↳ QDP
                                                                                  ↳ Instantiation
                                                                                    ↳ QDP
                                                                                      ↳ Instantiation
                                                                                        ↳ QDP
                                                                                          ↳ Instantiation
                                                                                            ↳ QDP
                                                                                              ↳ Instantiation
QDP
                                                                                                  ↳ Instantiation
              ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

U121(tt, n__zeros) → LENGTH(cons(0, n__zeros))
U121(tt, cons(0, n__zeros)) → LENGTH(cons(0, n__zeros))
U111(tt, n__zeros) → U121(tt, cons(0, n__zeros))
U111(tt, cons(0, n__zeros)) → U121(tt, cons(0, n__zeros))
LENGTH(cons(y0, n__zeros)) → U111(tt, n__zeros)
U111(tt, n__zeros) → U121(tt, n__zeros)
LENGTH(cons(y0, n__zeros)) → U111(tt, cons(0, n__zeros))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule LENGTH(cons(y0, n__zeros)) → U111(tt, n__zeros) we obtained the following new rules:

LENGTH(cons(0, n__zeros)) → U111(tt, n__zeros)



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ UsableRulesProof
                ↳ QDP
                  ↳ QReductionProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ Narrowing
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ UsableRulesProof
                                    ↳ QDP
                                      ↳ QReductionProof
                                        ↳ QDP
                                          ↳ Narrowing
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ QDP
                                                          ↳ UsableRulesProof
                                                            ↳ QDP
                                                              ↳ QReductionProof
                                                                ↳ QDP
                                                                  ↳ ForwardInstantiation
                                                                    ↳ QDP
                                                                      ↳ ForwardInstantiation
                                                                        ↳ QDP
                                                                          ↳ ForwardInstantiation
                                                                            ↳ QDP
                                                                              ↳ QDPOrderProof
                                                                                ↳ QDP
                                                                                  ↳ Instantiation
                                                                                    ↳ QDP
                                                                                      ↳ Instantiation
                                                                                        ↳ QDP
                                                                                          ↳ Instantiation
                                                                                            ↳ QDP
                                                                                              ↳ Instantiation
                                                                                                ↳ QDP
                                                                                                  ↳ Instantiation
QDP
                                                                                                      ↳ Instantiation
              ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

U121(tt, cons(0, n__zeros)) → LENGTH(cons(0, n__zeros))
U121(tt, n__zeros) → LENGTH(cons(0, n__zeros))
U111(tt, cons(0, n__zeros)) → U121(tt, cons(0, n__zeros))
U111(tt, n__zeros) → U121(tt, cons(0, n__zeros))
LENGTH(cons(0, n__zeros)) → U111(tt, n__zeros)
U111(tt, n__zeros) → U121(tt, n__zeros)
LENGTH(cons(y0, n__zeros)) → U111(tt, cons(0, n__zeros))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule LENGTH(cons(y0, n__zeros)) → U111(tt, cons(0, n__zeros)) we obtained the following new rules:

LENGTH(cons(0, n__zeros)) → U111(tt, cons(0, n__zeros))



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ UsableRulesProof
                ↳ QDP
                  ↳ QReductionProof
                    ↳ QDP
                      ↳ Narrowing
                        ↳ QDP
                          ↳ Narrowing
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ UsableRulesProof
                                    ↳ QDP
                                      ↳ QReductionProof
                                        ↳ QDP
                                          ↳ Narrowing
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ QDP
                                                          ↳ UsableRulesProof
                                                            ↳ QDP
                                                              ↳ QReductionProof
                                                                ↳ QDP
                                                                  ↳ ForwardInstantiation
                                                                    ↳ QDP
                                                                      ↳ ForwardInstantiation
                                                                        ↳ QDP
                                                                          ↳ ForwardInstantiation
                                                                            ↳ QDP
                                                                              ↳ QDPOrderProof
                                                                                ↳ QDP
                                                                                  ↳ Instantiation
                                                                                    ↳ QDP
                                                                                      ↳ Instantiation
                                                                                        ↳ QDP
                                                                                          ↳ Instantiation
                                                                                            ↳ QDP
                                                                                              ↳ Instantiation
                                                                                                ↳ QDP
                                                                                                  ↳ Instantiation
                                                                                                    ↳ QDP
                                                                                                      ↳ Instantiation
QDP
                                                                                                          ↳ NonTerminationProof
              ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

U121(tt, n__zeros) → LENGTH(cons(0, n__zeros))
U121(tt, cons(0, n__zeros)) → LENGTH(cons(0, n__zeros))
U111(tt, n__zeros) → U121(tt, cons(0, n__zeros))
U111(tt, cons(0, n__zeros)) → U121(tt, cons(0, n__zeros))
LENGTH(cons(0, n__zeros)) → U111(tt, n__zeros)
U111(tt, n__zeros) → U121(tt, n__zeros)
LENGTH(cons(0, n__zeros)) → U111(tt, cons(0, n__zeros))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by narrowing to the left:

The TRS P consists of the following rules:

U121(tt, n__zeros) → LENGTH(cons(0, n__zeros))
U121(tt, cons(0, n__zeros)) → LENGTH(cons(0, n__zeros))
U111(tt, n__zeros) → U121(tt, cons(0, n__zeros))
U111(tt, cons(0, n__zeros)) → U121(tt, cons(0, n__zeros))
LENGTH(cons(0, n__zeros)) → U111(tt, n__zeros)
U111(tt, n__zeros) → U121(tt, n__zeros)
LENGTH(cons(0, n__zeros)) → U111(tt, cons(0, n__zeros))

The TRS R consists of the following rules:none


s = LENGTH(cons(0, n__zeros)) evaluates to t =LENGTH(cons(0, n__zeros))

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:




Rewriting sequence

LENGTH(cons(0, n__zeros))U111(tt, n__zeros)
with rule LENGTH(cons(0, n__zeros)) → U111(tt, n__zeros) at position [] and matcher [ ]

U111(tt, n__zeros)U121(tt, n__zeros)
with rule U111(tt, n__zeros) → U121(tt, n__zeros) at position [] and matcher [ ]

U121(tt, n__zeros)LENGTH(cons(0, n__zeros))
with rule U121(tt, n__zeros) → LENGTH(cons(0, n__zeros))

Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence


All these steps are and every following step will be a correct step w.r.t to Q.




As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ UsableRulesProof
              ↳ UsableRulesProof
QDP
                  ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

U121(tt, L) → LENGTH(activate(L))
U111(tt, L) → U121(tt, activate(L))
LENGTH(cons(N, L)) → U111(tt, activate(L))

The TRS R consists of the following rules:

activate(n__zeros) → zeros
activate(X) → X
zeroscons(0, n__zeros)
zerosn__zeros

The set Q consists of the following terms:

activate(x0)
length(cons(x0, x1))
zeros
length(nil)
U12(tt, x0)
U11(tt, x0)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

length(cons(x0, x1))
length(nil)
U12(tt, x0)
U11(tt, x0)



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ UsableRulesProof
              ↳ UsableRulesProof
                ↳ QDP
                  ↳ QReductionProof
QDP

Q DP problem:
The TRS P consists of the following rules:

U121(tt, L) → LENGTH(activate(L))
U111(tt, L) → U121(tt, activate(L))
LENGTH(cons(N, L)) → U111(tt, activate(L))

The TRS R consists of the following rules:

activate(n__zeros) → zeros
activate(X) → X
zeroscons(0, n__zeros)
zerosn__zeros

The set Q consists of the following terms:

activate(x0)
zeros

We have to consider all minimal (P,Q,R)-chains.