Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
active(f(a, b, X)) → mark(f(X, X, X))
active(c) → mark(a)
active(c) → mark(b)
mark(f(X1, X2, X3)) → active(f(X1, X2, mark(X3)))
mark(a) → active(a)
mark(b) → active(b)
mark(c) → active(c)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)
The set Q consists of the following terms:
f(active(x0), x1, x2)
f(x0, x1, mark(x2))
mark(a)
f(x0, active(x1), x2)
active(c)
f(x0, x1, active(x2))
f(x0, mark(x1), x2)
mark(c)
mark(f(x0, x1, x2))
active(f(a, b, x0))
f(mark(x0), x1, x2)
mark(b)
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
active(f(a, b, X)) → mark(f(X, X, X))
active(c) → mark(a)
active(c) → mark(b)
mark(f(X1, X2, X3)) → active(f(X1, X2, mark(X3)))
mark(a) → active(a)
mark(b) → active(b)
mark(c) → active(c)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)
The set Q consists of the following terms:
f(active(x0), x1, x2)
f(x0, x1, mark(x2))
mark(a)
f(x0, active(x1), x2)
active(c)
f(x0, x1, active(x2))
f(x0, mark(x1), x2)
mark(c)
mark(f(x0, x1, x2))
active(f(a, b, x0))
f(mark(x0), x1, x2)
mark(b)
Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(c) → MARK(a)
MARK(f(X1, X2, X3)) → MARK(X3)
ACTIVE(f(a, b, X)) → F(X, X, X)
ACTIVE(f(a, b, X)) → MARK(f(X, X, X))
F(X1, mark(X2), X3) → F(X1, X2, X3)
MARK(b) → ACTIVE(b)
F(X1, X2, mark(X3)) → F(X1, X2, X3)
F(active(X1), X2, X3) → F(X1, X2, X3)
MARK(a) → ACTIVE(a)
F(X1, active(X2), X3) → F(X1, X2, X3)
MARK(f(X1, X2, X3)) → ACTIVE(f(X1, X2, mark(X3)))
MARK(c) → ACTIVE(c)
ACTIVE(c) → MARK(b)
MARK(f(X1, X2, X3)) → F(X1, X2, mark(X3))
F(X1, X2, active(X3)) → F(X1, X2, X3)
F(mark(X1), X2, X3) → F(X1, X2, X3)
The TRS R consists of the following rules:
active(f(a, b, X)) → mark(f(X, X, X))
active(c) → mark(a)
active(c) → mark(b)
mark(f(X1, X2, X3)) → active(f(X1, X2, mark(X3)))
mark(a) → active(a)
mark(b) → active(b)
mark(c) → active(c)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)
The set Q consists of the following terms:
f(active(x0), x1, x2)
f(x0, x1, mark(x2))
mark(a)
f(x0, active(x1), x2)
active(c)
f(x0, x1, active(x2))
f(x0, mark(x1), x2)
mark(c)
mark(f(x0, x1, x2))
active(f(a, b, x0))
f(mark(x0), x1, x2)
mark(b)
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(c) → MARK(a)
MARK(f(X1, X2, X3)) → MARK(X3)
ACTIVE(f(a, b, X)) → F(X, X, X)
ACTIVE(f(a, b, X)) → MARK(f(X, X, X))
F(X1, mark(X2), X3) → F(X1, X2, X3)
MARK(b) → ACTIVE(b)
F(X1, X2, mark(X3)) → F(X1, X2, X3)
F(active(X1), X2, X3) → F(X1, X2, X3)
MARK(a) → ACTIVE(a)
F(X1, active(X2), X3) → F(X1, X2, X3)
MARK(f(X1, X2, X3)) → ACTIVE(f(X1, X2, mark(X3)))
MARK(c) → ACTIVE(c)
ACTIVE(c) → MARK(b)
MARK(f(X1, X2, X3)) → F(X1, X2, mark(X3))
F(X1, X2, active(X3)) → F(X1, X2, X3)
F(mark(X1), X2, X3) → F(X1, X2, X3)
The TRS R consists of the following rules:
active(f(a, b, X)) → mark(f(X, X, X))
active(c) → mark(a)
active(c) → mark(b)
mark(f(X1, X2, X3)) → active(f(X1, X2, mark(X3)))
mark(a) → active(a)
mark(b) → active(b)
mark(c) → active(c)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)
The set Q consists of the following terms:
f(active(x0), x1, x2)
f(x0, x1, mark(x2))
mark(a)
f(x0, active(x1), x2)
active(c)
f(x0, x1, active(x2))
f(x0, mark(x1), x2)
mark(c)
mark(f(x0, x1, x2))
active(f(a, b, x0))
f(mark(x0), x1, x2)
mark(b)
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 7 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
F(X1, active(X2), X3) → F(X1, X2, X3)
F(X1, X2, active(X3)) → F(X1, X2, X3)
F(mark(X1), X2, X3) → F(X1, X2, X3)
F(X1, mark(X2), X3) → F(X1, X2, X3)
F(X1, X2, mark(X3)) → F(X1, X2, X3)
F(active(X1), X2, X3) → F(X1, X2, X3)
The TRS R consists of the following rules:
active(f(a, b, X)) → mark(f(X, X, X))
active(c) → mark(a)
active(c) → mark(b)
mark(f(X1, X2, X3)) → active(f(X1, X2, mark(X3)))
mark(a) → active(a)
mark(b) → active(b)
mark(c) → active(c)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)
The set Q consists of the following terms:
f(active(x0), x1, x2)
f(x0, x1, mark(x2))
mark(a)
f(x0, active(x1), x2)
active(c)
f(x0, x1, active(x2))
f(x0, mark(x1), x2)
mark(c)
mark(f(x0, x1, x2))
active(f(a, b, x0))
f(mark(x0), x1, x2)
mark(b)
We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
F(X1, active(X2), X3) → F(X1, X2, X3)
F(X1, X2, active(X3)) → F(X1, X2, X3)
F(mark(X1), X2, X3) → F(X1, X2, X3)
F(X1, mark(X2), X3) → F(X1, X2, X3)
F(X1, X2, mark(X3)) → F(X1, X2, X3)
F(active(X1), X2, X3) → F(X1, X2, X3)
R is empty.
The set Q consists of the following terms:
f(active(x0), x1, x2)
f(x0, x1, mark(x2))
mark(a)
f(x0, active(x1), x2)
active(c)
f(x0, x1, active(x2))
f(x0, mark(x1), x2)
mark(c)
mark(f(x0, x1, x2))
active(f(a, b, x0))
f(mark(x0), x1, x2)
mark(b)
We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.
f(active(x0), x1, x2)
f(x0, x1, mark(x2))
f(x0, active(x1), x2)
f(x0, x1, active(x2))
f(x0, mark(x1), x2)
f(mark(x0), x1, x2)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
F(X1, active(X2), X3) → F(X1, X2, X3)
F(mark(X1), X2, X3) → F(X1, X2, X3)
F(X1, X2, active(X3)) → F(X1, X2, X3)
F(X1, mark(X2), X3) → F(X1, X2, X3)
F(X1, X2, mark(X3)) → F(X1, X2, X3)
F(active(X1), X2, X3) → F(X1, X2, X3)
R is empty.
The set Q consists of the following terms:
mark(a)
active(c)
mark(c)
mark(f(x0, x1, x2))
active(f(a, b, x0))
mark(b)
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- F(X1, active(X2), X3) → F(X1, X2, X3)
The graph contains the following edges 1 >= 1, 2 > 2, 3 >= 3
- F(X1, X2, active(X3)) → F(X1, X2, X3)
The graph contains the following edges 1 >= 1, 2 >= 2, 3 > 3
- F(mark(X1), X2, X3) → F(X1, X2, X3)
The graph contains the following edges 1 > 1, 2 >= 2, 3 >= 3
- F(X1, mark(X2), X3) → F(X1, X2, X3)
The graph contains the following edges 1 >= 1, 2 > 2, 3 >= 3
- F(X1, X2, mark(X3)) → F(X1, X2, X3)
The graph contains the following edges 1 >= 1, 2 >= 2, 3 > 3
- F(active(X1), X2, X3) → F(X1, X2, X3)
The graph contains the following edges 1 > 1, 2 >= 2, 3 >= 3
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
MARK(f(X1, X2, X3)) → MARK(X3)
MARK(f(X1, X2, X3)) → ACTIVE(f(X1, X2, mark(X3)))
ACTIVE(f(a, b, X)) → MARK(f(X, X, X))
The TRS R consists of the following rules:
active(f(a, b, X)) → mark(f(X, X, X))
active(c) → mark(a)
active(c) → mark(b)
mark(f(X1, X2, X3)) → active(f(X1, X2, mark(X3)))
mark(a) → active(a)
mark(b) → active(b)
mark(c) → active(c)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)
The set Q consists of the following terms:
f(active(x0), x1, x2)
f(x0, x1, mark(x2))
mark(a)
f(x0, active(x1), x2)
active(c)
f(x0, x1, active(x2))
f(x0, mark(x1), x2)
mark(c)
mark(f(x0, x1, x2))
active(f(a, b, x0))
f(mark(x0), x1, x2)
mark(b)
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
MARK(f(X1, X2, X3)) → MARK(X3)
The remaining pairs can at least be oriented weakly.
MARK(f(X1, X2, X3)) → ACTIVE(f(X1, X2, mark(X3)))
ACTIVE(f(a, b, X)) → MARK(f(X, X, X))
Used ordering: Polynomial interpretation with max and min functions [25]:
POL(ACTIVE(x1)) = x1
POL(MARK(x1)) = x1
POL(a) = 0
POL(active(x1)) = x1
POL(b) = 0
POL(c) = 0
POL(f(x1, x2, x3)) = 1 + x3
POL(mark(x1)) = x1
The following usable rules [17] were oriented:
f(X1, X2, active(X3)) → f(X1, X2, X3)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
active(c) → mark(b)
active(c) → mark(a)
mark(a) → active(a)
mark(f(X1, X2, X3)) → active(f(X1, X2, mark(X3)))
active(f(a, b, X)) → mark(f(X, X, X))
mark(c) → active(c)
mark(b) → active(b)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Instantiation
Q DP problem:
The TRS P consists of the following rules:
MARK(f(X1, X2, X3)) → ACTIVE(f(X1, X2, mark(X3)))
ACTIVE(f(a, b, X)) → MARK(f(X, X, X))
The TRS R consists of the following rules:
active(f(a, b, X)) → mark(f(X, X, X))
active(c) → mark(a)
active(c) → mark(b)
mark(f(X1, X2, X3)) → active(f(X1, X2, mark(X3)))
mark(a) → active(a)
mark(b) → active(b)
mark(c) → active(c)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)
The set Q consists of the following terms:
f(active(x0), x1, x2)
f(x0, x1, mark(x2))
mark(a)
f(x0, active(x1), x2)
active(c)
f(x0, x1, active(x2))
f(x0, mark(x1), x2)
mark(c)
mark(f(x0, x1, x2))
active(f(a, b, x0))
f(mark(x0), x1, x2)
mark(b)
We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule MARK(f(X1, X2, X3)) → ACTIVE(f(X1, X2, mark(X3))) we obtained the following new rules:
MARK(f(z0, z0, z0)) → ACTIVE(f(z0, z0, mark(z0)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Instantiation
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
MARK(f(z0, z0, z0)) → ACTIVE(f(z0, z0, mark(z0)))
ACTIVE(f(a, b, X)) → MARK(f(X, X, X))
The TRS R consists of the following rules:
active(f(a, b, X)) → mark(f(X, X, X))
active(c) → mark(a)
active(c) → mark(b)
mark(f(X1, X2, X3)) → active(f(X1, X2, mark(X3)))
mark(a) → active(a)
mark(b) → active(b)
mark(c) → active(c)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)
The set Q consists of the following terms:
f(active(x0), x1, x2)
f(x0, x1, mark(x2))
mark(a)
f(x0, active(x1), x2)
active(c)
f(x0, x1, active(x2))
f(x0, mark(x1), x2)
mark(c)
mark(f(x0, x1, x2))
active(f(a, b, x0))
f(mark(x0), x1, x2)
mark(b)
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule MARK(f(z0, z0, z0)) → ACTIVE(f(z0, z0, mark(z0))) at position [0] we obtained the following new rules:
MARK(f(f(x0, x1, x2), f(x0, x1, x2), f(x0, x1, x2))) → ACTIVE(f(f(x0, x1, x2), f(x0, x1, x2), active(f(x0, x1, mark(x2)))))
MARK(f(c, c, c)) → ACTIVE(f(c, c, active(c)))
MARK(f(b, b, b)) → ACTIVE(f(b, b, active(b)))
MARK(f(x0, x0, x0)) → ACTIVE(f(x0, x0, x0))
MARK(f(a, a, a)) → ACTIVE(f(a, a, active(a)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Instantiation
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
MARK(f(c, c, c)) → ACTIVE(f(c, c, active(c)))
MARK(f(x0, x0, x0)) → ACTIVE(f(x0, x0, x0))
ACTIVE(f(a, b, X)) → MARK(f(X, X, X))
MARK(f(f(x0, x1, x2), f(x0, x1, x2), f(x0, x1, x2))) → ACTIVE(f(f(x0, x1, x2), f(x0, x1, x2), active(f(x0, x1, mark(x2)))))
MARK(f(b, b, b)) → ACTIVE(f(b, b, active(b)))
MARK(f(a, a, a)) → ACTIVE(f(a, a, active(a)))
The TRS R consists of the following rules:
active(f(a, b, X)) → mark(f(X, X, X))
active(c) → mark(a)
active(c) → mark(b)
mark(f(X1, X2, X3)) → active(f(X1, X2, mark(X3)))
mark(a) → active(a)
mark(b) → active(b)
mark(c) → active(c)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)
The set Q consists of the following terms:
f(active(x0), x1, x2)
f(x0, x1, mark(x2))
mark(a)
f(x0, active(x1), x2)
active(c)
f(x0, x1, active(x2))
f(x0, mark(x1), x2)
mark(c)
mark(f(x0, x1, x2))
active(f(a, b, x0))
f(mark(x0), x1, x2)
mark(b)
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Instantiation
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
MARK(f(c, c, c)) → ACTIVE(f(c, c, active(c)))
ACTIVE(f(a, b, X)) → MARK(f(X, X, X))
MARK(f(f(x0, x1, x2), f(x0, x1, x2), f(x0, x1, x2))) → ACTIVE(f(f(x0, x1, x2), f(x0, x1, x2), active(f(x0, x1, mark(x2)))))
MARK(f(b, b, b)) → ACTIVE(f(b, b, active(b)))
MARK(f(a, a, a)) → ACTIVE(f(a, a, active(a)))
The TRS R consists of the following rules:
active(f(a, b, X)) → mark(f(X, X, X))
active(c) → mark(a)
active(c) → mark(b)
mark(f(X1, X2, X3)) → active(f(X1, X2, mark(X3)))
mark(a) → active(a)
mark(b) → active(b)
mark(c) → active(c)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)
The set Q consists of the following terms:
f(active(x0), x1, x2)
f(x0, x1, mark(x2))
mark(a)
f(x0, active(x1), x2)
active(c)
f(x0, x1, active(x2))
f(x0, mark(x1), x2)
mark(c)
mark(f(x0, x1, x2))
active(f(a, b, x0))
f(mark(x0), x1, x2)
mark(b)
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule MARK(f(b, b, b)) → ACTIVE(f(b, b, active(b))) at position [0] we obtained the following new rules:
MARK(f(b, b, b)) → ACTIVE(f(b, b, b))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Instantiation
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
MARK(f(c, c, c)) → ACTIVE(f(c, c, active(c)))
ACTIVE(f(a, b, X)) → MARK(f(X, X, X))
MARK(f(f(x0, x1, x2), f(x0, x1, x2), f(x0, x1, x2))) → ACTIVE(f(f(x0, x1, x2), f(x0, x1, x2), active(f(x0, x1, mark(x2)))))
MARK(f(b, b, b)) → ACTIVE(f(b, b, b))
MARK(f(a, a, a)) → ACTIVE(f(a, a, active(a)))
The TRS R consists of the following rules:
active(f(a, b, X)) → mark(f(X, X, X))
active(c) → mark(a)
active(c) → mark(b)
mark(f(X1, X2, X3)) → active(f(X1, X2, mark(X3)))
mark(a) → active(a)
mark(b) → active(b)
mark(c) → active(c)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)
The set Q consists of the following terms:
f(active(x0), x1, x2)
f(x0, x1, mark(x2))
mark(a)
f(x0, active(x1), x2)
active(c)
f(x0, x1, active(x2))
f(x0, mark(x1), x2)
mark(c)
mark(f(x0, x1, x2))
active(f(a, b, x0))
f(mark(x0), x1, x2)
mark(b)
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Instantiation
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
MARK(f(c, c, c)) → ACTIVE(f(c, c, active(c)))
ACTIVE(f(a, b, X)) → MARK(f(X, X, X))
MARK(f(f(x0, x1, x2), f(x0, x1, x2), f(x0, x1, x2))) → ACTIVE(f(f(x0, x1, x2), f(x0, x1, x2), active(f(x0, x1, mark(x2)))))
MARK(f(a, a, a)) → ACTIVE(f(a, a, active(a)))
The TRS R consists of the following rules:
active(f(a, b, X)) → mark(f(X, X, X))
active(c) → mark(a)
active(c) → mark(b)
mark(f(X1, X2, X3)) → active(f(X1, X2, mark(X3)))
mark(a) → active(a)
mark(b) → active(b)
mark(c) → active(c)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)
The set Q consists of the following terms:
f(active(x0), x1, x2)
f(x0, x1, mark(x2))
mark(a)
f(x0, active(x1), x2)
active(c)
f(x0, x1, active(x2))
f(x0, mark(x1), x2)
mark(c)
mark(f(x0, x1, x2))
active(f(a, b, x0))
f(mark(x0), x1, x2)
mark(b)
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule MARK(f(a, a, a)) → ACTIVE(f(a, a, active(a))) at position [0] we obtained the following new rules:
MARK(f(a, a, a)) → ACTIVE(f(a, a, a))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Instantiation
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
MARK(f(c, c, c)) → ACTIVE(f(c, c, active(c)))
ACTIVE(f(a, b, X)) → MARK(f(X, X, X))
MARK(f(f(x0, x1, x2), f(x0, x1, x2), f(x0, x1, x2))) → ACTIVE(f(f(x0, x1, x2), f(x0, x1, x2), active(f(x0, x1, mark(x2)))))
MARK(f(a, a, a)) → ACTIVE(f(a, a, a))
The TRS R consists of the following rules:
active(f(a, b, X)) → mark(f(X, X, X))
active(c) → mark(a)
active(c) → mark(b)
mark(f(X1, X2, X3)) → active(f(X1, X2, mark(X3)))
mark(a) → active(a)
mark(b) → active(b)
mark(c) → active(c)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)
The set Q consists of the following terms:
f(active(x0), x1, x2)
f(x0, x1, mark(x2))
mark(a)
f(x0, active(x1), x2)
active(c)
f(x0, x1, active(x2))
f(x0, mark(x1), x2)
mark(c)
mark(f(x0, x1, x2))
active(f(a, b, x0))
f(mark(x0), x1, x2)
mark(b)
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Instantiation
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ ForwardInstantiation
Q DP problem:
The TRS P consists of the following rules:
MARK(f(c, c, c)) → ACTIVE(f(c, c, active(c)))
ACTIVE(f(a, b, X)) → MARK(f(X, X, X))
MARK(f(f(x0, x1, x2), f(x0, x1, x2), f(x0, x1, x2))) → ACTIVE(f(f(x0, x1, x2), f(x0, x1, x2), active(f(x0, x1, mark(x2)))))
The TRS R consists of the following rules:
active(f(a, b, X)) → mark(f(X, X, X))
active(c) → mark(a)
active(c) → mark(b)
mark(f(X1, X2, X3)) → active(f(X1, X2, mark(X3)))
mark(a) → active(a)
mark(b) → active(b)
mark(c) → active(c)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)
The set Q consists of the following terms:
f(active(x0), x1, x2)
f(x0, x1, mark(x2))
mark(a)
f(x0, active(x1), x2)
active(c)
f(x0, x1, active(x2))
f(x0, mark(x1), x2)
mark(c)
mark(f(x0, x1, x2))
active(f(a, b, x0))
f(mark(x0), x1, x2)
mark(b)
We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule ACTIVE(f(a, b, X)) → MARK(f(X, X, X)) we obtained the following new rules:
ACTIVE(f(a, b, c)) → MARK(f(c, c, c))
ACTIVE(f(a, b, f(y_0, y_1, y_2))) → MARK(f(f(y_0, y_1, y_2), f(y_0, y_1, y_2), f(y_0, y_1, y_2)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Instantiation
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ ForwardInstantiation
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
MARK(f(c, c, c)) → ACTIVE(f(c, c, active(c)))
MARK(f(f(x0, x1, x2), f(x0, x1, x2), f(x0, x1, x2))) → ACTIVE(f(f(x0, x1, x2), f(x0, x1, x2), active(f(x0, x1, mark(x2)))))
ACTIVE(f(a, b, c)) → MARK(f(c, c, c))
ACTIVE(f(a, b, f(y_0, y_1, y_2))) → MARK(f(f(y_0, y_1, y_2), f(y_0, y_1, y_2), f(y_0, y_1, y_2)))
The TRS R consists of the following rules:
active(f(a, b, X)) → mark(f(X, X, X))
active(c) → mark(a)
active(c) → mark(b)
mark(f(X1, X2, X3)) → active(f(X1, X2, mark(X3)))
mark(a) → active(a)
mark(b) → active(b)
mark(c) → active(c)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)
The set Q consists of the following terms:
f(active(x0), x1, x2)
f(x0, x1, mark(x2))
mark(a)
f(x0, active(x1), x2)
active(c)
f(x0, x1, active(x2))
f(x0, mark(x1), x2)
mark(c)
mark(f(x0, x1, x2))
active(f(a, b, x0))
f(mark(x0), x1, x2)
mark(b)
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
ACTIVE(f(a, b, c)) → MARK(f(c, c, c))
ACTIVE(f(a, b, f(y_0, y_1, y_2))) → MARK(f(f(y_0, y_1, y_2), f(y_0, y_1, y_2), f(y_0, y_1, y_2)))
The remaining pairs can at least be oriented weakly.
MARK(f(c, c, c)) → ACTIVE(f(c, c, active(c)))
MARK(f(f(x0, x1, x2), f(x0, x1, x2), f(x0, x1, x2))) → ACTIVE(f(f(x0, x1, x2), f(x0, x1, x2), active(f(x0, x1, mark(x2)))))
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( f(x1, ..., x3) ) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
Tuple symbols:
Matrix type:
We used a basic matrix type which is not further parametrizeable.
As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:
f(X1, X2, active(X3)) → f(X1, X2, X3)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
mark(c) → active(c)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Instantiation
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ ForwardInstantiation
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
MARK(f(c, c, c)) → ACTIVE(f(c, c, active(c)))
MARK(f(f(x0, x1, x2), f(x0, x1, x2), f(x0, x1, x2))) → ACTIVE(f(f(x0, x1, x2), f(x0, x1, x2), active(f(x0, x1, mark(x2)))))
The TRS R consists of the following rules:
active(f(a, b, X)) → mark(f(X, X, X))
active(c) → mark(a)
active(c) → mark(b)
mark(f(X1, X2, X3)) → active(f(X1, X2, mark(X3)))
mark(a) → active(a)
mark(b) → active(b)
mark(c) → active(c)
f(mark(X1), X2, X3) → f(X1, X2, X3)
f(X1, mark(X2), X3) → f(X1, X2, X3)
f(X1, X2, mark(X3)) → f(X1, X2, X3)
f(active(X1), X2, X3) → f(X1, X2, X3)
f(X1, active(X2), X3) → f(X1, X2, X3)
f(X1, X2, active(X3)) → f(X1, X2, X3)
The set Q consists of the following terms:
f(active(x0), x1, x2)
f(x0, x1, mark(x2))
mark(a)
f(x0, active(x1), x2)
active(c)
f(x0, x1, active(x2))
f(x0, mark(x1), x2)
mark(c)
mark(f(x0, x1, x2))
active(f(a, b, x0))
f(mark(x0), x1, x2)
mark(b)
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 0 SCCs with 2 less nodes.