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Abstract

When developing programs it is of great practical interest to verify that the resulting

programs have the desired properties. One of the most fundamental properties of pro-

grams is termination, i.e., that the program will not run forever, but compute some result

in finitely many computation steps. The corresponding decision problem in computer

science is the halting problem, i.e., given a description of a program and an input, decide

whether the program terminates after finitely many steps or runs forever on that input.

Unfortunately, Turing showed this problem to be undecidable in general. Nevertheless,

a huge number of analysis techniques which can automatically prove termination for many

pairs of programs and inputs have been developed during the last decades. Nowadays,

there are fully-automated tools that try to prove termination of a given program w.r.t. a

given class of inputs.

However, most approaches for proving termination of programs are restricted to ar-

tificial programming languages having a comparatively simple mathematical definition

and cannot handle essential features of programming languages used for real applications

where exact mathematical definitions are very complex. This is especially true for logic

programming, where most techniques for termination analysis are restricted to definite

logic programs in contrast to real applications mostly written in the programming lan-

guage Prolog, the main language for expert systems and applications from the artificial

intelligence domain.

In this thesis, we extend the only existing approach known to be capable of handling

logic programs with cuts to cover most of the features of real Prolog applications.

The contributions developed in this thesis are implemented in our fully automated ter-

mination prover AProVE. AProVE has reached the highest score for logic programming

at the annual international Termination Competition, where the leading automated tools

try to analyze termination of programs from different areas of computer science, in all

years since 2004. In 2009, AProVE also was the only tool capable of successfully ana-

lyzing logic programs with cuts. The significance of our results is demonstrated by the

empirical improvement AProVE shows on real Prolog applications used in the Termination

Competition.
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1 Introduction

Termination analysis of programs is a widely studied field. It deals with the most funda-

mental decision problem in computer science: the halting problem. Given a program and

an input, we are interested in the question whether the program terminates after finitely

many steps or whether it runs forever on that input. Unfortunately, [Tur36] showed this

problem to be undecidable in general. Nevertheless, a huge number of analysis techniques

has been developed to decide this problem for many pairs of programs and inputs. So

even if we cannot decide the problem for all such pairs, it is of great practical interest

to find fully automatable methods which can prove termination of practically relevant

classes of programs and inputs.

Automatic termination analysis is an essential part of various verification techniques.

As an example, consider theorem proving [BM79] which requires frequent termination

proofs to operate correctly. The same is true for Knuth-Bendix completion [KB70] (see

[MV06, WSW06, BKN07, SKW+09] for recent work on applying termination analysis

in these areas). Another area where termination analysis is used is process verification.

The liveness problems encountered there can often be reduced to termination problems

[GZ03]. Furthermore, Microsoft uses termination analysis to statically verify their device

drivers [CPR05]. Recently, techniques from termination analysis have even been adapted

to solve synthesis problems in the area of behavior composition [SP09].

While termination analysis is widely used for artificial programming languages which

correspond to a comparatively simple mathematical definition (e.g., term rewriting sys-

tems, lambda calculus, definite logic programs) it is also very important for programming

languages used for real applications. Prolog is such a programming language especially

used for expert systems and applications in the area of artificial intelligence. Prolog

is based on logic programming and definite logic programs can be seen as a subset of

all Prolog programs. Unfortunately, logic programming adheres to a lack of direction

in the computation and this virtually guarantees that any non-trivial program termi-

nates only for certain classes of inputs. So termination analysis is of particular interest

here. Thus, termination of logic programs is widely studied (see e.g., [DD94] for an

overview and [BCG+07, CLS05, CLSS06, DS02, LMS03, MR03, MS07, ND05, ND07,

NGSD08, SD05, Sma04, Sch08, SGN09] for more recent work) and significant advances

have been made during the last decades. Nowadays, there are fully-automated tools

[LSS97, MB05, TGC02, SD03, GST06, ND07, OCM00] that try to prove termination of
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a given logic program w.r.t. a given class of inputs. Nevertheless, there still remain many

features of Prolog which cannot be successfully analyzed by any of these tools.

The state of the art in automated termination proving is assessed through the annual

international Termination Competition [MZ07], where the leading automated tools try to

analyze termination of programs from different areas of computer science gathered in the

termination problem database (TPDB) [TPD09].

Among these tools, our fully automated termination prover AProVE [GST06] has reached

the highest score for logic programming in the years 2004, 2005, 2006, 2007, 2008 and

2009.

In addition to that AProVE was the only tool capable of analyzing logic programs with

cuts in 2009. The cut operator influences the control flow in Prolog and does not belong

to the standard definition of definite logic programs. So this was a first step into the

direction of analyzing real Prolog applications. In this thesis we will extend the methods

used for termination analysis of logic programs with cuts to cover a large set of real Prolog

applications.

From definite logic programs to Prolog

The fact that termination analysis of logic programs is widely studied is mostly due to the

importance of termination analysis when one is developing and using Prolog programs.

Still, most techniques for termination analysis are limited to definite logic programs.

There are several major differences between this notion and Prolog programs:

(i) In definite logic programs, the only method of computation is left-to-right, depth-

first search (SLD resolution). In practice, virtually all Prolog programs make use of

additional extra-logical constructs to cut the search space (! operator) or implement

some kind of negation (\+ operator). Currently, the only approach for termination

analysis of logic programs with cuts is given in [Sch08].

(ii) When speaking of termination, one might be interested in either universal ter-

mination (finiteness of the SLD tree) or existential termination (failure or first

answer after a finite number of derivation steps). With very few exceptions (cf.

[Mar96, Sch08]), only universal termination is analyzed.

(iii) In definite logic programs there is a clear distinction between predicate symbols and

function symbols and, consequently, between atoms and terms. In Prolog there is no

such distinction and when one is using so-called meta-programming, “atoms” may

well be arguments of other atoms or terms. Using meta-programming and cuts,

negation-as-failure [Cla78] can, e.g., be expressed by the two clauses \+(X) ←
call(X), !, fail and \+(X). For an atomic query Q, \+(Q) can be proved if, and only

if, Q fails.
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(iv) SLD resolution uses unification with occurs-check. For efficiency, most Prolog imple-

mentations do not make use of the occurs-check. Except for the transformational

approaches from [Sch08, SKW+09], all methods for termination analysis of logic

programs assume unification with occurs-check.

(v) While there are no pre-defined predicates in definite logic programs, Prolog knows

a huge number of so-called built-in predicates, whose definitions are not part of the

program to analyze. Instead, their definitions are part of the interpreter or compiler

and they may even have side effects which do not correspond to the mathematical

background of definite logic programs at all. While different Prolog implementations

may know different built-in predicates, the ISO standard for Prolog [DEC96] defines

a list of built-in predicates which have to be implemented by all standard conforming

implementations. Up to now, there is no approach capable of successfully analyzing

termination of Prolog programs using built-in predicates.

The only existing approach known to handle (i), (ii) and, to some extent, (iii) together

is the non-termination-preserving pre-processing step for logic programs with cuts based

on symbolic evaluation given in [Sch08]. This approach constructs cut-free definite logic

programs for a given logic program with cuts where termination of the cut-free program

implies termination of the original one. In this thesis we extend this approach to a

transformation from Prolog programs to dependency triple problems [SGN09] to obtain

a more precise method which can fully handle (iii) and (iv), too. We will also handle 26

commonly used built-in predicates defined in [DEC96] and, thus, even handle (v) to some

extent. Hence, we will be able to cover a large set of real Prolog applications.

Contributions of this thesis

While this thesis is based on the pre-processing step from [Sch08], it contributes various

extensions to this method:

C1: We extend the pre-processing to handle the essential built-in predicate call/1 and,

thus, full meta-programming as described in [DEC96].

C2: We additionally handle errors due to undefined predicate or uninstantiated variable

calls during the execution of a Prolog program.

C3: We extend the definitions and proofs from [Sch08] to rational terms as opposed to

finite terms. Thus, we can handle unification without occurs-check.

C4: The symbolic evaluation from [Sch08] uses an operation which is not fully automat-

able in its current form. We give a fully automatable alternative operation which can

be used for the same purpose instead.
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C5: The approach from [Sch08] uses a special representation of the evaluation process

of Prolog for a given query and abstracts from this representation by simulating the

evaluation of classes of queries at once. We improve the precision and speed of the

operations used for this simulation.

C6: We handle the effects of 24 commonly used built-in predicates other than call/1 and

!/0 as defined in [DEC96].

C7: We prove that our representation of the evaluation process of Prolog corresponds to

the operational semantics of Prolog as defined in [DEC96].

C8: The symbolic evaluation from [Sch08] is non-deterministic. We present a heuristic to

make this approach deterministic and, thus, fully automatable. We also show that

the presented heuristic is successful on a large set of example programs.

C9: Instead of synthesizing cut-free logic programs we turn the pre-processing step into

a transformation from Prolog programs to dependency triple problems. We exploit

special properties of dependency triple problems to obtain a more powerful method

for termination analysis of Prolog programs.

C10: The theoretical contributions of this thesis except for the handling of rational terms

have been implemented in the fully automated termination prover AProVE and tested

on a set of about 400 example programs. Some of these contributions were already

used in the international Termination Competition 2009.

C11: The new possibilities and problems with our method gave rise to a great number

of new examples which have been submitted to the TPDB and where already 76

examples were accepted and used for the international Termination Competition

2009.

Structure of the Thesis

In Chapter 2 we establish some basic notions about termination, terms, logic program-

ming, Prolog and dependency triples which are used throughout this thesis.

We continue in Chapter 3 by recapitulating the basics for the pre-processing step from

[Sch08] and extending it to also handle full meta-programming (C1), errors caused by

undefined predicate or uninstantiated variable calls (C2), and unification without occurs-

check together with rational terms which may be present due to unification without occurs-

check (C3). Additionally, we present some extensions to improve the precision, speed and

automation of the pre-processing step (C4) and (C5). Thus, this chapter describes a

method for termination analysis of Prolog programs capable of handling (i) – (iv).



5

In Chapter 4 we present further extensions to the pre-processing method to additionally

handle 24 built-in predicates other than call/1 and !/0 which are commonly used in real

Prolog applications (C6). Therefore, our method can (to some extent) handle (v), too.

We also discuss the problems which need to be solved in order to handle more built-in

predicates. Moreover, we adapt the results from Chapter 3 to the extended set of handled

built-in predicates.

Furthermore, we prove in Chapter 5 that the representation of the evaluation process of

Prolog introduced in Chapter 3 and Chapter 4 corresponds to the operational semantics

for Prolog programs as defined in the ISO standard for Prolog [DEC96] (C7).

We give a heuristic for the order in which the presented operations can be applied (C8)

in Chapter 6 and prove that our approach is always terminating using this heuristic.

Afterwards, we turn the pre-processing step from logic programs with cuts to cut-free

logic programs into a transformation from Prolog programs to dependency triple problems

(C9) in Chapter 7 where termination of the resulting dependency triple problem implies

termination of the original Prolog program.

Finally, in Chapter 8 we summarize the theoretical results of this thesis and state the

empirical results evaluated with our fully-automated termination prover AProVE (C10).

Throughout the whole thesis we will illustrate our definitions with examples which

have to a great extent been submitted to the TPDB used for the annual international

Termination Competition (C11). In particular, Chapter 7 has one section dedicated to

examples only.





2 Preliminaries

In this chapter we establish the basic definitions for termination, terms, logic program-

ming, Prolog and dependency triples used throughout this thesis.

Structure of the Chapter

First, we state the standard definitions for termination and logic programming in Section

2.1. While these definitions are only rarely used explicitly in this thesis, they are the

underlying basis for the following work.

Afterwards, in Section 2.2 we describe the basic elements and notations used for Prolog

programs according to the ISO standard for Prolog [DEC96].

Finally, we give the definitions and the central theorem for the dependency triple frame-

work as given in [SGN09, Sch08] in Section 2.3.

2.1 Termination and Standard Logic Programming

First, we state the standard definitions for termination and logic programming as given

in [Sch08]. Although we will not use all of these definitions explicitly in this thesis, they

are the underlying basis for the following work.

Abstract Reductions, Termination

To model computation steps of a program, we use the concept of abstract reductions.

An abstract reduction system is a pair (A,→) where → is a binary relation over A, i.e.,

→⊆ A×A. For the sake of brevity, instead of (a, b) ∈→ we write a→ b.

Now, we model a computation by defining A to be a superset of the program states

and → to be the transition relation from a certain program state to its successor state.

For a given state a ∈ A, we say that that → is terminating w.r.t. a if and only if there

is no infinite reduction a→ a0 → a1 → . . . Furthermore, we say that → is terminating if,

and only if, it is terminating for all a ∈ A.

In the remainder of this thesis, the set of program states A and the relation → will

typically be queries and the left-to-right resolution used in logic programs.
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Terms, Atoms and Substitutions

Logic programming relies on the basic concepts of (possibly infinite) terms and substitu-

tions built over sets of function symbols and variables. We additionally need the notion

of atoms built from predicates and terms. This leads to the following formal definition of

sets of function and predicate symbols.

Definition 2.1 (Signature). A signature is a pair (Σ,∆) where Σ and ∆ are finite sets

of function respectively predicate symbols. If ∆ = ∅, we often just write Σ instead of

(Σ,∅).

Each symbol in f ∈ Σ ∪∆ has an arity n ≥ 0 and we often write f/n instead of f to

denote that f has arity n.

In the following, we always assume that Σ contains at least one constant f/0. This is

not a restriction, since enriching the signature by a fresh constant does not change the

termination behavior. This assumption is useful to ensure that we can always build finite

ground terms over a given signature.

Definition 2.2 (Terms). A term over Σ is a tree where every node is labeled with a

function symbol from Σ or with a variable from V = {X, Y, . . .}. Every inner node

with n children is labeled with some f/n ∈ Σ, while leaves are labeled with a variable

X ∈ V or with f/0 ∈ Σ. We write f(t1, . . . , tn) for the term t with root f (denoted

root(t) = f) and direct subtrees t1, . . . , tn. A term t is called finite if all paths in the

tree t are finite, otherwise it is infinite. A term is rational if it only contains finitely

many different subterms. The sets of all finite terms, all rational terms, and all (possibly

infinite) terms over Σ are denoted by T (Σ,V), T rat(Σ,V), and T ∞(Σ,V), respectively. If

~t is the sequence t1, . . . , tn, then ~t ∈ ~T ∞(Σ,V) means that ti ∈ T ∞(Σ,V) for all i. ~T (Σ,V)

is defined analogously. We write T (Σ) instead of T (Σ,∅) to denote ground terms, i.e.,

finite variable-free terms.

Finally, for any set of variables V ′ ⊆ V and any term t ∈ T ∞(Σ,V), let V ′(t) be the

set of all variables from V ′ occurring in t, i.e., V ′(X) = {X} for X ∈ V ′, V ′(X) = ∅ for

X 6∈ V ′, and V ′(f(t1, . . . , tn)) =
⋃

1≤i≤n V ′(ti).

Given the above definition, the formal definition for atoms is straightforward.

Definition 2.3 (Atom). An atom over (Σ,∆) is a tree p(t1, . . . , tn), where p/n ∈ ∆

and t1, . . . , tn ∈ T ∞(Σ,V). A∞(Σ,∆,V) is the set of atoms and Arat(Σ,∆,V) (and

A(Σ,∆,V), respectively) are the atoms p(t1, . . . , tn) where ti ∈ T rat(Σ,V) (and ti ∈
T (Σ,V), respectively) for all i. We write A(Σ,∆) instead of A(Σ,∆,∅).
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To address or replace certain subterms, we introduce the notion of a position. The

intuition is that a position describes a path from the root of the term to the subterm.

Definition 2.4 (Position). For a term t we define the set of positions Occ(t) as the least

subset of IN∗ such that ε ∈ Occ(t) and i pos ∈ Occ(t), if t = f(t1, . . . , tn), 1 ≤ i ≤ n,

and pos ∈ Occ(ti). We denote the subterm of t at position pos as t|pos where t|ε = t and

f(t1, . . . , tn)|i pos = ti|pos . For a position pos ∈ Occ(t) we denote the replacement of t|pos in

t with a term s by t[s]pos where t[s]ε = s and f(t1, . . . , tn)[s]i pos = f(t1, . . . , ti[s]pos , . . . , tn).

For two positions pos1 and pos2 we write pos1 C pos2 iff pos1 is a prefix of pos2 and

pos1 6= pos2.

A common operation on terms is the instantiation of a term by a substitution, i.e., the

replacement of all occurrences of certain variables by certain terms.

Definition 2.5 (Substitution). A substitution is a function θ : V → T ∞(Σ,V). We

define the domain of a substitution θ as Dom(θ) = {X ∈ V | θ(X) 6= X} and similarly

the range of a substitution θ as Range(θ) = {θ(X) | X ∈ Dom(θ)}.
By abuse of notation, we extend substitutions homomorphically to work on terms,

atoms, etc. by applying them to all variables occurring in these expressions. If θ is a

variable renaming (i.e., a one-to-one correspondence on V), then θ(t) is a variant of t.

Instead of θ(X) we often write Xθ. We write θσ to denote that the application of θ is

followed by the application of σ, i.e., Xθσ = σ(θ(X)). For Dom(θ) = {X1, . . . , Xn} with

Xiθ = ti, we often write [X1/t1, . . . , Xn/tn].

The set of all substitutions over Σ and V is denoted Subst(Σ,V).

Logic Programming

A clause c is a formula H ← B1, . . . , Bk. with k ≥ 0 and H,Bi ∈ A(Σ,∆,V). H is

called the head of the clause c and B1, . . . , Bk is called its body . A finite set of clauses

P = {c1 . . . cn} over (Σ,∆) is a definite logic program (LP). A clause with empty body is

a fact and a clause with empty head is a query . We usually omit “←” in queries and just

write “B1, . . . , Bk”. The empty query is denoted 2.

To define the evaluation mechanism of resolution, we need the concept of a (most

general) unifier of two atoms or terms.

Definition 2.6 (Most General Unifier). A substitution θ is a unifier of two atoms or

terms s and t if and only if sθ = tθ. We write s ∼ t if there is a unifier of s and t. We

call θ a most general unifier (mgu) of s and t if and only if θ is a unifier of s and t and

for every unifiers σ of s and t there is a substitution µ such that σ = θµ.
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We briefly present the procedural semantics of logic programs based on SLD-resolution

using the left-to-right selection rule implemented by most Prolog systems. More details

on logic programming can be found in [Apt97], for example.

Definition 2.7 (Derivation). Let Q be a query A1, . . . , Am, let c be a clause H ←
B1, . . . , Bk. Then Q′ is a resolvent of Q and c using θ (denoted Q `c,θ Q′) if θ is the mgu1

of A1 and H, and Q′ = (B1, . . . , Bk, A2, . . . , Am)θ. We call A1 the selected atom.

A derivation of a program P and Q is a possibly infinite sequence Q0, Q1, . . . of queries

with Q0 = Q where for all i, we have Qi `ci+1,θi+1
Qi+1 for some substitution θi+1 and

some fresh variant ci+1 of a clause of P. For a derivation Q0, . . . , Qn as above, we also

write Q0 `nP,θ1...θn Qn or Q0 `nP Qn, and we also write Qi `P Qi+1 for Qi `ci+1,θi+1
Qi+1.

The query Q terminates for P if all derivations of P and Q are finite, i.e., if `P is

terminating for Q.

If we restrict the substitutions used in derivations to functions from V → T (Σ,V),

i.e., to substitutions for which the range contains only finite terms, the above notion of

derivation corresponds to SLD-resolution using the left-to-right selection rule typically

found in logic programming. Without this restriction, the above notion of derivation

coincides with logic programming without an occurs-check [Col82] as implemented in

common Prolog systems such as SICStus or SWI.

Next, we need the concept of answer substitutions that define the results of the com-

putation of a logic program.

Definition 2.8 (Answer Set). The answer set Answer(P , Q) for a logic program P and

a query Q is defined as the set of all substitutions θ|V(Q) such that Q `nP,θ 2 for some

n ∈ IN.

Example 2.9. Consider the predicate minus/3 that is true when the third argument is

the first argument minus the second argument. The following two clauses constitute a

logic program P over ({0, s}, {minus}) where 0 and the successor function s are used to

represent natural numbers:

minus(X, 0, X) ← 2. (1)

minus(s(X), s(Y ), Z) ← minus(X, Y, Z). (2)

For the query Q = minus(s(0), s(0), Z) we obtain the following derivation:

minus(s(0), s(0), Z) `(2),[X/0,Y/0] minus(0, 0, Z) `(1),[Z/0] 2

The set of answer substitutions is Answer(P , Q) = {[Z/0]}.
1Note that for finite sets of rational atoms or terms, unification is decidable, the mgu is unique modulo

renaming, and it is a substitution with rational terms [Hue76].
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Finally, we introduce the call set for a logic program w.r.t. a class of queries. This

concept is especially used in the dependency triple framework.

Definition 2.10 (Call Set). Let Q be a set of queries and P be a logic program.

Then the call set for Q w.r.t. P is defined as Call(P ,Q) = {G1 | Q `nP G1, . . . , Gm and

Q ∈ Q, n ∈ IN}.

Example 2.11. Consider again the logic program P for subtraction from Example 2.9

and the query set Q = {minus(s(0), s(0), Z)}. Then we have Call(P ,Q) =

{minus(s(0), s(0), Z),minus(0, 0, Z),2}.

2.2 Prolog

Now we introduce the notions we need for termination analysis of Prolog programs as

opposed to standard logic programming. For most of our definitions we refer to the ISO

standard for Prolog [DEC96]. But since this standard leaves some features of Prolog

undefined, we consider the behavior of some common implementations of Prolog such as

SICStus or SWI in such cases.

As Prolog does not distinguish between predicate symbols and function symbols as

in definite logic programs, we will use only one signature Σ containing all “predicate”

and “function” symbols. Instead of atoms and terms we will just consider terms from

T rat(Σ,V).2

Another small change from standard logic programming to Prolog is the possibility to

use anonymous variables . Instead of giving fresh names to variables only used once, one

can use the underscore ( ) at each position where a fresh singleton variable should be

used. Thus, by replacing all underscores in a Prolog program by pairwise different fresh

variables we obtain an equivalent program. We assume that such a replacement is done

for each program and each query before we start our analysis.

According to the execution model of Prolog as defined in [DEC96], there are some

special positions inside the terms of clause bodies or goals which may be executed. When

referring to such a term, these positions are exactly those reachable from the root of the

term by a path having only function symbols from the set GoalJunctors = {,/2, ;/2,

->/2} except for the position itself. For the clause body or goal, these positions are all

such positions in the terms belonging to the clause body or goal respectively.

2In spite of the fact that Prolog also uses numbers (especially unbounded integers, cf. [DEC96]) and,
therefore, an infinite signature, we may still assume a finite signature as we do not handle the arith-
metical features of Prolog. Instead, we will treat numbers as constants. We leave the analysis of
arithmetical features of Prolog to future work.
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Definition 2.12 (Predication Position, Predication). Given a term t ∈ T rat(Σ,V) and

a position pos ∈ Occ(t), we call pos a predication position w.r.t. t iff for all positions

pos ′ ∈ Occ(t) with pos ′ C pos we have root(t|pos′) ∈ GoalJunctors. Furthermore, we

call t|pos a predication w.r.t. t. For a finite list L of terms t1, . . . , tk we also call every

predication position pos i ∈ Occ(ti) w.r.t. ti a predication position w.r.t. L and ti|posi a

predication w.r.t. L.

Example 2.13. Consider the term t = ,(p, ;(f(,(r, r)), q)). The predication positions w.r.t.

t are:

• ε • 1 • 2 • 2 | 1 • 2 | 2

The predications w.r.t. t in the same order are, therefore, given as follows.

• t • p • ;(f(,(r, r)), q) • f(,(r, r)) • q

Although we do not distinguish between predicate and function symbols, we do make

a distinction between individual cuts to make their scope explicit. However, this distinc-

tion is only necessary and correct if the cuts in question are predications w.r.t. the goal

to execute. Concerning comparison or unification of terms, we must not make such a

distinction. So we define a set of labeled cut operators Cuts =
⋃
m∈IN{!m/0} which we

will use in the following definitions of goals and their transformation used in the ISO

standard. Thus, we have to deal with terms not only containing function symbols from

Σ, but also from Cuts. However, the latter may only occur in predication positions. For

this reason we define special sets of terms we use in Prolog.

Definition 2.14 (Terms in Prolog). The terms we consider in Prolog are from the set

PrologTerms(Σ,V) = {t ∈ T rat(Σ ∪ Cuts,V) | ∀pos ∈ Occ(t) : t|pos ∈ Cuts =⇒ pos is a

predication position}. The definition of predication positions and predications is therefore

extended to work also on terms from PrologTerms(Σ,V). Analogously, we define the set

of ground terms for Prolog as GroundTerms(Σ) = {t ∈ T (Σ ∪ Cuts,∅) | ∀pos ∈ Occ(t) :

t|pos ∈ Cuts =⇒ pos is a predication position}. Finally, we also define the set of finite

Prolog terms by FinitePrologTerms(Σ,V) = {t ∈ T (Σ ∪ Cuts,V) | ∀pos ∈ Occ(t) : t|pos ∈
Cuts =⇒ pos is a predication position}.

Example 2.15. Clearly, we have T rat(Σ,V) ⊆ PrologTerms(Σ,V). Consider the terms

t1 = ,(!1, p) and t2 = ,(q(!2), p). While t1 ∈ PrologTerms(Σ,V), we have t2 /∈
PrologTerms(Σ,V) as 1 | 1 ∈ Occ(t2) is no predication position, but t2|1|1 = !2 ∈ Cuts.

The following definition describes the main structures for Prolog programs which we

will use in this thesis.
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Definition 2.16 (Prolog). A Prolog program3 is a finite list of clauses H ← B where

the head H is a finite term over Σ and V and the body B is a finite list of finite terms

over Σ and V. We call such lists goals over Σ and V. While goals in clauses of Prolog

programs may only contain finite terms, they may also contain infinite rational terms as

well as labeled cut operators in general. The set of all goals over Σ and V is Goal(Σ,V) =

PrologTerms(Σ,V)∗. We denote the empty goal by 2 and the concatenation of two terms

t and t′ by t, t′. The concatenation of any term t with 2 (i.e., t,2) is again just t.

Furthermore, for a Prolog program P = {c1, . . . , ck}, Slice(P , t) denotes the set of all

clauses for the root of t, i.e., Slice(P , p(t1, . . . , tn)) = {ci | ci = p(s1, . . . , sn) ← Bi ∈ P}
and Slice(P , X) = ∅ for X ∈ V.

The branching factor branchingFactor(f,P) of a function symbol f w.r.t. a Prolog

program P is defined as the number of defining clauses for f in P, i.e., the number of

clauses H ← B ∈ P with root(H) = f .

Whenever we refer to a clause H ← B ∈ P, we assume that the variables in H and B

are freshly renamed.

While Prolog syntactically allows for variables as predications, the ISO standard de-

mands a transformation for clauses and goals such that no variable is a predication w.r.t.

this clause or goal. Instead, these variables are replaced by applications of the built-in

predicate call/1 to the same variables. To perform this transformation (which will also

be used to set the scope for cut operators found in predication positions) we define a

transformation function Transformed .

Definition 2.17 (Transformation of Goals). The function Transformed : Goal(Σ,V) ×
IN→ Goal(Σ,V) is recursively defined by

Transformed(2,m) = 2

Transformed((x, L),m) = call(x),Transformed(L,m) for x ∈ V
Transformed((!, L),m) = !m,Transformed(L,m)

Transformed((!m′ , L),m) = !m,Transformed(L,m)

Transformed((f(t1, t2), L),m) = f(Transformed(t1,m),Transformed(t2,m)),

Transformed(L,m) for f ∈ GoalJunctors

Transformed((s, L),m) = s,Transformed(L,m) for s ∈ PrologTerms(Σ,V) \ V
with root(s) /∈ GoalJunctors ∪ {!/0} ∪ Cuts

This function will be used to transform goals occurring in clause bodies or meta-calls

during the execution of a Prolog program.

3We do not consider the real syntax used in Prolog implementations, but parse real Prolog programs
and transform them into the representation stated here. See also [DEC96] for the flattening of con-
junctions, disjunctions and if-then-else, interpretation of underscores, scopes for cut operators and
the transformation of variable calls into applications of the built-in predicate call/1.
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Example 2.18. Consider the query Q = p(X), !, X, call(!). Its transformation to the

scope m is Transformed(Q,m) = p(X), !m, call(X), call(!). Note that the second cut is not

labeled as it is no predication w.r.t. Q.

Finally, to denote the term resulting from replacing all occurrences of a function symbol

f in a term t by another function symbol g, we introduce the notation t[f/g].

Built-in Predicates

The ISO standard for Prolog defines a list of built-in predicates. According to this standard

we define the set BuiltInPredicates as the set containing exactly the following function

symbols:

• abolish/1

• arg/3

• =:=/2

• =\=/2

• >/2

• >=/2

• </2

• =</2

• asserta/1

• assertz/1

• at end of stream/0

• at end of stream/1

• atom/1

• atom chars/2

• atom codes/2

• atom concat/3

• atom length/2

• atomic/1

• bagof/3

• call/1

• catch/3

• char code/2

• char conversion/2

• clause/2

• close/1

• close/2

• compound/1

• ,/2

• copy term/2

• current char conversion/2

• current input/1

• current op/3

• current output/1

• current predicate/1

• current prolog flag/2

• !/0

• ;/2

• fail/0

• findall/3

• float/1

• flush output/0

• flush output/1

• functor/3

• get byte/1

• get byte/2

• get char/1

• get char/2

• get code/1

• get code/2

• halt/0

• halt/1

• ->/2

• integer/1

• is/2

• nl/0

• nl/1

• nonvar/1

• \+/1

• number/1

• number chars/2

• number codes/2

• once/1

• op/3

• open/3

• open/4

• peek byte/1

• peek byte/2

• peek char/1

• peek char/2

• peek code/1

• peek code/2

• put byte/1

• put byte/2

• put char/1

• put char/2

• put code/1

• put code/2

• read/1

• read/2

• read term/2

• read term/3
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• repeat/0

• retract/1

• set input/1

• set output/1

• set prolog flag/2

• set stream position/2

• setof/3

• stream property/2

• sub atom/5

• @>/2

• @>=/2

• ==/2

• @</2

• @=</2

• \==/2

• throw/1

• true/0

• \=/2

• =/2

• unify with occurs check/2

• =../2

• var/1

• write/1

• write/2

• write canonical/1

• write canonical/2

• write term/2

• write term/3

• writeq/1

• writeq/2

We will give explanations for these built-in predicates and either special inference rules

or a description of the problems we have with the respective built-in predicate for this

approach in Chapter 4.

2.3 Dependency Triples

The dependency triple framework was introduced in [Sch08] and [SGN09] to obtain a

modular and powerful framework for termination analysis of logic programs. It is adapted

from the successful dependency pair framework [AG00, GTSF03, GTS05, TGS04, HM05,

GTSF06] for term rewriting (see for example [Der87, Zan95, AG00, GTSF06, EWZ06,

Sch08, FGP+09] for more information and recent work on termination analysis of term

rewriting).

The basic structure in the dependency triple framework is very similar to a clause in

logic programming.

Definition 2.19 (Dependency Triple [Sch08, SGN09]). A dependency triple (DT) is a

clause H ← I, B where H and B are atoms and I is a list of atoms. For a logic program

P, the set of its dependency triples is DT (P) = {H ← I, B | H ← I, B, · · · ∈ P}.

Example 2.20. Consider again the logic program P for subtraction from Example 2.9.

The set of its DTs is DT (P) = {minus(s(X), s(Y ), Z)← minus(X, Y, Z)}.

For dependency triples, a derivation is defined in terms of a chain.

Definition 2.21 (Chain [Sch08, SGN09]). Let D and P be sets of clauses and let C be a set

of atoms. A (possibly infinite) list (H0 ← I0, B0), (H1 ← I1, B1), . . . of variants from D is

a (D, C,P)-chain iff there are substitutions θi, σi and an A ∈ C such that θ0 = mgu(A,H0)

and for all i, we have σi ∈ Answer(P , Iiθi), θi+1 = mgu(Biθiσi, Hi+1), and Biθiσi ∈ C.
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Example 2.22. Consider once more the logic program P from Example 2.9 with the

query setQ = {minus(s(s(0)), s(s(0)), Z)}, the set D = DT (P) and the set C = Call(P ,Q)

= {minus(s(s(0)), s(s(0)), Z),minus(s(0), s(0), Z),minus(0, 0, Z),2}. Then, for the deriva-

tion

minus(s(s(0)), s(s(0)), Z) `(2),[X/s(0),Y/s(0)] minus(s(0), s(0), Z) `(2),[X/0,Y/0]

minus(0, 0, Z) `(1),[Z/0] 2

we have the (D, C,P)-chain

minus(s(X1), s(Y1), Z)← minus(X1, Y1, Z),minus(s(X2), s(Y2), Z)← minus(X2, Y2, Z)

with the substitutions θ0 = [X1/s(0), Y1/s(0)], θ1 = [X2/0, Y2/0] and σ0 = σ1 = id .

Finally, we introduce the notion of a dependency triple problem which essentially is

a triple of a logic program, a call set and another logic program corresponding to the

elements needed for chains.

Definition 2.23 (DT Problem [Sch08, SGN09]). A DT problem is a triple (D, C,P)

where D and P are finite sets of clauses and C is a set of atoms. A DT problem (D, C,P)

is terminating iff there is no infinite (D, C,P)-chain.

From [Sch08, SGN09] we obtain the following result.

Theorem 2.24 (Termination Criterion [Sch08, SGN09]). A logic program P is terminat-

ing for a set of atomic queries Q iff there is no infinite (DT (P),Call(P ,Q),P)-chain.

The proof of this theorem can be found in [Sch08, SGN09].

Example 2.25. As we have seen in Example 2.22, the chain for the DT problem

(DT (P),Call(P ,Q),P) with P and Q defined as in Example 2.22 is finite. In fact, this

chain is the only chain for this DT problem and, hence, the logic program P terminates

w.r.t. Q as we have also seen in the derivation leading to 2.

Thus, we can use DT problems to analyze termination of logic programs and, hence,

Prolog programs as we will see in Chapter 7.



3 Cuts, Meta-Programming and

Rational Terms

As the title of this chapter indicates, the first step from definite logic programs to Prolog

covers the handling of cuts, meta-programming and rational terms. Since these structures

and mechanisms are not part of the standard definitions used in logic programming, we

have to use an appropriate description of the evaluation method used in Prolog. For

this reason we rely on the notion of concrete and abstract state-derivations introduced in

[Sch08] which we will extend to cover more of the real Prolog behavior (in contrast to just

logic programming with cuts). While this chapter is to some extent taken from [Sch08],

we introduce some new definitions for the concrete and abstract inference rules to handle

meta-programming and undefined predicate calls more precisely and adapt the proofs to

unification without occurs-check.

Structure of the Chapter

In the remainder of this chapter, our goal is to prove universal termination of Prolog

programs without built-in predicates other than !/0 and call/1 (these are necessary for

handling cuts and meta-programming) for a (typically infinite) set of queries Q. These

sets are typically given by the user by providing a predicate and by specifying which of

its arguments are instantiated by ground terms.

In Section 3.1 we introduce concrete states and a set of concrete inference rules which

characterize the evaluation process used in Prolog programs without built-in predicates

other than !/0 and call/1.

Since we want to prove termination w.r.t. sets of queries instead of single queries, we

extend the concrete states and inference rules to abstract states and inference rules in

Section 3.2. These rules for abstract states are the basis for the construction of so-called

termination graphs which we will discuss in Chapter 6.

Finally, in Section 3.3 we introduce additional abstract inference rules which are needed

to obtain a finite analysis, i.e., a finite termination graph instead of an infinite termination

tree. To this end, we refer back to already existing states as instances and generalize or

split states and goals to find such instances.

We summarize the contributions of this chapter in Section 3.4.
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3.1 Concrete State-Derivations

A very essential feature of Prolog which does not belong to the standard definition of

definite logic programs is the cut-operator (!). While there are attempts, e.g. by [DW90],

to banish this operator from Prolog it is virtually always used in real Prolog applications.

Instead of using all clauses for proving a goal, the unused clauses for the current goal are

cut off when a cut-operator is reached during the evaluation process of Prolog. In other

words, the backtracking possibilities for the current goal are dropped, once we reach a

cut. On the one hand, this operator can be used to drop double or wrong results without

changing the termination behavior. On the other hand, it can also cut off backtracking

possibilities which would lead to an infinite derivation and, thus, change the termination

behavior from non-termination to termination. Since it is not possible to change the

termination behavior from termination to non-termination by just using cuts, an easy

way of handling the cut-operator is just to ignore it. This is done in most automated

termination provers, since a more precise handling of the cut-operator was not available

before 2008, in spite of the fact that research was done on that problem for more than

twenty years. We always assume !/0 ∈ Σ in this thesis.

The following example program for division with remainder demonstrates the use of

cut-operators in Prolog.

Example 3.1. Consider the following Prolog program for division with remainder divre-

main.pl

div(X, 0, Z,R) ← !, failure(a). (3)

div(0, Y, Z,R) ← !, eq(Z, 0), eq(R, 0). (4)

div(X, Y, s(Z), R) ← minus(X, Y, U), !, div(U, Y, Z,R). (5)

div(X, Y, 0, X) ← 2. (6)

minus(X, 0, X) ← 2. (7)

minus(s(X), s(Y ), Z) ← minus(X, Y, Z). (8)

eq(X,X) ← 2. (9)

failure(b) ← 2. (10)

and the set of queries Q = {div(t1, t2, t3, t4) | t1, t2 are ground}. Any termination analyzer

that ignores the cut must fail on this example as div(0, 0, Z,R) leads to the subtraction

of 0 using the third div-rule and, thus, starts an infinite derivation.

Another additional feature of Prolog is meta-programming. While [Sch08] already han-

dles simple cases for meta-programming, the real Prolog behavior allows for a more com-

plex use of cuts inside of meta calls. We will, thus, change the concrete inference rules

from [Sch08] to cover the full Prolog behavior for meta-programming according to the ISO
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standard for Prolog [DEC96]. Also, we always assume call/1 ∈ Σ in this thesis. How-

ever, the more complicated behavior of meta-calls in Prolog will only occur together with

built-in predicates and, thus, we will come back to this issue in Chapter 4.

The following example program for addition of natural numbers demonstrates the use

of meta-programming in form of negation-as-failure [Cla78] in Prolog.

Example 3.2. Consider the following Prolog program add3.pl

add(X, 0, X) ← 2. (11)

add(X, Y, s(Z)) ← no(isZero(Y )), p(Y, P ), add(X,P, Z). (12)

p(0, 0) ← 2. (13)

p(s(X), X) ← 2. (14)

isZero(0) ← 2. (15)

no(X) ← call(X), !, failure(a). (16)

no(X) ← 2. (17)

failure(b) ← 2. (18)

and the set of queries Q = {add(t1, t2, t3) | t2 is ground}. Again, any termination analyzer

which ignores the cut (or cannot handle meta-programming) must fail on this example as

add(X, 0, Z) would lead to the addition of 0 using the second add-rule and, thus, starts

an infinite derivation.

Next, we also want to handle unification without occurs-check. While definite logic

programs make use of the occurs-check to exclude the construction of infinite terms, most

real Prolog implementations omit the occurs-check for efficiency. As a side-effect, one

can construct and use infinite rational terms in Prolog. [Col82] suggests some ways to

use this for elegant programs while there is a considerable part of the logic programming

community which tries to avoid programming with infinite rational terms. This culminates

in the fact that the ISO standard for Prolog [DEC96] does not define any behavior for

infinite rational terms. However, most implementations offer this behavior and, thus, we

have to deal with it in real Prolog applications.

The following example program used to check if a natural number is even demonstrates

the use of unification without occurs-check in Prolog.

Example 3.3. Consider the following Prolog program even.pl

even(X) ← eq(Y, f(e, f(o, Y ))), c(Y,X). (19)

c(f(e, X), 0) ← 2. (20)

c(f(Z,X), s(Y )) ← c(X, Y ). (21)

eq(X,X) ← 2. (22)
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and the set of queries Q = {even(t) | t is ground}. This program constructs an infinite

rational term alternately labeled with the symbols e and o. Then it descends this term

as deep as the natural number indicates and succeeds if the current symbol is e.

We also have to deal with some less intuitive behavior of Prolog programs without

built-in predicates other than ! and call.

Example 3.4. The position of a cut inside a clause can change the termination behavior.

To see this, consider the following two Prolog programs:

cutpos1.pl: cutpos2.pl:

p ← r. p ← r.

r ← q, !. r ← !, q.

r ← q. r ← q.

q ← 2. q ← 2.

q ← r. q ← r.

While cutpos1.pl is terminating for the query p, cutpos2.pl is not terminating for the

same query.

Example 3.5. Obviously, the linear query p(X, Y ) might not terminate while the non-

linear query p(X,X) terminates. Consider for example the Prolog program consisting of

the single clause p(a, b)← p(a, b).

For definite logic programs, the linear query always allows more derivations. For Pro-

log programs this need not be the case. Consider for example the following two Prolog

programs:
ts05.pl: ts06.pl:

q ← p(X, Y ). q ← p(X,X).

p(a, b) ← !. p(a, b) ← !.

p(a, a) ← p(a, a). p(a, a) ← p(a, a).

While ts05.pl is terminating for the query q, ts06.pl is not terminating for the same

query.

Example 3.6. It is important to know whether the analyzed Prolog implementation

makes use of the occurs-check. Consider the following Prolog program terminate.pl

t ← eq(X, f(X)), !.

t ← t.

eq(X,X) ← 2.
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and the query t. If the implementation uses unification with occurs-check, this query

does not terminate as the predicate eq will fail and we reach the second clause for t. If

otherwise the occurs-check is omitted, the query terminates by reaching the cut.

The correct handling of meta-programming requires a transformation of variables used

as predications into applications of the built-in predicate call. Thus, we cannot have

variables in predication positions anymore and we can exclude them from the definitions

of goals as we have done in Chapter 2. The required transformation is done by the

Transformed function which we can use for the inference rule handling the call predicate

and for clauses and queries from the program and input respectively.

In the preceding examples we have seen that the use of the cut in Prolog programs

requires a more detailed analysis of the backtracking behavior than this would be necessary

in definite logic programs. Instead of representing the current state of the computation

by just goals and local substitutions organized in a search-tree, we choose a more explicit

representation where backtrack information is given by lists of goals which are optionally

labeled by the clauses that may be applied to these goals next. This, together with explicit

marks for the scope of a cut, will allow us to express the non-local effect of the cut by

local rules.

The main idea for handling cuts, as described in [Sch08], is to label each cut with a

fresh natural number when it is introduced by a step in the derivation. By additionally

inserting such a number into the backtracking list, we can determine the scope of the

correspondingly labeled cut. Moreover, we must be able to update the scope of a cut

according to meta-calls which restrict the effect of a cut to the calls inside the meta-

call. This together with the problem that labeled cuts must be equal w.r.t. unification or

term equality used in built-in predicates, can be handled using the transformation by the

function Transformed which only labels cuts in predication positions. These cuts cannot

be an argument of another predicate performing unification, equality tests or meta-calls.

Putting everything together, our states are lists of three different types of elements:

• The list may contain an unlabeled goal Q ∈ Goal(Σ,V) which just represents itself.

• A labeled goal Qi
m ∈ Goal(Σ,V) × IN × IN represents that we must apply the i-th

clause in the program to the goal Q. The m determines how a cut introduced by

the body of the i-th clause will be labeled.

• A natural number m ∈ IN in our backtracking lists marks that, when a cut labeled

by m is reached, all elements preceding m are discarded. We denote m as ?m in our

backtracking lists.

The following example demonstrates the intended use of these states.
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Example 3.7. Consider again the logic program for div from Example 3.1 and the

query div(0, 0, Z,R). This would be represented by the concrete state consisting of

just the goal div(0, 0, Z,R). As this atom unifies with the head of all four clauses for

div, we obtain the identical behavior from the state div(0, 0, Z,R)3
1 | div(0, 0, Z,R)4

1 |
div(0, 0, Z,R)5

1 | div(0, 0, Z,R)6
1 | ?1. This denotes that we first try to apply clause (3)

and then backtrack using first clause (4), second clause (5) and finally clause (6). Now,

we can evaluate the first labeled goal using (3) and obtain !1, failure(a) | div(0, 0, Z,R)4
1 |

div(0, 0, Z,R)5
1 | div(0, 0, Z,R)6

1 | ?1. By applying the cut we get rid of the backtracking

goals div(0, 0, Z,R)4
1, div(0, 0, Z,R)5

1 and div(0, 0, Z,R)6
1 and obtain the state failure(a) | ?1,

which eventually fails, since no clause is applicable. Backtracking leads us to the state ?1

and finally to the empty word ε where the computation stops. Note that due to the cut,

we did not have to backtrack using the other div clauses.

In contrast, consider the state minus(s(0), Y, Z). Here, both clauses for minus are appli-

cable and our state becomes minus(s(0), Y, Z)7
1 | minus(s(0), Y, Z)8

1 | ?1. By using (7) we

obtain 2 | minus(s(0), Y, Z)8
1 | ?1. Now, as we consider universal termination, we need to

backtrack by removing the first element of our backtrack list and get minus(s(0), Y, Z)8
1 | ?1

which we evaluate to minus(0, Y ′, Z) | ?1 using (8). Now, only the first clause for minus is

applicable and we obtain minus(0, Y ′, Z)7
2 | ?2 | ?1 which we evaluate to 2 | ?2 | ?1. Further

backtracking leads first to ?2 | ?1, then to ?1 and finally to the empty word ε where the

computation stops.

The following definition formalizes the representation of such a concrete state.

Definition 3.8 (Concrete State). The set of concrete states State(Σ,V) is the set of all

finite words over StateElements = Goal(Σ,V) ∪ (Goal(Σ,V)× IN× IN) ∪ IN.

Now, we connect goals to concrete states.

Definition 3.9 (Initial States from Goal). Given a goal Q, its representation as a concrete

state is Transformed(Q, 0).

The following example demonstrates the representation for our concrete states.

Example 3.10. Let · denote the composition of our backtracking lists. Now, consider

again some of the states from Example 3.7.

A state consisting of just a goal (for instance div(0, 0, Z,R)) is represented by itself.

The state div(0, 0, Z,R)3
1 | div(0, 0, Z,R)4

1 | div(0, 0, Z,R)5
1 | div(0, 0, Z,R)6

1 | ?1, where we

explicitly list all alternative clauses that might be applied to div(0, 0, Z,R), is represented

as:

(div(0, 0, Z.R), 3, 1) · (div(0, 0, Z,R), 4, 1) · (div(0, 0, Z,R), 5, 1) · (div(0, 0, Z,R), 6, 1) · 1. Fi-

nally, the state !1, failure(a) | div(0, 0, Z,R)4
1 | div(0, 0, Z,R)5

1 | div(0, 0, Z,R)6
1 | ?1 is repre-

sented by:

!1, failure(a) · (div(0, 0, Z,R), 4, 1) · (div(0, 0, Z,R), 5, 1) · (div(0, 0, Z,R), 6, 1) · 1.



3.1. Concrete State-Derivations 23

For readability we will use the intuitive notation.

With the help of the representation of concrete states as defined in Definition 3.8 we

can now express derivations in Prolog without built-in predicates other than ! and call by

10 simple inference rules.

Definition 3.11 (Concrete Inference Rules (cf. [Sch08])).

2 | S

S
(Success)

?m | S

S
(Failure)

call(x), Q | S

ε
(VariableError)

t, Q | S

ε
(UndefinedError) where Slice(P , t) = ∅

!m, Q | S | ?m | S ′

Q | ?m | S ′
(Cut) where S

contains
no ?m

!m, Q | S

Q
(CutAll) where S

contains
no ?m

t, Q | S

(t, Q)i1m | . . . | (t, Q)ikm | ?m | S
(Case) where m ∈ IN is fresh, i1 < . . . < ik,

and Slice(P , t) = {ci1 , . . . , cik} 6= ∅

(t, Q)im | S

B′iσ,Qσ | S
(Eval) where i 6= b, ci = Hi ← Bi, mgu(t,Hi) = σ,

and B′i = Transformed(Bi,m)

(t, Q)im | S

S
(Backtrack) where i 6= b, ci = Hi ← Bi and t 6∼ Hi

call(t′), Q | S

t′′, Q | ?m | S
(Call)

where m ∈ IN is fresh, t′ ∈
PrologTerms(Σ,V) \ V, t′ has only
finitely many predication positions and
t′′ = Transformed(t′,m)

In the above rules we use the following conventions:

• The unlabeled term t must not be a variable, i.e., t 6∈ V .

• The root symbol of tmay not be a built-in predicate, i.e., root(t) /∈ BuiltInPredicates .

• The list of terms Q may be 2 and then t, Q = t,2 collapses to just t.

• S and S ′ denote concrete states.

• x represents a variable from N .4

Note that these rules do not overlap, i.e., there is at most one rule that can be applied

to any state. We call the subsequent application of these rules a concrete state-derivation.

4Since we do not have abstract variables in concrete states, we have V = N here.
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The only cases when no rule is applicable are when we call a term whose transfor-

mation according to the ISO standard would not terminate, since it has infinitely many

predication positions5 or when the state is the empty list (denoted ε).

Example 3.12. Consider the following Prolog program

p ← eq(X, ,(q, X)), call(X).

eq(X,X) ← 2.

and the query p. Even assuming we could already handle the built-in predicate ,/2, one

might think that this query would lead to an error due to the undefined predicate q and,

hence, terminate. In fact, the query does not terminate as the transformation of the

infinite term does not terminate and we do not reach the call of the undefined predicate

q.

Now, consider the next Prolog program

p ← eq(X, call(,(q, X))), call(X).

eq(X,X) ← 2.

and the query p. This time, we reach the undefined predicate call and terminate with an

error as the infinite term has not infinitely many predication positions and the transfor-

mation terminates.

We now describe the intuition behind the individual rules.

• Success: According to the ISO standard, a successful computation for a goal

continues with backtracking. As 2 denotes the empty goal and, hence, a completely

proved goal, this corresponds directly to a successful derivation. Thus, we have

to backtrack using the Success rule. This corresponds to the analysis of universal

termination. For analyzing existential termination we could modify this rule to yield

the empty word, but this is not necessary as we will introduce a built-in predicate

just restricting the computation to the first successful concrete state-derivation (cf.

Chapter 4).

• Failure: Whenever we reach a question mark in the concrete state-derivation,

there are no further backtracking possibilities for the current predicate call. Thus,

we backtrack to the next predicate call before the current one or reach the empty

state if no former predicate call exists.

5The ISO standard does not define any behavior for infinite rational terms explicitly, but if we use the
transformation for finite terms given in the standard to transform terms which contain infinite paths
along predication positions, this transformation would not terminate. This behavior is shown by real
Prolog implementations such as SWI.
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• VariableError: The call of an uninstantiated variable leads to an error in Pro-

log. Thus, the evaluation terminates directly and we can infer the empty state

ε.

• UndefinedError: The call of an undefined predicate also leads to an error in

Prolog.6 Thus, the evaluation terminates directly and we can infer the empty state

ε again.

• Case: While the execution model in the ISO standard performs the choice of

suitable clauses for a predicate, the unification of the clause heads with the first

current goal term, the replacement of this term with the clause body in case of a

succeeding unification and the instantiation of this new goal with the mgu used for

the unification simultaneously, we split these actions into separate rules. The Case

rule determines the clauses in the program having the same function symbol as the

first current goal term. Then it replaces this unlabeled goal with a number of labeled

copies of it where each copy is labeled with the number of a corresponding clause

in the order of the clauses in the program. Additionally, the new state elements

are labeled with a fresh scope number to make the scope of possibly introduced

cuts explicit. To mark the end of this scope, a question mark with the same scope

number is inserted after the labeled copies of the replaced state element.

• Eval: The Eval rule corresponds to the second part of the execution model in

case of a succeeding unification. It replaces the first current goal term with the

corresponding clause body and applies the mgu of the unification with the clause

head to the new goal.

• Backtrack: The Backtrack rule corresponds to failing unifications with clause

heads. While the execution model would directly drop not unifying backtrack possi-

bilities, we delay this dropping until we really reach the corresponding state element.

Though this delay would not be necessary for concrete state-derivations, it is useful

for handling classes of queries in the abstract state-derivations introduced in the

next section.

• Cut: The Cut rule drops all state elements between the cut and the correspond-

ingly labeled question mark. As described for the Case rule, this question mark

is introduced at the end of the scope level of the corresponding cut. So all back-

tracking possibilities for predicates inside the scope of the cut which have not been

6This is at least true for most of the existing Prolog implementations in their default configuration.
In fact, the behavior for undefined predicate calls depends on the flag unknown belonging to the
environment of the Prolog processor as defined in [DEC96]. Since we do not consider such environment
configurations or flags explicitly in this approach, we just handle this case according to the most
common behavior observed for real Prolog implementations.
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evaluated yet are discarded. Note that the question mark must not be deleted as

the remaining goal can still have cuts with the same scope. Here, we profit from our

more explicit representation of backtracking possibilities and can express the global

side effect of a cut by a local rule.

• CutAll: The CutAll rule would not be necessary for concrete state-derivations

at all, but due to the splitting of states we have to perform in Section 3.3 to obtain

a finite analysis, we may encounter the situation that there is no corresponding

question mark for a labeled cut. Then all following backtracking possibilities must

be discarded. This rule is equivalent to the Cut rule if the last state element is the

corresponding question mark.

• Call: For meta-calls we use the Call rule. According to the ISO standard,

meta-calls have to be transformed such that no variable is in a predication position.

Additionally, cuts being part of the meta-call may not have any effect on the exe-

cution outside the meta-call. Both is handled by the Transformed function which

replaces variables in predication positions by new meta-calls of these variables and

labels cuts in predication positions with a new scope, thus restricting their effect to

the meta-call. Note that we also solve the problem of unifying or comparing labeled

cuts as we do not label cuts outside of predication positions.

Example 3.13. Consider again the logic program for div from Example 3.1 and the query

div(0, 0, Z,R) from Example 3.7. Using our 10 inference rules we obtain the following tree.

div(0, 0, Z,R)

div(0, 0, Z,R)31 | div(0, 0, Z,R)41 | div(0, 0, Z,R)51 | div(0, 0, Z,R)61 | ?1

Case

!1, failure(a) | div(0, 0, Z,R)41 | div(0, 0, Z,R)51 | div(0, 0, Z,R)61 | ?1

Eval

failure(a) | ?1

Cut

failure(a)10 | ?2 | ?1

Case

?2 | ?1

Backtrack

?1

Failure

ε

Failure
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Similar, for the query minus(0, 0, Z) from Example 3.7 we obtain the following state-

derivation using the rules from Definition 3.11.

minus(0, 0, Z)

minus(0, 0, Z)71 | minus(0, 0, Z)81 | ?1

Case

2 | minus(0, 0, Z)81 | ?1

Eval

minus(0, 0, Z)81 | ?1

Success

?1

Backtrack

ε

Failure

Finally, we define what it means for a state to be terminating.

Definition 3.14 (Termination of States [Sch08]). We say that a given state S ∈
State(Σ,V) is terminating if, and only if, there is no infinite concrete state-derivation

starting from S using the inference rules from Definition 3.11.

3.2 Abstract State-Derivations

After introducing concrete state-derivations for single queries, we continue by introducing

abstract state-derivations for sets of queries as we want to analyze termination of a Prolog

program w.r.t. a class of queries. In order to represent sets of queries, we introduce abstract

terms , i.e., terms not only containing function symbols from Σ and usual variables as in

Prolog programs, but also abstract variables which represent arbitrary but fixed terms.

The set A is the set of all abstract variables, while the variables corresponding to variables

in Prolog are from the set N . The set V of all variables is therefore defined as V = N ]A.

Thus, PrologTerms(Σ,V) is now the set of all abstract terms, while PrologTerms(Σ,N )

is the set of concrete terms , i.e., terms containing no abstract variables. Throughout the

thesis, we often use the notation N (t) and A(t) to denote the set of all non-abstract and

abstract variables occurring in a term t as defined in Definition 2.2, respectively. In many

situations we will consider substitutions which are equal on a certain set of variables,

while they do not replace any other variables. We call such substitutions restricted to a

certain set. The restriction of σ to a set of variables V ′ ⊆ V (denoted σ|V ′) is therefore

defined as σ|V ′(X) = σ(X), if X ∈ V ′, and σ|V ′(X) = X, otherwise. Finally, we often

need variables which do not occur anywhere else. We call such variables fresh variables
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and denote by Vfresh ⊆ V the subset of fresh variables. Analogously, we denote the subset

of fresh abstract and non-abstract variables by Afresh and Nfresh , respectively.

Abstract variables represent arbitrary terms in general, but to describe classes of

queries typically specified by a function symbol and argument positions which should

be instantiated by ground terms, we need to constrain the terms by which the abstract

variables may be instantiated. Additionally, we want to keep track of non-abstract

variables which do not occur in the terms represented by abstract variables. Finally,

due to failing unifications during the concrete state-derivation, we gather knowledge

about non-unifiable terms. Therefore, we add a knowledge base representable by a triple

KB = (G,F ,U) to a concrete state containing abstract terms where G ⊆ A, F ⊆ N , and

U ⊆ PrologTerms(Σ,V)× PrologTerms(Σ,V). Here, G is the set of all abstract variables

whose instantiations are restricted to ground terms, while F contains those non-abstract

variables which may not occur in the terms represented by abstract variables. Moreover,

U represents a set of pairs of terms, where a pair of terms (s, t) represents that s and t

are not unifiable after instantiating the abstract variables, i.e., that we have sγ � tγ for a

given instantiation γ of the abstract variables. We can now define an abstract state based

on a concrete state with abstract variables and a knowledge base.

Definition 3.15 (Abstract State). The set of abstract states AState(Σ,N ,A) is a set

of pairs (s;KB) of a concrete state s ∈ State(Σ,N ∪A) and a knowledge base KB.

To define which concrete states are represented by an abstract state, we introduce

the notion of a concretization. A concretization is a substitution γ replacing all and

only abstract variables and which respects the knowledge base (G,F ,U). Thus, we have

γ|A = γ and
⋃
a∈AA(aγ) = ∅. Also, abstract variables from G are only replaced by ground

terms, i.e., Range(γ|G) ⊆ GroundTerms(Σ). Likewise, γ may not introduce variables from

F . This can be specified by F(Range(γ)) = ∅. Finally, for all pairs (t, t′) ∈ U we need to

ensure that tγ and t′γ do not unify, i.e., that tγ � t′γ. Taking everything into account,

we obtain the following definition.

Definition 3.16 (Concretization). A substitution γ is a concretization w.r.t. a knowledge

base (G,F ,U) if, and only if, γ|A = γ,
⋃
a∈AA(aγ) = ∅, Range(γ|G) ⊆ GroundTerms(Σ),

F(Range(γ)) = ∅, and
∧

(t,t′)∈U tγ 6∼ t′γ.

For an abstract state (S; (G,F ,U)), we define the set of concretized states

CON (S; (G,F ,U)) as the set {Sγ | γ is a concretization w.r.t. the knowledge base

(G,F ,U)}.

Example 3.17. Consider the abstract state minus(T1, T2, T3); ({T1, T2},∅, {(T1, T3)}) with

Ti ∈ A for all i. This represents all concrete states minus(t1, t2, t3) where t1, t2 are ground

terms and t1 and t3 do not unify, i.e., t3 does not match t1. For example, the concrete

state minus(0, 0, Z) is not represented as 0 and Z unify. In contrast, the concrete state
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minus(s(0), s(0), 0) is represented and, using clause (8), can be reduced to minus(0, 0, 0).

But this clause cannot be applied to all concretizations. Consider e.g. the concrete state

minus(0, 0, s(0)) represented by our abstract state, for which no clause is applicable.

Finally, we connect classes of queries w.r.t. a Prolog program, as typically specified by

the user, to abstract states.

Definition 3.18 (Initial State for Predicate and Moding Function). Given a Prolog pro-

gram P and a class of queries Q described by a symbol p ∈ Σ with arity n and a moding

function m : Σ × IN → {in,out}, the initial state S(p,m) for P w.r.t. Q is defined as

p(T1, . . . , Tn); (G,∅,∅) where G = {Ti | m(p, i) = in}.

Example 3.19. Consider the Prolog program divremain.pl from Example 3.1 as P and

the class of queries Q described by the symbol div/4 and the moding function m with

m(div, 1) = m(div, 2) = in and m(f, i) = out otherwise. Then the initial state S(div,m)

is div(T1, T2, T3, T4); ({T1, T2},∅,∅).

As we have seen in the example above, abstract states may represent several concrete

states for which different concrete inference rules are applicable. Additionally, we also

want to exploit the knowledge specified by the knowledge base of an abstract state.

As we are considering classes of queries and, thus, sets of concrete states represented

by abstract states as defined by Definition 3.15, the general idea of the following abstract

rules is that all states represented by the parent node are terminating if all the states

represented by its children are terminating.

Definition 3.20 (Sound Rules [Sch08]). A rule ρ : AState(Σ,N ,A) → 2AState(Σ,N ,A) is

a sound rule if for all abstract states (S;KB), all Sγ ∈ CON (S;KB) are terminating if

all states in {Rγ′ | (R;KB′) ∈ ρ(S;KB), Rγ′ ∈ CON (R;KB′)} are terminating.

The rules for Success, Failure, VariableError, UndefinedError, Cut, Cu-

tAll, Case and Call do not mandate changes to the knowledge base and are, thus,

straightforward to adapt to the abstract case.

Therefore, we define the first set of abstract rules corresponding to the first part of

the original rules from Definition 3.11. We will handle the Backtrack and Eval rules

in later definitions as the same abstract state may represent concrete state where Eval

is applicable as well as concrete states where Backtrack is applicable. We will even

introduce additional rules used to obtain a finite analysis in spite of the fact that we have

no bound on the size of the terms represented by the abstract variables.
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Definition 3.21 (Abstract Inference Rules – Part 1 (Success, Failure, VariableEr-

ror, UndefinedError, Cut, CutAll, Case, Call) (cf. [Sch08])).

2 | S;KB

S;KB
(Success)

?m | S;KB

S;KB
(Failure)

call(x), Q | S;KB

ε;KB
(VariableError)

t, Q | S;KB

ε;KB
(UndefinedError) where Slice(P , t) = ∅

!m, Q | S | ?m | S ′;KB

Q | ?m | S ′;KB
(Cut) where S

contains
no ?m

!m, Q | S;KB

Q;KB
(CutAll) where S

contains
no ?m

t, Q | S;KB

(t, Q)i1m | . . . | (t, Q)ikm | ?m | S;KB
(Case) where m ∈ IN is fresh, i1 < . . . < ik,

and Slice(P , t) = {ci1 , . . . , cik} 6= ∅

call(t′), Q | S;KB

t′′, Q | ?m | S;KB
(Call)

where m ∈ IN is fresh, t′ ∈ PrologTerms(Σ,V) \ V, t′ has only finitely many predi-

cation positions, ∀pos ∈ Occ(t′) : pos is a predication position =⇒ t′|pos /∈ A and

t′′ = Transformed(t′,m)

In the above rules, in addition to the notation used in Definition 3.11, we write S |
S ′;KB for an abstract state ((S | S ′);KB) with knowledge base KB.

Note that we are stuck in the case of meta-calls of terms where we cannot guarantee the

termination of the call itself. This is the case for terms having infinitely many predication

positions as for the concrete inference rules. Also, we are stuck in the case of meta-calls

where we already know that we cannot prove termination of the term to execute. This is

the case for terms with an abstract variable as predication w.r.t. the term. This is due

to the fact that abstract variables stand for arbitrary terms. Even for ground terms we

cannot guarantee that their execution is terminating. Hence, we are not able to prove

termination of the given program successfully with the approach presented here. As this

approach is not termination preserving (see Chapter 7), we are not able to prove non-

termination of the given program, either. So there is nothing we can do and we just give

up.7

7One might make some assumptions concerning the terms represented by abstract variables which
are used as predications in meta-calls to overcome such situations. But as the halting problem is
not decidable, one will hardly find any suitable assumptions ensuring termination of the meta-calls,
being automatically and efficiently verifiable for input arguments and still allowing for a realistic and
interesting class of queries. Thus, we refrain from making such assumptions here.
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Since the knowledge bases are not changed in the rules Success, Failure, Cut,

CutAll and Case, the proofs for their soundness in [Sch08] remain unchanged and the

rules are already shown to be sound.

Lemma 3.22 (Soundness of VariableError, UndefinedError and Call). The

rules VariableError, UndefinedError and Call from Definition 3.21 are sound.

Proof. For the soundness of VariableError assume there is an infinite concrete state-

derivation from call(x)γ,Qγ | Sγ ∈ CON (call(x), Q | S;KB). As γ is only defined for

abstract variables, the only applicable concrete rule is VariableError, which results in

ε. Since no concrete rule is applicable to the empty list, we have a contradiction to our

assumption and VariableError is trivially sound.

For the soundness of UndefinedError assume there is an infinite concrete state-

derivation from tγ,Qγ | Sγ ∈ CON (t, Q | S;KB). As γ does not change the root symbol

of t, we have Slice(P , tγ) = ∅ and the only applicable concrete rule is Undefined-

Error leading to the state ε which is again a contradiction to our assumption. Thus,

UndefinedError is trivially sound, too.

For the soundness of Call assume there is an infinite concrete state-derivation from

call(t′)γ,Qγ | Sγ ∈ CON (call(t′), Q | S;KB) where there are only finitely many pred-

ication positions in Occ(t′) and no predication w.r.t. t′ is an abstract variable. As γ is

only defined for abstract variables, we obtain that t′γ has only finitely many predication

positions. Hence, the only applicable concrete inference rule is Call leading to the state

Transformed(t′γ,m), Qγ |?m | Sγ for a fresh m ∈ IN starting an infinite concrete state-

derivation. By the fact that no predication position w.r.t. t′ is an abstract variable and

Definition 2.17 we obtain Transformed(t′γ,m) = Transformed(t′,m)γ = t′′γ and, thus,

Transformed(t′γ,m), Qγ |?m | Sγ = t′′γ,Qγ |?m | Sγ ∈ CON (t′′, Q |?m | S;KB) having

an infinite concrete state-derivation.

So far, like for the concrete rules, the applicable rule is uniquely determined by the

first state element of the abstract state. Now, for the concrete Eval and Backtrack

rule we determine which of these two rules is applicable by trying to unify the first term

in the first state element with the head of the corresponding clause. As demonstrated

by Example 3.17, we might need to apply Eval for some concrete states represented by

an abstract state and Backtrack for others. Assume we are in a state (t, Q)im and the

i-th clause is Hi ← Bi. Consider that the abstract variables represent arbitrary but fixed

terms. Thus, if Hi and t unify by replacing abstract variables by other abstract variables

or non-variable terms, this might or might not succeed.

We can detect that the concrete Backtrack rule is applicable for all concretized states

if either the abstract term t does not unify with the clause head Hi or if mgu(t,Hi) = σ,

but σ contradicts information in (G,F ,U). Then, we can apply the following abstract

Backtrack rule.
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Unfortunately, for the definition of the abstract Backtrack rule in [Sch08] it is unclear

how to implement the check for non-unifiability. Here we present a modified version of

the Backtrack rule which is efficiently implementable and still sound.

The first condition t � Hi is already sufficient for Backtrack. If otherwise mgu(t,Hi)

= σ, then σ contradicts information in G if we replace a variable from G by an infinite

term. Furthermore, σ contradicts information in U if there is a pair (s, s′) ∈ U such that

sσ and s′σ unify by only replacing free variables, i.e., variables from F .

Definition 3.23 (Abstract Inference Rules – Part 2 (Backtrack)).

(t, Q)im | S; (G,F ,U)

S; (G,F ,U)
(Backtrack)

where i 6= b, ci = Hi ← Bi and either t � Hi or σ = mgu(t,Hi) with ∃a ∈ G : aσ /∈
FinitePrologTerms(Σ,V) or V(Range(σ)) ⊆ Vfresh , V(Range(σ|G)) ⊆ A and ∃(s, s′) ∈ U :

σ′ = mgu(sσ|G, s′σ|G) ∧ Dom(σ′) ⊆ N ∧ σ′σ′ = σ′.

Lemma 3.24 (Soundness of Backtrack). The rule Backtrack from Definition 3.23

is sound.

Proof. Assume there is an infinite concrete state-derivation from (tγ,Qγ)im | Sγ ∈
CON ((t, Q)im | S; (G,F ,U)).

Let γ be a concretization w.r.t. (G,F ,U). If tγ � Hi then the only applicable concrete

rule is Backtrack, which results in Sγ ∈ CON (S; (G,F ,U)) starting an infinite concrete

state-derivation.

Thus, we are left to show that there is no concretization γ w.r.t. (G,F ,U) with tγ ∼ Hi.

If t � Hi, then there is no substitution δ with tδ ∼ Hiδ. By definition we have that

V(t) ∩ V(Hi) = ∅. Thus we obtain that there is no substitution δ with tδ ∼ Hi, either.

In particular, there is no concretization γ with tγ ∼ Hi.

So let σ = mgu(t,Hi). If there is a variable a ∈ G with aσ /∈ FinitePrologTerms(Σ,V),

there is no concretization γ with tγ ∼ Hi. To see this, assume there is an mgu σ′′′′ of tγ and

Hi = Hiγ. Then there must be a substitution δ′ with σδ′ = γσ′′′′. We can assume a ∈ V(t),

since G(Hi) = ∅ and σ is most general. As aσ /∈ FinitePrologTerms(Σ,V) we also have

aσδ′ = aγσ′′′′ /∈ FinitePrologTerms(Σ,V). Since γ has to replace all abstract variables in

t and A(Range(γ)) = ∅, we obtain aγ /∈ FinitePrologTerms(Σ,V) ⊇ GroundTerms(Σ).

Contradiction.

Now let V(Range(σ)) ⊆ Vfresh and ∃(s, s′) ∈ U : σ′ = mgu(sσ|G, s′σ|G) ∧ Dom(σ′) ⊆
N ∧ σ′σ′ = σ′.

We show that ∀δ : (Dom(δ) ⊆ A ∧ V(Range(δ)) ⊆ N \ F) =⇒ sσ|Gδ ∼ s′σ|Gδ
by showing that σ′σ′δ is a unifier of sσ|Gδ and s′σ|Gδ. Let δ be a substitution with
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Dom(δ) ⊆ A∧ V(Range(δ)) ⊆ N \ F . We immediately have that δ = δδ since Dom(δ) ∩
V(Range(δ)) = ∅. Let x ∈ V . If x ∈ N , we obviously have xδσ′σ′δ = xσ′δ = xσ′δσ′. If

otherwise x ∈ A, we have xδσ′σ′δ = xδσ′ = xσ′δσ′. Thus, we have δσ′σ′δ = σ′δσ′. Now

we obtain:

sσ|Gδσ′σ′δ
δσ′σ′δ=σ′δσ′

= sσ|Gσ′δσ′
σ′=mgu(s|G ,s′|G)

= s′σ|Gσ′δσ′
δσ′σ′δ=σ′δσ′

= s′σ|Gδσ′σ′δ

From ∀δ : (Dom(δ) ⊆ A ∧ V(Range(δ)) ⊆ N \ F) =⇒ sσ|Gδ ∼ s′σ|Gδ it follows that

∀δ∃(s, s′) ∈ U : (Dom(δ) ⊆ A ∧ V(Range(δ)) ⊆ N \ F) =⇒ sσ|Gδ ∼ s′σ|Gδ. By

disjunctively adding tδ � Hi we obtain:

∀δ∃(s, s′) ∈ U : (Dom(δ) ⊆ A ∧ V(Range(δ)) ⊆ N \ F) =⇒ sσ|Gδ ∼ s′σ|Gδ ∨ tδ � Hi

Dom(δ)⊆A∧V(Range(δ))⊆N\F independent from s,s′,t, and Hi⇐⇒

∀δ : (Dom(δ) ⊆ A∧V(Range(δ)) ⊆ N \F) =⇒ (∃(s, s′) ∈ U : sσ|Gδ ∼ s′σ|Gδ)∨ tδ � Hi

Double negation⇐⇒

∀δ : (Dom(δ) ⊆ A∧V(Range(δ)) ⊆ N\F) =⇒ ¬(∀(s, s′) ∈ U : sσ|Gδ � s′σ|Gδ)∨tδ � Hi

Definition of implication⇐⇒

∀δ : ¬((Dom(δ) ⊆ A∧V(Range(δ)) ⊆ N \F))∨¬(∀(s, s′) ∈ U : sσ|Gδ � s′σ|Gδ)∨ tδ � Hi

Factor out negation⇐⇒

∀δ : ¬(Dom(δ) ⊆ A ∧ V(Range(δ)) ⊆ N \ F ∧ (∀(s, s′) ∈ U : sσ|Gδ � s′σ|Gδ)) ∨ tδ � Hi

Definition of implication⇐⇒

∀δ : (Dom(δ) ⊆ A∧V(Range(δ)) ⊆ N \F ∧ (∀(s, s′) ∈ U : sσ|Gδ � s′σ|Gδ)) =⇒ tδ � Hi

We continue by showing that for all concretizations γ we have tγ � Hi.

Let γ be a concretization with γ = σ|Gγ′ where γ′ is an arbitrary substitution. Then

we have γσ|G = σ|Gγ. By definition, γ satisfies Dom(γ) ⊆ A ∧ V(Range(γ)) ⊆ N \
F ∧ (∀(s, s′) ∈ U : sγ � s′γ). Since V(Range(γ)) ⊆ N we also have Dom(γ) ⊆ A ∧
V(Range(γ)) ⊆ N \ F ∧ (∀(s, s′) ∈ U : sγσ|G � s′γσ|G) and hence Dom(γ) ⊆ A ∧
V(Range(γ)) ⊆ N \ F ∧ (∀(s, s′) ∈ U : sσ|Gγ � s′σ|Gγ) which implies tγ � Hi.

Now let γ be a concretization with γ 6= σ|Gγ′ for all substitutions γ′. Assume tγ ∼ Hi.
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Then we would also have tγ ∼ Hiγ because A(Hi) = ∅. So there is a substitution σ′′ with

tγσ′′ = Hiγσ
′′. Since mgu(t,Hi) = σ and σ = σ|Gσ|V\G we obtain ∃σ′′′ : σ|Gσ|V\Gσ′′′ =

γσ′′. As we have Dom(γ) ⊆ A and
⋃
a∈AA(aγ) = ∅ we also have that (σ|Gσ|V\Gσ′′′)|N =

(σ|Nσ′′′)|N = σ′′ and (σ|Gσ|V\Gσ′′′)|G = (σ|Gσ′′′)|G = γ|G.
Let x ∈ V be any variable. We perform a case analysis over the partition (Range(σ|G) ]
Dom(σ|G) ] (V \ (Dom(σ|G) ∪ Range(σ|G)))):

• x ∈ (V \ (Dom(σ|G) ∪ Range(σ|G))):
We define xγ′ = xγ and have xσ|Gγ′ = xγ.

• x ∈ Range(σ|G):
Then there is a variable a ∈ Dom(σ|G) and a position π with (aσ|G)|π = x. Ad-

ditionally we know that x ∈ A and aσ|Gσ′′′ = aγ. Hence we have xσ′′′ = aγ|π.

W.l.o.g. we demand xγ = xσ′′′ since x is fresh. So we define xγ′ = xσ′′′. Then we

have xσ|Gγ′ = xγ.

• x ∈ Dom(σ|G):
We define xγ′ = x as x will already be replaced by σ|G. So we still have xσ|Gγ′ = xγ

since all variables in Range(σ|G) are properly replaced.

So we have in all cases xσ|Gγ′ = xγ and, therefore, σ|Gγ′ = γ. Contradiction. Thus, we

have tγ � Hi again.

In case the abstract Backtrack rule is not applicable, it is still possible that tγ does

not unify with Hi for a concretization γ. This was already demonstrated by Example 3.17.

Thus, the Eval rule for abstract states has two successor states combining both the

concrete Eval and the concrete Backtrack rule.

Now, one might argue that the abstract Backtrack rule is superfluous as we can

represent all concrete state-derivations using the Eval rule alone. For the correctness

of our method this is, in fact, right. But as the abstract states might represent only

concrete states where the concrete Backtrack rule is applicable, we would significantly

lose precision by using the abstract Eval rule in such cases. The reason for this is, that

we would add a state representing concrete states which would not be reachable by the

concrete state-derivations from any concrete state represented by the parent state. Hence,

without the abstract Backtrack rule our method is less powerful. Another problem is

that the left successor is not defined at all if t and Hi do not unify since we have no mgu

then.
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Example 3.25. Consider the following simple Prolog program P

p(0) ← !.

p(X) ← q(X).

q(0) ← q(0).

q(X) ← 2.

and the set of queries Q = {p(t) | p(t) ∈ PrologTerms(Σ,N )}. Without Backtrack,

there would always be a successor node resulting from Eval with the first clause for q.

Thus, although the program clearly terminates for Q, we could not prove termination of

this program since we would introduce states which are in fact not reachable for those

queries. Using Backtrack, we find out that the first clause for q is never applicable for

queries from Q and we can easily prove termination of P w.r.t. Q.

Before we motivate the definition of the abstract Eval rule, we introduce a substitution

used for refreshing variables from a certain set. Such substitutions will for example be

used to simulate the sharing effects by replacing abstract variables which are not known

to represent ground terms only.

Definition 3.26 (Replacement by Fresh Abstract Variables). We define αM for a set of

variables M as follows:

αM(x) =

a if x ∈M \ Vfresh for a ∈ Afresh

x otherwise

Now we give some intuition for the (rather complex) definition of the abstract Eval

rule.

To avoid name conflicts and to obtain an idempotent substitution we demand that the

range of the most general unifier σ of t and Hi contains only fresh variables. Thus, the

condition on σ is V(Range(σ)) ⊆ Vfresh .

The next condition ensures that σ instantiates an abstract variable a only with terms

over Σ and A (instead of V). This condition is necessary to retain the generality of the

abstract state. Without the condition V(Range(σ|A)) ⊆ A, one might for example replace

the abstract variable T1 which represents s(0) by s(X) where X ∈ N . But then we would

not represent s(0) anymore. By replacing T1 with s(T2) instead where T2 ∈ A, the term

s(0) is still represented.

Furthermore, we do not need to introduce new abstract variables other than those

we introduce for the already existing abstract variables. The reason for this is that non-

abstract variables just represent themselves and not arbitrary terms where variables inside

the terms may be replaced due to sharing effects. So we constrain the range of σ|N by
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A(Range(σ|N )) ⊆ A(Range(σ|A)).

Note that all these restrictions are without loss of generality as they can be obtained

by a simple variable renaming from any most general unifier of t and Hi.

Once we have an mgu satisfying the above conditions, we must update the knowledge

base accordingly. If we replace abstract variables from G, all variables in the replaced term

must be abstract and represent ground terms. Otherwise we would suddenly represent

non-ground terms at the position of a ground term. Thus, the new set G ′ of abstract

variables representing ground terms is G ∪ A(Range(σ|G)). As all variables in Hi ← Bi

are freshly renamed, the ones not occurring in Hi must be free and cannot occur in the

terms represented by abstract variables. Hence, we add N (Bi) \ N (Hi) to F . Moreover,

variables in the range of σ|F not being in the range of any variable from V \F or the head

Hi cannot occur in the represented terms of abstract variables, either. Therefore, we also

add N (Range(σ|F)) \ N (Range(σ|N\(F∪NHi ))) to F . Together, this yields the new set of

free variables F ′. For the successor state corresponding to the application of the concrete

Backtrack rule, we update U by adding the non-unifying pair (t,Hi) as the concrete

Backtrack rule is only applicable if these terms do not unify. For the successor state

corresponding to the application of the concrete Eval rule, we apply σ|G to the terms

in U and in all state elements following the first one. We can do this as the abstract

variables in G represent terms without any variables. Thus, the replacement of abstract

variables from G corresponds to a kind of shape analysis instead of instantiating variables

from N inside the represented terms. The latter would not be correct for backtracking

goals as the instantiations are canceled for backtracking. Therefore, it would not be

correct for the terms in U either, since we keep the same knowledge base for backtracked

state elements. For other abstract variables than the ones from G, we cannot distinguish

between the replacements due to shape analysis and instantiation of non-abstract variables

that easily, since the abstract variables may also represent non-abstract variables.8

Concerning sharing effects, we still have a problem if we replace variables not being

from G ∪ F . Such variables may occur in the terms represented by abstract variables.

Thus, by replacing them, we would change the represented terms. Additionally, by re-

placing abstract variables not from G, we might instantiate non-abstract variables in the

represented terms which occur elsewhere in the state. To overcome this problem, we

approximate such instantiations due to variable sharing by replacing variables whose rep-

resented terms might have changed or which might be instantiated due to sharing effects

by fresh abstract variables. If σ replaces non-abstract variables not being from F , we

8An idea to increase precision concerning shape analysis would be to first perform a case analysis for
the possibly represented variables and extending the knowledge base to also have a set of abstract
variables not representing non-abstract variables (but still terms containing such variables). Thus, we
could infer the root symbol of the terms represented by such abstract variables. We could especially
profit from this idea in combination with the built-in predicates for type testing (cf. Chapter 4). For
now, we leave a more sophisticated shape analysis to future work.



3.2. Abstract State-Derivations 37

have to replace all abstract variables not being from G as their represented terms might

have changed. If we replace abstract variables not from G we must additionally replace

all non-abstract variables not being from F as they might be instantiated due to sharing

effects. The respective approximation is performed by the Approx function.

As for the concrete rules, the successors are updated by replacing the first term in the

first state element by the transformed and instantiated clause body or by dropping the

first state element respectively.

In case the unification of the abstract term t with the head Hi of the clause will

definitely succeed, i.e., the mgu σ is a bijection on abstract variables (and hence just a

variable renaming on abstract variables), we do not have to backtrack, of course. Thus,

in such cases we can spare the successor corresponding to the application of the concrete

Backtrack rule. We introduce the OnlyEval rule for such cases, having the condition

that σ|A is a variable renaming on A. To obtain non-overlapping rules, the conditions

of the Backtrack and OnlyEval rules are negated for the Eval rule. This amounts

to Range(σ|G) ⊆ FinitePrologTerms(Σ,A), σ|A is not a variable renaming on A and

∀(s, s′) ∈ U : ∀σ′′ : (sσ|Gσ′′ = s′σ|Gσ′′ =⇒ Dom(σ′′) 6⊆ N ).

Definition 3.27 (Abstract Inference Rules – Part 3 (Eval, OnlyEval)).

(t, Q)im | S; (G,F ,U)

B′iσ
′, Qσ′ | Sσ|G; (G ′,F ′,Uσ|G) S; (G,F ∪N (Hi),U ∪ {(t,Hi)})

(Eval)

where i 6= b, ci = Hi ← Bi, mgu(t,Hi) = σ with V(Range(σ)) ⊆ Vfresh ,

V(Range(σ|A)) ⊆ A, Range(σ|G) ⊆ FinitePrologTerms(Σ,A), σ|A is not a variable

renaming on A, A(Range(σ|N )) ⊆ A(Range(σ|A)), ∀(s, s′) ∈ U : ∀σ′′ :

(sσ|Gσ′′ = s′σ|Gσ′′ =⇒ Dom(σ′′) 6⊆ N ), G ′ = G ∪ A(Range(σ|G)), F ′ = F ∪
(N (Range(σ|F))\N (Range(σ|N\(F∪N (Hi)))))∪(N (Bi)\N (Hi)), σ′ = Approx (σ, t, ci,G,F),

and B′i = Transformed(Bi,m).

(t, Q)im | S; (G,F ,U)

B′iσ
′, Qσ′ | Sσ|G; (G ′,F ′,Uσ|G)

(OnlyEval)

where i 6= b, ci = Hi ← Bi, mgu(t,Hi) = σ with V(Range(σ)) ⊆ Vfresh , σ|A is a variable

renaming on A, A(Range(σ|N )) ⊆ A(Range(σ|A)), G ′ = G ∪ A(Range(σ|G)), F ′ = F ∪
(N (Range(σ|F))\N (Range(σ|N\(F∪N (Hi)))))∪(N (Bi)\N (Hi)), σ′ = Approx (σ, t, ci,G,F),

and B′i = Transformed(Bi,m).



38 Chapter 3. Cuts, Meta-Programming and Rational Terms

Approx replaces some variables by fresh abstract variables:

Approx (σ, t,Hi ← Bi,G,F) =


σ if A(t) ⊆ G and N (t) ⊆ F

σαA\G′ if A(t) ⊆ G and N (t) 6⊆ F

σα(A\G′)∪(N\F ′) if A(t) 6⊆ G

Lemma 3.28 (Soundness of Eval). The rule Eval from Definition 3.27 is sound.

Additionally, for every concretization γ w.r.t. (G,F ,U) with mgu(tγ,Hi) = σ′′ there

is a concretization γ′ w.r.t. (G ′,F ′,Uσ|G) such that γσ′′ = σ′γ′, γ = σ|Gγ′ and

γ|A(t)∪A(Q)∪A(S)∪G∪A(U) = γ′|A(t)∪A(Q)∪A(S)∪G∪A(U).

Proof. Assume (tγ,Qγ)im | Sγ ∈ CON (t, Q | S; (G,F ,U)) has an infinite concrete state-

derivation. There are two cases depending on whether tγ and Hi unify.

First, if tγ does not unify withHi, then the only applicable concrete rule is Backtrack,

which results in Sγ starting an infinite concrete state-derivation. From tγ � Hi and

A(Hi) = ∅ we know Hiγ = Hi and, therefore, tγ � Hiγ. As all variables in Hi are

fresh, we also have N (Range(γ)) ∩ N (Hi) = ∅. Thus, γ is also a concretization w.r.t.

(G,F ∪N (Hi),U ∪ {(t;Hi)}) and Sγ ∈ CON (S; (G,F ∪N (Hi),U ∪ {(t;Hi)})).
Second, if tγ ∼ Hi, we follow the proof from [Sch08] and find that the unique applicable

concrete rule is Eval. From Hiγ = Hi we know that tγ ∼ Hiγ and thus t also unifies with

Hi. Let mgu(tγ,Hi) = σ′′. Then due to Hiγ = Hi and mgu(t,Hi) = σ there must be a

substitution σ′′′ such that γσ′′ = σσ′′′. W.l.o.g., we demand that V(Range(σ′′)) ⊆ Nfresh .

By application of the concrete Eval rule we obtain B′iσ
′′, Qγσ′′ | Sγ where B′i =

Transformed(Bi,m). We are, thus, left to show that B′iσ
′′, Qγσ′′ | Sγ ∈ CON (B′iσ

′, Qσ′ |
Sσ|G; (G ′,F ′,Uσ|G)), i.e., that there is a concretization γ′ w.r.t. (G ′,F ′,Uσ|G) such that

B′iσ
′′ = B′iσ

′γ′, Qγσ′′ = Qσ′γ′, and Sγ = Sσ|Gγ′.
We perform a case analysis over σ′ ∈ {σ, σαA\G′ , σα(A\G′)∪(N\F ′)}.

Case 1: σ′ = σ, i.e., A(t) ⊆ G and N (t) ⊆ F :

Here, we can assume Dom(σ) = G(t) ∪ F(t) ∪ N (Hi). Define γ′(a) = σ′′′(a) for a ∈
A(Range(σ)) and γ′(a) = γ(a) otherwise. As Range(σ) contains only fresh variables, we

clearly have that γ|A(t)∪A(Q)∪A(S)∪G∪A(U) = γ′|A(t)∪A(Q)∪A(S)∪G∪A(U).

W.l.o.g. we can demand that σ′′ is chosen in such a way that σ′′ = σ′′′′ for σ′′′′ =

σ|Nσ′′′|A(Range(σ|N )). This is shown in [Sch08].

We continue by showing that γ′ is a concretization w.r.t. (G ′,F ′,Uσ|G), i.e., γ′|A = γ′,⋃
a∈AA(aγ′) = ∅, Range(γ′|G′) ⊆ GroundTerms(Σ), F ′(Range(γ′)) = ∅, and∧
(t,t′)∈Uσ|G tγ

′ 6∼ t′γ′.

All these properties except for Range(γ′|G′) ⊆ GroundTerms(Σ) are shown in [Sch08].

To show that Range(γ′|G′) ⊆ GroundTerms(Σ), we make a case analysis over a ∈ G ′ =
G ] A(Range(σ|G)). For a ∈ G we know that aγ ∈ GroundTerms(Σ) and by γ′|G
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A(Range(σ))⊆Vfresh∧Def.γ′
= γ|G we obtain aγ′ ∈ GroundTerms(Σ). For a ∈ A(Range(σ|G))

we have aσ|G ∈ FinitePrologTerms(Σ,A) and aγ′ = aσ′′′. For all a′ ∈ Dom(σ|G),
a′σσ′′′

Def.σ′′′
= a′γσ′′

a′∈G
∈ GroundTerms(Σ). Thus, aγ′ ∈ GroundTerms(Σ).

Now, we are left to show that B′iσ
′′ = B′iσ

′γ′, Qγσ′′ = Qσ′γ′, and Sγ = Sσ|Gγ′, which

is also shown in [Sch08]. Thus, γσ′′ = σ′γ′ and γ = σ|Gγ′ follows from the fact that we

only defined γ′ differently from γ for fresh variables.

This concludes the case of σ′ = σ.

Case 2: σ′ = σαA\G′ , i.e., A(t) ⊆ G and N (t) 6⊆ F :

Here, we can assume Dom(σ) = G(t) ∪ N (t) ∪ N (Hi). Define γ′(a) = σ′′′(a) for a ∈
A(Range(σ)), αA\G′γ

′(a) = σσ′′′(a) for a ∈ A \ G ′, and γ′(a) = γ(a) otherwise. This

is possible as all variables in the ranges of σ and αA\G′ are fresh. As Range(σ) ∪
Range(αA\G′) contains only fresh variables and Dom(αA\G′) = A \ G ′, we also have that

γ|A(t)∪A(Q)∪A(S)∪G∪A(U) = γ′|A(t)∪A(Q)∪A(S)∪G∪A(U).

First, w.l.o.g. we can demand that σ′′ is chosen in such a way that σ′′ =

σ|Nσ′′′|A(Range(σ|N )) as shown in [Sch08].

We continue by showing that γ′ is a concretization w.r.t. (G ′,F ′,Uσ|G), i.e., γ′|A = γ′,⋃
a∈AA(aγ′) = ∅, Range(γ′|G′) ⊆ GroundTerms(Σ), F ′(Range(γ′)) = ∅, and∧
(t,t′)∈Uσ|G tγ

′ 6∼ t′γ′.

All these properties except for Range(γ′|G′) ⊆ GroundTerms(Σ) are shown in [Sch08].

Range(γ′|G′) ⊆ GroundTerms(Σ) follows from the identical argument as in the case

σ′ = σ.

Now, we are left to show that B′iσ
′′ = B′iσ

′γ′, Qγσ′′ = Qσ′γ′, and Sγ = Sσ|Gγ′, which

is also shown in [Sch08]. Thus, γσ′′ = σ′γ′ and γ = σ|Gγ′ follows from the fact that we

only defined γ′ differently from γ for fresh variables.

This concludes the case of σ′ = σαA\G′ .

Case 3: σ′ = σα(A\G′)∪(N\F ′), i.e., A(t) 6⊆ G:

Here, we can assume Dom(σ) = A(t) ∪ N (t) ∪ N (Hi). Define γ′(a) = σ′′′(a) for a ∈
A(Range(σ)), α(A\G′)∪(N\F ′)γ

′(a) = σσ′′′(a) for a ∈ (A \ G ′) ∪ (N \ F ′), and γ′(a) = γ(a)

otherwise. This is possible as all variables in the ranges of σ and α(A\G′)∪(N\F ′) are fresh.

As Range(σ)∪Range(α(A\G′)∪(N\F ′)) contains only fresh variables and Dom(α(A\G′)∪(N\F ′))

= (A\G ′)∪ (N \F ′), we also have that γ|A(t)∪A(Q)∪A(S)∪G∪A(U) = γ′|A(t)∪A(Q)∪A(S)∪G∪A(U).

First, w.l.o.g. we can demand that σ′′ is chosen in such a way that σ′′ = σ′′′′ for

σ′′′′|F∪N (Hi) = σ|F∪N (Hi)σ
′′′|A(Range(σ|F∪N (Hi)

)) and σ′′′′|N\(F∪N (Hi)) = σ′′|N\(F∪N (Hi)). This

is shown in [Sch08], too.

We are left to show that γ′ is a concretization w.r.t. (G ′,F ′,Uσ|G), i.e., γ′|A = γ′,⋃
a∈AA(aγ′) = ∅, Range(γ′|G′) ⊆ GroundTerms(Σ), F ′(Range(γ′)) = ∅, and∧
(t,t′)∈Uσ|G tγ

′ 6∼ t′γ′.
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Again, all these properties except for Range(γ′|G′) ⊆ GroundTerms(Σ) are shown in

[Sch08].

By the identical argument as for the case of σ′ = σ, we obtain Range(γ′|G′) ⊆
GroundTerms(Σ).

Now, we are left to show that B′iσ
′′ = B′iσ

′γ′, Qγσ′′ = Qσ′γ′, and Sγ = Sσ|Gγ′, which

is finally shown in [Sch08] as well. Thus, γσ′′ = σ′γ′ and γ = σ|Gγ′ follows from the fact

that we only defined γ′ differently from γ for fresh variables.

This concludes the case of σ′ = σα(A\G′)∪(N\F ′) and, consequently, our proof for the

soundness of the Eval rule.

Lemma 3.29 (Soundness of OnlyEval). The rule OnlyEval from Definition 3.27 is

sound. Additionally, for every concretization γ w.r.t. (G,F ,U) with mgu(tγ,Hi) = σ′′

there is a concretization γ′ w.r.t. (G ′,F ′,Uσ|G) such that γσ′′ = σ′γ′, γ = σ|Gγ′ and

γ|A(t)∪A(Q)∪A(S)∪G∪A(U) = γ′|A(t)∪A(Q)∪A(S)∪G∪A(U).

Proof. We have to show that if there is an infinite concrete state-derivation starting in

(tγ,Qγ)im | Sγ ∈ CON ((t, Q)im | S; (G,F ,U)) then there is an infinite concrete state-

derivation starting in B′iσ
′γ′, Qσ′γ′ | Sσ|Gγ′ ∈ CON (B′iσ

′, Qσ′ | Sσ|G; (G ′,F ′,Uσ|G))
and the additional conditions for the substitutions used in this rule. Since the On-

lyEval rule is identical to the Eval rule if we drop the right successor state of the

Eval rule and all conditions of the Eval rule are implied by the conditions of the

OnlyEval rule, we are left to show that there is no concretization γ w.r.t. (G,F ,U)

for which we have tγ � Hi. Then the soundness of the OnlyEval rule and all ad-

ditional conditions for the substitutions used in this rule are implied by the sound-

ness and the identical conditions of the Eval rule. We show the equivalent condition:

∀γ : (γ is a concretization w.r.t. (G,F ,U) =⇒ tγ ∼ Hi).

So let γ be a concretization w.r.t. (G,F ,U). We show tγ ∼ Hi by defining a unifier σ′′ of

tγ and Hi. Since σ|A : Dom(σ|A) → Range(σ|A) is bijective and Range(σ|A) ⊆ A, there

is a substitution σ−1 with σ−1(σ(a)) = a for all a ∈ Dom(σ|A) and σ−1(x) = x otherwise.

So we have σσ−1 = σ|N . As we have tσ = Hiσ, we obtain tσσ−1 = Hiσσ
−1 ⇐⇒ tσ|N =

Hiσ|N . We define σ′′ = σ|Nγ. Then we have:

tγσ′′
Def.σ′′

= tγσ|Nγ
Dom(γ)⊆A∧γγ=γ

= tσ|Nγγ
tσ|N=Hiσ|N

= Hiσ|Nγγ
Dom(γ)⊆A∧γγ=γ

= Hiγσ|Nγ
Def.σ′′

= Hiγσ
′′

Dom(γ)⊆A
= Hiσ

′′
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With these abstract rules any concrete state-derivations for sets of concrete states us-

ing the rules from Definition 3.11 can be simulated. If we obtain a finite abstract state-

derivation with the abstract inference rules introduced so far, we can in fact infer termi-

nation of P w.r.t. the class of queries represented by the root node of the state-derivation

tree. Unfortunately, in general we will obtain infinite state-derivation trees. This is even

true for terminating goals, as the number of times an abstract evaluation may succeed is

not limited. This is due to the absence of a bound on the size of the terms represented

by abstract variables. The following example illustrates this problem.

Example 3.30. Consider again the Prolog program even.pl from Example 3.3 and the

query set Q = {even(t) | t is ground}. Clearly, the program terminates w.r.t. Q.

Now, consider the tree built using the rules from Parts 1 – 3. For simplicity and as

there are no cuts in this example, we omit the question marks and scopes. Also, we drop

information from the knowledge base which is not relevant for the current state anymore.

We will show in the next section that this is still correct.

even(T1); ({T1},∅,∅) (even(T1))19; ({T1},∅,∅)
Case

eq(Y, f(e, f(o, Y ))), c(Y, T2); ({T2}, {Y },∅)
OnlyEval

T1/T2

(eq(Y, f(e, f(o, Y ))), c(Y, T2))22; ({T2}, {Y },∅)

Case

c(f(e, f(o, ∗∗)), T2); ({T2},∅,∅)
OnlyEval

Y/f(e, f(o, ∗∗))

(c(f(e, f(o, ∗∗)), T2))20 | (c(f(e, f(o, ∗∗)), T2))21; ({T2},∅,∅)

Case

(c(f(e, f(o, ∗∗)), T2))21; ({T2}, {Z}, {(c(f(e, f(o, ∗∗)), T2), c(f(e, Z), 0))})

Eval

2 | (c(f(e, f(o, ∗∗)), 0))21; (∅,∅,∅)

Eval

T2/0

(c(f(e, f(o, ∗∗)), 0))21; (∅,∅,∅)

Success

c(f(o, f(e, ∗∗)), T3); ({T3},∅,∅)

EvalT2/s(T3)

ε; (∅,∅,∅)

Eval

ε; (∅,∅,∅)

Backtrack

(c(f(o, f(e, ∗∗)), T3))20 | (c(f(o, f(e, ∗∗)), T3))21; ({T3},∅,∅)

Case

(c(f(o, f(e, ∗∗)), T3))21; ({T3},∅,∅)

Backtrack

c(f(e, f(o, ∗∗)), T4); ({T4},∅,∅)

EvalT3/s(T4)

ε; (∅,∅,∅)

Eval

. . .

Case

Obviously, we obtain an infinite tree by continuing this process.

Therefore, to obtain finite graphs instead of infinite trees, we need a possibility to close

the graph by referring back to already existing states. We introduce additional abstract

inference rules for this purpose in the following section.
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3.3 Finite Analysis

In order to avoid infinite graphs in spite of the fact that we do not have a bound on the

size of the terms occurring in our states, we will define an Instance rule, which can be

used to refer back to an already existing state. Thus, we construct cyclic graphs instead

of infinite trees. This Instance rule has to ensure that the termination of the current

state (called instance child) is implied by the termination of the state which we instantiate

(called instance father). The instantiation is done by a matching substitution respecting

the knowledge bases in the considered states and a renaming of the scopes occurring in

the states in question. Then we can conclude termination of those states if the cyclic

evaluation represented in the termination graph is well founded. To this end, we show

in Chapter 7 how to extract dependency triple problems from termination graphs where

termination of the dependency triple problems implies termination of the root states in

the termination graphs.

Before we start, we define the notion of a scope variant and show that different scope

variants allow for exactly the same concrete state-derivations. This property is used for

the soundness proof of Instance, later.

Definition 3.31 (Scope Variant). Given a concrete (abstract) state S, we call a concrete

(abstract) state S ′ a scope variant of S, iff there is a bijection f : IN→ IN, both states have

the same length and the following conditions are satisfied for all i ∈ {1, . . . , length(S)}
and elements ei of S at position i and e′i of S ′ at position i:

• If ei is an unlabeled list of terms t, then e′i is an unlabeled list of terms t′ with

t′ = t[!j/!f(j)∀j ∈ IN].

• If ei is a labeled list of terms trs, then e′i is a labeled list of terms t′rf(s) with t′ =

t[!j/!f(j)∀j ∈ IN].

• If ei = ?s, then e′i = ?f(s).

Example 3.32. Consider the state p, !1 | (p)2
1 | ?1. A scope variant of this state is for

example p, !2 | (p)2
2 | ?2.

Note that if S ′ is a scope variant of S then S is also a scope variant of S ′ as the

transformation between them is bijective.

Intuitively, a scope variant of some state is just a renaming of the scopes used in it and

represents exactly the same concrete state-derivations. This is shown by the following

two lemmata.

Lemma 3.33 (Equivalent Concrete State-Derivations for Concrete Scope Variants). Given

a concrete state S and a scope variant S ′ of S, all concrete state-derivations possible for

S are also possible for S ′.



3.3. Finite Analysis 43

Proof. To show Lemma 3.33 it is sufficient to show that for all concrete rules the applica-

bility of a rule for S implies the applicability for S ′ and after application of the rule the

resulting states are still scope variants of each other. We perform a case analysis over the

applicability of the concrete inference rules for S.

• Success is applicable:

Then we have S = 2 | S ′′. Since S ′ is a scope variant of S, we also have S ′ = 2 | S ′′′

and Success is applicable for S ′, too. After application of Success we obtain the

states S ′′ and S ′′′, which are scope variants of each other as 2 | S ′′ and 2 | S ′′′ are

scope variants.

• Failure is applicable:

Then we have S =?s | S ′′ and as S ′ is a scope variant of S, we also have S ′ =

?f(s) | S ′′′. Thus, Failure is applicable for S ′, too. After application of Failure

we obtain the states S ′′ and S ′′′, which are scope variants of each other as ?s | S ′′

and ?f(s) | S ′′′ are scope variants.

• VariableError is applicable:

Then we have S = call(x), Q | S ′′ and as S ′ is a scope variant of S, we also have

S ′ = call(x), Q′ | S ′′′. Thus, VariableError is applicable for S ′, too. After

application of VariableError we obtain the states ε and ε, which clearly are

scope variants of each other.

• UndefinedError is applicable:

Then we have S = t, Q | S ′′ where Slice(P , t) = ∅ and as S ′ is a scope variant of

S, we also have S ′ = t′, Q′ | S ′′′ with Slice(P , t′) = ∅. Thus, UndefinedError is

applicable for S ′, too. After application of VariableError we obtain the states

ε and ε, which clearly are scope variants of each other.

• Cut is applicable:

Then we have S =!s, Q | S ′′ |?s | S ′′′ with S ′′ contains no ?s and as S ′ is a scope

variant of S, we also have S ′ =!f(s), Q
′ | S ′′′′ |?f(s) | S ′′′′′ with S ′′′′ contains no

?f(s). Thus, Cut is applicable for S ′, too. After application of Cut we obtain the

states Q |?s | S ′′′ and Q′ |?f(s) | S ′′′′′, which are scope variants of each other as

!s, Q | S ′′ |?s | S ′′′ and !f(s), Q
′ | S ′′′′ |?f(s) | S ′′′′′ are scope variants.

• CutAll is applicable:

Then we have S =!s, Q | S ′′ with S ′′ contains no ?s and as S ′ is a scope variant

of S, we also have S ′ =!f(s), Q
′ | S ′′′ with S ′′′ contains no ?f(s). Thus, CutAll is

applicable for S ′, too. After application of CutAll we obtain the states Q and

Q′, which are scope variants of each other as !s, Q | S ′′ and !f(s), Q
′ | S ′′′ are scope

variants.
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• Case is applicable:

Then we have S = t, Q | S ′′ and as S ′ is a scope variant of S, we also have S ′ = t′, Q′ |
S ′′′. Thus, Case is applicable for S ′, too. After application of Case we obtain the

states (t, Q)i1m | . . . | (t, Q)ikm | ?m | S ′′ and (t′, Q′)
i′1
n | . . . | (t′, Q′)

i′
k′
n | ?n | S ′′′, where

m and n are fresh, i1 < . . . < ik, i
′
1 < . . . < i′k′ , Slice(P , t) = {ci1 , . . . , cik} and

Slice(P , t′) = {ci′1 , . . . , ci′k′}. As S and S ′ are scope variants, t and t′ have the

same root symbol and, thus, we have Slice(P , t) = Slice(P , t′). W.l.o.g. we can

also demand f(m) = n as both m and n are fresh. Hence, the second state is

(t′, Q′)i1f(m) | . . . | (t′, Q′)ikf(m) | ?f(m) | S ′′′, which is a scope variant of (t, Q)i1m | . . . |
(t, Q)ikm | ?m | S ′′ as t, Q | S ′′ and t′, Q′ | S ′′′ are scope variants.

• Eval is applicable:

Then we have S = (t, Q)im | S ′′ with ci = Hi ← Bi and mgu(t,Hi) = σ and as S ′

is a scope variant of S, we also have S ′ = (t′, Q′)if(m) | S ′′′ with mgu(t′, Hi) = σ′.

Thus, Eval is applicable for S ′, too. After application of Eval we obtain the

states B′iσ,Qσ | S ′′ and B′′i σ
′, Q′σ′ | S ′′′, where B′i = Transformed(Bi,m) and

B′′i = Transformed(Bi, f(m)). As S and S ′ are scope variants, we have for all

terms r ∈ Range(σ) and r′ ∈ Range(σ′) that r′ = r[!j/!f(j)∀j ∈ IN] and Dom(σ) =

Dom(σ′). Hence, B′iσ,Qσ | S ′′ and B′′i σ
′, Q′σ′ | S ′′′ are scope variants of each other

as (t, Q)im | S ′′ and (t′, Q′)if(m) | S ′′′ are scope variants.

• Backtrack is applicable:

Then we have S = (t, Q)im | S ′′ where ci = Hi ← Bi and t � Hi. As S ′ is a scope

variant of S, we also have S ′ = (t′, Q′)if(m) | S ′′′ where t′ � Hi. Thus, Backtrack

is applicable for S ′, too. After application of Backtrack we obtain the states S ′′

and S ′′′, which are scope variants of each other as (t, Q)im | S ′′ and (t′, Q′)if(m) | S ′′′

are scope variants.

• Call is applicable:

Then we have S = call(t′), Q | S ′′ where t′ ∈ PrologTerms(Σ,V) \ V and t′ has

only finitely many predication positions. As S ′ is a scope variant of S, we also

have S ′ = call(t′′), Q′ | S ′′′ where t′′ ∈ PrologTerms(Σ,V) \ V and t′′ has only

finitely many predication positions. Thus, Call is applicable for S ′, too. After

application of Call we obtain the states t′′′, Q | ?m | S ′′ and t′′′′, Q′ | ?m′ | S ′′′ where

t′′′ = Transformed(t′,m) and t′′′′ = Transformed(t′′,m′). As m and m′ are fresh,

we can demand m′ = f(m). Since the transformation by the function Transformed

uses the same scope for all cuts in predication positions, the reached states are scope

variants of each other as call(t′), Q | S ′′ and call(t′′), Q′ | S ′′′ are scope variants.
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Lemma 3.34 (Equivalent Concrete State-Derivations for Abstract Scope Variants). Given

an abstract state S and a scope variant S ′ of S, for every concrete state Sc represented by

S there exists a concrete state S ′c represented by S ′ such that all concrete state-derivations

possible for Sc are also possible for S ′c.

Proof. As concretizations only replace abstract variables, we have for every concretization

γ that S ′γ is a scope variant of Sγ. By Lemma 3.33 we obtain that all concrete state-

derivations possible for Sγ are also possible for S ′γ.

Example 3.35. Consider again the graph from Example 3.30. The abstract state

c(f(e, f(o, ∗∗)), T2); ({T2},∅,∅) of the fourth node and the abstract state

c(f(e, f(o, ∗∗)), T4); ({T4},∅,∅) of the last node are very similar. Indeed, if one uses a

substitution µ = {T2/T4} we see that the last state is an instance of the fourth state.

The basic idea of the following Instance rule is that we can show that some abstract

state is an instance of another abstract state, instead of showing that the abstract state

is terminating by applying the abstract inference rules from Parts 1 – 3. Let S; (G,F ,U)

be the instance child and S ′; (G ′,F ′,U ′) the instance father, i.e., there is a substitution µ

such that S = S ′µ.

To define a sound Instance rule, we must make sure that for every concrete state-

derivation for some concrete state represented by the instance child, we have the same

concrete state-derivation for some concrete state represented by the instance father. In

particular, the matching substitution µ must respect the knowledge in both states. Thus,

we have to ensure that all abstract variables from G ′ are instantiated by µ to a term

for which all variables are from G. As we consider unification without occurs-check, we

have to ensure that ground terms are replaced by finite terms, too. So we demand for all

a ∈ G ′, that aµ ∈ FinitePrologTerms(Σ,G). While we may not instantiate non-abstract

variables in general as such variables do not represent any other term than themselves, we

allow µ to be a variable renaming on N . This is correct as every concrete state-derivation

for some goal works identically for a goal where all variables are renamed. However,

this renaming must respect the knowledge about free variables. Hence, we demand that

F ′µ ⊆ F . Furthermore, µ must not instantiate abstract variables with terms containing

free variables. To avoid this, we demand F ′µ(Range(µ|A)) = ∅. Finally, we have to show

that the non-unification information in U ′ is implied by the one in U . This can be ensured

by having U ′µ being a subset of U .

While the Instance rule from [Sch08] is also used for generalization, we distinguish

between the application of the Instance rule to already existing states in our graph and

the application of the Generalization rule to new states to obtain a more intuitive

description for the heuristic in Chapter 6. Apart from this, the two rules are identical.
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Definition 3.36 (Abstract Inference Rules – Part 4 (Instance, Generalization)).

S; (G,F ,U)

S ′; (G ′,F ′,U ′)
(Instance)

if there is a µ such that S = S ′′µ for a scope variant S ′′ of S ′, for all a ∈ G ′, aµ ∈
FinitePrologTerms(Σ,G), µ|N is a variable renaming, F ′µ ⊆ F , F ′µ(Range(µ|A)) = ∅,

U ′µ ⊆ U and the state (S ′; (G ′,F ′,U ′)) is already existing in our graph.

S; (G,F ,U)

S ′; (G ′,F ′,U ′)
(Generalization)

if there is a µ such that S = S ′′µ for a scope variant S ′′ of S ′, for all a ∈ G ′, aµ ∈
FinitePrologTerms(Σ,G), µ|N is a variable renaming, F ′µ ⊆ F , F ′µ(Range(µ|A)) = ∅,

U ′µ ⊆ U and the state (S ′; (G ′,F ′,U ′)) is not already existing in our graph.

Lemma 3.37 (Soundness of Instance). The rule Instance from Definition 3.36 is

sound. Additionally, for every concretization γ w.r.t. (G,F ,U) there is a concretization

γ′ w.r.t. (G ′,F ′,U ′) such that Sγ = S ′′γ′µ|N .

Proof. Assume we have an infinite concrete state-derivation starting from Sγ ∈
CON (S; (G,F ,U)). We show that there is a substitution γ′ such that S ′γ′ ∈
CON (S ′; (G ′,F ′,U ′)) and S ′γ′ has an infinite concrete state-derivation.

For this purpose, we first show that S ′′γ′ ∈ CON (S ′′; (G ′,F ′,U ′)) has an infinite con-

crete state-derivation.

Following the proof in [Sch08], there must be a µ−1 such that µ|Nµ−1 = µ−1µ|N = id

as µ|N is a variable renaming. Let γ′ = µγµ−1. Clearly, as S ′′µ = S and µ−1 is a

variable renaming, S ′′γ′ = Sγµ−1 has an infinite concrete state-derivation. Additionally,

we have that S ′′γ′µ|N = Sγµ−1µ|N = Sγ. We are left to show that γ′ is a concretization

w.r.t. (G ′,F ′,U ′), i.e., γ′|A = γ′,
⋃
a∈AA(aγ′) = ∅, Range(γ′|G′) ⊆ GroundTerms(Σ),

F ′(Range(γ′)) = ∅, and
∧

(t,t′)∈U tγ
′ 6∼ t′γ′.

All these properties except for Range(γ′|G′) ⊆ GroundTerms(Σ) are shown in [Sch08].

We know that for all a ∈ G ′, aµ ∈ FinitePrologTerms(Σ,G). Further, as γ is a con-

cretization w.r.t. (G,F ,U) we know that for all a ∈ G, aγ ∈ GroundTerms(Σ). Thus,

for all a ∈ G ′, we have aγ′
Def.γ′

= aµγµ−1 = aµγ ∈ GroundTerms(Σ) and, therefore,

Range(γ′|G′) ⊆ GroundTerms(Σ).

Since S ′′ is a scope variant of S ′ and γ′ replaces only abstract variables, S ′′γ′ is also

a scope variant of S ′γ′. As S ′′γ′ ∈ CON (S ′′; (G ′,F ′,U ′)) has an infinite concrete state-

derivation, we obtain by Lemma 3.34 that S ′γ′ ∈ CON (S ′; (G ′,F ′,U ′)) has an infinite

concrete state-derivation, too.
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Lemma 3.38 (Soundness of Generalization). The rule Generalization from

Definition 3.36 is sound. Additionally, for every concretization γ w.r.t. (G,F ,U) there is

a concretization γ′ w.r.t. (G ′,F ′,U ′) such that Sγ = S ′′γ′µ|N .

Proof. Since the Generalization rule is identical to the Instance rule except for the

existence condition of a state in the graph and this condition does not affect the con-

crete states represented by an abstract state, the soundness of the Generalization rule

and the additional conditions for the substitutions used in this rule are implied by the

soundness and the identical conditions of the Instance rule.

Example 3.39. Now, we can close the graph from Example 3.30 using Instance and

obtain the following finite graph.

even(T1); ({T1},∅,∅)

(even(T1))19; ({T1},∅,∅)

Case

eq(Y, f(e, f(o, Y ))), c(Y, T2); ({T2}, {Y },∅)

OnlyEvalT1/T2

(eq(Y, f(e, f(o, Y ))), c(Y, T2))22; ({T2}, {Y },∅)

Case

c(f(e, f(o, ∗∗)), T2); ({T2},∅,∅)

OnlyEvalY/f(e, f(o, ∗∗))

(c(f(e, f(o, ∗∗)), T2))20 | (c(f(e, f(o, ∗∗)), T2))21; ({T2},∅,∅)

Case

(c(f(e, f(o, ∗∗)), T2))21; ({T2}, {Z}, {(c(f(e, f(o, ∗∗)), T2), c(f(e, Z), 0))})

Eval

2 | (c(f(e, f(o, ∗∗)), 0))21; (∅,∅,∅)

Eval

T2/0

(c(f(e, f(o, ∗∗)), 0))21; (∅,∅,∅)

Success

c(f(o, f(e, ∗∗)), T3); ({T3},∅,∅)

EvalT2/s(T3)

ε; (∅,∅,∅)

Eval

ε; (∅,∅,∅)

Backtrack

(c(f(o, f(e, ∗∗)), T3))20 | (c(f(o, f(e, ∗∗)), T3))21; ({T3},∅,∅)

Case

(c(f(o, f(e, ∗∗)), T3))21; ({T3},∅,∅)

Backtrack

c(f(e, f(o, ∗∗)), T4); ({T4},∅,∅)

EvalT3/s(T4)

Instance

ε; (∅,∅,∅)

Eval

Note that we used some simplifications in the example above. First, we dropped infor-

mation from the knowledge bases. This is correct due to the Generalization rule.

The Generalization rule can be used for three purposes. The first possibility is to

generalize a knowledge base. This allows for example to get rid of superfluous information.
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Example 3.40. We already used Generalization implicitly in Example 3.30 and

Example 3.39 to drop information from the knowledge bases which is not relevant for

the respective states anymore. To show the difference explicitly, consider the very simple

Prolog program P consisting of only one clause

p(s(X)) ← p(X). (23)

and the set of queries Q = {p(t) | t is ground} which is already used as an example

in [Sch08]. For the moment, we ignore the question marks and scopes again. Without

Generalization, we obtain the following graph with superfluous information in the

knowledge bases.

p(T1); ({T1},∅,∅)

p(T1)23; ({T1},∅,∅)

Case

p(T2); ({T1, T2},∅,∅)

EvalT1/s(T2)

Instance

ε; ({T1}, {X}, {(p(T1), p(s(X)))})

Eval

Now, using Generalization we can drop the superfluous information.

p(T1); ({T1},∅,∅)

p(T1)23; ({T1},∅,∅)

Case

ε; ({T1}, {X}, {(p(T1), p(s(X)))})

Eval

p(T2); ({T1, T2},∅,∅)

EvalT1/s(T2)

ε; (∅,∅,∅)

Generalization

p(T2); ({T2},∅,∅)

Generalization

Instance

Using Generalization implicitly, we obtain the following more readable graph.

p(T1); ({T1},∅,∅)

p(T1)23; ({T1},∅,∅)

Case

p(T2); ({T2},∅,∅)

EvalT1/s(T2)

Instance

ε; (∅,∅,∅)

Eval

From here on we will always use implicit generalizations in our examples to keep the

knowledge base relevant to the current state. In particular, information about variables

no longer used in the state can safely be disregarded. This specific way of using the

Generalization rule does not lose precision.
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Generalization may also be used to obtain a smaller analysis in cases, where the lost

precision still allows to prove termination and the extracted DT problem is not (much)

harder than the one we obtain without the generalization. Thus, we may improve the

speed of our analysis in such cases.

Example 3.41. Consider the following Prolog program P

q ← p(s(s(s(s(s(s(s(s(s(s(0))))))))))). (24)

p(s(X)) ← p(X). (25)

p(0) ← 2. (26)

and query set Q consisting of the single query q. Instead of evaluating the concrete goal

p(s(s(s(s(s(s(s(s(s(s(0))))))))))) ten times, we can generalize it to p(T1) where we know

that T1 is ground. This goal must only be evaluated once to find an instance and we still

obtain a terminating DT problem for the constructed graph by the transformation from

Chapter 7. While our approach is, of course, not necessary for termination analysis of

such simple programs, one can use similar parts in a more complex program such that

the use of Generalization may offer a significant speed gain.

Third, the use of the Generalization rule is for example needed for programs where

terms are growing during the evaluation and those terms do not contain variables. While

this way of using the Generalization rule may significantly lose precision, it is necessary

to obtain a finite analysis in such cases.

Example 3.42. Consider the following Prolog program ts08.pl:

q(X) ← p(X, 0). (27)

p(0, X) ← 2. (28)

p(s(X), Y ) ← p(X, s(Y )). (29)

For queries of the form q(t) where t is ground, the program terminates. But as the second

argument of p grows in each evaluation step by one s symbol and it does not contain any

variables, there will never be an already existing state where we can apply the Instance

rule to. However, by generalizing the term s(0) to a fresh ground variable, we can use

the Generalization rule to a new state which can then be used for instantiation after

further evaluation. Again, we ignore the question marks and scopes for the moment.
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q(T1); ({T1},∅,∅) q(T1)27; ({T1},∅,∅)
Case

p(T2, 0); ({T2},∅,∅)
OnlyEval

T1/T2

p(T2, 0)28 | p(T2, 0)29; ({T2},∅,∅)

Case

2 | p(0, 0)29; (∅,∅,∅)

Eval

T2/0

p(T2, 0)29; ({T2}, {X}, {(p(T2, 0), p(0, X))})

Eval

p(0, 0)29; (∅,∅,∅)

Success

p(T3, s(0)); ({T3},∅,∅)

EvalT2/s(T3)

ε; (∅,∅,∅)

Eval

ε; (∅,∅,∅)

Backtrack

p(T3, s(0))28 | p(T3, s(0))29; ({T3},∅,∅)

Case

2 | p(0, s(0))29; (∅,∅,∅)

Eval

T3/0

p(T3, s(0))29; ({T3}, {X}, {(p(T3, s(0)), p(0, X))})

Eval

p(0, s(0))29; (∅,∅,∅)

Success

p(T4, s(s(0))); ({T4},∅,∅)

EvalT3/s(T4)

ε; (∅,∅,∅)

Eval

ε; (∅,∅,∅)

Backtrack

p(T4, s(T5); ({T4, T5},∅,∅)

Generalization

p(T4, s(T5))28 | p(T4, s(T5))29; ({T4, T5},∅,∅)

Case

2 | p(0, s(T6))29; ({T6},∅,∅)

Eval

T4/0, T5/T6

p(T4, s(T5))29; ({T4, T5}, {X}, {(p(T4, s(T5)), p(0, X))})

Eval

p(0, s(T6))29; ({T6},∅,∅)

Success

p(T7, s(s(T8))); ({T7, T8},∅,∅)

Eval

T4/s(T7), T5/T8

Instance

ε; (∅,∅,∅)

Eval

ε; (∅,∅,∅)

Backtrack

Where and when to use Generalization for an advantageous analysis is not easy

to decide. We will present a heuristic in Chapter 6 which has shown to be successful in

practice.

Still, being able to refer back to already existing states and to generalize states is not

enough to obtain an expedient finite analysis as we do not want to construct cycles only

consisting of Instance and Generalization edges. The following example demon-

strates, that we still cannot close the graph even for simple programs.

Example 3.43. In the last examples we omitted the question marks and scopes to simplify

the graphs. This is not correct in general since cuts may then drop too many state

elements. Still, we need to get rid of superfluous backtracking goals, even if they only

consist of the question marks in order to find instances. To see this, note that we would in

fact still obtain an infinite tree even for the simple Prolog program P from Example 3.40.
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p(T1); ({T1},∅,∅)

p(T1)231 | ?1; ({T1},∅,∅)

Case

p(T2) | ?1; ({T2},∅,∅)

EvalT1/s(T2)

ε; (∅,∅,∅)

Eval

p(T2)232 | ?2 | ?1; ({T2},∅,∅)

Case

p(T3) | ?2 | ?1; ({T3},∅,∅)

EvalT2/s(T3)

ε; (∅,∅,∅)

Eval

. . .

Case

The problem is due to the possibility of introducing new state elements in every evalua-

tion. Thus, the states grow bigger and bigger without reaching a state where we can find

an instance father for. To solve this problem, we introduce the Parallel rule which is

capable of splitting a backtracking list of a state into two separate backtracking lists for its

successor states. Although this rule may lose precision, we virtually always need it to find

instances. But even worse, the splitting of backtracking lists can also be incorrect due to

cuts. The reason for this is that we can split the backtracking list at a point where a cut

removes backtracking goals. Thus, we preserve some backtracking goals from being cut.

These can in turn reach a cut for a lower scope level and, hence, cut off more backtracking

goals than it would have been possible without the splitting of the backtracking list. The

additionally cut off goals may then have an infinite concrete state-derivation and cause

the incorrectness.

Example 3.44. Consider the following Prolog program P

p ← q, !. (30)

p ← p. (31)

q ← !, failure(a). (32)

q ← 2. (33)

failure(b) ← 2. (34)

and the set of queries Q = {p}. This program is not terminating w.r.t. Q as the predicate

q is always failing and, hence, we cannot reach the cut in clause 30. Using Parallel

without any conditions on the backtracking lists, we can construct the following finite

acyclic graph and falsely prove termination. As we do not have any variables in this

example, we omit the knowledge bases for simplicity as they would only consist of empty

sets.
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p

(p)301 | (p)311 | ?1

Case

q, !1 | (p)311 | ?1

OnlyEval

(q, !1)322 | (q, !1)332 | ?2 | (p)311 | ?1

Case

(q, !1)322

Parallel

(q, !1)332 | ?2 | (p)311 | ?1

Parallel

!2, failure(a), !1

OnlyEval

!1 | ?2 | (p)311 | ?1

OnlyEval

failure(a), !1

CutAll

2 | ?1

Cut

(failure(a), !1)343 | ?3

Case

?1

Success

?3

Backtrack

ε

Failure

ε

Failure

To overcome this problem, we must consider the effects of cuts in the backtracking

list. However, not every cut occurring in the backtracking list causes a problem for the

Parallel rule. We introduce the concept of active cuts and active marks to characterize

positions where the splitting of the backtracking list is unproblematic. Both active cuts

and active marks are represented by a subset of IN. Active cuts contain all those m for

which !m occurs in S or (t, Q)im occurs in S and Bi contains a cut where Hi ← Bi is the

i-th clause which is supposed to be applied to (t, Q)im. The latter is due to the fact that

the Eval rule might introduce the cut with the scope m once we reach the corresponding

state element. Likewise, the active marks contain those m for which ?m occurs in S at a

position different from the first or last position. The former is due to the fact that we will

discard question marks at the first position with the Failure rule such that they do not

have any effect for cuts. The latter is possible, as applying the CutAll rule is equivalent

to applying the Cut rule to a state where the corresponding question mark for the cut

in question is at the last position of the state.
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Definition 3.45 (Abstract Inference Rules – Part 5 (Parallel) [Sch08]).

S | S ′;KB

S;KB S ′;KB
(Parallel) if AC(S) ∩ AM(S ′) = ∅

Here, the active cuts AC(S) of a state S are defined as the set of all m such that S = S ′ |
Q, !m, Q

′ | S ′′ or S = S ′ | (t, Q)jm | S ′′ and cj = Hj ← Bj, !, B
′
j, while the active marks

AM(S) of a state S are defined as all m such that S = S ′ | ?m | S ′′ and S ′ 6= ε 6= S ′′.

In [Sch08] the Parallel rule is shown to be sound.

Example 3.46. Consider once more the one-rule logic program from Example 3.40. Now,

using the rules from Parts 1 – 5 we can obtain the following finite tree.

p(T1); ({T1},∅,∅)

p(T1)231 | ?1; ({T1},∅,∅)

Case

?1; (∅,∅,∅)
Parallel

ε; (∅,∅,∅)

Failure

p(T1)231 ; ({T1},∅,∅)

Parallel

ε; (∅,∅,∅)

Eval

p(T2); ({T2},∅,∅)

EvalT1/s(T2)

Instance

By using Parallel and Failure we can always remove question marks at the last

position of a state. In the remainder of the thesis we will always implicitly use these two

rules in such cases.

Example 3.47. Consider for the last time the one-rule logic program from Example 3.40.

Using implicit removal of trailing question marks, we really obtain the last finite graph

from Example 3.40.

p(T1); ({T1},∅,∅)

p(T1)231 ; ({T1},∅,∅)

Case

ε; (∅,∅,∅)

Eval

p(T2); ({T2},∅,∅)

EvalT1/s(T2)

Instance

So far, we have demonstrated how to get rid of trailing question marks using the

Parallel rule. But this is of course not the only purpose for introducing it. In general,

any kind of state elements must be split from the remaining backtracking list to find

instances (and, thus, obtain a finite analysis).
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Example 3.48. We extend the simple Prolog program from Example 3.40 by a fact and

obtain the Prolog program

p(s(X)) ← p(X). (35)

p(X) ← 2. (36)

and the query set Q = {p(t) | t is ground}. This program also clearly terminates w.r.t.

Q.

Now, consider the graph built using the rules from Parts 1 – 5 where Parallel is only

used implicitly to remove trailing question marks:

p(T1); ({T1},∅,∅)

p(T1)351 | p(T1)361 ; ({T1},∅,∅)

Case

p(T1)361 ; ({T1}, {X}, {(p(T1), p(s(X)))})Eval

p(T2) | p(s(T2))361 ; ({T2},∅,∅)

EvalT1/s(T2)

2; (∅,∅,∅)

OnlyEvalT1/T3

ε; (∅,∅,∅)

Success

p(T2)352 | p(T2)362 | p(s(T2))361 ; ({T2},∅,∅)

Case

p(T2)362 | p(s(T2))361 ; ({T2}, {X}, {(p(T2), p(s(X)))})

Eval

p(T4) | p(s(T4))362 | p(s(s(T4)))361 ; ({T4},∅,∅)

EvalT2/s(T4)

. . .

Case

. . .

OnlyEvalT2/T5

This process can obviously be continued infinitely often without encountering an in-

stance of a previous state along the leftmost path. The reason is that each application of

the Case rule produces an additional backtracking goal.

Now, by using Parallel more liberally, we can obtain the following alternative graph:

p(T1); ({T1},∅,∅)

p(T1)351 | p(T1)361 ; ({T1},∅,∅)

Case

p(T1)361 ; ({T1},∅,∅)
Parallel

p(T1)351 ; ({T1},∅,∅)

Parallel

p(T2); ({T2},∅,∅)

EvalT1/s(T2)

Instance

ε; (∅,∅,∅)

Eval

2; (∅,∅,∅)

OnlyEvalT1/T3

ε; (∅,∅,∅)

Success

Thus, we have to use the Parallel rule in these non-trivial cases to close the graph.
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While we are able to close the graph for growing terms (using Generalization) and

growing backtracking lists (using Parallel), we still have a problem due to growing

goals, i.e., growing term lists inside of one state element.

Example 3.49. We again modify the Prolog program from Example 3.40 by appending

an additional goal to the body of the clause and adding a corresponding fact. Thus,

consider the resulting simple Prolog program P

p(s(X)) ← p(X), q. (37)

q ← 2. (38)

and the query set Q = {p(t) | t is ground}. This program again clearly terminates w.r.t.

Q. Now, consider the graph built using the rules from Parts 1 – 5:

p(T1); ({T1},∅,∅)

p(T1)371 ; ({T1},∅,∅)

Case

ε; (∅,∅,∅)

Eval

p(T2), q; ({T2},∅,∅)

EvalT1/s(T2)

p(T2)372 q; ({T2},∅,∅)

Case

ε; (∅,∅,∅)

Eval

p(T3), q, q; ({T3},∅,∅)

EvalT2/s(T3)

. . .

Case

This process can obviously be continued infinitely often without encountering an in-

stance of a previous state along the leftmost path. The reason is that the goal grows by

one q for each application of clause 37.

For splitting goals containing more than one term, we therefore introduce the abstract

Split rule. The basic idea for a state t′, Q | S;KB9 is to consider the first term t′ in

the goal alone and approximate its answer substitution for the remaining goal Q. Again,

we have the same problem as for Parallel. The active cuts in t′, Q must not have a

corresponding active mark in S. In addition to that we must take into account that if the

concrete state-derivation for some concrete state represented by t′;KB fails, we would

have to backtrack to S;KB instead of Q | S;KB. To avoid these problems we restrict

the Split rule to states having only one state element. Using Parallel repeatedly, we

9We use t′ instead of t here as t′ may also have a built-in predicate as its root symbol.
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can always split backtracking lists into single state elements as we will see in the heuristic

presented in Chapter 6.

Thus, we take a state t′, Q; (G,F ,U) and split it into two successors t′; (G,F ,U) and

Qµ; (G ′,F ′,Uµ). Here, µ is an overapproximation of the answer substitutions for t′. All

variables in t′ not being from G are potentially instantiated and, thus, we replace them by

fresh abstract variables. As for the Eval rule, we also have to consider sharing effects. If

t′ contains non-abstract variables not in F , we have to replace all abstract variables not

being from G in Q. If t′ also contains abstract variables not in G, we additionally have to

replace all non-abstract variables not being from F in Q. After instantiating free variables

by µ′, the resulting terms do not necessarily contain free variables anymore. Thus, we

have to drop the free variables in t′ from F ′.
To obtain a more precise analysis, we make use of a groundness analysis for the answer

substitutions µ′. The groundness analysis has to decide whether an argument position of

a function symbol has to be instantiated by a ground term for all answer substitutions.

The information a groundness analysis may use is the program, the function symbol and

a set of argument positions for the function symbol known to be ground. Thus, we can

update the set G ′ by adding those variables introduced by µ which are at a position for

which the groundness analysis knows that only ground terms can be instantiated there

by the answer substitutions.

Finally, we update U by applying the overapproximation µ.

Definition 3.50 (Abstract Inference Rules – Part 6 (Split))).

t′, Q; (G,F ,U)

t′; (G,F ,U) Qµ; (G ′,F ′,Uµ)
(Split)

where t′ 6=!m for some m ∈ IN, t′ 6= call(x) for some x ∈ V, root(t′) ∈ BuiltInPredicates ∨
Slice(P , t′) 6= ∅, µ = ApproxSub(t′,G,F), G ′ = G∪ApproxGnd(t′, µ), and F ′ = F \F(t′).

Here, ApproxSub approximates the substitutions of the answer sets of all concretizations

w.r.t. (G,F ,U) of t′:

ApproxSub(t′,G,F) =


αF(t′) if V(t′) ⊆ G ∪ F

αN (t′)αA\G if A(t′) ⊆ G ∧N (t′) 6⊆ F

αF(t′)αA\GαN\F otherwise

Finally, ApproxGnd approximates the abstract variables that have to be instantiated by

ground terms using a given groundness analysis GroundP : Σ × 2IN → 2IN which given a

predicate p and a set of ground argument positions computes the set of ground arguments

positions after a successful computation using the clauses from P:

ApproxGnd(t′, µ) = {A(tiµ) | t′ = p(t1, . . . , tn), i ∈ GroundSlice(P,t′)(p, {i | V(ti) ⊆ G})}



3.3. Finite Analysis 57

In addition to the conventions we already introduced for Definition 3.11 and

Definition 3.21, we consider t′ to be an arbitrary term from PrologTerms(Σ,V).

Lemma 3.51 (Soundness of Split). The rule Split from Definition 3.50 is sound. Addi-

tionally, for every concretization γ w.r.t. (G,F ,U) and for every answer substitution µ′ of

a successful concrete state-derivation for tγ, there is a concretization γ′ w.r.t. (G ′,F ′,Uµ)

such that γµ′ = µγ′ and γ|A(t)∪A(Q)∪G∪A(U) = γ′|A(t)∪A(Q)∪G∪A(U).

Proof. Assume that t′γ,Qγ ∈ CON (t′, Q; (G,F ,U)) has an infinite concrete state-deriva-

tion. Then, following the proof in [Sch08], there are two cases. If t′γ has an infinite

concrete state-derivation, we immediately have that t′γ ∈ CON (t′; (G,F ,U)) has an in-

finite concrete state-derivation. If t′γ does not have an infinite concrete state-derivation

and we did not reach a state of the form Qγµ′ | S ′γ for some answer substitution µ′ and

state S ′, we would reach the state ε, which contradicts our assumption that t′γ,Qγ has an

infinite concrete state-derivation. Therefore, if t′γ does not have an infinite concrete state-

derivation, we reach states of the form Qγµ′ | S ′γ for answer substitutions µ′ and states

S ′. If all Qγµ′ did not have an infinite concrete state-derivation, this would contradict

our assumption that t′γ,Qγ has an infinite concrete state-derivation. Thus, there must

be a state Qγµ′ that has an infinite concrete state-derivation. We now show that there

is a concretization γ′ w.r.t. (G ′,F ′,Uµ) such that γµ′ = µγ′ for all answer substitutions

µ′ corresponding to a successful concrete state-derivation of tγ. Then, in particular, we

have an infinite concrete state-derivation from Qµγ′ ∈ CON (Qµ; (G ′,F ′,Uµ)). There are

three subcases.

First, if V(t′) ⊆ G ∪ F we have t′γ ∈ PrologTerms(Σ,F) as γ is a concretization and,

therefore, for all a ∈ G(t′), aγ ∈ GroundTerms(Σ). Thus, we have Dom(µ′) ⊆ F(t′γ).

From µ = αF(t′) we know that for all x ∈ F(t′γ) = F(t′), xµ ∈ A is a fresh variable.

We define γ′(xµ) = xµ′ for x ∈ F(t′) and γ′(x) = γ(x) otherwise. Then, obviously,

γµ′ = µγ′ and γ|A(t)∪A(Q) = γ′|A(t)∪A(Q). We are left to show that γ′ is a concretization

w.r.t. (G ′,F ′,Uµ), i.e., γ′|A = γ′,
⋃
a∈AA(aγ′) = ∅, Range(γ′|G′) ⊆ GroundTerms(Σ),

F ′(Range(γ′)) = ∅, and
∧

(s,s′)∈Uµ sγ
′ 6∼ s′γ′.

All these properties except for Range(γ′|G′) ⊆ GroundTerms(Σ) are shown in [Sch08].

We perform a case analysis based on the partition G ′ = G ] (ApproxGnd(t′, µ) \ G).

For a ∈ G we have defined aγ′ = aγ and thus aγ′ ∈ GroundTerms(Σ). For a ∈
ApproxGnd(t′, µ) \ G by definition of ApproxGnd and equality of γµ′ and µγ′ we know

that aγ′ ∈ GroundTerms(Σ).

Second, if A(t′) ⊆ G, but N (t′) 6⊆ F , the answer substitution µ′ can instantiate non-

abstract variables in t′ which might occur in the terms represented by the abstract vari-

ables in Q. However, µ′ cannot instantiate non-abstract variables not occurring in t′. We

define γ′ in such a way that γµ′ = µγ′ and γ|A(t)∪A(Q) = γ′|A(t)∪A(Q). This is always pos-

sible because Dom(µ′) ∩ (N \ N (t)) = ∅ and all variables in Range(µ) are fresh. Then,
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clearly, Qγµ′ = Qµγ. We are left to show that γ′ is a concretization w.r.t. (G ′,F ′,Uµ). As

we only need to define γ′ for abstract variables, clearly γ′|A = γ′. FromA(Range(µ′)) = ∅
and

⋃
a∈AA(aγ) = ∅ we know that

⋃
a∈AA(aγ′) = ∅. We perform a case analysis based

on the partition G ′ = G ] (ApproxGnd(t′, µ) \ G). For a ∈ G we have effectively defined

aγ′ = aγ and thus aγ′ ∈ GroundTerms(Σ). For a ∈ ApproxGnd(t′, µ) \ G by definition

of ApproxGnd and equality of γµ′ and µγ′ we again know that aγ′ ∈ GroundTerms(Σ).

Furthermore, note that w.l.o.g. F(Range(µ′)) ⊆ F(t′) and F(Range(γ)) = ∅. Thus,

F(Range(γ′)) ⊆ F(t′) and, consequently, F ′(Range(γ′)) = ∅. For all (s, s′) ∈ U we have

sγ 6∼ s′γ and, consequently sγµ′ 6∼ s′γµ′. But from sγµ′ = sµγ′ and s′γµ′ = s′µγ′ we get

sµγ′ 6∼ s′µγ′. Thus, for all (s′′, s′′′) ∈ Uµ, we have sγ′ 6∼ s′γ′.

Third, if V(t′) 6⊆ G ∪F , the answer substitution µ′ can potentially instantiate any non-

ground term in Qγ except for variables from F(Q)\F(t′). We define γ′ in such a way that

γµ′ = µγ′ and γ|A(t)∪A(Q) = γ′|A(t)∪A(Q). This is always possible because Dom(µ′) ∩ (F \
F(t′)) = ∅ and all variables in Range(µ) are fresh. Then, clearly, Qγµ′ = Qµγ′. We are

left to show that γ′ is a concretization w.r.t. (G ′,F ′,Uµ), i.e., γ′|A = γ′,
⋃
a∈AA(aγ′) = ∅,

Range(γ′|G′) ⊆ GroundTerms(Σ), F ′(Range(γ′)) = ∅, and
∧

(s,s′)∈Uµ sγ
′ 6∼ s′γ′.

All these properties except for Range(γ′|G′) ⊆ GroundTerms(Σ) are shown in [Sch08].

We perform a case analysis based on the partition G ′ = G ] (ApproxGnd(t′, µ) \ G).

For a ∈ G we have effectively defined aγ′ = aγ and thus aγ′ ∈ GroundTerms(Σ). For

a ∈ ApproxGnd(t′, µ)\G by definition of ApproxGnd and equality of γµ′ and µγ′ we again

know that aγ′ ∈ GroundTerms(Σ).

Now we can close any termination graph by appropriately applying the rules Gener-

alization, Instance, Parallel and Split.

Example 3.52. Consider again the Prolog program from Example 3.49. Now, consider

the graph built using the rules from Parts 1 – 6:

p(T1); ({T1},∅,∅)

p(T1)371 ; ({T1},∅,∅)

Case

ε; (∅,∅,∅)
Eval

p(T2), q; ({T2},∅,∅)

EvalT1/s(T2)

p(T2); ({T2},∅,∅)

Split

Instance

q; (∅,∅,∅)
Split

q38
2 ; (∅,∅,∅)

Case

2; (∅,∅,∅)

OnlyEval

ε; (∅,∅,∅)

Success

Thus, with the help of the Split rule, we can easily close the graph.

We will show more example graphs in Chapter 6 and Chapter 7.
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3.4 Summary

We have introduced the structures and operations for the construction of termination

graphs used to handle cuts in logic programming as given in [Sch08]. We extended this

method to fully handle meta-programming as defined in the ISO standard for Prolog and

unification without occurs-check as used in most Prolog implementations. Furthermore,

we introduced additional operations to handle instantiation errors and errors due to un-

defined predicate calls in Prolog. Additionally, we improved the automation and precision

of the operations used for this approach. Finally, we illustrated the capabilities of this

approach with a number of examples.





4 Built-in Predicates

Up to now, we can handle the two built-in predicates call/1 and !/0. However, real Prolog

applications make use of many more built-in predicates as offered by the ISO standard.

While some of these predicates can be expressed by clauses and, thus, could be handled

by adding default definitions for them to a program, most of them cause side effects not

directly expressible by clauses. Thus, we refrain from adding default clauses to programs

and introduce additional inference rules for built-in predicates instead. There are 26 built-

in predicates we can handle directly in our approach as it is. For the remaining built-in

predicates we will show problems occurring with this approach and possibilities how this

framework can be extended to solve these problems. As some results of the preceding

chapter depend on the set of inference rules used in this approach, we also adapt the

corresponding proofs to the extended rule set.

Structure of the Chapter

We group the built-in predicates according to their thematic classification in the ISO

standard. We start with the built-in predicates for logic and control in Section 4.1.

Except for catch/3 we can handle all built-in predicates belonging to this classification.

We continue in Section 4.2 by introducing additional inference rules for two built-in

predicates for term comparison. In contrast to unification, these predicates test for term

equality and inequality respectively.

In Section 4.3 we add inference rules for the very commonly used built-in predicates

for term unification. While these predicates have a similar effect to the Eval rule from

Chapter 3, they can be used for any pair of terms and not only for unification with clause

heads. However, they do not introduce new terms to the current goal.

While Prolog is an untyped language, the ISO standard offers some built-in predicates

for type testing. These predicates can for example be used to check inputs given by the

user. Most of them are handled by the inference rules in Section 4.4.

Finally, we will handle some special cases of built-in predicates used for term or charac-

ter output in Section 4.5. We exploit the default configuration for the input and output

environment as defined in the ISO standard to exclude error cases for these predicates.

After introducing new inference rules to handle some built-in predicates, we show where

there are problems with the remaining built-in predicates in Section 4.6. We also give
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some ideas to overcome these problems in extensions of the framework presented here.

Section 4.7 covers the adaptions necessary for the proofs from Chapter 3 to be still valid

for the extended rule set.

The contributions of this chapter are summarized in Section 4.8.

4.1 Logic and Control

The built-in predicates for logic and control influence the control flow of Prolog programs.

In fact, the two built-in predicates we have already considered in Chapter 3 belong to this

classification, too. The cut operator removes some backtracking possibilities while the

call/1 predicate allows for meta-programming and restricts the effect of cuts inside such

a meta-call. The remaining built-in predicates for logic and control cause additional side

effects to influence the control flow.

The predicate ,/2 is used to evaluate a conjunction of goals. Implicitly, we have already

used conjunctions by defining clause bodies and goals as lists of terms. While it is always

possible to flatten nested conjunctions to a list, we still need this predicate for conjunctions

in meta-calls as the call/1 predicate has only one argument and we want to be able to

use meta-calls for more than one term at once. The operation performed by this built-in

predicate is simply to evaluate both of its arguments in sequence. Thus, the goal ,(t1, t2), Q

is evaluated to t1, t2, Q. If we could omit the transformation of variables in predication

positions to applications of the call/1 predicate to such variables, we could express the

,/2 predicate by the meta-clause ,(G1, G2)← G1, G2. But as the transformation restricts

the scope of cuts for such meta-clauses, this is in fact not equivalent.

Example 4.1. The goal ,(,(p, q), r) is first evaluated to the goal ,(p, q), r and then to the

goal p, q, r. The concrete inference rule Conjunction will just perform this evaluation

for ,/2.

For disjunctions, we have the predicate ;/2. However, this predicate is ambiguous, since

it is also used in combination with ->/2 to express a conditional execution corresponding

to if-then-else in imperative programming languages. For normal disjunctions, the first

argument of ;/2 must not have ->/2 as its root symbol. Then this predicate is evaluated

as follows. For a goal ;(t1, t2), Q we first try to evaluate t1. Each time this succeeds

with answer substitution σ, we continue to evaluate Qσ. When the evaluation of t1

fails, we continue with evaluating the goal t2, Q. Thus, we evaluate the complete goal

to t1, Q | t2, Q. Again, without the transformation we could express the effect of this

predicate by the two meta-clauses ;(G1, G2) ← G1 and ;(G1, G2) ← G2. However, due

to the transformation for variables in predication positions this is not equivalent.
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Example 4.2. Consider the Prolog program consisting of three facts for p, q and r. The

goal ;(p, ;(q, r)) is evaluated to the list of goals p | ;(q, r) in one step. After evaluation of

p, the goal ;(q, r) is further evaluated to q | r. The concrete inference rule Disjunction

will just perform this evaluation for ;/2.

The built-in predicate fail/0 is evaluated by failing directly. It is for example used to

express negation-as-failure. This time, we can really express the effect of fail/0 by the

two clauses fail← failing(a) and failing(b)← 2 where failing/1 is a fresh function symbol.

Thus, its effect in our setting is just to drop the current state element and backtrack to

the next one.

Example 4.3. Consider again the Prolog program consisting of three facts for p, q and

r. The list of goals p, fail, q | r is then first evaluated to fail, q | r and next to r which is

finally evaluated to 2. The concrete inference rule Fail will just perform this evaluation

for fail/0.

The two predicates halt/0 and halt/1 are used to force termination of the execution

directly. While the former predicate just stops the execution, the latter can give some

information to the Prolog processor (cf. [DEC96]) executing the Prolog program. Addi-

tionally, the latter might throw an error if its argument is not properly instantiated. As

we do not consider the implementation dependent behavior after executing a Prolog goal

in this thesis and do not cover error handling other than terminating directly, we can just

assume that the computation stops in both cases without further operations. Hence we

reach the empty state by evaluating one of these predicates. The same is true for the

throw/1 predicate. It is used to generate an error which will lead to direct termination in

our setting, too.10

Example 4.4. The list of goals halt, p, q | r evaluates directly to the empty goal list ε.

The same is true in our setting for the evaluation of halt/1 and throw/1. The concrete

inference rules Halt, Halt1 and Throw will just perform this evaluation for halt/0,

halt/1 and throw respectively.

For conditional executions corresponding to if-then or if-then-else constructs in imper-

ative programming languages, we have the ->/2 predicate. If it is the root symbol of the

current goal, it corresponds to an if-then construct. Its first argument is evaluated and

if this succeeds, its second argument is evaluated afterwards. Otherwise it fails. Cuts

reached in the evaluation of the first argument have no effect for the evaluation of the

second argument (or following evaluations). Also, the first argument is only evaluated

once. Further solutions are not considered. Thus, the goal ->(t1, t2), Q is evaluated to

call(t1), !m, t2, Q | ?m. Note that this predicate is not equivalent to an implication, because

10See [DEC96] and Section 4.6 for more information about the catch/3 predicate which would be capable
of a more complex handling of errors.
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it fails when its first argument cannot be shown. If the ->/2 predicate is used in the con-

text of the ;/2 predicate as its first argument, i.e., we have the goal ;(->(t1, t2), t3), Q, this

corresponds to an if-then-else construct for imperative programming languages. We first

evaluate t1. If this succeeds with answer substitution σ, we discard the evaluation of t3

and continue with the evaluation of t2σ,Qσ. If the evaluation of t1 fails, we continue with

t3, Q instead. Again, t1 is only evaluated once and cuts reached during its evaluation do

not have any effect for the evaluation of t2σ,Qσ or t3, Q respectively. Thus, we evaluate

the complete goal to call(t1), !m, t2, Q | t3, Q | ?m.

Example 4.5. The goal ->(p, q) is evaluated to call(p), !1, q | ?1 while the goal ;(->(q, q), r)

is evaluated to call(p), !1, q | r | ?1. The concrete inference rules IfThen and IfThenElse

will just perform these evaluations for ->/2 and the combination of ;/2 and ->/2 respec-

tively.

Negation-as-failure can be used by the built-in predicate \+/1. It tries to evaluate its

argument and if this fails, the predicate succeeds. Otherwise it fails. Its effect can in

fact be expressed by the two clauses \+(X) ← call(X), !, fail and \+(X) ← 2, since the

evaluation of its argument is not transparent for cuts. Thus, in our setting we evaluate

\+(t), Q to call(t), !m, fail | Q | ?m. Note that this is not equivalent to logical negation as

failing to prove a goal does not necessarily imply that the goal is wrong.11

Example 4.6. Consider the Prolog program only consisting of two facts p ← 2 and

failure(b)← 2. Then, the goal \+(failure(a)) is first evaluated to call(failure(a)), !1, fail | 2 |
?1, second to failure(a), !1, fail | ?2 | 2 | ?1, over the third and fourth step it is backtracked to

?3 | ?2 | 2 | ?1 where it reaches 2 | ?1 in two steps by the Failure rule. Hence, the original

goal has a successful concrete state-derivation. Now consider the goal \+(p). Here, the

evaluation is as follows. First, we reach call(p), !1, fail | 2 | ?1, second, p, !1, fail | ?2 | 2 | ?1.

Then we succeed in proving p over the third and fourth step to !1, fail | ?3 | ?2 | 2 | ?1.

Now we reach fail | ?1 by the Cut rule which evaluates to the empty state. Therefore, the

concrete state-derivation for the original goal is not successful. The concrete inference

rule Not will just perform this evaluation for \+/1.

The built-in predicate once/1 performs a special meta-call where only the first solu-

tion for its argument is considered. In other words we evaluate the goal once(t), Q to

call(,(t, !)), Q. This predicate can especially be used to analyze existential termination by

transforming the original goal into an application of once/1 to this goal. Of course, this

predicate can be expressed by the clause once(X)← call(X, !).

11See for example [Cla78] for more information about the mathematical properties of negation-as-failure.
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Example 4.7. Consider the following Prolog program only consisting of two facts

p(a) ← 2. (39)

p(b) ← 2. (40)

and the query once(p(X)). This goal first evaluates to call(p(X), !). From here, we obtain

the following concrete state-derivation.

call(p(X), !)

p(X), !1 | ?1

Call

(p(X), !1)392 | (p(X), !1)402 | ?2 | ?1

Case

!1 | (p(X), !1)402 | ?2 | ?1

EvalX/a

2 | ?1

Cut

?1

Success

ε

Failure

Thus, we only have one answer substitution [X/a] instead of two for the query p(X).

The concrete inference rule Once will just perform this evaluation for once/1.

The last two predicates can again be expressed by normal Prolog clauses. repeat/0 is

a predicate which just succeeds infinitely often. It can be expressed with the two clauses

repeat ← 2 and repeat ← repeat. Thus, we evaluate the goal repeat, Q to Q | repeat, Q.

The true/0 predicate just succeeds once. It can be expressed by the clause true ← 2.

Thus, we can just drop it from the list of terms in the current goal.

Example 4.8. Consider the Prolog program consisting of only one fact p← 2. The goal

true, repeat, p first evaluates to repeat, p which is further evaluated to p | repeat, p. After

successful evaluation of p in three steps, we reach the goal repeat, p again. Thus, instead

of having one successful concrete state-derivation for p, we now have infinitely many. The

concrete inference rules True and Repeat will just perform this evaluation for true/0

and repeat/0 respectively.

Altogether, we add the following concrete inference rules to handle the built-in predi-

cates for logic and control.
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Definition 4.9 (Concrete Inference Rules for Logic and Control).

,(t1, t2), Q | S

t1, t2, Q | S
(Conjunction)

;(t1, t2), Q | S

t1, Q | t2, Q | S
(Disjunction) where root(t1) 6= ->/2

fail, Q | S

S
(Fail)

halt, Q | S

ε
(Halt)

halt(t′), Q | S

ε
(Halt1)

->(t1, t2), Q | S

call(t1), !m, t2, Q | ?m | S
(IfThen) for a fresh m ∈ IN

;(->(t1, t2), t3), Q | S

call(t1), !m, t2, Q | t3, Q | ?m | S
(IfThenElse) for a fresh m ∈ IN

\+(t′), Q | S

call(t′), !m, fail | Q | ?m | S
(Not) for a fresh m ∈ IN

once(t′), Q | S

call(,(t′, !)), Q | S
(Once)

repeat, Q | S

Q | repeat, Q | S
(Repeat)

throw(t′), Q | S

ε
(Throw)

true, Q | S

Q | S
(True)

For the above rules we use the additional conventions that t1, t2 and t3 are arbitrary

terms from PrologTerms(Σ,V).

Example 4.10. Using for example the built-in predicate ,/2, we are now able to analyze

Prolog programs where the transformation of variables to applications of call/1 to the

same variables really makes a difference. Consider the following Prolog program P

p ← q(,(r, !)). (41)

q(X) ← call(X). (42)

r ← 2. (43)

r ← r. (44)

and the query set Q consisting of the single query p. This program is terminating w.r.t.

Q. This can be seen by the following concrete state-derivation.
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p

(p)411 | ?1

Case

q(,(r, !)) | ?1

Eval

(q(,(r, !)))422 | ?2 | ?1

Case

call(,(r, !)) | ?2 | ?1

Eval

,(r, !3)) | ?3 | ?2 | ?1

Conjunction

r, !3 | ?3 | ?2 | ?1

Call

(r, !3)434 | (r, !3)444 | ?4 | ?3 | ?2 | ?1

Case

!3 | (r, !3)444 | ?4 | ?3 | ?2 | ?1

Eval

2 | ?3 | ?2 | ?1

Cut

?3 | ?2 | ?1

Success

?2 | ?1

Failure

?1

Failure

ε

Failure

Now, consider an alternative Prolog program P ′ where we define our own predicate

and/2 for conjunctions.

p ← q(and(r, !)). (45)

q(X) ← call(X). (46)

r ← 2. (47)

r ← r. (48)

and(X, Y ) ← call(X), call(Y ). (49)

We still regard the query p.

Note that even if we syntactically define and/2 by the clause and(X, Y ) ← X, Y , this

definition will be transformed into the one used in P ′ by an ISO standard conforming

Prolog processor (cf. [DEC96]). Hence, we also see that we are not able to express the

real behavior of the built-in predicate ,/2 by clauses.

We now obtain a non-terminating concrete state-derivation for Q.
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p

(p)451 | ?1

Case

q(and(r, !)) | ?1

Eval

(q(and(r, !)))462 | ?2 | ?1

Case

call(and(r, !)) | ?2 | ?1

Eval

and(r, !) | ?3 | ?2 | ?1

Call

and(r, !)494 | ?4 | ?3 | ?2 | ?1

Case

call(r), call(!) | ?4 | ?3 | ?2 | ?1

Eval

r, call(!) | ?5 | ?4 | ?3 | ?2 | ?1

Call

(r, call(!))476 | (r, call(!))486 | ?6 | ?5 | ?4 | ?3 | ?2 | ?1

Case

call(!) | (r, call(!))486 | ?6 | ?5 | ?4 | ?3 | ?2 | ?1

Eval

!7 | ?7 | (r, call(!))486 | ?6 | ?5 | ?4 | ?3 | ?2 | ?1

Call

2 | ?7 | (r, call(!))486 | ?6 | ?5 | ?4 | ?3 | ?2 | ?1

Cut

?7 | (r, call(!))486 | ?6 | ?5 | ?4 | ?3 | ?2 | ?1

Success

(r, call(!))486 | ?6 | ?5 | ?4 | ?3 | ?2 | ?1

Failure

r, call(!) | ?6 | ?5 | ?4 | ?3 | ?2 | ?1

Eval

. . .

Case

Example 4.11. Consider again the Prolog program add3.pl from Example 3.2. Using

built-in predicates, we obtain the following equivalent, but shorter program P

add(X, 0, X) ← 2. (50)

add(X, Y, s(Z)) ← \+(isZero(Y )), p(Y, P ), add(X,P, Z). (51)

p(0, 0) ← 2. (52)

p(s(X), X) ← 2. (53)

isZero(0) ← 2. (54)

with the same query set Q as for Example 3.2.

Since all built-in predicates for logic and control have only empty answer substitutions,

we do not need to update the knowledge base when applying an abstract inference rule

for one of these predicates. Therefore, the abstract inference rules for built-in predicates

for logic and control are straightforward to define.
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Definition 4.12 (Abstract Inference Rules for Logic and Control).

,(t1, t2), Q | S;KB

t1, t2, Q | S;KB
(Conjunction)

;(t1, t2), Q | S;KB

t1, Q | t2, Q | S;KB
(Disjunction) where root(t1) 6= ->/2 and t1 /∈ A

fail, Q | S;KB

S;KB
(Fail)

halt, Q | S;KB

ε;KB
(Halt)

halt(t′), Q | S;KB

ε;KB
(Halt1)

->(t1, t2), Q | S;KB

call(t1), !m, t2, Q | ?m | S;KB
(IfThen) for a fresh m ∈ IN

;(->(t1, t2), t3), Q | S;KB

call(t1), !m, t2, Q | t3, Q | ?m | S;KB
(IfThenElse) for a fresh m ∈ IN

\+(t′), Q | S;KB

call(t′), !m, fail | Q | ?m | S;KB
(Not) for a fresh m ∈ IN

once(t′), Q | S;KB

call(,(t′, !)), Q | S;KB
(Once)

repeat, Q | S;KB

Q | repeat, Q | S;KB
(Repeat)

throw(t′), Q | S;KB

ε;KB
(Throw)

true, Q | S;KB

Q | S;KB
(True)

As we do not mandate changes to the knowledge base, these rules can easily be proved

to be sound.

Lemma 4.13 (Soundness of Abstract Inference Rules for Logic and Control). The rules

Conjunction, Disjunction, Fail, Halt, Halt1, IfThen, IfThenElse, Not,

Once, Repeat, Throw and True from Definition 4.12 are sound.

Proof. For Conjunction assume there is an infinite concrete state-derivation from

,(t1γ, t2γ), Qγ | Sγ ∈ CON (,(t1, t2), Q | S;KB). As the only applicable concrete infer-

ence rule is Conjunction, we reach the state t1γ, t2γ,Qγ | Sγ ∈ CON (t1, t2, Q | S;KB)

having an infinite concrete state-derivation.

For Disjunction assume there is an infinite concrete state-derivation from

;(t1γ, t2γ), Qγ | Sγ ∈ CON (;(t1, t2), Q | S;KB), where root(t1) 6= ->/2 and t1 /∈ A.

As γ can only replace abstract variables, we have root(t1γ) 6= ->/2 and the only applica-

ble concrete inference rule is Disjunction leading to the state t1γ,Qγ | t2γ,Qγ | Sγ ∈
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CON (t1, Q | t2, Q | S;KB) having an infinite concrete state-derivation.

For Fail assume there is an infinite concrete state-derivation from fail, Qγ | Sγ ∈
CON (fail, Q | S;KB). As the only applicable concrete inference rule is Fail, we reach

the state Sγ ∈ CON (S;KB) starting an infinite concrete state-derivation.

For Halt assume there is an infinite concrete state-derivation from halt, Qγ | Sγ ∈
CON (halt, Q | S;KB). As the only applicable concrete inference rule is Halt, we reach

the state ε in contradiction to the assumption that we have an infinite concrete state-

derivation. Thus, Halt is trivially sound.

For Halt1 assume there is an infinite concrete state-derivation from halt(t′)γ,Qγ |
Sγ = halt(t′γ), Qγ | Sγ ∈ CON (halt(t′), Q | S;KB). As the only applicable concrete

inference rule is Halt1, we reach the state ε in contradiction to the assumption that we

have an infinite concrete state-derivation. Thus, Halt1 is trivially sound.

For IfThen assume there is an infinite concrete state-derivation from ->(t1, t2)γ,Qγ |
Sγ = ->(t1γ, t2γ), Qγ | Sγ ∈ CON (->(t1, t2), Q | S;KB). As the only applicable

concrete inference rule is IfThen, we reach the state call(t1γ), !m, t2γ,Qγ | ?m | Sγ =

call(t1)γ, !m, t2γ,Qγ | ?m | Sγ ∈ CON (call(t1), !m, t2, Q | ?m | S;KB) which starts an

infinite concrete state-derivation.

For IfThenElse assume there is an infinite concrete state-derivation from

;(->(t1, t2), t3)γ,Qγ | Sγ = ;(->(t1γ, t2γ), t3γ), Qγ | Sγ ∈ CON (;(->(t1, t2), t3), Q |
S;KB). Since the only applicable concrete inference rule is IfThenElse, we reach the

state call(t1γ), !m, t2γ,Qγ | t3γ,Qγ | ?m | Sγ = call(t1)γ, !m, t2γ,Qγ | t3γ,Qγ | ?m | Sγ ∈
CON (call(t1), !m, t2, Q | ?m | S;KB) which starts an infinite concrete state-derivation.

For Not assume there is an infinite concrete state-derivation from \+(t′)γ,Qγ | Sγ =

\+(t′γ), Qγ | Sγ ∈ CON (\+(t′), Q | S;KB). As the only applicable concrete inference

rule is Not, we reach the state call(t′γ), !m, fail | Qγ | ?m | Sγ = call(t′)γ, !m, fail | Qγ | ?m |
Sγ ∈ CON (call(t′), !m, fail | Q | ?m | S;KB) having an infinite concrete state-derivation.

For Once assume there is an infinite concrete state-derivation from once(t′)γ,Qγ |
Sγ = once(t′γ), Qγ | Sγ ∈ CON (once(t′), Q | S;KB). As the only applicable concrete

inference rule is Once, we reach the state call(,(t′γ, !)), Qγ | Sγ = call(,(t′, !))γ,Qγ | Sγ ∈
CON (call(,(t′, !)), Q | S;KB) starting an infinite concrete state-derivation.

For Repeat assume there is an infinite concrete state-derivation from repeat, Qγ | Sγ ∈
CON (repeat, Q | S;KB). As the only applicable concrete inference rule is Repeat, we

reach the state Qγ | repeat, Qγ | Sγ ∈ CON (Q | repeat, Q | S;KB) starting an infinite

concrete state-derivation.

For Throw assume there is an infinite concrete state-derivation from throw(t′γ), Qγ |
Sγ ∈ CON (throw(t′), Q | S;KB). As the only applicable concrete inference rule is

Throw, we reach the state ε in contradiction to the assumption that we have an infinite

concrete state-derivation. Thus, Throw is trivially sound.

For True assume there is an infinite concrete state-derivation from true, Qγ | Sγ ∈
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CON (true, Q | S;KB). As the only applicable concrete inference rule is True, we reach

the state Qγ | Sγ ∈ CON (Q | S;KB) starting an infinite concrete state-derivation.

4.2 Term Comparison

The next two built-in predicates are used for term comparison. In contrast to unification,

they test for equality and inequality of terms respectively. So even two variables with

different names are not equal.

Example 4.14. The goal ==(p(X), p(X)) succeeds while the goal ==(p(X), p(Y )) fails.

Conversely, the goal \==(p(X), p(X)) fails while the goal \==(p(X), p(Y )) succeeds.

As these predicates have only empty answer substitutions, their rules are easily defined

by dropping the first term of the current goal in case of a successful test and backtracking

to the next state element otherwise.

Definition 4.15 (Concrete Inference Rules for Term Comparison).

==(t1, t1), Q | S

Q | S
(EqualsSuccess)

==(t1, t2), Q | S

S
(EqualsFail) where t1 6= t2

\==(t1, t2), Q | S

Q | S
(UnequalsSuccess) where t1 6= t2

\==(t1, t1), Q | S

S
(UnequalsFail)

Now, for the abstract case, we have to consider that different abstract variables may

still represent equal terms. If we compare two equal terms, the abstract inference rules

are straightforward. This is the case for EqualsSuccess and UnequalsFail. For the

remaining cases we try to unify the terms. If they are not even unifiable, they cannot rep-

resent equal terms and, hence we can apply the abstract EqualsFail or UnequalsSuc-

cess rule. This is also true if every unifier of the two terms must instantiate non-abstract

variables as these variables just represent themselves and no other terms. If the two terms

are unifiable by only instantiating abstract variables, they may or may not represent equal

terms. Thus, we consider two successor states in such cases. If the represented terms are

equal we can replace them with their equal instances by their mgu σ where we demand

that σ has only fresh abstract variables in its range to keep the generality of the abstract
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state. If we replace variables from G by σ, we update the knowledge base by adding the

abstract variables in the range of σ|G to G. Since we know that the represented terms

are equal, σ corresponds to a shape analysis and not to an instantiation of non-abstract

variables. Thus, we can instantiate the abstract variables in U and the backtracking list

by σ, too. If the represented terms are not equal, we simply succeed or fail respectively

without applying any substitutions. This amounts to the following abstract inference

rules for term comparison.

Definition 4.16 (Abstract Inference Rules for Term Comparison).

==(t1, t1), Q | S;KB

Q | S;KB
(EqualsSuccess)

==(t1, t2), Q | S;KB

S;KB
(EqualsFail) where t1 � t2 or ∀σ with t1σ =

t2σ we have Dom(σ) ∩N 6= ∅

==(t1, t2), Q | S; (G,F ,U)

Qσ, | Sσ; (G ′,F ,U ′) S; (G,F ,U)
(EqualsCase)

where t1 6= t2, G ′ = G ∪ A(Range(σ|G)), U ′ = Uσ and mgu(t1, t2) = σ with Dom(σ) ⊆ A
and V(Range(σ)) ⊆ Afresh

\==(t1, t2), Q | S;KB

Q | S;KB
(UnequalsSuccess)

where t1 � t2 or ∀σ
with t1σ = t2σ we
have Dom(σ)∩N 6= ∅

\==(t1, t1), Q | S;KB

S;KB
(UnequalsFail)

\==(t1, t2), Q | S; (G,F ,U)

Q, | S; (G,F ,U) Sσ; (G ′,F ,U ′)
(UnequalsCase)

where t1 6= t2, G ′ = G ∪ A(Range(σ|G)), U ′ = Uσ and mgu(t1, t2) = σ with Dom(σ) ⊆ A
and V(Range(σ)) ⊆ Afresh

The soundness of the rules where we can clearly determine whether the represented

terms are equal or not is comparatively easy to prove.

Lemma 4.17 (Soundness of EqualsSuccess, EqualsFail, UnequalsSuccess and

UnequalsFail). The rules EqualsSuccess, EqualsFail, UnequalsSuccess and

UnequalsFail from Definition 4.16 are sound.
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Proof. For EqualsSuccess assume there is an infinite concrete state-derivation from

==(t1γ, t1γ), Qγ | Sγ ∈ CON (==(t1, t1), Q | S;KB). Since t1γ = t1γ we know that

the only applicable concrete inference rule is EqualsSuccess and we reach the state

Qγ | Sγ ∈ CON (Q | S;KB) having an infinite concrete state-derivation.

For EqualsFail assume there is an infinite concrete state-derivation from

==(t1γ, t2γ), Qγ | Sγ ∈ CON (==(t1, t2), Q | S;KB) where t1 � t2 or ∀σ with t1σ = t2σ

we have Dom(σ)∩N 6= ∅. If t1 � t2, we obtain t1γ 6= t2γ and the only applicable concrete

inference rule is EqualsFail leading to the state Sγ ∈ CON (S;KB) having an infinite

concrete state-derivation. So let t1 ∼ t2 with ∀σ with t1σ = t2σ we have Dom(σ)∩N 6= ∅.

As Dom(γ) ⊆ A, we obtain t1γ 6= t2γ and we reach the state Sγ ∈ CON (S;KB) having

an infinite concrete state-derivation again.

For UnequalsSuccess assume there is an infinite concrete state-derivation from

\==(t1γ, t2γ), Qγ | Sγ ∈ CON (\==(t1, t2), Q | S;KB) where t1 � t2 or ∀σ with

t1σ = t2σ we have Dom(σ) ∩ N 6= ∅. If t1 � t2, we obtain t1γ 6= t2γ and the only

applicable concrete inference rule is UnequalsSuccess leading to the state Qγ | Sγ ∈
CON (Q | S;KB) having an infinite concrete state-derivation. So let t1 ∼ t2 with ∀σ with

t1σ = t2σ we have Dom(σ)∩N 6= ∅. As Dom(γ) ⊆ A, we obtain t1γ 6= t2γ and we reach

the state Qγ | Sγ ∈ CON (Q | S;KB) having an infinite concrete state-derivation again.

For UnequalsFail assume there is an infinite concrete state-derivation from

\==(t1γ, t1γ), Qγ | Sγ ∈ CON (\==(t1, t1), Q | S;KB). Since t1γ = t1γ we know

that the only applicable concrete inference rule is UnequalsFail and we reach the state

Sγ ∈ CON (S;KB) having an infinite concrete state-derivation.

Now we prove the soundness of the EqualsCase rule, where we must consider the two

cases depending on whether the represented terms are equal and possible replacements

by the mgu σ.

Lemma 4.18 (Soundness of EqualsCase). The rule EqualsCase from Definition 4.16

is sound.

Proof. Assume there is an infinite concrete state-derivation from ==(t1γ, t2γ), Qγ | Sγ ∈
CON (==(t1, t2), Q | S; (G,F ,U)) where t1 6= t2 and mgu(t1, t2) = σ with Dom(σ) ⊆ A
and V(Range(σ)) ⊆ Afresh .

If t1γ 6= t2γ, the only applicable concrete inference rule is EqualsFail leading to the

state Sγ ∈ CON (S; (G,F ,U)) which starts an infinite concrete state-derivation.

So let t1γ = t2γ. Then the only applicable concrete inference rule is EqualsSuccess

and we reach the state Qγ | Sγ having an infinite concrete state-derivation. As

mgu(t1, t2) = σ and γ is a unifier of t1 and t2, we know that there is a δ with γ = σδ. We

define γ′ by xγ′ = xσδ for x ∈ Dom(σ) and xγ′ = xδ otherwise. As V(Range(σ)) ⊆ Afresh

we obtain γ = σδ = σγ′ = γ′. Hence, we are left to show that γ is a concretiza-
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tion w.r.t. (G ′,F ,U ′), i.e., γ|A = γ,
⋃
a∈AA(aγ) = ∅, Range(γ|G′) ⊆ GroundTerms(Σ),

F(Range(γ)) = ∅, and
∧

(t,t′)∈U ′ tγ 6∼ t′γ.

We obtain γ|A = γ,
⋃
a∈AA(aγ) = ∅ and F(Range(γ)) = ∅ directly by the fact that

γ is a concretization w.r.t. (G,F ,U).

For Range(γ|G′) ⊆ GroundTerms(Σ) we perform a case analysis over a ∈ G ′ =

A(Range(σ|G))]G ′ \A(Range(σ|G)). If a ∈ A(Range(σ|G)) there is a variable a′ ∈ G with

a ∈ A(a′σ). As a′γ ∈ GroundTerms(Σ) and σγ = γ we obtain aγ ∈ GroundTerms(Σ). So

let a ∈ G ′\A(Range(σ|G)). Then we know aγ ∈ GroundTerms(Σ) by G ′\A(Range(σ|G)) ⊆
G.

As we also know
∧

(t,t′)∈U tγ 6∼ t′γ, we obtain
∧

(t,t′)∈U ′ tγ 6∼ t′γ by the fact that σγ = γ

and U ′ = Uσ.

Thus, we have Qγ | Sγ ∈ CON (Qσ, | Sσ; (G ′,F ,U ′)).

Likewise, we prove the soundness of UnequalsCase.

Lemma 4.19 (Soundness of UnequalsCase). The rule UnequalsCase from

Definition 4.16 is sound.

Proof. Assume there is an infinite concrete state-derivation from \==(t1γ, t2γ), Qγ | Sγ ∈
CON (\==(t1, t2), Q | S; (G,F ,U)) where t1 6= t2 and mgu(t1, t2) = σ with Dom(σ) ⊆ A
and V(Range(σ)) ⊆ Afresh .

If t1γ 6= t2γ, the only applicable concrete inference rule is UnequalsSuccess leading

to the state Qγ | Sγ ∈ CON (Q | S; (G,F ,U)) which starts an infinite concrete state-

derivation.

So let t1γ = t2γ. Then the only applicable concrete inference rule is UnequalsFail

and we reach the state Sγ having an infinite concrete state-derivation. As mgu(t1, t2) = σ

and γ is a unifier of t1 and t2, we know that there is a δ with γ = σδ. We define γ′ by

xγ′ = xσδ for x ∈ Dom(σ) and xγ′ = xδ otherwise. As V(Range(σ)) ⊆ Afresh we obtain

γ = σδ = σγ′ = γ′. Hence, we are left to show that γ is a concretization w.r.t. (G ′,F ,U ′),
i.e., γ|A = γ,

⋃
a∈AA(aγ) = ∅, Range(γ|G′) ⊆ GroundTerms(Σ), F(Range(γ)) = ∅, and∧

(t,t′)∈U ′ tγ 6∼ t′γ.

We obtain γ|A = γ,
⋃
a∈AA(aγ) = ∅ and F(Range(γ)) = ∅ directly by the fact that

γ is a concretization w.r.t. (G,F ,U).

For Range(γ|G′) ⊆ GroundTerms(Σ) we perform a case analysis over a ∈ G ′ =

A(Range(σ|G))] G ′ \A(Range(σ|G)). If a ∈ A(Range(σ|G)) there is a variable a′ ∈ G with

a ∈ A(a′σ). As a′γ ∈ GroundTerms(Σ) and σγ = γ we obtain aγ ∈ GroundTerms(Σ). So

let a ∈ G ′\A(Range(σ|G)). Then we know aγ ∈ GroundTerms(Σ) by G ′\A(Range(σ|G)) ⊆
G.

As we also know
∧

(t,t′)∈U tγ 6∼ t′γ, we obtain
∧

(t,t′)∈U ′ tγ 6∼ t′γ by the fact that σγ = γ

and U ′ = Uσ.

Thus, we have Sγ ∈ CON (Sσ; (G ′,F ,U ′)).
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4.3 Term Unification

The built-in predicates for term unification belong to the most commonly used built-in

predicates in Prolog. They try to unify their arguments and succeed or fail according to

the unification. For =/2, the mgu is also the answer substitution in case the unification

succeeds. Both built-in predicates for term unification can be expressed by the clauses

=(X,X)← 2 and \=(X, Y )← \+(=(X, Y )).

Example 4.20. The goal =(f(X, b), f(a, Y )) succeeds with the answer substitution

[X/a, Y b] while the goal =(f(X), g(Y )) fails. Conversely, the goal \=(f(X, b), f(a, Y ))

fails and the goal \=(f(X), g(Y )) succeeds with the empty answer substitution.

The concrete inference rules for these predicates are, therefore, given as follows.

Definition 4.21 (Concrete Inference Rules for Term Unification).

=(t1, t2), Q | S

Qσ | S
(UnifySuccess) where mgu(t1, t2) = σ

=(t1, t2), Q | S

S
(UnifyFail) where t1 � t2

\=(t1, t2), Q | S

Q | S
(NoUnifySuccess) where t1 � t2

\=(t1, t2), Q | S

S
(NoUnifyFail) where t1 ∼ t2

Example 4.22. Consider again the Prolog program divremain.pl from Example 3.1. Us-

ing built-in predicates, we obtain the following equivalent, but shorter program P

div(X, 0, Z,R) ← !, fail. (55)

div(0, Y, Z,R) ← !,=(Z, 0),=(R, 0). (56)

div(X, Y, s(Z), R) ← minus(X, Y, U), !, div(U, Y, Z,R). (57)

div(X, Y, 0, X) ← 2. (58)

minus(X, 0, X) ← 2. (59)

minus(s(X), s(Y ), Z) ← minus(X, Y, Z). (60)

with the same query set Q as for Example 3.1.
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Example 4.23. Consider again the Prolog program even.pl from Example 3.3. Using

built-in predicates, we obtain the following equivalent, but shorter program P

even(X) ← =(Y, f(e, f(o, Y ))), c(Y,X). (61)

c(f(e, X), 0) ← 2. (62)

c(f(Z,X), s(Y )) ← c(X, Y ). (63)

with the same query set Q as for Example 3.3.

Since the Backtrack, Eval and OnlyEval rules from Chapter 3 also try to perform

a unification, the abstract inference rules for term unification are quite similar to these

rules and have almost the same conditions. As for Backtrack, we know that we can

apply the UnifyFail rule if the two terms do not unify or if their mgu contradicts

information from the knowledge base. Then we just add the pair containing the two

argument terms to U and backtrack to the next state element. Also, if the unification

definitely succeeds as for OnlyEval, we can apply the UnifySuccess rule and just

drop the first term in the current goal while applying the mgu σ (and possible variable

refreshments due to sharing effects) to the remaining terms in the current goal and σ|G to

the following state elements and to U . The set G is updated as for the OnlyEval rule, but

for the set F there is a slight difference as we do not introduce free variables from a clause.

Apart from this, the update for F still remains the same. The approximation ApproxUnify

corresponds directly to Approx from Definition 3.27 except that the variables from both

terms must be considered for the choice of the suitable substitution. UnifyCase is

a combination of UnifySuccess and UnifyFail just like Eval is a combination of

OnlyEval and Backtrack. It also has the negated conditions for the other two rules

to make them non-overlapping.

Now, for the predicate \= used to test for non-unifiability, there is still a connection to

the rules Backtrack, Eval and OnlyEval, but the connections are inverted and we do

not apply the mgu in case of successful unification. Thus, the NoUnifySuccess rule cor-

responds to Backtrack and NoUnifyFail corresponds to OnlyEval. The difference

is, that we just drop the first term in the current goal instead of the first state element for

NoUnifySuccess and vice versa for NoUnifyFail. Likewise, the two successor states

of NoUnifyCase correspond to the application of NoUnifySuccess and NoUnify-

Fail respectively. Again, their conditions are negated to obtain non-overlapping rules.

Taking everything into account, we define the abstract inference rules for term unifica-

tion as follows.
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Definition 4.24 (Abstract Inference Rules for Term Unification).

=(t1, t2), Q | S; (G,F ,U)

Qσ′ | Sσ|G; (G ′,F ′,Uσ|G)
(UnifySuccess)

where mgu(t1, t2) = σ with V(Range(σ)) ⊆ Vfresh , Range(σ|A) ⊆ A, σ|A : Dom(σ|A) →
Range(σ|A) is bijective, A(Range(σ|N )) ⊆ A(Range(σ|A)), G ′ = G ∪ A(Range(σ|G)),

F ′ = F ∪ (N (Range(σ|F)) \ N (Range(σ|N\F))) and σ′ = ApproxUnify(σ, t1, t2,G,F)

=(t1, t2), Q | S; (G,F ,U)

S; (G,F ,U ∪ {(t1, t2)})
(UnifyFail)

where t1 � t2 or σ = mgu(t1, t2) with ∃a ∈ G : aσ /∈ FinitePrologTerms(Σ,V) or

V(Range(σ)) ⊆ Vfresh , V(Range(σ|G)) ⊆ A and ∃(s, s′) ∈ U : σ′ = mgu(sσ|G, s′σ|G) ∧
Dom(σ′) ⊆ F

=(t1, t2), Q | S; (G,F ,U)

Qσ′ | Sσ|G; (G ′,F ′,Uσ|G) S; (G,F ,U ∪ {(t1, t2)})
(UnifyCase)

where mgu(t1, t2) = σ with V(Range(σ)) ⊆ Vfresh , V(Range(σ|A)) ⊆ A, Range(σ|G) ⊆
FinitePrologTerms(Σ,A), (Range(σ|A) 6⊆ A ∨ σ|A : Dom(σ|A) → Range(σ|A) is not

bijective), A(Range(σ|N )) ⊆ A(Range(σ|A)), ∀(s, s′) ∈ U : ∀σ′′ : (sσ|Gσ′′ = s′σ|Gσ′′ =⇒
Dom(σ′′) 6⊆ F), G ′ = G ∪A(Range(σ|G)), F ′ = F ∪ (N (Range(σ|F))\N (Range(σ|N\F)))

and σ′ = ApproxUnify(σ, t1, t2,G,F)

\=(t1, t2), Q | S; (G,F ,U)

Q | S; (G,F ,U ∪ {(t1, t2)})
(NoUnifySuccess)

where t1 � t2 or σ = mgu(t1, t2) with ∃a ∈ G : aσ /∈ FinitePrologTerms(Σ,V) or

V(Range(σ)) ⊆ Vfresh , V(Range(σ|G)) ⊆ A and ∃(s, s′) ∈ U : σ′ = mgu(sσ|G, s′σ|G) ∧
Dom(σ′) ⊆ F

\=(t1, t2), Q | S; (G,F ,U)

Sσ|G; (G ′,F ,Uσ|G)
(NoUnifyFail)

where mgu(t1, t2) = σ with V(Range(σ)) ⊆ Vfresh , Range(σ|A) ⊆ A, σ|A : Dom(σ|A) →
Range(σ|A) is bijective, G ′ = G ∪ A(Range(σ|G)) and A(Range(σ|N )) ⊆ A(Range(σ|A))
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\=(t1, t2), Q | S; (G,F ,U)

Q | S; (G,F ,U ∪ {(t1, t2)}) Sσ|G; (G ′,F ,Uσ|G)
(NoUnifyCase)

where mgu(t1, t2) = σ with V(Range(σ)) ⊆ Vfresh , V(Range(σ|A)) ⊆ A, Range(σ|G) ⊆
FinitePrologTerms(Σ,A), (Range(σ|A) 6⊆ A ∨ σ|A : Dom(σ|A) → Range(σ|A) is not

bijective), A(Range(σ|N )) ⊆ A(Range(σ|A)), G ′ = G ∪ A(Range(σ|G)) and ∀(s, s′) ∈ U :

∀σ′′ : (sσ|Gσ′′ = s′σ|Gσ′′ =⇒ Dom(σ′′) 6⊆ F)

ApproxUnify replaces some variables by fresh abstract variables:

ApproxUnify(σ, t1, t2,G,F) =



σ if A(t1) ∪ A(t2) ⊆ G

and N (t1) ∪N (t2) ⊆ F

σαA\G′ if A(t1) ∪ A(t2) ⊆ G

and N (t1) ∪N (t2) 6⊆ F

σα(A\G′)∪(N\F ′) if A(t1) ∪ A(t2) 6⊆ G

We start proving the soundness of these abstract inference rules with the most compli-

cated proof as we can refer to it for the remaining proofs. Note that this proof is quite

similar to the soundness proof for Eval as given in [Sch08], while we have to deal with

rational terms and two abstract terms instead of one in this proof, of course.

Lemma 4.25 (Soundness of UnifyCase). The rule UnifyCase from Definition 4.24

is sound.

Proof. Assume =(t1γ, t2γ), Qγ | Sγ ∈ CON (=(t1, t2), Q | S; (G,F ,U)) has an infinite

concrete state-derivation. There are two cases depending on whether t1γ and t2γ unify.

First, if t1γ does not unify with t2γ, the unique applicable concrete rule is UnifyFail

and we obtain Sγ which has to start an infinite concrete state-derivation. From t1γ 6∼ t2γ

and γ being a concretization w.r.t. (G,F ,U), we obtain that γ is a concretization w.r.t.

(G,F ,U ∪ {(t1, t2)}), too. Thus, Sγ ∈ CON (S; (G,F ,U ∪ {(t1, t2)})).

Second, if t1γ ∼ t2γ, the unique applicable concrete rule is UnifySuccess. From

t1γ ∼ t2γ we directly know that t1 also unifies with t2. Let mgu(t1γ, t2γ) = σ′′. Then due

to mgu(t1, t2) = σ there must be a substitution σ′′′ such that γσ′′ = σσ′′′. W.l.o.g., we

demand that V(Range(σ′′)) ⊆ Nfresh.

By application of the concrete UnifySuccess rule we obtain Qγσ′′ | Sγ. We are,

thus, left to show that Qγσ′′ | Sγ ∈ CON (Qσ′ | Sσ|G; (G ′,F ′,Uσ|G)), i.e., that there is a

concretization γ′ w.r.t. (G ′,F ′,Uσ|G) such that Qγσ′′ = Qσ′γ′ and Sγ = Sσ|Gγ′.

We perform a case analysis over σ′ ∈ {σ, σαA\G′ , σα(A\G′)∪(N\F ′)}.
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Case 1: σ′ = σ, i.e., A(t1) ∪ A(t2) ⊆ G and N (t1) ∪N (t2) ⊆ F :

Here, we can assume Dom(σ) = G(t1) ∪ G(t2) ∪ F(t1) ∪ F(t2). Define γ′(a) = σ′′′(a) for

a ∈ A(Range(σ)) and γ′(a) = γ(a) otherwise.

We first show that w.l.o.g. we can demand that σ′′ is chosen in such a way that σ′′ = σ′′′′

for σ′′′′ = σ|Nσ′′′|A(Range(σ|N )) by showing that σ′′′′ is a most general unifier of t1γ and t2γ.

That σ′′′′ is most general follows from σ and σ′′ being most general unifiers of t1 and t2

resp. t1γ and t2γ. To see this consider that by the definition of σ′′′ as γσ′′ = σσ′′′ we have

σ′′ = σ|Nσ′′′|V(Range(σ|N )). Clearly, σ′′′|A(Range(σ|N )) is more general than σ′′′|V(Range(σ|N ))

and, consequently, σ′′′′ is more general than σ′′ which is a most general unifier of t1γ and

t2γ. We now show that σ′′′′ is still a unifier of t1γ and t2γ:

t1γσ
′′′′

Def.σ′′′′∧V(Range(σ))⊆Vfresh
= t1γσ|N (t1γ)σ

′′′|A(Range(σ|N (t1γ)
))

N (Range(γ|V(t1)))=∅
= t1γσ|N (t1)σ

′′′|A(Range(σ|N (t1)))

γ|A(t1)=(γσ′′)|A(t1)=

σ|A(t1)σ
′′′|A(Range(σ|A(t1)))

= t1σ|A(t1)σ
′′′|A(Range(σ|A(t1)))σ|N (t1)σ

′′′|A(Range(σ|N (t1)))

N (Range(σ′′′|A(Range(σ|A(t1)))
))=∅

= t1σ|A(t1)σ|N (t1)σ
′′′|A(Range(σ|V(t1)))

V=A]N∧V(Range(σ))⊆Vfresh
= t1σσ

′′′|A(Range(σ))

σ=mgu(t1,t2)
= t2σσ

′′′|A(Range(σ))

V=A]N∧V(Range(σ))⊆Vfresh
= t2σ|A(t2)σ|N (t2)σ

′′′|A(Range(σ|V(t2)))

N (Range(σ′′′|A(Range(σ|A(t2)))
))=∅

= t2σ|A(t2)σ
′′′|A(Range(σ|A(t2)))σ|N (t2)σ

′′′|A(Range(σ|N (t2)))

γ|A(t2)=(γσ′′)|A(t2)=

σ|A(t2)σ
′′′|A(Range(σ|A(t2)))

= t2γσ|N (t2)σ
′′′|A(Range(σ|N (t2)))

N (Range(γ|V(t2)))=∅
= t2γσ|N (t2γ)σ

′′′|A(Range(σ|N (t2γ)
))

Def.σ′′′′∧V(Range(σ))⊆Vfresh
= t2γσ

′′′′

We continue by showing that γ′ is a concretization w.r.t. (G ′,F ′,Uσ|G), i.e., γ′|A = γ′,⋃
a∈AA(aγ′) = ∅, Range(γ′|G′) ⊆ GroundTerms(Σ), F ′(Range(γ′)) = ∅, and∧
(t,t′)∈Uσ|G tγ

′ 6∼ t′γ′.

As γ′ is only defined for A, we trivially have γ′|A = γ′.

To show that
⋃
a∈AA(aγ′) = ∅, we perform a case analysis w.r.t. A = A(Range(σ)) ]

(A\A(Range(σ))). For a ∈ A(Range(σ)) we have A(aγ′)
Def.γ′

= A(aσ′′′)
a6∈Dom(σ)

= A(aσσ′′′)
Def.σ′′′

= A(aγσ′′)
V(Range(σ′′))⊆N

= A(aγ)
⋃
a∈AA(aγ)=∅

= ∅. For a ∈ A \ A(Range(σ)) we have

A(aγ′)
Def.γ′

= A(aγ)
⋃
a∈AA(aγ)=∅

= ∅.
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To show that Range(γ′|G′) ⊆ GroundTerms(Σ), we make a case analysis over a ∈ G ′

= G ] A(Range(σ|G)). For a ∈ G we know that aγ ∈ GroundTerms(Σ) and by γ′|G
A(Range(σ))⊆Vfresh∧Def.γ′

= γ|G we obtain aγ′ ∈ GroundTerms(Σ). For a ∈ A(Range(σ|G))
we have aσ|G ∈ FinitePrologTerms(Σ,A) and aγ′ = aσ′′′. For all a′ ∈ Dom(σ|G),
a′σσ′′′

Def.σ′′′
= a′γσ′′

a′∈G
∈ GroundTerms(Σ). Thus, aγ′ ∈ GroundTerms(Σ).

Now, to show that F ′(Range(γ′)) = ∅, we perform a case analysis over a ∈ A =

(A \ A(Range(σ))) ] A(Range(σ)). For a ∈ A \ A(Range(σ)) we have aγ′ = aγ and

F ′(aγ) = F(aγ) as all variables in F ′ \F are fresh. This amounts to F ′(aγ′) = F ′(aγ) =

F(aγ) = ∅. For a ∈ A(Range(σ)) ⊆ A(Range(σ|A)) there must be an a′ ∈ Dom(σ|A)

such that a ∈ A(a′σ). Now, assume x ∈ F ′(aγ′). Then we have x ∈ F ′(a′σγ′) Def.γ′
=

F ′(a′σσ′′′) Def.σ′′′
= F ′(a′γσ′′) a′∈G

= ∅.

Finally, we have
∧

(t,t′)∈Uσ|G tγ
′ 6∼ t′γ′ =

∧
(s,s′)∈U sσ|Gγ′ 6∼ s′σ|Gγ′ =

∧
(s,s′)∈U sγ 6∼ s′γ as

aσ|Gγ′ = aγ for all abstract variables in a ∈ A(U) by definition of γ′. To see this, consider

the partition A(U) = (A(U)\Dom(σ|G))](A(U)∩Dom(σ|G)). If a ∈ A(U)\Dom(σ|G) we

have aγ
Def.γ′

= aγ′
a6∈Dom(σ|G)

= aσ|Gγ′. If a ∈ A(U) ∩ Dom(σ|G) we have aγ
a∈G
= aγσ′′

Def.σ′′′
=

aσσ′′′
a∈G
= aσ|Gσ′′′

Def.γ′∧V(Range(σ|A))⊆A
= aσ|Gγ′.

Now, we are left to show that Qγσ′′ = Qσ′γ′, and Sγ = Sσ|Gγ′.
For S there are two cases according to the partition A(S) = (A(S) \ Dom(σ|G)) ]

(A(S) ∩ Dom(σ|G)). Analogous to the analysis for A(U) above, we have aγ = aσ|Gγ′ for

both cases. With γ|A = γ and γ′|A = γ′ we obtain Sγ = Sσ|Gγ′.
Now, for Q consider the partition V(Q) = (A(Q) \ Dom(σ′)) ] (A(Q) ∩ Dom(σ′)) ]

(N (Q) \ F) ] (F(Q) \ Dom(σ′)) ] (F(Q) ∩ Dom(σ′)) which leads to the following sub

cases:

• a ∈ A(Q) \ Dom(σ′):

From V(t1) = G(t1) ] F(t1) we get V(t1γ) = N (F(t1)γ) ∪ N (G(t1)γ) = F(t1).

Together with F(aγ) = ∅ we obtain V(aγ) ∩ N (t1γ) = N (aγ) ∩ F(t1)
F(aγ)=∅

= ∅.

Analogously, we obtain V(aγ)∩N (t2) = ∅ and, thus, V(aγ)∩Dom(σ′′) = ∅. Thus,

we have aγσ′′
N (aγ)∩Dom(σ′′)=∅

= aγ
Def.γ′

= aγ′
a6∈Dom(σ′)

= aσ′γ′.

• a ∈ A(Q) ∩ Dom(σ′):

Note that a ∈ Dom(σ′) implies a ∈ Dom(σ). We immediately have aγσ′′
Def.σ′′′

=

aσσ′′′
Def.γ′∧V(Range(σ|A))⊆A

= aσγ′
σ=σ′
= aσ′γ′.

• x ∈ N (Q) \ F :

From x 6∈ F(t1) ∪ F(t2) = N (t1γ) ∪ N (t2γ) = N (t1) ∪ N (t2) we know that x 6∈
Dom(σ′′) and x 6∈ Dom(σ′). From γ|A = γ and γ′|A = γ′ and x 6∈ A we get x 6∈
Dom(γ) and x 6∈ Dom(γ′). Thus, we have xγσ′′

x 6∈Dom(γ)
= xσ′′

x 6∈Dom(σ′′)
= x

x 6∈Dom(γ′)
=

xγ′
x 6∈Dom(σ′)

= xσ′γ′.
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• x ∈ F(Q) \ Dom(σ′):

From x 6∈ Dom(σ′) we know x 6∈ F(t1)∪F(t2) = N (t1γ)∪N (t2) and, consequently,

x 6∈ Dom(σ′′). With x 6∈ A we have xγσ′′
x 6∈Dom(γ)

= xσ′′
x 6∈Dom(σ′′)

= x
x 6∈Dom(γ′)

=

xγ′
x6∈Dom(σ′)

= xσ′γ′.

• x ∈ F(Q) ∩ Dom(σ′):

Note that x ∈ Dom(σ′) and σ′ = σ imply x ∈ Dom(σ). Then, we have xγσ′′
x 6∈A
=

xσ′′
σ′′=σ|Nσ′′′|A(Range(σ|N ))

= xσ|Nσ′′′|A(Range(σ|N ))
Def.γ′

= xσ|Nγ′
x∈N∧σ=σ′

= xσ′γ′.

Thus, we have shown that xγσ′′ = xσ′γ′ for all x ∈ V(Q) and, consequently, Qγσ′′ =

Qσ′γ′.

This concludes the case of σ′ = σ.

Case 2: σ′ = σαA\G′ , i.e., A(t1) ∪ A(t2) ⊆ G and N (t1) ∪N (t2) 6⊆ F :

Here, we can assume Dom(σ) = G(t1) ∪ G(t2) ∪ N (t1) ∪ N (t2). Define γ′(a) = σ′′′(a) for

a ∈ A(Range(σ)), αA\G′γ
′(a) = σσ′′′(a) for a ∈ A \ G ′, and γ′(a) = γ(a) otherwise. This

is possible as all variables in the ranges of σ and αA\G′ are fresh.

First, w.l.o.g. we can demand that σ′′ is chosen in such a way that

σ′′ = σ|Nσ′′′|A(Range(σ|N )) by the identical argument as for the case of σ′ = σ where

we made use of A(t1) ∪ A(t2) ⊆ G, which still holds for this case.

We continue by showing that γ′ is a concretization w.r.t. (G ′,F ′,Uσ|G), i.e., γ′|A = γ′,⋃
a∈AA(aγ′) = ∅, Range(γ′|G′) ⊆ GroundTerms(Σ), F ′(Range(γ′)) = ∅, and∧
(t,t′)∈Uσ|G tγ

′ 6∼ t′γ′.

As γ′ is only defined for A, we trivially have γ′|A = γ′.

To show that
⋃
a∈AA(aγ′) = ∅, we perform a case analysis w.r.t. A = A(Range(σ)) ]

A(Range(αA\G′))](A\(A(Range(σ))∪A(Range(αA\G′)))). For a ∈ A(Range(σ)) we have

A(aγ′)
Def.γ′

= A(aσ′′′)
a6∈Dom(σ)

= A(aσσ′′′)
Def.σ′′′

= A(aγσ′′)
V(Range(σ′′))⊆N

= A(aγ)
⋃
a∈AA(aγ)=∅

=

∅. For a ∈ A(Range(αA\G′)) there is an a′ 6∈ A(Range(αA\G′)) such that a′αA\G′ = a

and A(aγ′)
a′αA\G′=a

= A(a′αA\G′γ
′)

Def.γ′
= A(a′σσ′′′)

Def.σ′′′
= A(a′γσ′′)

V(Range(σ′′))⊆N
= A(a′γ)⋃

a∈AA(aγ)=∅
= ∅. For a ∈ A \ (A(Range(σ)) ∪ A(Range(αA\G′))) we have A(aγ′)

Def.γ′
=

A(aγ)
⋃
a∈AA(aγ)=∅

= ∅.

Range(γ′|G′) ⊆ GroundTerms(Σ) follows from the identical argument as in the case

σ′ = σ.

Now, to show that F ′(Range(γ′)) = ∅, we perform a case analysis over a ∈ A =

(A \ (A(Range(σ)) ∪ A(Range(αA\G′)))) ] A(Range(σ)) ] A(Range(αA\G′)). For a ∈
A \ (A(Range(σ)) ∪ A(Range(αA\G′))) we have aγ′ = aγ and F ′(aγ) = F(aγ) as all

variables in F ′ \ F are fresh. This amounts to F ′(aγ′) = F ′(aγ) = F(aγ) = ∅. For

a ∈ A(Range(σ)) ⊆ A(Range(σ|A)) there must be an a′ ∈ Dom(σ|A) such that a ∈
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A(a′σ). Now, assume x ∈ F ′(aγ′). Then we have x ∈ F ′(a′σγ′) Def.γ′
= F ′(a′σσ′′′) Def.σ′′′

=

F ′(a′γσ′′) a′∈G
= ∅. For a ∈ A(Range(αA\G′)) there must be an a′ ∈ A \ G ′ such that

a = a′αA\G′ . Now assume x ∈ F ′(aγ′). Then x ∈ F ′(a′αA\G′γ′)
Def.γ′

= F ′(a′σσ′′′) Def.σ′′′
=

F ′(a′γσ′′). Now, for x ∈ F ′(a′γσ′′) there would have to be a z ∈ N (a′γ) such that

x ∈ N (zσ′′). As all variables in the range of σ′′ are fresh, x 6∈ F . From σ′′ =

σ|Nσ′′′|A(Range(σ|N )) we get z ∈ Dom(σ). As z ∈ N (a′γ) and F(a′γ) = ∅, we know

z 6∈ F . Thus, z ∈ N \ F and, consequently, x ∈ N (Range(σ|N\F)). But as F ′ =

F ∪ (N (Range(σ|F)) \ N (Range(σ|N\F))), this contradicts our assumption that x ∈
F ′(a′γσ′′) = F ′(aγ′).

Finally, we have
∧

(t,t′)∈Uσ|G tγ
′ 6∼ t′γ′ =

∧
(s,s′)∈U sγ 6∼ s′γ by the identical argument as

the one used in the case of σ′ = σ.

Now, we are left to show that Qγσ′′ = Qσ′γ′ and Sγ = Sσ|Gγ′.
For S, we can use the identical argument as for the case of σ′ = σ.

Now, for Q consider the partition V(Q) = (A(Q) \ G) ] (G(Q) ∩ Dom(σ′)) ] (G(Q) \
Dom(σ′))] (N (Q)\Dom(σ′))] (N (Q)∩Dom(σ′)) which leads to the following subcases:

• a ∈ A(Q) \ G:

We immediately have aγσ′′
Def.σ′′′

= aσσ′′′
Def.γ′

= aαA\G′γ
′ a/∈Dom(σ)

= aσαA\G′γ
′ σαA\G′=σ

′

=

aσ′γ′.

• a ∈ G(Q) ∩ Dom(σ′):

Note that a ∈ G(Q) ∩ Dom(σ′) implies a ∈ Dom(σ). Then, we have aγσ′′
Def.σ′′′

=

aσσ′′′
Def.γ′

= aσγ′
A(aσ)⊆G′

= aσαA\G′γ
′ σαA\G′=σ

′

= aσ′γ′.

• a ∈ G(Q) \ Dom(σ′):

We have aγσ′′
a∈G
= aγ

Def.γ′
= aγ′

a6∈Dom(σ′)
= aσ′γ′.

• x ∈ N (Q) \ Dom(σ′):

From x 6∈ Dom(σ′) we know x 6∈ V(t1) ∪ V(t2). From A(t1) ∪ A(t2) ⊆ G and

N (Range(γ|G)) = ∅ we know that x 6∈ V(t1γ) and x /∈ V(t2γ). Thus, we have

x 6∈ Dom(σ′′). Then, we have xγσ′′
x 6∈Dom(γ)

= xσ′′
x 6∈Dom(σ′′)

= x
x 6∈Dom(γ′)

= xγ′
x 6∈Dom(σ′)

=

xσ′γ′.

• x ∈ N (Q) ∩ Dom(σ′):

Note that x ∈ N (Q) ∩ Dom(σ′) implies x ∈ Dom(σ). Then, we have xγσ′′
γ|A=γ

=

xσ′′
σ′′=σ|Nσ′′′|A(Range(σ|N ))

= xσ|Nσ′′′|A(Range(σ|N ))
x∈N
= xσσ′′′|A(Range(σ|N ))

x∈Dom(σ)
= xσσ′′′

Def.γ′
= xσγ′

(A\G′)∩A(Range(σ))=∅
= xσαA\G′γ

′ σ
′=σαA\G′

= xσ′γ′.

Thus, we have shown that xγσ′′ = xσ′γ′ for all x ∈ V(Q) and, consequently, Qγσ′′ =

Qσ′γ′.
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This concludes the case of σ′ = σαA\G′ .

Case 3: σ′ = σα(A\G′)∪(N\F ′), i.e., A(t1) ∪ A(t2) 6⊆ G:

Here, we can assume Dom(σ) = A(t1) ∪A(t2) ∪N (t1) ∪N (t2). Define γ′(a) = σ′′′(a) for

a ∈ A(Range(σ)), α(A\G′)∪(N\F ′)γ
′(a) = σσ′′′(a) for a ∈ (A\G ′)∪(N\F ′), and γ′(a) = γ(a)

otherwise. This is possible as all variables in the ranges of σ and α(A\G′)∪(N\F ′) are fresh.

First, we show that w.l.o.g. we can demand that σ′′ is chosen in such a way that σ′′ = σ′′′′

for σ′′′′|F = σ|Fσ′′′|A(Range(σ|F )) and σ′′′′|N\(F) = σ′′|N\(F) by showing that σ′′′′ is a most

general unifier of t1γ and t2γ. That σ′′′′ is most general follows from σ and σ′′ being most

general unifiers of t1 and t2 resp. t1γ and t2γ. To see this consider that by the definition

of σ′′′ as γσ′′ = σσ′′′ we have σ′′|F = σ|Fσ′′′|V(Range(σ|F )). Clearly, σ′′′|A(Range(σ|F )) is more

general than σ′′′|V(Range(σ|F )) and, consequently, σ′′′′ is more general than σ′′ which is a

most general unifier of t1γ and t2γ. We now show that σ′′′′ is still a unifier of t1γ and t2γ:

t1γσ
′′′′

V(Range(σ′′)∪Range(σ)∪
Range(σ′′′))⊆Vfresh

= t1γσ
′′′′|Fσ′′′′|N\(F)

F(Range(γ))=∅∧γA=γ
= t1σ

′′′′|Fγσ′′′′|N\(F)

Def.σ′′′′
= t1σ|Fσ′′′|A(Range(σ|F ))γσ

′′|N\(F)

γσ′′|N\(F)=σ|V\(F)

σ′′′|V(Range(σ|V\(F)))

= t1σ|Fσ′′′|A(Range(σ|F ))σ|V\(F)

σ′′′|V(Range(σ|V\(F)))

Dom(σ)∩V(Range(σ′′′))=∅
= t1σ|Fσ|V\(F)σ

′′′|A(Range(σ|F ))

σ′′′|V(Range(σ|V\(F)))

V(Range(σ))⊆Vfresh
= t1σσ

′′′|A(Range(σ|F ))σ
′′′|V(Range(σ|V\(F)))

σ=mgu(t1,t2)
= t2σσ

′′′|A(Range(σ|F ))σ
′′′|V(Range(σ|V\(F)))

V(Range(σ))⊆Vfresh
= t2σ|Fσ|V\(F)σ

′′′|A(Range(σ|F ))

σ′′′|V(Range(σ|V\(F)))

Dom(σ)∩V(Range(σ′′′))=∅
= t2σ|Fσ′′′|A(Range(σ|F ))σ|V\(F)

σ′′′|V(Range(σ|V\(F)))

γσ′′|N\(F)=σ|V\(F)

σ′′′|V(Range(σ|V\(F)))

= t2σ|Fσ′′′|A(Range(σ|F ))γσ
′′|N\(F)

Def.σ′′′′
= t2σ

′′′′|Fγσ′′′′|N\(F)

F(Range(γ))=∅∧γA=γ
= t2γσ

′′′′|Fσ′′′′|N\(F)

V(Range(σ′′)∪Range(σ)∪
Range(σ′′′))⊆Vfresh

= t2γσ
′′′′
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We are left to show that γ′ is a concretization w.r.t. (G ′,F ′,Uσ|G), i.e., γ′|A = γ′,⋃
a∈AA(aγ′) = ∅, Range(γ′|G′) ⊆ GroundTerms(Σ), F ′(Range(γ′)) = ∅, and∧
(t,t′)∈Uσ|G tγ

′ 6∼ t′γ′.

As γ′ is only defined for A, we trivially have γ′|A = γ′.

To show that
⋃
a∈AA(aγ′) = ∅, we perform a case analysis w.r.t. A = A(Range(σ)) ]

A(Range(α(A\G′)∪(N\F ′))) ] (A \ (A(Range(σ)) ∪ A(Range(α(A\G′)∪(N\F ′))))). For the

case that a ∈ A(Range(σ)) we have A(aγ′)
Def.γ′

= A(aσ′′′)
a6∈Dom(σ)

= A(aσσ′′′)
Def.σ′′′

=

A(aγσ′′)
V(Range(σ′′))⊆N

= A(aγ)
⋃
a∈AA(aγ)=∅

= ∅. For a ∈ A(Range(α(A\G′)∪(N\F ′))) there is

an a′ 6∈ A(Range(α(A\G′)∪(N\F ′))) such that a′α(A\G′)∪(N\F ′) = a andA(aγ′)
a′α(A\G′)∪(N\F′)=a

=

A(a′α(A\G′)∪(N\F ′)γ
′)

Def.γ′
= A(a′σσ′′′)

Def.σ′′′
= A(a′γσ′′)

V(Range(σ′′))⊆N
= A(a′γ)

⋃
a∈AA(aγ)=∅

=

∅. For a ∈ A \ (A(Range(σ)) ∪ A(Range(α(A\G′)∪(N\F ′)))) we have A(aγ′)
Def.γ′

= A(aγ)⋃
a∈AA(aγ)=∅

= ∅.

By the identical argument as for the case of σ′ = σ, we obtain Range(γ′|G′) ⊆
GroundTerms(Σ).

Now, to show that F ′(Range(γ′)) = ∅, we perform a case analysis over a ∈ A = (A \
(A(Range(σ))∪A(Range(α(A\G′)∪(N\F ′)))))]A(Range(σ))]A(Range(α(A\G′)∪(N\F ′))). For

a ∈ A\ (A(Range(σ))∪A(Range(α(A\G′)∪(N\F ′)))) we have aγ′ = aγ and F ′(aγ) = F(aγ)

as all variables in F ′ \ F are fresh. This amounts to F ′(aγ′) = F ′(aγ) = F(aγ) =

∅. For a ∈ A(Range(σ)) ⊆ A(Range(σ|A)) there must be an a′ ∈ Dom(σ|A) such

that a ∈ A(a′σ). Now, assume x ∈ F ′(aγ′). Then we have x ∈ F ′(a′σγ′) Def.γ′
=

F ′(a′σσ′′′) Def.σ′′′
= F ′(a′γσ′′). Now, for x ∈ F ′(a′γσ′′) there would have to be a z ∈ N (a′γ)

such that x ∈ N (zσ′′). As all variables in the range of σ′′ are fresh, x 6∈ F . From

σ′′ = σ|Nσ′′′|A(Range(σ|N )) we get z ∈ Dom(σ). As z ∈ N (a′γ) and F(a′γ) = ∅, we

know z 6∈ F . Thus, z ∈ N \ F and, consequently, x ∈ N (Range(σ|N\F)). But

as F ′ = F ∪ (N (Range(σ|F)) \ N (Range(σ|N\F))), this contradicts our assumption

that x ∈ F ′(a′γσ′′) = F ′(aγ′). For a ∈ A(Range(α(A\G′)∪(N\F ′))) there must be an

a′ ∈ (A \ G ′) ∪ (N \ F ′) such that a = a′α(A\G′)∪(N\F ′). Now assume x ∈ F ′(aγ′). Then

x ∈ F ′(a′α(A\G′)∪(N\F ′)γ
′)

Def.γ′
= F ′(a′σσ′′′) Def.σ′′′

= F ′(a′γσ′′). By the identical argument

as for the case of a ∈ A(Range(σ)) we can show that x 6∈ F ′(a′γσ′′).

Finally, we have
∧

(t,t′)∈Uσ|G tγ
′ 6∼ t′γ′ =

∧
(s,s′)∈U sγ 6∼ s′γ by the identical argument as

the one used in the case of σ′ = σ.

Now, we are left to show that Qγσ′′ = Qσ′γ′ and Sγ = Sσ|Gγ′.

For S, we can use the identical argument as for the case of σ′ = σ.

Now, forQ consider the partition V(Q) = ((V(Q)\(G∪F))∩Dom(σ))]((V(Q)\(G∪F))\
Dom(σ))] (G(Q)∩Dom(σ′))] (G(Q)\Dom(σ′))] (F(Q)\Dom(σ′))] (F(Q)∩Dom(σ′))

which leads to the following sub cases:
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• a ∈ (V(Q) \ (G ∪ F)) ∩ Dom(σ):

Then, we have aγσ′′
Def.σ′′′

= aσσ′′′
Def.γ′∧a∈Dom(σ)

= aσγ′
V(Range(σ))⊆Vfresh

=

aσα(A\G′)∪(N\F ′)γ
′ σα(A\G′)∪(N\F′)=σ

′

= aσ′γ′.

• a ∈ (V(Q) \ (G ∪ F)) \ Dom(σ):

Then, we have aγσ′′
Def.σ′′′

= aσσ′′′
Def.γ′∧a/∈Dom(σ)

= aα(A\G′)∪(N\F ′)γ
′ a/∈Dom(σ)

=

aσα(A\G′)∪(N\F ′)γ
′ σαA\G′= aσ′γ′.

• a ∈ G(Q) ∩ Dom(σ′):

Note that a ∈ G(Q) ∩ Dom(σ′) implies a ∈ Dom(σ). Then, we have aγσ′′
Def.σ′′′

=

aσσ′′′
Def.γ′

= aσγ′
A(aσ)⊆G′

= aσα(A\G′)∪(N\F ′)γ
′ σα(A\G′)∪(N\F′)=σ

′

= aσ′γ′.

• a ∈ G(Q) \ Dom(σ′):

We have aγσ′′
a∈G
= aγ

Def.γ′
= aγ′

a6∈Dom(σ′)
= aσ′γ′.

• x ∈ F(Q) \ Dom(σ′):

From x 6∈ Dom(σ′) we get x 6∈ V(t1) ∪ V(t2). From x ∈ F(Q) ⊆ F we get x 6∈
N (Range(γ)). Together, we obtain x 6∈ V(t1γ) ∪ V(t2γ) and, consequently, x 6∈
Dom(σ′′). Then, we have xγσ′′

x 6∈Dom(γ)
= xσ′′

x 6∈Dom(σ′′)
= x

x 6∈Dom(γ′)
= xγ′

x 6∈Dom(σ′)
= xσ′γ′.

• x ∈ F(Q) ∩ Dom(σ′):

Note that x ∈ F(Q) ∩ Dom(σ′) implies x ∈ Dom(σ). Then, we have xγσ′′
γ|A=γ

=

xσ′′
σ′′|F=σ|Fσ′′′|A(Range(σ|F ))

= xσ|Fσ′′′|A(Range(σ|F ))
Def.γ′

= xσ|Fα(A\G′)∪(N\F ′)γ
′ x∈F

=

xσα(A\G′)∪(N\F ′)γ
′ σα(A\G′)∪(N\F′)=σ

′

= xσ′γ′.

Thus, we have shown that xγσ′′ = xσ′γ′ for all x ∈ V(Q) and, consequently, Qγσ′′ =

Qσ′γ′.

This concludes the case of σ′ = σα(A\G′)∪(N\F ′) and, consequently, our proof for the

soundness of the UnifyCase rule.

The proof for the soundness of UnifySuccess is analogous to the one for OnlyEval.

Lemma 4.26 (Soundness of UnifySuccess). The rule UnifySuccess from

Definition 4.24 is sound.

Proof. We have to show that if there is an infinite concrete state-derivation starting in

=(t1γ, t2γ), Qγ | Sγ ∈ CON (=(t1, t2), Q | S; (G,F ,U)) then there is an infinite concrete

state-derivation starting in Qσ′γ′ | Sσ|Gγ′ ∈ CON (Qσ′ | Sσ|G; (G ′,F ′,Uσ|G)). Since the

UnifySuccess rule is identical to the UnifyCase rule if we drop the right successor

state of the UnifyCase rule and all conditions of the UnifyCase rule are implied by the

conditions of the UnifySuccess rule, we are left to show that there is no concretization
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γ w.r.t. (G,F ,U) for which we have t1γ � t2γ. Then the soundness of the UnifySuc-

cess rule is implied by the soundness of the UnifyCase rule. We show the equivalent

condition: ∀γ : (γ is a concretization w.r.t. (G,F ,U) =⇒ t1γ ∼ t2γ).

So let γ be a concretization w.r.t. (G,F ,U). We show t1γ ∼ t2γ by defining a unifier σ′′ of

t1γ and t2γ. Since σ|A : Dom(σ|A)→ Range(σ|A) is bijective and Range(σ|A) ⊆ A, there

is a substitution σ−1 with σ−1(σ(a)) = a for all a ∈ Dom(σ|A) and σ−1(x) = x otherwise.

So we have σσ−1 = σ|N . As we have t1σ = t2σ, we obtain t1σσ
−1 = t2σσ

−1 ⇐⇒ t1σ|N =

t2σ|N . We define σ′′ = σ|Nγ. Then we have:

t1γσ
′′ Def.σ′′

= t1γσ|Nγ
Dom(γ)⊆A∧γγ=γ

= t1σ|Nγγ
t1σ|N=t2σ|N

= t2σ|Nγγ
Dom(γ)⊆A∧γγ=γ

= t2γσ|Nγ
Def.σ′′

= t2γσ
′′

Likewise, the soundness proof for UnifyFail corresponds to the one for Backtrack.

Lemma 4.27 (Soundness of UnifyFail). The rule UnifyFail from Definition 4.24 is

sound.

Proof. Assume there is an infinite concrete state-derivation from =(t1γ, t2γ), Qγ | Sγ ∈
CON (=(t1, t2), Q | S; (G,F ,U)).

Let γ be a concretization w.r.t. (G,F ,U). If t1γ � t2γ then the only applicable concrete

rule is UnifyFail, which results in Sγ starting an infinite concrete state-derivation.

From t1γ � t2γ we know that γ is also a concretization w.r.t. (G,F ,U ∪ {(t;Hi)}) and

Sγ ∈ CON (S; (G,F ,U ∪ {(t;Hi)}))
Now we are left to show that there is no concretization γ w.r.t. (G,F ,U) with t1γ ∼ t2γ.

If t1 � t2, then there is no substitution δ with t1δ ∼ t2δ. In particular, there is no

concretization γ with t1γ ∼ t2γ.

So let σ = mgu(t1, t2). If there is a variable a ∈ G with aσ /∈ FinitePrologTerms(Σ,V),

there is no concretization γ with t1γ ∼ t2γ. To see this, assume there is an mgu σ′′′′ of t1γ

and t2γ. Then there must be a substitution δ′ with σδ′ = γσ′′′′. We can assume a ∈ V(t1)∪
V(t2), since σ is most general. As aσ /∈ FinitePrologTerms(Σ,V) we also have aσδ′ =

aγσ′′′′ /∈ FinitePrologTerms(Σ,V). Since γ has to replace all abstract variables in t1 and

t2 and A(Range(γ)) = ∅, we obtain aγ /∈ FinitePrologTerms(Σ,V) ⊇ GroundTerms(Σ).

Contradiction.

Now let V(Range(σ)) ⊆ Vfresh and ∃(s, s′) ∈ U : σ′ = mgu(sσ|G, s′σ|G) ∧ Dom(σ′) ⊆ F .

We show that ∀δ : (Dom(δ) ⊆ A ∧ V(Range(δ)) ⊆ N \ F) =⇒ sσ|Gδ ∼ s′σ|Gδ by
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showing that σ′δ is a unifier of sσ|Gδ and s′σ|Gδ.
Let δ be a substitution with Dom(δ) ⊆ A∧V(Range(δ)) ⊆ N \F . We immediately have

that δ = δδ since Dom(δ) ∩ V(Range(δ)) = ∅. Now we have:

sσ|Gδσ′δ
Dom(δ)⊆A

= sσ|Gδ|Aσ′δ|A
Dom(σ′)⊆F

= sσ|Gδ|Aσ′|Fδ|A
V(Range(δ))⊆N\F∧δ=δδ

= sσ|Gσ′|Fδ|Aδ|A
Dom(σ′)⊆F

= sσ|Gσ′δ|Aδ|A
σ′=mgu(s|G ,s′|G)

= s′σ|Gσ′δ|Aδ|A
Dom(σ′)⊆F

= s′σ|Gσ′|Fδ|Aδ|A
V(Range(δ))⊆N\F∧δ=δδ

= s′σ|Gδ|Aσ′|Fδ|A
Dom(σ′)⊆F

= s′σ|Gδ|Aσ′δ|A
Dom(δ)⊆A

= s′σ|Gδσ′δ

From ∀δ : (Dom(δ) ⊆ A ∧ V(Range(δ)) ⊆ N \ F) =⇒ sσ|Gδ ∼ s′σ|Gδ it follows that

∀δ∃(s, s′) ∈ U : (Dom(δ) ⊆ A ∧ V(Range(δ)) ⊆ N \ F) =⇒ sσ|Gδ ∼ s′σ|Gδ. By

disjunctively adding t1δ � t2δ we obtain:

∀δ∃(s, s′) ∈ U : (Dom(δ) ⊆ A ∧ V(Range(δ)) ⊆ N \ F) =⇒ sσ|Gδ ∼ s′σ|Gδ ∨ t1δ � t2δ

Dom(δ)⊆A∧V(Range(δ))⊆N\F independent from s,s′,t1, and t2⇐⇒

∀δ : (Dom(δ) ⊆ A∧V(Range(δ)) ⊆ N \F) =⇒ (∃(s, s′) ∈ U : sσ|Gδ ∼ s′σ|Gδ)∨t1δ � t2δ

Double negation⇐⇒

∀δ : (Dom(δ) ⊆ A∧ V(Range(δ)) ⊆ N \ F) =⇒ ¬(∀(s, s′) ∈ U : sσ|Gδ � s′σ|Gδ) ∨ t1δ �
t2δ

Definition of implication⇐⇒

∀δ : ¬((Dom(δ) ⊆ A∧V(Range(δ)) ⊆ N\F))∨¬(∀(s, s′) ∈ U : sσ|Gδ � s′σ|Gδ)∨t1δ � t2δ

Factor out negation⇐⇒

∀δ : ¬(Dom(δ) ⊆ A ∧ V(Range(δ)) ⊆ N \ F ∧ (∀(s, s′) ∈ U : sσ|Gδ � s′σ|Gδ)) ∨ t1δ � t2δ

Definition of implication⇐⇒

∀δ : (Dom(δ) ⊆ A∧V(Range(δ)) ⊆ N \F∧(∀(s, s′) ∈ U : sσ|Gδ � s′σ|Gδ)) =⇒ t1δ � t2δ
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We continue by showing that for all concretizations γ we have t1γ � t2γ.

Let γ be a concretization with γ = σ|Gγ′ where γ′ is an arbitrary substitution. Then

we have γσ|G = σ|Gγ. By definition, γ satisfies Dom(γ) ⊆ A ∧ V(Range(γ)) ⊆ N \
F ∧ (∀(s, s′) ∈ U : sγ � s′γ). Since V(Range(γ)) ⊆ N we also have Dom(γ) ⊆ A ∧
V(Range(γ)) ⊆ N \ F ∧ (∀(s, s′) ∈ U : sγσ|G � s′γσ|G) and hence Dom(γ) ⊆ A ∧
V(Range(γ)) ⊆ N \ F ∧ (∀(s, s′) ∈ U : sσ|Gγ � s′σ|Gγ) which implies t1γ � t2γ.

Now let γ be a concretization with γ 6= σ|Gγ′ for all substitutions γ′. Assume t1γ ∼ t2γ.

So there is a substitution σ′′ with t1γσ
′′ = t2γσ

′′. Since mgu(t1, t2) = σ and σ = σ|Gσ|V\G
we obtain ∃σ′′′ : σ|Gσ|V\Gσ′′′ = γσ′′. As we have Dom(γ) ⊆ A and

⋃
a∈AA(aγ) = ∅ we

also have that (σ|Gσ|V\Gσ′′′)|N = (σ|Nσ′′′)|N = σ′′ and (σ|Gσ|V\Gσ′′′)|G = (σ|Gσ′′′)|G = γ|G.
Let x ∈ V be any variable. We perform a case analysis over the partition (Range(σ|G) ]
Dom(σ|G) ] (V \ (Dom(σ|G) ∪ Range(σ|G)))):

• x ∈ (V \ (Dom(σ|G) ∪ Range(σ|G))):
We define xγ′ = xγ and have xσ|Gγ′ = xγ.

• x ∈ Range(σ|G):
Then there is a variable a ∈ Dom(σ|G) and a position π with (aσ|G)|π = x. Ad-

ditionally we know that x ∈ A and aσ|Gσ′′′ = aγ. Hence we have xσ′′′ = aγ|π.

W.l.o.g. we demand xγ = xσ′′′ since x is fresh. So we define xγ′ = xσ′′′. Then we

have xσ|Gγ′ = xγ.

• x ∈ Dom(σ|G):
We define xγ′ = x as x will already be replaced by σ|G. So we still have xσ|Gγ′ = xγ

since all variables in Range(σ|G) are properly replaced.

So we have in all cases xσ|Gγ′ = xγ and, therefore, σ|Gγ′ = γ. Contradiction. Thus, we

have t1γ � t2γ again.

Now, the soundness proof for NoUnifyCase has a similar structure to the one for

UnifyCase. But as we do not apply the mgu to the current goal in case of a successful

unification, the proof is much simpler than the one for UnifyCase.

Lemma 4.28 (Soundness of NoUnifyCase). The rule NoUnifyCase from

Definition 4.24 is sound.

Proof. Assume \=(t1, t2)γ,Qγ | Sγ = \=(t1γ, t2γ), Qγ | Sγ ∈ CON (\=(t1, t2), Q |
S; (G,F ,U)) has an infinite concrete state-derivation. There are two cases depending

on whether t1γ and t2γ unify.

First, if t1γ does not unify with t2γ, the unique applicable concrete rule is NoUnify-

Success and we obtain Qγ | Sγ which has to start an infinite concrete state-derivation.

From t1γ 6∼ t2γ and γ being a concretization w.r.t. (G,F ,U), we obtain that γ is a con-

cretization w.r.t. (G,F ,U ∪ {(t1, t2)}), too. Thus, Qγ | Sγ ∈ CON (Q | S; (G,F ,U ∪
{(t1, t2)})).
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Second, if t1γ ∼ t2γ, the unique applicable concrete rule is NoUnifyFail. From

t1γ ∼ t2γ we directly know that t1 also unifies with t2. Let mgu(t1γ, t2γ) = σ′′. Then due

to mgu(t1, t2) = σ there must be a substitution σ′′′ such that γσ′′ = σσ′′′. W.l.o.g., we

demand that V(Range(σ′′)) ⊆ Nfresh.
By application of the concrete NoUnifyFail rule we obtain Sγ. We are, thus, left

to show that Sγ ∈ CON (Sσ|G; (G ′,F ,Uσ|G)), i.e., that there is a concretization γ′ w.r.t.

(G ′,F ,Uσ|G) such that Sγ = Sσ|Gγ′.
We can assume that Dom(σ) ⊆ V(t1) ∪ V(t2). Define γ′(a) = σ′′′(a) for

a ∈ A(Range(σ|G)) and γ′(a) = γ(a) otherwise.

We continue by showing that γ′ is a concretization w.r.t. (G ′,F ,Uσ|G), i.e., γ′|A = γ′,⋃
a∈AA(aγ′) = ∅, Range(γ′|G′) ⊆ GroundTerms(Σ), F(Range(γ′)) = ∅, and∧
(t,t′)∈Uσ|G tγ

′ 6∼ t′γ′.

As γ′ is only defined for A, we trivially have γ′|A = γ′.

To show that
⋃
a∈AA(aγ′) = ∅, we perform a case analysis w.r.t. A = A(Range(σ|G))]

(A \ A(Range(σ|G))). For a ∈ A(Range(σ|G)) we have A(aγ′)
Def.γ′

= A(aσ′′′)
a6∈Dom(σ|G)

=

A(aσσ′′′)
Def.σ′′′

= A(aγσ′′)
V(Range(σ′′))⊆N

= A(aγ)
⋃
a∈AA(aγ)=∅

= ∅. For a ∈ A\A(Range(σ|G))
we have A(aγ′)

Def.γ′
= A(aγ)

⋃
a∈AA(aγ)=∅

= ∅.

To show that Range(γ′|G′) ⊆ GroundTerms(Σ), we make a case analysis over a ∈
G ′ = G ] A(Range(σ|G)). For a ∈ G we know that aγ ∈ GroundTerms(Σ) and by γ′|G
A(Range(σ))⊆Vfresh∧Def.γ′

= γ|G we obtain aγ′ ∈ GroundTerms(Σ). For a ∈ A(Range(σ|G))
we have aσ|G ∈ FinitePrologTerms(Σ,A) and aγ′ = aσ′′′. For all a′ ∈ Dom(σ|G),
a′σσ′′′

Def.σ′′′
= a′γσ′′

a′∈G
∈ GroundTerms(Σ). Thus, aγ′ ∈ GroundTerms(Σ).

Now, to show that F(Range(γ′)) = ∅, we perform a case analysis over a ∈ A =

(A \ A(Range(σ|G))) ] A(Range(σ|G)). For a ∈ A \ A(Range(σ|G)) we have aγ′ = aγ

and F(aγ) = ∅ as γ is a concretization w.r.t. (G,F ,U). For a ∈ A(Range(σ|G)) ⊆
A(Range(σ|A)) there must be an a′ ∈ Dom(σ|G) such that a ∈ A(a′σ). Now, assume x ∈
F(aγ′). Then we have x ∈ F(a′σγ′)

Def.γ′∧a′∈Dom(σ|G)
= F(a′σσ′′′)

Def.σ′′′
= F(a′γσ′′)

a′∈G
= ∅.

Finally, we have
∧

(t,t′)∈Uσ|G tγ
′ 6∼ t′γ′ =

∧
(s,s′)∈U sσ|Gγ′ 6∼ s′σ|Gγ′ =

∧
(s,s′)∈U sγ 6∼ s′γ as

aσ|Gγ′ = aγ for all abstract variables in a ∈ A(U) by definition of γ′. To see this, consider

the partition A(U) = (A(U)\Dom(σ|G))](A(U)∩Dom(σ|G)). If a ∈ A(U)\Dom(σ|G) we

have aγ
Def.γ′

= aγ′
a6∈Dom(σ|G)

= aσ|Gγ′. If a ∈ A(U) ∩ Dom(σ|G) we have aγ
a∈G
= aγσ′′

Def.σ′′′
=

aσσ′′′
a∈G
= aσ|Gσ′′′

Def.γ′∧V(Range(σ|A))⊆A
= aσ|Gγ′.

To show that Sγ = Sσ|Gγ′ we perform a case analysis according to the partition

A(S) = (A(S) \ Dom(σ|G)) ] (A(S) ∩ Dom(σ|G)). Analogous to the analysis for A(U)

above, we have aγ = aσ|Gγ′ for both cases. With γ|A = γ and γ′|A = γ′ we obtain

Sγ = Sσ|Gγ′.

For proving the soundness of NoUnifySuccess we can refer back to the proof for

UnifyFail.
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Lemma 4.29 (Soundness of NoUnifySuccess). The rule NoUnifySuccess from

Definition 4.24 is sound.

Proof. Assume there is an infinite concrete state-derivation from \=(t1, t2)γ,Qγ | Sγ =

\=(t1γ, t2γ), Qγ | Sγ ∈ CON (\=(t1, t2), Q | S; (G,F ,U)).

Let γ be a concretization w.r.t. (G,F ,U). If t1γ � t2γ then the only applicable concrete

rule is NoUnifySuccess, which results in Qγ | Sγ starting an infinite concrete state-

derivation. From t1γ � t2γ we know that γ is also a concretization w.r.t. (G,F ,U ∪
{(t;Hi)}) and Qγ | Sγ ∈ CON (Q | S; (G,F ,U ∪ {(t;Hi)}))

Now we are left to show that there is no concretization γ w.r.t. (G,F ,U) with t1γ ∼ t2γ.

As we have the same situation as in the proof of Lemma 4.27, this is already shown

there.

Likewise, we can use the proof for UnifySuccess in the proof for NoUnifyFail.

Lemma 4.30 (Soundness of NoUnifyFail). The rule NoUnifyFail from

Definition 4.24 is sound.

Proof. We have to show that if there is an infinite concrete state-derivation starting in

\=(t1, t2)γ,Qγ | Sγ = \=(t1γ, t2γ), Qγ | Sγ ∈ CON (\=(t1, t2), Q | S; (G,F ,U)) then

there is an infinite concrete state-derivation starting in Sσ|Gγ′ ∈ CON (Sσ|G; (G ′,F ,Uσ|G)).
Since the NoUnifyFail rule is identical to the NoUnifyCase rule if we drop the left

successor state of the NoUnifyCase rule and all conditions of the NoUnifyCase rule

are implied by the conditions of the NoUnifyFail rule, we are left to show that there is

no concretization γ w.r.t. (G,F ,U) for which we have t1γ � t2γ. Then the soundness of

the NoUnifyFail rule is implied by the soundness of the NoUnifyCase rule. We show

the equivalent condition: ∀γ : (γ is a concretization w.r.t. (G,F ,U) =⇒ t1γ ∼ t2γ).

As we have the same situation as in the proof of Lemma 4.26, this is already shown

there.
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4.4 Type Testing

The group of built-in predicates for type testing is especially used to check inputs and

to exclude or detect error cases in a Prolog program. As Prolog is a typeless language,

the types considered in the built-in predicates correspond to a template rather than a

real type.12 All the predicates in this section have only empty answer substitutions and

succeed or fail according to their tests.

The built-in predicate atomic/1 tests if its argument is a constant term, i.e., its root

symbol has the arity zero and it is no variable.13

Example 4.31. The goals atomic(p) and atomic(0) succeed while the goals atomic(f(a))

and atomic(X) fail for X ∈ N .

By contrast, compound/1 tests if its argument is not a constant or variable, but a

compound term with at least one argument.

Example 4.32. The goal compound(f(a)) succeeds while the goals compound(p) and

compound(X) fail for X ∈ N .

Combining both tests, the built-in predicate nonvar/1 tests if its argument is no variable,

i.e., a constant or a compound term.

Example 4.33. The goals nonvar(f(a)) and nonvar(p) succeed while the goal nonvar(X)

fails for X ∈ N .

Finally, var/1 tests if its argument is a variable.

Example 4.34. The goal var(X) succeeds while the goals var(f(a)) and var(p) fail for

X ∈ N .

The corresponding concrete inference rules are, thus, easily defined.

12Prolog distinguishes, however, between integers, floats and other terms. If this distinction can be seen
as real types is not discussed here as we do not consider the arithmetical features of Prolog in this
thesis.

13For atomic/1, numbers are treated like constants. This is why we can handle this built-in predicate in
our setting where we ignore the difference between numbers and constants. See Section 4.6 for the
problems we have with the similar built-in predicate atom/1.
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Definition 4.35 (Concrete Inference Rules for Type Testing).

atomic(c), Q | S

Q | S
(AtomicSuccess) where c is a constant

atomic(t′), Q | S

S
(AtomicFail) where t′ is no constant

compound(t′), Q | S

Q | S
(CompoundSuccess) where t′ is no constant and no variable

compound(t′), Q | S

S
(CompoundFail) where t′ is a constant or t′ ∈ N

nonvar(t′), Q | S

Q | S
(NonvarSuccess) where t′ /∈ N

nonvar(x), Q | S

S
(NonvarFail)

var(x), Q | S

Q | S
(VarSuccess)

var(t′), Q | S

S
(VarFail) where t′ /∈ N

For the abstract inference rules we must again consider that abstract variables may

represent both terms which satisfy and which do not satisfy the respective tests of the

built-in predicates. Thus, we have an additional abstract inference rule for each built-

in predicate for type testing which is applicable if its argument is an abstract variable.

Unfortunately, as long as we do not extend our knowledge bases to also contain shape

information, we cannot extract much knowledge from the tests and just have to consider

both cases for a successful and failing test. For atomic/1 we know at least that an abstract

variable must represent a ground term if this test succeeds. For var/1 we can even obtain

more knowledge by considering one successor state for each variable used in the parent

state and two more successor states for a foreign variable and a failing test. Note that

such a case analysis is not possible in our setting for function symbols as we would have

to extend the finite signature, while we already consider an infinite set of variables.14

Furthermore, we know that the test for var/1 must fail for abstract variables from G as

14Of course, we could perform a case analysis over the function symbols in the finite signature, but then
we would have to specify the signature explicitly or assume that input terms may only be formed
by the function symbols occurring in the respective program. We refrain from such assumptions and
leave the analysis of programs over an infinite or growing signature to future work.
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these variables cannot represent variables from N . Likewise, the test for nonvar/1 must

succeed in such cases. This leads to the following definition of abstract inference rules for

built-in predicates for type testing.

Definition 4.36 (Abstract Inference Rules for Type Testing).

atomic(c), Q | S;KB

Q | S;KB
(AtomicSuccess) where c is a constant

atomic(t′), Q | S;KB

S;KB
(AtomicFail) where t′ is no constant and

no abstract variable

atomic(a), Q | S; (G,F ,U)

Q | S; (G ∪ {a},F ,U) S; (G,F ,U)
(AtomicCase) where a ∈ A

compound(f(t1, . . . , tk)), Q | S;KB

Q | S;KB
(CompoundSuccess)

where f/k ∈ Σ
and ti ∈
PrologTerms(Σ,V)
for all i ∈ {1, . . . , k}

compound(t′), Q | S;KB

S;KB
(CompoundFail) where t′ is a constant or t′ ∈ N

compound(a), Q | S;KB

Q | S;KB S;KB
(CompoundCase) where a ∈ A

nonvar(t′), Q | S; (G,F ,U)

Q | S; (G,F ,U)
(NonvarSuccess) where t′ /∈ V \ G

nonvar(x), Q | S;KB

S;KB
(NonvarFail)

nonvar(a), Q | S; (G,F ,U)

Q | S; (G,F ,U) S; (G,F ,U)
(NonvarCase) where a ∈ A \ G

var(x), Q | S;KB

Q | S;KB
(VarSuccess)

var(t′), Q | S; (G,F ,U)

S; (G,F ,U)
(VarFail) where t′ /∈ V \ G
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var(a), Q | S; (G,F ,U)

Qσ0 | Sσ0; (G,F ,Uσ0) . . . Qσn | Sσn; (G,F ,Uσn) S; (G,F ,U)
(VarCase)

where a ∈ A \ G, (N (Q) ∪ N (S) ∪ N (U)) \ F = {x1, . . . , xn}, σ0 = [a/x] for x ∈ Nfresh

and ∀i ∈ {1, . . . , n} : σi = [a/xi].

As the changes to the knowledge bases correspond to a kind of shape analysis only

and not to instantiation of non-abstract variables, we can easily prove that these abstract

inference rules are sound.

Lemma 4.37 (Soundness of Abstract Inference Rules for Type Testing). The rules

AtomicSuccess, AtomicFail, AtomicCase, CompoundSuccess, CompoundFail,

CompoundCase, NonvarSuccess, NonvarFail, NonvarCase, VarSuccess,

VarFail and VarCase from Definition 4.36 are sound.

Proof. For AtomicSuccess assume there is an infinite concrete state-derivation from

atomic(c), Qγ | Sγ ∈ CON (atomic(c), Q | S;KB) where c is a constant. Then the only

applicable concrete inference rule is AtomicSuccess leading to the state Qγ | Sγ ∈
CON (Q | S;KB) having an infinite concrete state-derivation.

For AtomicFail assume there is an infinite concrete state-derivation from

atomic(t′γ), Qγ | Sγ ∈ CON (atomic(t′), Q | S;KB) where t′ is no constant and no ab-

stract variable. As γ is only defined for abstract variables, the only applicable concrete

inference rule is AtomicFail leading to the state Sγ ∈ CON (S;KB) having an infinite

concrete state-derivation.

For AtomicCase assume there is an infinite concrete state-derivation from

atomic(aγ), Qγ | Sγ ∈ CON (atomic(a), Q | S; (G,F ,U)) where a ∈ A. Then there

are two cases depending on whether aγ is a constant. If aγ is a constant, then the

only applicable concrete inference rule is AtomicSuccess leading to the state Qγ | Sγ
which starts an infinite concrete state-derivation. As aγ is a constant, we have aγ ∈
GroundTerms(Σ) and, thus, Qγ | Sγ ∈ CON (Q | S; (G ∪ {a},F ,U)). So let aγ be no

constant. Then the only applicable concrete inference rule is AtomicFail leading to the

state Sγ ∈ CON (S; (G,F ,U)) having an infinite concrete state-derivation.

For CompoundSuccess assume there is an infinite concrete state-derivation from

compound(f(t1γ, . . . , tkγ)), Qγ | Sγ ∈ CON (compound(f(t1, . . . , tk)), Q | S;KB) where

f/k ∈ Σ and ti ∈ PrologTerms(Σ,V) for all i ∈ {1, . . . , k}. Then the only applicable

concrete inference rule is CompoundSuccess leading to the state Qγ | Sγ ∈ CON (Q |
S;KB) having an infinite concrete state-derivation.

For CompoundFail assume there is an infinite concrete state-derivation from

compound(t′γ), Qγ | Sγ ∈ CON (compound(t′), Q | S;KB) where t′ is a constant or

t′ ∈ N . Then the only applicable concrete inference rule is CompoundFail leading to

the state Sγ ∈ CON (S;KB) having an infinite concrete state-derivation.
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For CompoundCase assume there is an infinite concrete state-derivation from

compound(aγ), Qγ | Sγ ∈ CON (compound(a), Q | S;KB) where a ∈ A. Then there are

two cases depending on whether aγ is no constant and no variable. If aγ is no constant

and no variable, the only applicable concrete inference rule is CompoundSuccess lead-

ing to the state Qγ | Sγ ∈ CON (Q | S;KB) having an infinite concrete state-derivation.

So let aγ be a variable or a constant. Then the only applicable concrete inference rule

is CompoundFail leading to the state Sγ ∈ CON (S;KB) having an infinite concrete

state-derivation.

For NonvarSuccess assume there is an infinite concrete state-derivation from

nonvar(t′γ), Qγ | Sγ ∈ CON (nonvar(t′), Q | S; (G,F ,U)) where t′ /∈ V \ G. Then we

have t′γ /∈ V and the only applicable concrete inference rule is NonvarSuccess leading

to the state Qγ | Sγ ∈ CON (Q | S; (G,F ,U)) having an infinite concrete state-derivation.

For NonvarFail assume there is an infinite concrete state-derivation from

nonvar(xγ), Qγ | Sγ ∈ CON (nonvar(x), Q | S;KB) where x ∈ N . Then we have

xγ = x ∈ N and the only applicable concrete inference rule is NonvarFail leading

to the state Sγ ∈ CON (S;KB) having an infinite concrete state-derivation.

For NonvarCase assume there is an infinite concrete state-derivation from

nonvar(aγ), Qγ | Sγ ∈ CON (nonvar(a), Q | S; (G,F ,U)) where a ∈ A \ G. Then we

have two cases depending on whether aγ ∈ N . If aγ ∈ N , the only applicable concrete

inference rule is NonvarFail leading to the state Sγ ∈ CON (S; (G,F ,U)) having an

infinite concrete state-derivation. So let aγ /∈ N . Then the only applicable concrete

inference rule is NonvarSuccess leading to the state Qγ | Sγ ∈ CON (Q | S; (G,F ,U))

having an infinite concrete state-derivation.

For VarSuccess assume there is an infinite concrete state-derivation from var(xγ), Qγ |
Sγ ∈ CON (var(x), Q | S;KB) where x ∈ N . Then we have xγ = x ∈ N and the only

applicable concrete inference rule is VarSuccess leading to the stateQγ | Sγ ∈ CON (Q |
S;KB) having an infinite concrete state-derivation.

For VarFail assume there is an infinite concrete state-derivation from var(t′γ), Qγ |
Sγ ∈ CON (var(t′), Q | S; (G,F ,U)) where t′ /∈ V \G. Then we have t′γ /∈ N and the only

applicable concrete inference rule is VarFail leading to the state Sγ ∈ CON (S; (G,F ,U))

having an infinite concrete state-derivation.

For VarCase assume there is an infinite concrete state-derivation from var(aγ), Qγ |
Sγ ∈ CON (var(a), Q | S; (G,F ,U)) where a ∈ A \ G, (N (Q) ∪ N (S) ∪ N (U)) \ F =

{x1, . . . , xn}, x ∈ Nfresh , σ0 = [a/x] and ∀i ∈ {1, . . . , n} : σi = [a/xi]. If aγ /∈ N , the only

applicable concrete inference rule is VarFail leading to the state Sγ ∈ CON (S; (G,F ,U))

having an infinite concrete state-derivation. So let aγ = y ∈ N . Then the only applicable

concrete inference rule is VarSuccess leading to the stateQγ | Sγ which starts an infinite

concrete state-derivation. We perform a case analysis over y ∈ N = {x1, . . . , xn} ] N \
{x1, . . . , xn}.
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• y ∈ {x1, . . . , xn}:
Then there is some i ∈ {1, . . . , n} with y = xi and we have σiγ = γ. Thus, we

obtain Qγ | Sγ = Qσiγ | Sσiγ. We are left to show that γ is a concretization

w.r.t. (G,F ,Uσi), i.e., γ|A = γ,
⋃
a∈AA(aγ) = ∅, Range(γ|G) ⊆ GroundTerms(Σ),

F(Range(γ)) = ∅, and
∧

(t,t′)∈Uσi tγ 6∼ t′γ. All these properties except for∧
(t,t′)∈Uσi tγ 6∼ t′γ are implied by the fact that γ is a concretization w.r.t. (G,F ,U).

As we know
∧

(t,t′)∈Uσi tγ 6∼ t′γ ⇐⇒
∧

(s,s′)∈U sσiγ 6∼ s′σiγ
σiγ=γ⇐⇒

∧
(s,s′)∈U sγ 6∼ s′γ

which is also implied by the fact that γ is a concretization w.r.t. (G,F ,U), we have

Qσiγ | Sσiγ ∈ CON (Qσi | Sσi; (G,F ,Uσi)).

• y ∈ N \ {x1, . . . , xn}:
Then there is a variable renaming ρ with Dom(ρ) = {x, y}, yρ = x and xρ = y.

We define γ′ by aγ′ = aγρ for a ∈ A and x′γ′ = x′ for x′ ∈ N . Therefore, we

obtain that σ0γ
′ = γ′ and Qγρ | Sγρ = Qγ′ | Sγ′ = Qσ0γ

′ | Sσ0γ
′ has an infinite

concrete state-derivation. We are, thus, left to show that γ′ is a concretization w.r.t.

(G,F ,Uσ0), i.e., γ′|A = γ′,
⋃
a∈AA(aγ′) = ∅, Range(γ′|G) ⊆ GroundTerms(Σ),

F(Range(γ′)) = ∅, and
∧

(t,t′)∈Uσ0
tγ′ 6∼ t′γ′.

As γ′ is only defined for abstract variables, we trivially have γ′|A = γ′.

Since aγ′ = aγρ for a ∈ A, ρ is a variable renaming and γ is a concretization

w.r.t. (G,F ,U), we obtain
⋃
a∈AA(aγ′) = ∅, Range(γ′|G) ⊆ GroundTerms(Σ) and

F(Range(γ′)) = ∅.

As we know
∧

(t,t′)∈Uσ0
tγ′ 6∼ t′γ′ ⇐⇒

∧
(s,s′)∈U sσ0γ

′ 6∼ s′σ0γ
′ σ0γ′=γ′⇐⇒

∧
(s,s′)∈U sγ

′ 6∼
s′γ′ which is also implied by the fact that γ is a concretization w.r.t. (G,F ,U), ρ is

a variable renaming and aγ′ = aγρ for a ∈ A, we have Qσ0γ
′ | Sσ0γ

′ ∈ CON (Qσ0 |
Sσ0; (G,F ,Uσ0)).

4.5 Special Cases

Finally, we handle the built-in predicates flush output/0, nl/0, write/1, write canonical/1

and writeq/1 used for output. As the ISO standard defines that the default output stream

is a text stream and we do not consider built-in predicates being capable of changing the

current output stream, we can assume that the current output stream is always a text

stream. Therefore, these built-in predicates cannot generate an error according to their

definition in the ISO standard and we can handle them just like the built-in predicate

true/0 as we do not consider the environment of the Prolog processor in this thesis. For

their effect on the current output stream we refer to [DEC96].
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Definition 4.38 (Concrete Inference Rules for flush output/0, nl/0, write/1, writeq/1 and

write canonical/1).

flush output, Q | S

Q | S
(FlushOutput)

nl, Q | S

Q | S
(Newline)

write(t′), Q | S

Q | S
(Write)

write canonical(t′), Q | S

Q | S
(WriteCanonical)

writeq(t′), Q | S

Q | S
(Writeq)

As for true/0, the abstract inference rules for these built-in predicates are straightfor-

ward to define.

Definition 4.39 (Abstract Inference Rules for flush output/0, nl/0, write/1, writeq/1 and

write canonical/1).

flush output, Q | S;KB

Q | S;KB
(FlushOutput)

nl, Q | S;KB

Q | S;KB
(Newline)

write(t′), Q | S;KB

Q | S;KB
(Write)

write canonical(t′), Q | S;KB

Q | S;KB
(WriteCanonical)

writeq(t′), Q | S;KB

Q | S;KB
(Writeq)

The soundness proofs for these abstract inference rules are very easy.

Lemma 4.40 (Soundness of FlushOutput, Newline, Write, WriteCanonical

and Writeq). The rules FlushOutput, Newline, Write, WriteCanonical and

Writeq from Definition 4.39 are sound.

Proof. For FlushOutput assume there is an infinite concrete state-derivation from

flush output, Qγ | Sγ ∈ CON (nl, Q | S;KB). As the unique applicable concrete in-

ference rule is FlushOutput, we reach the state Qγ | Sγ ∈ CON (Q | S;KB) which

starts an infinite concrete state-derivation.

For Newline assume there is an infinite concrete state-derivation from nl, Qγ | Sγ ∈
CON (nl, Q | S;KB). As the unique applicable concrete inference rule is Newline, we

reach the state Qγ | Sγ ∈ CON (Q | S;KB) which starts an infinite concrete state-

derivation.

For Write assume there is an infinite concrete state-derivation from write(t′), Qγ |
Sγ ∈ CON (nl, Q | S;KB) where t′ ∈ PrologTerms(Σ,V). As the unique applicable

concrete inference rule is Write, we reach the state Qγ | Sγ ∈ CON (Q | S;KB) which

starts an infinite concrete state-derivation.



98 Chapter 4. Built-in Predicates

For WriteCanonical assume there is an infinite concrete state-derivation from

write canonical(t′), Qγ | Sγ ∈ CON (nl, Q | S;KB) where t′ ∈ PrologTerms(Σ,V). As

the unique applicable concrete inference rule is WriteCanonical, we reach the state

Qγ | Sγ ∈ CON (Q | S;KB) which starts an infinite concrete state-derivation.

For Writeq assume there is an infinite concrete state-derivation from writeq(t′), Qγ |
Sγ ∈ CON (nl, Q | S;KB) where t′ ∈ PrologTerms(Σ,V). As the unique applicable

concrete inference rule is Writeq, we reach the state Qγ | Sγ ∈ CON (Q | S;KB) which

starts an infinite concrete state-derivation.

4.6 Problems with Remaining Built-in Predicates

If we try to handle more of the built-in predicates as defined in [DEC96] in our setting, we

will face several problems. We will now discuss these problems and try to give ideas how

to overcome them in extensions of the framework presented here. We leave the elaboration

of these ideas to future work.

Arithmetical Features

Prolog supports a number of arithmetical features. In fact, it distinguishes between normal

terms, integers and floats. As we consider a finite signature, we cannot handle numbers,

which are infinite. In spite of the fact that any real computer can only represent finitely

many different numbers, Prolog supports unbounded integers, i.e., the only limit for repre-

sented integers is the available memory. Since we cannot assume any limit for the available

memory, we virtually have to deal with infinitely many integers. Now, to have an infinite

signature would not necessarily be a problem for the correctness of our approach. But

the termination of the heuristic we will present in Chapter 6 relies on the finiteness of the

signature. While we can define a safe criterion for generalization of non-numeric terms by

looking at the nested depth of function symbols or the number of different subterms, this

does not work for numbers as their size remains the same if we consider them as terms.

This problem is illustrated by the following example.

Example 4.41. For simplicity, assume we would have a built-in predicate increase/2

which is true if both arguments are integers and the second integers is the first increased

by one and a suitable abstract inference rule for this predicate. Now consider the following

Prolog program using this predicate

p(X) ← increase(X, Y ), p(Y ). (64)

and the set of queries Q consisting of the single query p(1). Then we would obtain the

following infinite graph. We again omit the knowledge bases as we do not have any
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abstract variables in this query.

p(1)

p(1)641

Case

increase(1, Y ), p(Y )

OnlyEval

p(2)

Increase

p(2)642

Case

increase(2, Y ′), p(Y ′)

OnlyEval

p(3)

Increase

. . .

Case

In our setting, we can never find instances for such an abstract state-derivation. The

only way to generalize the terms occurring in the abstract state-derivation according to the

nested depth of symbols would be to already generalize the first occurrence of a symbol.

But then we would have to generalize the whole term to an abstract variable which we

cannot analyze anymore. Concerning the number of different subterms we would have

to consider only terms with one subterm, i.e., constants and variables. Again, we would

have to generalize the whole term which does not make sense.

The error cases for many built-in predicates are another problem related to integers.

Whenever an integer is required as an argument for a built-in predicate, we would have

to distinguish between integers and other terms just like Prolog.

Moreover, the order of terms in Prolog considers integers and floats differently compared

to other terms. Thus, we cannot fully express the order of terms in our setting and,

therefore, cannot handle built-in predicates relying on the order of terms.

Finally, the arithmetic computations performed by some built-in predicates require

certain structures and mathematical conditions for the arithmetic expressions used in

the calculations. These structures and conditions can only be checked successfully if we

extend the handling of integers and floats according to the corresponding definitions in

[DEC96].

The following built-in predicates make use of integers, consider arithmetical features or

rely on the order of terms and can, therefore, not be handled in our setting.
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• arg/3

• =:=/2

• =\=/2

• >/2

• >=/2

• </2

• =</2

• atom/1

• atom codes/2

• atom length/2

• char code/2

• current op/3

• float/1

• functor/3

• get byte/1

• get byte/2

• get code/1

• get code/2

• integer/1

• is/2

• number/1

• number chars/2

• number codes/2

• op/3

• put byte/1

• put byte/2

• put code/1

• put code/2

• sub atom/2

• @>/2

• @>=/2

• @</2

• @=</2

To overcome the problems due to arithmetical features, we could extend our terms to

be built not only from function symbols and variables, but also from integers and floats.

Concerning generalization, we could extend the knowledge bases with a set for abstract

variables which represent numbers (perhaps separated for integers and floats), possibly

supplemented by information like intervals where the number might be in or comparisons

with some values. Then we could generalize numbers outside of an interval and exceeding

a limit on the precision of floats respectively. To handle arithmetic computations more

precisely, it would be useful to adapt the definitions from integer term rewriting [FGP+09]

to integer logic programming or integer dependency triples, for example. See also, e.g.,

the approach from [SD04] for termination analysis of Prolog programs using numerical

features.

Characters

Prolog distinguishes not only numbers from other terms, but also characters. Especially,

the identifiers for function symbols in our setting are built from characters in Prolog. As

we do not consider characters that explicitly, we are not able to express the effects of

some built-in predicates manipulating characters and function symbols. Also we cannot

check for a character as an argument of a built-in predicate. Hence, we cannot detect

some error cases of built-in predicates. Similar to characters is the use of character codes.

While this is also problematic due to arithmetical features as these codes are integers,

we have an additional problem due to characters which are represented by these codes.

Furthermore, characters are also important for the order of terms. Hence, the built-in

predicates relying on this order are also problematic due to characters. The following list

shows the built-in predicates which we cannot handle in our setting due to their explicit

usage of characters or character codes.
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• atom chars/2

• atom codes/2

• atom concat/3

• atom length/2

• char code/2

• char conversion/2

• current char conversion/2

• get char/1

• get char/2

• get code/1

• get code/2

• number chars/2

• number codes/2

• peek char/1

• peek char/2

• peek code/1

• peek code/2

• put char/1

• put char/2

• put code/1

• put code/2

• @>/2

• @>=/2

• @</2

• @=</2

To handle the problems related to characters, we would need to represent function

symbols as compositions of characters. Also, we would need a relation between such

characters and their character codes.

Context

Some built-in predicates work in context of other built-in predicates. Therefore, we would

need to adapt the definitions of our inference rules to also consider such contexts around

the execution we have handled so far. While this problem is probably one of the easiest

ones to solve, it will need some efforts to cover all combinations of contexts and to adapt

the setting to the presence of contexts. Especially the rules Instance and General-

ization would need to be carefully adapted. While throw/1 belongs to the predicates

working inside of contexts, we can handle it in our setting by exploiting the fact that

we do not use the corresponding built-in predicate catch/3 which modifies the context

relevant for throw/1. Built-in predicates which we cannot handle due to the context they

are introducing are bagof/3, catch/3, findall/3 and setof/3.

Environment

A Prolog processor as defined in [DEC96] does not only consider the Prolog program and

a query, but also an environment establishing elements for input and output as well as

Prolog flags, operator tables and character conversion tables. In fact, even the program

is not static, but parsed into a dynamic database which can be modified during the

execution of the query. As we do not handle all these additional elements in our setting,

we cannot handle built-in predicates accessing such elements correctly. As an exception,

we can handle a few built-in predicates for output by exploiting the default configuration

of the environment and the fact, that we do not consider possibilities to modify this

configuration. The built-in predicates accessing the environment which we cannot handle

in our setting are listed below.
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• abolish/1

• asserta/1

• assertz/1

• at end of stream/0

• at end of stream/1

• char conversion/2

• clause/2

• close/1

• close/2

• current char conversion/2

• current input/1

• current op/3

• current output/1

• current predicate/1

• current prolog flag/2

• flush output/1

• get byte/1

• get byte/2

• get char/1

• get char/2

• get code/1

• get code/2

• nl/1

• op/3

• open/3

• open/4

• peek byte/1

• peek byte/2

• peek char/1

• peek char/2

• peek code/1

• peek code/2

• put byte/2

• put char/2

• put code/2

• read/1

• read/2

• read term/2

• read term/3

• retract/1

• set input/1

• set output/1

• set prolog flag/2

• set stream position/2

• stream property/2

• write/2

• write canonical/2

• write term/2

• write term/3

• writeq/2

Ideas to solve the problems faced with the environment would be to add descriptions

of elements of the environment (like the current database) to the states. But then we

would need adaptions for Instance and Generalization as instances in the current

setting would not necessarily allow for the same concrete state-derivations if the underlying

program is modified.

Rational Terms and Shape Information

The remaining built-in predicates we do not handle in this thesis are copy term/2,

unify with occurs check/2 and =../2. While we could handle these predicates in a set-

ting using unification with occurs-check, their behavior according to the ISO standard

is undefined for infinite terms. First experiments with real implementations show that

these predicates may not terminate in case their arguments are infinite terms. Also, for

finite terms we would have problems in the abstract case for copy term/2 and =../2 as

these predicates access the shape of terms explicitly. In addition to that, we would still

have to perform a unification for all three predicates which needs complex conditions in

the abstract case as we have seen in Section 4.3. Thus, we refrain from handling these

built-in predicates in this thesis and leave the experimental verification of their behavior

with rational terms and their integration into this framework to future work.
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4.7 Adaptions for New Inference Rules

As the result of equivalent concrete state-derivations for scope variants from Chapter 3

is based on a case analysis over the applicability of concrete inference rules, we have to

extend the corresponding proofs by the new concrete inference rules.

Lemma 4.42 (Equivalent Concrete State-Derivations for Concrete Scope Variants). Given

a concrete state S and a scope variant S ′ of S, all concrete state-derivations possible for

S are also possible for S ′.

Proof. To show Lemma 4.42 it is sufficient to show that for all concrete rules the applica-

bility of a rule for S implies the applicability for S ′ and after application of the rule the

resulting states are still scope variants of each other. We perform a case analysis over the

applicability of the concrete inference rules for S.

• For Success, Failure, VariableError, UndefinedError, Cut, CutAll,

Case, Eval, Backtrack and Call the lemma is already shown in the proof of

Lemma 3.33.

• AtomicFail is applicable:

Then we have S = atomic(t′), Q | S ′′ with t′ not being a constant and as S ′ is a scope

variant of S, we also have S ′ = atomic(t′′), Q′ | S ′′′ with t′′ not being a constant.

Thus, AtomicFail is applicable for S ′, too. After application of AtomicFail we

obtain the states S ′′ and S ′′′ which are scope variants of each other as atomic(t′), Q |
S ′′ and atomic(t′′), Q′ | S ′′′ are scope variants.

• AtomicSuccess is applicable:

Then we have S = atomic(c), Q | S ′′ with c being a constant and as S ′ is a scope

variant of S, we also have S ′ = atomic(c), Q′ | S ′′′. Thus, AtomicSuccess is

applicable for S ′, too. After application of AtomicSuccess we obtain the states

Q | S ′′ and Q′ | S ′′′ which are scope variants of each other as atomic(c), Q | S ′′ and

atomic(c), Q′ | S ′′′ are scope variants.

• CompoundFail is applicable:

Then we have S = compound(t′), Q | S ′′ with t′ being a constant or a variable

and as S ′ is a scope variant of S, we also have S ′ = compound(t′), Q′ | S ′′′.
Thus, CompoundFail is applicable for S ′, too. After application of Compound-

Fail we obtain the states S ′′ and S ′′′ which are scope variants of each other as

compound(t′), Q | S ′′ and compound(t′), Q′ | S ′′′ are scope variants.

• CompoundSuccess is applicable:

Then we have S = compound(t′), Q | S ′′ with t′ not being a constant or variable

and as S ′ is a scope variant of S, we also have S ′ = compound(t′′), Q′ | S ′′′ with
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t′′ not being a constant or variable. Thus, CompoundSuccess is applicable for

S ′, too. After application of CompoundSuccess we obtain the states Q | S ′′

and Q′ | S ′′′ which are scope variants of each other as compound(t′), Q | S ′′ and

compound(t′′), Q′ | S ′′′ are scope variants.

• Conjunction is applicable:

Then we have S = ,(t1, t2), Q | S ′′ and as S ′ is a scope variant of S, we also

have S ′ = ,(t′1, t
′
2), Q′ | S ′′′. Thus, Conjunction is applicable for S ′, too. After

application of Conjunction we obtain the states t1, t2, Q | S ′′ and t′1, t
′
2, Q

′ | S ′′′

which are scope variants of each other as ,(t1, t2), Q | S ′′ and ,(t′1, t
′
2), Q′ | S ′′′ are

scope variants.

• Disjunction is applicable:

Then we have S = ;(t1, t2), Q | S ′′ where root(t1) 6= ->/2 and as S ′ is a scope variant

of S, we also have S ′ = ;(t′1, t
′
2), Q′ | S ′′′ where root(t′1) 6= ->/2. Thus, Disjunction

is applicable for S ′, too. After application of Disjunction we obtain the states

t1, Q | t2, Q | S ′′ and t′1, Q
′ | t′2, Q′ | S ′′′ which are scope variants of each other as

;(t1, t2), Q | S ′′ and ;(t′1, t
′
2), Q′ | S ′′′ are scope variants.

• EqualsFail is applicable:

Then we have S = ==(t1, t2), Q | S ′′ with t1 6= t2 and as S ′ is a scope variant of S,

we also have S ′ = ==(t′1, t
′
2), Q′ | S ′′′ with t′1 6= t′2. Thus, EqualsFail is applicable

for S ′, too. After application of EqualsFail we obtain the states S ′′ and S ′′′ which

are scope variants of each other as ==(t1, t2), Q | S ′′ and ==(t′1, t
′
2), Q′ | S ′′′ are

scope variants.

• EqualsSuccess is applicable:

Then we have S = ==(t1, t1), Q | S ′′ and as S ′ is a scope variant of S, we also have

S ′ = ==(t′1, t
′
1), Q′ | S ′′′. Thus, EqualsSuccess is applicable for S ′, too. After

application of EqualsSuccess we obtain the states Q | S ′′ and Q′ | S ′′′ which are

scope variants of each other as ==(t1, t1), Q | S ′′ and ==(t′1, t
′
1), Q′ | S ′′′ are scope

variants.

• Fail is applicable:

Then we have S = fail, Q | S ′′ and as S ′ is a scope variant of S, we also have

S ′ = fail, Q′ | S ′′′. Thus, Fail is applicable for S ′, too. After application of Fail we

obtain the states S ′′ and S ′′′ which are scope variants of each other as fail, Q | S ′′

and fail, Q′ | S ′′′ are scope variants.

• FlushOutput is applicable:

Then we have S = flush output, Q | S ′′ and as S ′ is a scope variant of S, we also

have S ′ = flush output, Q′ | S ′′′. Thus, FlushOutput is applicable for S ′, too.
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After application of FlushOutput we obtain the states Q | S ′′ and Q′ | S ′′′ which

are scope variants of each other as flush output, Q | S ′′ and flush output, Q′ | S ′′′ are

scope variants.

• Halt is applicable:

Then we have S = halt, Q | S ′′ and as S ′ is a scope variant of S, we also have

S ′ = halt, Q′ | S ′′′. Thus, Halt is applicable for S ′, too. After application of Halt

we obtain the states ε and ε which clearly are scope variants of each other.

• Halt1 is applicable:

Then we have S = halt(t′), Q | S ′′ and as S ′ is a scope variant of S, we also have

S ′ = halt(t′′), Q′ | S ′′′. Thus, Halt1 is applicable for S ′, too. After application of

Halt1 we obtain the states ε and ε which clearly are scope variants of each other.

• IfThen is applicable:

Then we have S = ->(t1, t2), Q | S ′′ and as S ′ is a scope variant of S, we also have

S ′ = ->(t′1, t
′
2), Q′ | S ′′′. Thus, IfThen is applicable for S ′, too. After application of

IfThen we obtain the states call(t1), !m, t2, Q | ?m | S ′′ and call(t′1), !m′ , t
′
2, Q

′ | ?m′ |
S ′′′. As m and m′ are fresh, we can demand that m′ = f(m). So the reached states

are scope variants of each other as ->(t1, t2), Q | S ′′ and ->(t′1, t
′
2), Q′ | S ′′′ are scope

variants.

• IfThenElse is applicable:

Then we have S = ;(->(t1, t2), t3), Q | S ′′ and as S ′ is a scope variant of S, we also

have S ′ = ;(->(t′1, t
′
2), t′3), Q′ | S ′′′. Thus, IfThenElse is applicable for S ′, too.

After application of IfThenElse we obtain the states call(t1), !m, t2, Q | t3, Q |
?m | S ′′ and call(t′1), !m′ , t

′
2, Q

′ | t′3, Q′ | ?m′ | S ′′′. As m and m′ are fresh, we can

demand that m′ = f(m). So the reached states are scope variants of each other as

;(->(t1, t2), t3), Q | S ′′ and ;(->(t′1, t
′
2), t′3), Q′ | S ′′′ are scope variants.

• Newline is applicable:

Then we have S = nl, Q | S ′′ and as S ′ is a scope variant of S, we also have

S ′ = nl, Q′ | S ′′′. Thus, Newline is applicable for S ′, too. After application of

Newline we obtain the states Q | S ′′ and Q′ | S ′′′ which are scope variants of each

other as nl, Q | S ′′ and nl, Q′ | S ′′′ are scope variants.

• NonvarFail is applicable:

Then we have S = nonvar(x), Q | S ′′ with x ∈ N and as S ′ is a scope variant of

S, we also have S ′ = nonvar(x), Q′ | S ′′′. Thus, NonvarFail is applicable for S ′,

too. After application of NonvarFail we obtain the states S ′′ and S ′′′ which are

scope variants of each other as nonvar(x), Q | S ′′ and nonvar(x), Q′ | S ′′′ are scope

variants.
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• NonvarSuccess is applicable:

Then we have S = nonvar(t′), Q | S ′′ with t′ not being a variable and as S ′ is

a scope variant of S, we also have S ′ = nonvar(t′′), Q′ | S ′′′ with t′′ not being a

variable. Thus, NonvarSuccess is applicable for S ′, too. After application of

NonvarSuccess we obtain the states Q | S ′′ and Q′ | S ′′′ which are scope variants

of each other as nonvar(t′), Q | S ′′ and nonvar(t′′), Q′ | S ′′′ are scope variants.

• Not is applicable:

Then we have S = \+(t′), Q | S ′′ and as S ′ is a scope variant of S, we also have

S ′ = \+(t′′), Q′ | S ′′′. Thus, Not is applicable for S ′, too. After application of Not

we obtain the states call(t′), !m, fail | Q | ?m | S ′′ and call(t′′), !m′ , fail | Q′ | ?m′ | S ′′′.
As m and m′ are fresh, we can demand that m′ = f(m). So the reached states are

scope variants of each other as \+(t′), Q | S ′′ and \+(t′′), Q′ | S ′′′ are scope variants.

• NoUnifyFail is applicable:

Then we have S = \=(t1, t2), Q | S ′′ where t1 ∼ t2 and as S ′ is a scope variant

of S, we also have S ′ = \=(t′1, t
′
2), Q′ | S ′′′ where t′1 ∼ t′2. Thus, NoUnifyFail is

applicable for S ′, too. After application of NoUnifyFail we obtain the states S ′′

and S ′′′ which are scope variants of each other as \=(t1, t2), Q | S ′′ and \=(t′1, t
′
2), Q′ |

S ′′′ are scope variants.

• NoUnifySuccess is applicable:

Then we have S = \=(t1, t2), Q | S ′′ where t1 � t2 and as S ′ is a scope variant of

S, we also have S ′ = \=(t′1, t
′
2), Q′ | S ′′′ where t′1 � t′2. Thus, NoUnifySuccess is

applicable for S ′, too. After application of NoUnifySuccess we obtain the states

Q | S ′′ and Q′ | S ′′′ which are scope variants of each other as \=(t1, t2), Q | S ′′ and

\=(t′1, t
′
2), Q′ | S ′′′ are scope variants.

• Once is applicable:

Then we have S = once(t′), Q | S ′′ and as S ′ is a scope variant of S, we also have

S ′ = once(t′′), Q′ | S ′′′. Thus, Once is applicable for S ′, too. After application

of Once we obtain the states call(,(t′, !)), Q | S ′′ and call(,(t′′, !)), Q′ | S ′′′ which

are scope variants of each other as once(t′), Q | S ′′ and once(t′′), Q′ | S ′′′ are scope

variants.

• Repeat is applicable:

Then we have S = repeat, Q | S ′′ and as S ′ is a scope variant of S, we also have

S ′ = repeat, Q′ | S ′′′. Thus, Repeat is applicable for S ′, too. After application of

Repeat we obtain the states Q | repeat, Q | S ′′ and Q′ | repeat, Q′ | S ′′′ which are

scope variants of each other as repeat, Q | S ′′ and repeat, Q′ | S ′′′ are scope variants.
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• Throw is applicable:

Then we have S = throw(t′), Q | S ′′ and as S ′ is a scope variant of S, we also have

S ′ = throw(t′′), Q′ | S ′′′. Thus, Throw is applicable for S ′, too. After application

of Throw we obtain the states ε and ε which clearly are scope variants of each

other.

• True is applicable:

Then we have S = true, Q | S ′′ and as S ′ is a scope variant of S, we also have

S ′ = true, Q′ | S ′′′. Thus, True is applicable for S ′, too. After application of True

we obtain the states Q | S ′′ and Q′ | S ′′′ which are scope variants of each other as

true, Q | S ′′ and true, Q′ | S ′′′ are scope variants.

• UnequalsFail is applicable:

Then we have S = \==(t1, t1), Q | S ′′ and as S ′ is a scope variant of S, we also have

S ′ = \==(t′1, t
′
1), Q′ | S ′′′. Thus, UnequalsFail is applicable for S ′, too. After

application of UnequalsFail we obtain the states S ′′ and S ′′′ which are scope

variants of each other as \==(t1, t1), Q | S ′′ and \==(t′1, t
′
1), Q′ | S ′′′ are scope

variants.

• UnequalsSuccess is applicable:

Then we have S = \==(t1, t2), Q | S ′′ where t1 6= t2 and as S ′ is a scope variant of S,

we also have S ′ = \==(t′1, t
′
2), Q′ | S ′′′ where t′1 6= t′2. Thus, UnequalsSuccess is

applicable for S ′, too. After application of UnequalsSuccess we obtain the states

Q | S ′′ and Q′ | S ′′′ which are scope variants of each other as \==(t1, t2), Q | S ′′ and

\==(t′1, t
′
2), Q′ | S ′′′ are scope variants.

• UnifyFail is applicable:

Then we have S = =(t1, t2), Q | S ′′ with t1 � t2 and as S ′ is a scope variant of S,

we also have S ′ = =(t′1, t
′
2), Q′ | S ′′′ with t′1 � t′2. Thus, UnifyFail is applicable

for S ′, too. After application of UnifyFail we obtain the states S ′′ and S ′′′ which

are scope variants of each other as =(t1, t2), Q | S ′′ and =(t′1, t
′
2), Q′ | S ′′′ are scope

variants.

• UnifySuccess is applicable:

Then we have S = =(t1, t2), Q | S ′′ where t1 ∼ t2 and as S ′ is a scope variant of

S, we also have S ′ = =(t′1, t
′
2), Q′ | S ′′′ where t′1 ∼ t′2. Thus, UnifySuccess is

applicable for S ′, too. After application of UnifySuccess we obtain the states

Q | S ′′ and Q′ | S ′′′ which are scope variants of each other as =(t1, t2), Q | S ′′ and

=(t′1, t
′
2), Q′ | S ′′′ are scope variants.

• VarFail is applicable:

Then we have S = var(t′), Q | S ′′ with t′ not being a variable and as S ′ is a scope
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variant of S, we also have S ′ = var(t′′), Q′ | S ′′′ with t′′ not being a variable. Thus,

VarFail is applicable for S ′, too. After application of VarFail we obtain the

states S ′′ and S ′′′ which are scope variants of each other as var(t′), Q | S ′′ and

var(t′′), Q′ | S ′′′ are scope variants.

• VarSuccess is applicable:

Then we have S = var(x), Q | S ′′ with x ∈ N and as S ′ is a scope variant of S, we

also have S ′ = var(x), Q′ | S ′′′. Thus, VarSuccess is applicable for S ′, too. After

application of VarSuccess we obtain the states Q | S ′′ and Q′ | S ′′′ which are

scope variants of each other as var(x), Q | S ′′ and var(x), Q′ | S ′′′ are scope variants.

• Write is applicable:

Then we have S = write(t′), Q | S ′′ and as S ′ is a scope variant of S, we also have

S ′ = write(t′′), Q′ | S ′′′. Thus, Write is applicable for S ′, too. After application of

Write we obtain the states Q | S ′′ and Q′ | S ′′′ which are scope variants of each

other as write(t′), Q | S ′′ and write(t′′), Q′ | S ′′′ are scope variants.

• WriteCanonical is applicable:

Then we have S = write canonical(t′), Q | S ′′ and as S ′ is a scope variant of S, we

also have S ′ = write canonical(t′′), Q′ | S ′′′. Thus, WriteCanonical is applicable

for S ′, too. After application of WriteCanonical we obtain the states Q | S ′′

and Q′ | S ′′′ which are scope variants of each other as write canonical(t′), Q | S ′′ and

write canonical(t′′), Q′ | S ′′′ are scope variants.

• Writeq is applicable:

Then we have S = writeq(t′), Q | S ′′ and as S ′ is a scope variant of S, we also have

S ′ = writeq(t′′), Q′ | S ′′′. Thus, Writeq is applicable for S ′, too. After application

of Writeq we obtain the states Q | S ′′ and Q′ | S ′′′ which are scope variants of

each other as writeq(t′), Q | S ′′ and writeq(t′′), Q′ | S ′′′ are scope variants.

Lemma 4.43 (Equivalent Concrete State-Derivations for Abstract Scope Variants). Given

an abstract state S and a scope variant S ′ of S, for every concrete state Sc represented by

S there exists a concrete state S ′c represented by S ′ such that all concrete state-derivations

possible for Sc are also possible for S ′c.

Proof. As concretizations only replace abstract variables, we have for every concretization

γ that S ′γ is a scope variant of Sγ. By Lemma 4.42 we obtain that all concrete state-

derivations possible for Sγ are also possible for S ′γ.
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4.8 Summary

We explained the effect of 24 additional built-in predicates in our setting and introduced

33 additional concrete inference rules to simulate these effects in our approach. Then we

introduced 41 additional abstract inference rules such that we can handle the additional

built-in predicates for sets of queries, too. All new abstract inference rules are proved to

be sound and we adapted all proofs from Chapter 3 relying on the set of used concrete

inference rules to the extended set. Furthermore, we discussed problems and possible

solutions for the remaining built-in predicates not handled in this thesis.





5 Operational Semantics with Concrete

Inference Rules

In this chapter we consider the operational semantics of Prolog as defined in the ISO

standard [DEC96] and prove that we can simulate every computation according to the

operational semantics with our concrete inference rules as long as the computation does

not use built-in predicates which we cannot handle or has to perform transformations for

infinite terms which are not defined according to the ISO standard. Thus, this chapter

shows that our approach is in fact capable of analyzing real Prolog applications, since the

termination graphs we construct by applying abstract inference rules to abstract states

represent concrete state-derivations for concrete states. By proving termination of an

abstract state we prove termination of every concrete state represented by the respective

abstract state. By the theorem we prove in this chapter, this implies termination of

the Prolog program w.r.t. all queries represented by the concrete states shown to be

terminating.

Structure of the Chapter

We start in Section 5.1 by establishing some summarizing definitions used in the remainder

of the thesis.

Then we continue by stating the operational semantics for Prolog as given in the ISO

standard [DEC96] which is described by Prolog search-trees and an algorithm constructing

such trees in Section 5.2.

Finally, we prove that we can simulate the construction of Prolog search-trees with

concrete state-derivations in Section 5.3. To this end, we define which Prolog search-trees

are represented by concrete state-derivations and show that for every Prolog search-tree

there is a concrete state-derivation representing this tree.

In Section 5.4 we summarize the contributions of this chapter.

5.1 Complete Rule Set

We have introduced all concrete and abstract inference rules used in this thesis. This is

stated by the following two definitions.
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Definition 5.1 (Set of Concrete Inference Rules). The set ConcreteInferenceRules is

defined as the set containing exactly the following 43 concrete inference rules:

• AtomicFail

• AtomicSuccess

• Backtrack

• Call

• Case

• CompoundFail

• CompoundSuccess

• Conjunction

• Cut

• CutAll

• Disjunction

• EqualsFail

• EqualsSuccess

• Eval

• Fail

• Failure

• FlushOutput

• Halt

• Halt1

• IfThen

• IfThenElse

• Newline

• NonvarFail

• NonvarSuccess

• Not

• NoUnifyFail

• NoUnifySuccess

• Once

• Repeat

• Success

• Throw

• True

• UndefinedError

• UnequalsFail

• UnequalsSuccess

• UnifyFail

• UnifySuccess

• VariableError

• VarFail

• VarSuccess

• Write

• WriteCanonical

• Writeq

Definition 5.2 (Set of Abstract Inference Rules). The set AbstractInferenceRules is de-

fined as the set containing exactly the following 56 abstract inference rules:

• AtomicCase

• AtomicFail

• AtomicSuccess

• Backtrack

• Call

• Case

• CompoundCase

• CompoundFail

• CompoundSuccess

• Conjunction

• Cut

• CutAll

• Disjunction

• EqualsCase

• EqualsFail

• EqualsSuccess

• Eval

• Fail

• Failure

• FlushOutput

• Generalization

• Halt

• Halt1

• IfThen

• IfThenElse

• Instance

• Newline

• NonvarCase

• NonvarFail

• NonvarSuccess

• Not

• NoUnifyCase

• NoUnifyFail

• NoUnifySuccess

• Once

• OnlyEval

• Parallel

• Repeat

• Split

• Success

• Throw

• True

• UndefinedError

• UnequalsCase

• UnequalsFail

• UnequalsSuccess

• UnifyCase

• UnifyFail

• UnifySuccess

• VarCase

• VariableError

• VarFail

• VarSuccess

• Write

• WriteCanonical

• Writeq
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Additionally, we now introduce some denotations which we will use in the remainder

of this thesis according to the built-in predicates we can handle in our setting.

Definition 5.3 (Handled Built-in Predicates). The set HandledBuiltInPredicates is de-

fined as the set containing exactly the following 26 function symbols:

• atomic/1

• call/1

• compound/1

• ,/2

• !/0

• ;/2

• fail/0

• flush output/0

• halt/0

• halt/1

• ->/2

• nl/0

• nonvar/1

• \+/1

• once/1

• repeat/0

• ==/2

• \==/2

• throw/1

• true/0

• \=/2

• =/2

• var/1

• write/1

• write canonical/1

• writeq/1

The set UnhandledBuiltInPredicates is defined by

UnhandledBuiltInPredicates = BuiltInPredicates \ HandledBuiltInPredicates .

5.2 Operational Semantics of the ISO Standard

The ISO standard for Prolog [DEC96] defines the operational semantics of Prolog programs

in terms of Prolog search-trees. These trees represent the computation executed by a

standard conforming Prolog processor. Therefore, we first state the definition of Prolog

search-trees as given in [DEC96] using the notations established in this thesis.

Definition 5.4 (Prolog Search-Tree [DEC96]). A Prolog search-tree is a tree whose nodes

are labeled with a current goal from T rat(Σ,N )∗ and a local substitution. Additionally it

has a set of unvisited nodes which is a subset of the nodes in the tree. If the tree is finished,

it has no current node and no unvisited nodes. Otherwise it has exactly one current node

which belongs to the tree, but not to the set of unvisited nodes.

Example 5.5. Consider the Prolog program P for division with remainder from

Example 4.22 and the query div(s(0), s(0), Z,R). The Prolog search-tree corresponding

to the complete evaluation of this query is depicted below. Here, we placed the labels

corresponding to the local substitutions next to the edges leading to the node where this

label belongs to while we omit those parts of the local substitutions belonging to the

fresh variables from the program only. As the evaluation is finished, there are no unvis-

ited nodes and no current node. We will see examples of Prolog search-trees where the

computation is still in progress after the next definition.
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div(s(0), s(0), Z,R)

minus(s(0), s(0), U), !, div(U, s(0), Z′, R)

Z/s(Z′)

minus(0, 0, U), !, div(U, s(0), Z′, R)

id

!, div(0, s(0), Z′, R)

U/0

div(0, s(0), Z′, R)

!,=(Z′, 0),=(R, 0)

id

=(Z′, 0),=(R, 0)

=(R, 0)

Z′/0

true

R/0

Now, for definite logic programs, the operational semantics is defined by means of

resolution and SLD-trees. Instead of separately defining what trees can be inferred and

how such trees are visited, the ISO standard for Prolog describes the operational semantics

of Prolog by only one algorithm combining the construction and visiting of Prolog search-

trees during the execution of a Prolog program w.r.t. a query. Thus, we state this algorithm

in the following definition.15

Definition 5.6 (Search-Tree Visit and Construction Algorithm [DEC96]). For a stan-

dard conforming Prolog processor with the flag unknown set to error and no other built-in

predicates than the ones in BuiltInPredicates, we define the following algorithm which con-

structs a Prolog search-tree for the computation of the processor as defined in [DEC96].

Given a Prolog program P and a transformed goal Q, the search-tree visit and con-

struction algorithm works as follows:

15Note that we omit the flattening of conjunctions as this is equivalent to executing the built-in predicate
,/2. This flattening is not necessarily required by the standard, but just an equivalent behavior is
demanded.
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1. Start from the root as current node, labeled by the initial goal Q, which is a sequence

of predications, as current goal, and by the empty substitution as local substitution.

2. If the goal Q of the current node is true then backtrack to the first unvisited node n

w.r.t. the depth-first, left-to-right ordering of the nodes in the Prolog search-tree and

continue with step 2 where the current node is n and n is dropped from the set of

unvisited nodes.

3. Otherwise let t be the first predication in Q.

4. If t is true delete it, and proceed to step 2 with the new current goal being the tail of

the sequence Q.

5. If t corresponds to a user-defined procedure which exists in the database, i.e.,

Slice(P , t) 6= ∅:

(a) If no renamed clause in P has a head which unifies with t then backtrack to the

first unvisited node n w.r.t. the depth-first, left-to-right ordering of the nodes in

the Prolog search-tree and continue with step 2 where the current node is n and

n is dropped from the set of unvisited nodes.

(b) Otherwise add to the current node as many children as there are freshly renamed

clauses H ← B ∈ P whose head is unifiable with t with the same order as the

clauses in P. The child nodes are labeled with a local substitution σ = mgu(t,H)

(H ← B being the corresponding freshly renamed clause), and the current goal Q′

which is the instance by σ of Q in which t has been previously replaced by B. The

current node becomes the first child and proceed to step 2.

6. Else if t corresponds to a built-in predicate: The specific side effects described with the

built-in predicate in [DEC96] are performed and the execution continues at step 2 with

or without preceding backtracking or generates an error according to the description of

the built-in predicate in [DEC96].

7. Otherwise t does not correspond to any existing procedure and an error is generated

whose effect corresponds to the execution at the same node of the built-in predicate

throw(existence error(procedure, root(t))).

Example 5.7. Consider again the Prolog program P for division with remainder from

Example 4.22 and the query div(s(0), s(0), Z,R). Now we show step by step how this

algorithm works to built the tree from Example 5.5.

We start with the initial node as the current node labeled with the initial goal and the

empty local substitution and no unvisited nodes.

div(s(0), s(0), Z,R)
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As the goal is not true, we check if the first predication in this goal is a user-defined,

built-in or undefined predicate. Since div/4 is user-defined, we add nodes for all clauses

where the head of the clause unifies with the first predication in the current goal. In this

case, there are two clause heads unifying with the predication and we reach the following

tree.

div(s(0), s(0), Z,R)

minus(s(0), s(0), U), !, div(U, s(0), Z′, R)

Z/s(Z′)

true

R/s(0)

The second successor node is the only node in the set of unvisited nodes while the

first successor node is the current node. Now we repeat the preceding steps for the new

current goal and find that we have only one unifying clause for the predication with the

user-defined predicate minus. Hence, we reach the following tree, where the set of unvisited

nodes remains unchanged while the current node becomes the new node.

div(s(0), s(0), Z,R)

minus(s(0), s(0), U), !, div(U, s(0), Z′, R)

Z/s(Z′)

true

R/s(0)

minus(0, 0, U), !, div(U, s(0), Z′, R)

id

Again, we only have one successor node and obtain the next tree analogously to the

previous one.

div(s(0), s(0), Z,R)

minus(s(0), s(0), U), !, div(U, s(0), Z′, R)

Z/s(Z′)

true

R/s(0)

minus(0, 0, U), !, div(U, s(0), Z′, R)

id

!, div(0, s(0), Z′, R)

U/0

Now, we have a built-in predicate as the first predication of the current goal and execute

its side effect which is to cut off all unvisited nodes between the current node and the

node where it was introduced (which is the first node). Hence, we drop the right successor

node of the first node and add a successor without the cut to the current node. This new

node becomes the next current node.
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div(s(0), s(0), Z,R)

minus(s(0), s(0), U), !, div(U, s(0), Z′, R)

Z/s(Z′)

minus(0, 0, U), !, div(U, s(0), Z′, R)

id

!, div(0, s(0), Z′, R)

U/0

div(0, s(0), Z′, R)

Next, we have three unifying clauses for the first predication in the current goal and

add the respective nodes to the current node. The first new node becomes the current

node while the other new nodes form the set of unvisited nodes.

div(s(0), s(0), Z,R)

minus(s(0), s(0), U), !, div(U, s(0), Z′, R)

Z/s(Z′)

minus(0, 0, U), !, div(U, s(0), Z′, R)

id

!, div(0, s(0), Z′, R)

U/0

div(0, s(0), Z′, R)

minus(0, s(0), U ′), !, div(U ′, s(0), Z′′, R)

Z′/s(Z′′)

!,=(Z′, 0),=(R, 0)

id

true

R/0

We evaluate a cut again and drop the just introduced unvisited nodes. We add another

node to the current node which becomes the new current node.



118 Chapter 5. Operational Semantics with Concrete Inference Rules

div(s(0), s(0), Z,R)

minus(s(0), s(0), U), !, div(U, s(0), Z′, R)

Z/s(Z′)

minus(0, 0, U), !, div(U, s(0), Z′, R)

id

!, div(0, s(0), Z′, R)

U/0

div(0, s(0), Z′, R)

!,=(Z′, 0),=(R, 0)

id

=(Z′, 0),=(R, 0)

Now we execute another built-in predicate to unify Z ′ with 0.

div(s(0), s(0), Z,R)

minus(s(0), s(0), U), !, div(U, s(0), Z′, R)

Z/s(Z′)

minus(0, 0, U), !, div(U, s(0), Z′, R)

id

!, div(0, s(0), Z′, R)

U/0

div(0, s(0), Z′, R)

!,=(Z′, 0),=(R, 0)

id

=(Z′, 0),=(R, 0)

=(R, 0)

Z′/0

We repeat this for R and 0.
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div(s(0), s(0), Z,R)

minus(s(0), s(0), U), !, div(U, s(0), Z′, R)

Z/s(Z′)

minus(0, 0, U), !, div(U, s(0), Z′, R)

id

!, div(0, s(0), Z′, R)

U/0

div(0, s(0), Z′, R)

!,=(Z′, 0),=(R, 0)

id

=(Z′, 0),=(R, 0)

=(R, 0)

Z′/0

true

R/0

Finally, the current goal is true and we backtrack to the next unvisited node. Since the

set of unvisited nodes is empty, the computation stops.

5.3 Representing Prolog Search-Trees

After establishing the operational semantics of Prolog according to the ISO standard

by means of an algorithm, we show how to simulate the execution of this algorithm by

concrete state-derivations. To this end, we define which Prolog search-tree is represented

by a concrete state-derivation. We use an inductive definition for the represented Prolog

search-trees as this kind of definition is useful for the inductive proof of the central theorem

of this chapter. The general idea of the representation is that state elements in our

states correspond to nodes in the Prolog search-tree. The first state element represents

the current node while the remaining state elements correspond to the unvisited nodes

in the tree. Unfortunately, due to the separation of the evaluation in the rules Case,

Backtrack, Eval and Failure, this general idea models not exactly the connection

between concrete state-derivations and Prolog search-trees. Instead, we have some state

elements in our states which do not correspond to any node as they will be just dropped by

applying the Backtrack or Failure rule. Likewise, the nodes in a Prolog search-tree do
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not contain goals labeled with clauses, but contain only the evaluated goals we will reach

after the application of the Eval rule. To overcome this difference, we pre-perform the

applications of the Backtrack, Eval and Failure rules when applying the Case rule

for the represented goals in the nodes. Then, we just ignore the applications of the former

three rules for the represented Prolog search-trees. For built-in predicates introducing

question marks or additional state elements we use similar adaptions in the representation

to only represent those nodes which will really be constructed by the algorithm from

Definition 5.6. Finally, a further small difference is that the empty goal 2 in our setting

represents the successful proved goal true in a Prolog search-tree.

Definition 5.8 (Represented Prolog Search-Tree). Given a concrete state-derivation from

an initial concrete state S0 for a goal as defined in Definition 3.9 leading to the concrete

states S1, S2, . . . , the Prolog search-tree T represented by the concrete state-derivation is

inductively defined as follows:

• The root node of T is labeled with the unlabeled term in S0 and the empty substi-

tution. The set of unvisited nodes is initially empty. For concrete state-derivations

not using any rules from TreeRules, the root node is also the current node.

• If the state Si is reached from Si−1 by applying the AtomicFail, Compound-

Fail, EqualsFail, Fail, NonvarFail, NoUnifyFail, Success, Unequals-

Fail, UnifyFail or VarFail rule, consider the set of unvisited nodes. If it is not

empty, let n be the first node in this set w.r.t. the depth-first left-to-right ordering

of the nodes in T . Drop n from the set of unvisited nodes. If the concrete state-

derivation does not use any rules from TreeRules after reaching the state Si and the

set of unvisited nodes was not empty before, the current node is n. If the concrete

state-derivation does not use any rules from TreeRules after reaching the state Si

and the set of unvisited nodes was empty before, there is no current node.

• If the state Si is reached from Si−1 by applying the AtomicSuccess rule where

the first state element of Si−1 is atomic(t), Q, add a child to the current node n of

the Prolog search-tree represented by the prefix of the concrete state-derivation just

leading to Si−1 labeled with Q and the empty substitution. If Q = 2, the child is

labeled with true and the empty substitution instead. If the concrete state-derivation

does not use any rules from TreeRules after reaching the state Si, the current node

is the child added to n.

• If the state Si is reached from Si−1 by applying the Call rule where the first

state element of Si−1 is call(t), Q, t /∈ N and t has only finitely many predica-

tion positions, add a child to the current node n of the Prolog search-tree repre-

sented by the prefix of the concrete state-derivation just leading to Si−1 labeled with

Transformed(t,m)[!m/!], Q and the empty substitution. If the first label of the child
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is 2, replace this label with true. If the concrete state-derivation does not use any

rules from TreeRules after reaching the state Si, the current node is the child added

to n.

• If the state Si is reached from Si−1 by applying the Case rule which introduced the

labeled goals (t, Q)c1m, . . . , (t, Q)ckm for the freshly renamed clauses Hc1 ← Bc1 , . . . ,

Hck ← Bck and the first state element of Si−1 is the unlabeled goal t, Q for t ∈
PrologTerms(Σ,V) and Q being a sequence of terms, let {j1, . . . , jl} ⊆ {c1, . . . , ck}
with j1 < · · · < jl and ∀j ∈ {c1, . . . , ck} : t ∼ Hj =⇒ j ∈ {j1, . . . , jl}. If

l > 0, add l children to the current node of the Prolog search-tree represented by the

prefix of the concrete state-derivation just leading to Si−1. The n-th child is labeled

with B′jnσ,Qσ and σ for n ∈ {1, . . . , l} where B′jn is Transformed(Bjn ,m)[!m/!] and

σ = mgu(t,Hjn). If the first label of a child is 2, replace this label with true. If the

concrete state-derivation does not use any rules from TreeRules after reaching the

state Si, the current node is the first child added unless l = 0. Add all children except

for the first to the set of unvisited nodes. If l = 0, consider the set of unvisited nodes.

If it is not empty, let n be the first node in this set w.r.t. the depth-first, left-to-right

ordering of the nodes in T . Drop n from the set of unvisited nodes. If the concrete

state-derivation does not use any rules from TreeRules after reaching the state Si

and the set of unvisited nodes was not empty before, the current node is n. If the

concrete state-derivation does not use any rules from TreeRules after reaching the

state Si and the set of unvisited nodes was empty before, there is no current node

and the represented Prolog search tree is finished.

• If the state Si is reached from Si−1 by applying the CompoundSuccess rule where

the first state element of Si−1 is compound(t), Q, add a child to the current node

n of the Prolog search-tree represented by the prefix of the concrete state-derivation

just leading to Si−1 labeled with Q and the empty substitution. If Q = 2, the child is

labeled with true and the empty substitution instead. If the concrete state-derivation

does not use any rules from TreeRules after reaching the state Si, the current node

is the child added to n.

• If the state Si is reached from Si−1 by applying the Conjunction rule where the first

state element of Si−1 is ,(t1, t2), Q, add a child to the current node n of the Prolog

search-tree represented by the prefix of the concrete state-derivation just leading to

Si−1 labeled with t1, t2, Q and the empty substitution. If the concrete state-derivation

does not use any rules from TreeRules after reaching the state Si, the current node

is the child added to n.

• If the state Si is reached from Si−1 by applying the Cut rule where the first state

element of Si−1 is !m, Q, there must be a rule from the set {Call,Case, IfThen,
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IfThenElse,Not} in the concrete state-derivation just leading to Si−1 which in-

troduced this labeled cut !m and where we added some nodes to the node n in T .

Delete all nodes in the set of unvisited nodes in T between the current node n′ of the

Prolog search-tree represented by the concrete state-derivation just leading to Si−1

and the node n (inclusive). Also, drop these nodes from the set of unvisited nodes.

Then add a node to n′ labeled with Q if Q 6= 2 and true otherwise and the empty

substitution. If the concrete state-derivation does not use any rules from TreeRules

after reaching the state Si, the current node is the child of n′.

• If the state Si is reached from Si−1 by applying the CutAll rule where the first state

element of Si−1 is !m, Q, delete all nodes in the set of unvisited nodes in T , let the

set of unvisited nodes be empty and add a node to the current node n of the Prolog

search-tree represented by the prefix of the concrete state-derivation just leading to

Si−1 which is labeled by Q if Q 6= 2 and true otherwise and the empty substitution.

If the concrete state-derivation does not use any rules from TreeRules after reaching

the state Si, the current node is the child of n.

• If the state Si is reached from Si−1 by applying the Disjunction rule where the

first state element of Si−1 is ;(t1, t2), Q, add two children to the current node n of

the Prolog search-tree represented by the prefix of the concrete state-derivation just

leading to Si−1 labeled with t1, Q and the empty substitution and t2, Q and the empty

substitution. Add the second child to the set of unvisited nodes. If the concrete

state-derivation does not use any rules from TreeRules after reaching the state Si,

the current node is the first child added to n.

• If the state Si is reached from Si−1 by applying the EqualsSuccess rule where

the first state element of Si−1 is ==(t1, t1), Q, add a child to the current node n of

the Prolog search-tree represented by the prefix of the concrete state-derivation just

leading to Si−1 labeled with Q and the empty substitution. If Q = 2, the child is

labeled with true and the empty substitution instead. If the concrete state-derivation

does not use any rules from TreeRules after reaching the state Si, the current node

is the child added to n.

• If the state Si is reached from Si−1 by applying the Halt, Halt1, Undefined-

Error or VariableError rule, there is no current node, there are no unvisited

nodes and the represented Prolog search tree is finished.

• If the state Si is reached from Si−1 by applying the IfThen rule where the first

state element of Si−1 is ->(t1, t2), Q, add a child to the current node n of the Prolog

search-tree represented by the prefix of the concrete state-derivation just leading to

Si−1 labeled with call(t1), !, t2, Q and the empty substitution. If the concrete state-
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derivation does not use any rules from TreeRules after reaching the state Si, the

current node is the child added to n.

• If the state Si is reached from Si−1 by applying the IfThenElse rule where the first

state element of Si−1 is ;(->(t1, t2), t3), Q, add two children to the current node n of

the Prolog search-tree represented by the prefix of the concrete state-derivation just

leading to Si−1 labeled with call(t1), !, t2, Q and the empty substitution and t3, Q and

the empty substitution. If the concrete state-derivation does not use any rules from

TreeRules after reaching the state Si, the current node is the first child added to n.

• If the state Si is reached from Si−1 by applying the Newline rule where the first

state element of Si−1 is nl, Q, add a child to the current node n of the Prolog search-

tree represented by the prefix of the concrete state-derivation just leading to Si−1

labeled with Q and the empty substitution. If Q = 2, the child is labeled with true

and the empty substitution instead. If the concrete state-derivation does not use any

rules from TreeRules after reaching the state Si, the current node is the child added

to n.

• If the state Si is reached from Si−1 by applying the NonvarSuccess rule where

the first state element of Si−1 is nonvar(t), Q, add a child to the current node n of

the Prolog search-tree represented by the prefix of the concrete state-derivation just

leading to Si−1 labeled with Q and the empty substitution. If Q = 2, the child is

labeled with true and the empty substitution instead. If the concrete state-derivation

does not use any rules from TreeRules after reaching the state Si, the current node

is the child added to n.

• If the state Si is reached from Si−1 by applying the Not rule where the first state

element of Si−1 is \+(t), Q, add two children to the current node n of the Prolog

search-tree represented by the prefix of the concrete state-derivation just leading to

Si−1 labeled with call(t), !, fail and the empty substitution and Q and the empty sub-

stitution. If Q = 2, the second child is labeled with true and the empty substitution

instead. If the concrete state-derivation does not use any rules from TreeRules after

reaching the state Si, the current node is the first child added to n.

• If the state Si is reached from Si−1 by applying the NoUnifySuccess rule where

the first state element of Si−1 is \=(t1, t2), Q, add a child to the current node n of

the Prolog search-tree represented by the prefix of the concrete state-derivation just

leading to Si−1 labeled with Q and the empty substitution. If Q = 2, the child is

labeled with true and the empty substitution instead. If the concrete state-derivation

does not use any rules from TreeRules after reaching the state Si, the current node

is the child added to n.
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• If the state Si is reached from Si−1 by applying the Once rule where the first state

element of Si−1 is once(t), Q, add a child to the current node n of the Prolog search-

tree represented by the prefix of the concrete state-derivation just leading to Si−1

labeled with call(t, !), Q and the empty substitution. If the concrete state-derivation

does not use any rules from TreeRules after reaching the state Si, the current node

is the child added to n.

• If the state Si is reached from Si−1 by applying the Repeat rule where the first state

element of Si−1 is repeat, Q, add two children to the current node n of the Prolog

search-tree represented by the prefix of the concrete state-derivation just leading to

Si−1 labeled with Q and the empty substitution and repeat, Q and the empty sub-

stitution. If Q = 2, the first child is labeled with true and the empty substitution

instead. If the concrete state-derivation does not use any rules from TreeRules after

reaching the state Si, the current node is the first child added to n.

• If the state Si is reached from Si−1 by applying the True rule where the node n

represented by the prefix of the concrete state-derivation just leading to Si−1 starts

with a state element having true as its first term, delete this term from the first state

element in n. If the concrete state-derivation does not use any rules from TreeRules

after reaching the state Si, the current node is n.

• If the state Si is reached from Si−1 by applying the UnequalsSuccess rule where

the first state element of Si−1 is \==(t1, t2), Q, add a child to the current node n of

the Prolog search-tree represented by the prefix of the concrete state-derivation just

leading to Si−1 labeled with Q and the empty substitution. If Q = 2, the child is

labeled with true and the empty substitution instead. If the concrete state-derivation

does not use any rules from TreeRules after reaching the state Si, the current node

is the child added to n.

• If the state Si is reached from Si−1 by applying the UnifySuccess rule where

the first state element of Si−1 is =(t1, t2), Q, add a child to the current node n of

the Prolog search-tree represented by the prefix of the concrete state-derivation just

leading to Si−1 labeled with Q and the empty substitution. If Q = 2, the child is

labeled with true and the empty substitution instead. If the concrete state-derivation

does not use any rules from TreeRules after reaching the state Si, the current node

is the child added to n.

• If the state Si is reached from Si−1 by applying the VarSuccess rule where the first

state element of Si−1 is var(x), Q, add a child to the current node n of the Prolog

search-tree represented by the prefix of the concrete state-derivation just leading to

Si−1 labeled with Q and the empty substitution. If Q = 2, the child is labeled with
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true and the empty substitution instead. If the concrete state-derivation does not use

any rules from TreeRules after reaching the state Si, the current node is the child

added to n.

• If the state Si is reached from Si−1 by applying the Write rule where the first state

element of Si−1 is write(t), Q, add a child to the current node n of the Prolog search-

tree represented by the prefix of the concrete state-derivation just leading to Si−1

labeled with Q and the empty substitution. If Q = 2, the child is labeled with true

and the empty substitution instead. If the concrete state-derivation does not use any

rules from TreeRules after reaching the state Si, the current node is the child added

to n.

• If the state Si is reached from Si−1 by applying the WriteCanonical rule where

the first state element of Si−1 is write canonical(t), Q, add a child to the current node

n of the Prolog search-tree represented by the prefix of the concrete state-derivation

just leading to Si−1 labeled with Q and the empty substitution. If Q = 2, the child is

labeled with true and the empty substitution instead. If the concrete state-derivation

does not use any rules from TreeRules after reaching the state Si, the current node

is the child added to n.

• If the state Si is reached from Si−1 by applying the Writeq rule where the first

state element of Si−1 is writeq(t), Q, add a child to the current node n of the Prolog

search-tree represented by the prefix of the concrete state-derivation just leading to

Si−1 labeled with Q and the empty substitution. If Q = 2, the child is labeled with

true and the empty substitution instead. If the concrete state-derivation does not use

any rules from TreeRules after reaching the state Si, the current node is the child

added to n.

• If the state Si is reached from Si−1 by applying the Backtrack, Eval or Failure

rule, the represented Prolog search-tree remains unchanged.

Here, the labels for the nodes correspond to the current goals and local substitutions of the

nodes in a Prolog search-tree.

The set TreeRules ⊂ ConcreteInferenceRules is defined as:

ConcreteInferenceRules \ {Backtrack,Eval,Failure}

Example 5.9. Consider once more the Prolog program P for division with remainder

from Example 4.22 and the query div(s(0), s(0), Z,R). The concrete state-derivation for

this query is as follows.
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div(s(0), s(0), Z,R)

(div(s(0), s(0), Z,R))551 | (div(s(0), s(0), Z,R))561 | (div(s(0), s(0), Z,R))571 | (div(s(0), s(0), Z,R))581 | ?1

Case

(div(s(0), s(0), Z,R))561 | (div(s(0), s(0), Z,R))571 | (div(s(0), s(0), Z,R))581 | ?1

Backtrack

(div(s(0), s(0), Z,R))571 | (div(s(0), s(0), Z,R))581 | ?1

Backtrack

minus(s(0), s(0), U), !1, div(U, s(0), Z′, R) | (div(s(0), s(0), Z,R))581 | ?1

EvalZ/s(Z′)

(minus(s(0), s(0), U), !1, div(U, s(0), Z′, R))592 | (minus(s(0), s(0), U), !1, div(U, s(0), Z′, R))602 | ?2 |
(div(s(0), s(0), Z,R))581 | ?1

Case

(minus(s(0), s(0), U), !1, div(U, s(0), Z′, R))602 | ?2 | (div(s(0), s(0), Z,R))581 | ?1

Backtrack

minus(0, 0, U), !1, div(U, s(0), Z′, R) | ?2 | (div(s(0), s(0), Z,R))581 | ?1

Eval

(minus(0, 0, U), !1, div(U, s(0), Z′, R))593 | (minus(0, 0, U), !1, div(U, s(0), Z′, R))603 | ?3 | ?2 | (div(s(0), s(0), Z,R))581 | ?1

Case

!1, div(0, s(0), Z′, R) | (minus(0, 0, U), !1, div(U, s(0), Z′, R))603 | ?3 | ?2 | (div(s(0), s(0), Z,R))581 | ?1

EvalU/0

div(0, s(0), Z′, R) | ?1

Cut

(div(0, s(0), Z′, R))554 | (div(0, s(0), Z′, R))564 | (div(0, s(0), Z′, R))574 | (div(0, s(0), Z′, R))584 | ?4 | ?1

Case

(div(0, s(0), Z′, R))564 | (div(0, s(0), Z′, R))574 | (div(0, s(0), Z′, R))584 | ?4 | ?1

Backtrack

!4,=(Z′, 0),=(R, 0) | (div(0, s(0), Z′, R))574 | (div(0, s(0), Z′, R))584 | ?4 | ?1

Eval

=(Z′, 0),=(R, 0) | ?4 | ?1

Cut

=(R, 0) | ?4 | ?1

UnifySuccessZ′/0

2 | ?4 | ?1

UnifySuccessR/0

?4 | ?1

Success

?1

Failure

ε

Failure

The Prolog search-tree represented by this concrete state-derivation is exactly the Prolog
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search-tree from Example 5.5. To see this, we now follow the steps of the inductive

definition. We start with the initial node as the current node labeled with the initial goal

and the empty local substitution and no unvisited nodes as for Prolog search-trees. Thus,

the empty concrete state-derivation represents the Prolog search-tree consisting only of

the initial node.

div(s(0), s(0), Z,R)

Now the concrete state-derivation applies the Case rule. Hence, we add nodes to the

tree corresponding to unifying clauses in the program. The first added node becomes the

current node and the second one forms the set of unvisited nodes.

div(s(0), s(0), Z,R)

minus(s(0), s(0), U), !, div(U, s(0), Z′, R)

Z/s(Z′)

true

R/s(0)

The next three applications of the rules Backtrack and Eval do not modify the

represented Prolog search-tree. Then we apply the Case rule again and add a node

corresponding to the only unifying clause to the tree. This node becomes the current

node.

div(s(0), s(0), Z,R)

minus(s(0), s(0), U), !, div(U, s(0), Z′, R)

Z/s(Z′)

true

R/s(0)

minus(0, 0, U), !, div(U, s(0), Z′, R)

id

The next two applications of the rules Backtrack and Eval do not modify the

represented Prolog search-tree again. We apply the Case rule once more and add a node

corresponding to the only unifying clause to the tree which becomes the current node.

div(s(0), s(0), Z,R)

minus(s(0), s(0), U), !, div(U, s(0), Z′, R)

Z/s(Z′)

true

R/s(0)

minus(0, 0, U), !, div(U, s(0), Z′, R)

id

!, div(0, s(0), Z′, R)

U/0
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The following application of the Eval rule has no effect on the represented Prolog

search-tree. Now we apply the Cut rule and delete all unvisited nodes between the

current node and the node where the respective cut was introduced. Here, this is the

first node. Then we add a new node without the cut to the current node. This new node

becomes the current node.

div(s(0), s(0), Z,R)

minus(s(0), s(0), U), !, div(U, s(0), Z′, R)

Z/s(Z′)

minus(0, 0, U), !, div(U, s(0), Z′, R)

id

!, div(0, s(0), Z′, R)

U/0

div(0, s(0), Z′, R)

Next, we apply the Case rule again and obtain three new nodes for three unifying

clauses. The first new node becomes the current node while the other new nodes are

added to the (currently empty) set of unvisited nodes.

div(s(0), s(0), Z,R)

minus(s(0), s(0), U), !, div(U, s(0), Z′, R)

Z/s(Z′)

minus(0, 0, U), !, div(U, s(0), Z′, R)

id

!, div(0, s(0), Z′, R)

U/0

div(0, s(0), Z′, R)

minus(0, s(0), U ′), !, div(U ′, s(0), Z′′, R)

Z′/s(Z′′)

!,=(Z′, 0),=(R, 0)

id

true

R/0

The following two applications of the Backtrack and Eval rules do not mandate

any changes to the represented Prolog search-tree. Again, we apply the Cut rule and

delete the recently introduced unvisited nodes from the tree. We add another node to the

current node which becomes the next current node.
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div(s(0), s(0), Z,R)

minus(s(0), s(0), U), !, div(U, s(0), Z′, R)

Z/s(Z′)

minus(0, 0, U), !, div(U, s(0), Z′, R)

id

!, div(0, s(0), Z′, R)

U/0

div(0, s(0), Z′, R)

!,=(Z′, 0),=(R, 0)

id

=(Z′, 0),=(R, 0)

Now we apply the UnifySuccess rule and add a node to the tree labeled with the

answer substitution [Z ′/0].

div(s(0), s(0), Z,R)

minus(s(0), s(0), U), !, div(U, s(0), Z′, R)

Z/s(Z′)

minus(0, 0, U), !, div(U, s(0), Z′, R)

id

!, div(0, s(0), Z′, R)

U/0

div(0, s(0), Z′, R)

!,=(Z′, 0),=(R, 0)

id

=(Z′, 0),=(R, 0)

=(R, 0)

Z′/0

We repeat this for the unification of R and 0. As the remaining goal is 2, we replace

the node label with true.
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div(s(0), s(0), Z,R)

minus(s(0), s(0), U), !, div(U, s(0), Z′, R)

Z/s(Z′)

minus(0, 0, U), !, div(U, s(0), Z′, R)

id

!, div(0, s(0), Z′, R)

U/0

div(0, s(0), Z′, R)

!,=(Z′, 0),=(R, 0)

id

=(Z′, 0),=(R, 0)

=(R, 0)

Z′/0

true

R/0

Now we apply the Success rule and backtrack to the next unvisited node. Since the

set of unvisited nodes is empty, the represented Prolog search-tree is finished and there

is no current node. The following two applications of the Failure rule do not modify

the represented Prolog search-tree anymore. As we can see, the construction of the Prolog

search-tree is absolutely identical to Example 5.7. Also, note that after application of the

Backtrack and Eval rules we have that the first state elements of the states in the

concrete state-derivation correspond exactly to the nodes in the Prolog search-tree if we

omit the scopes for the cuts.

Before we state the central theorem of this chapter, we prove some useful properties of

our representation. As described before Definition 5.8, the state elements which are not

dropped by the Backtrack or Failure rule correspond to the unvisited nodes in the

represented Prolog search-tree, possibly after applying the Eval rule to them. Hence, we

reach the next unvisited node from a state where the current node has been evaluated,

i.e., the first state element has been dropped, by only applying these three rules which

do not change the represented Prolog search-tree. Likewise, we also prove the intended

connection between the empty goal 2 and the successful proved goal true.
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Lemma 5.10 (First State Elements for Current Nodes). Given a Prolog search-tree T and

a concrete state-derivation w.r.t. a Prolog program P leading to a state S which represents

T , then we can continue the concrete state-derivation from S to a state S ′ such that the

following conditions hold:

• If the current goal of the current node of T is true, then the first state element S0

of S ′ is 2.

• Otherwise the first state element S0 of S ′ contains a goal Q which is the current goal

of the current node of T when all labeled cuts in Q are replaced by unlabeled cuts.

• The continued concrete state-derivation still represents T , i.e., the continuation only

uses rules from the set {Backtrack,Eval,Failure}.

• For all unvisited nodes n1, . . . , nu in T there are state elements S1, . . . , Su ∈
StateElements such that S ′ = S0 | Sr,0 | S1 | Sr,1 | . . . | Su | Sr,u where Si can

be evaluated by only using the rules from the set {Backtrack,Eval,Failure} to

a goal Qi which is the current goal of ni when all labeled cuts in Qi are replaced by

unlabeled cuts and S ′i = Si | Sr,i | . . . | Su | Sr,u is reachable from Sr,i−1 | S ′i by only

applying rules from the set {Backtrack,Eval,Failure}.

• If there are no unvisited nodes, let S ′ = S0 | Sr,0. Then the state ε is reachable from

Sr,0 by only applying rules from the set {Backtrack,Eval,Failure}.

Proof. We perform the proof by induction over the length k of the concrete state-derivation

to the state S.

For k = 0 we have that S contains the initial goal which is the current goal of the

current node of T . Hence, we have S = S ′ and the lemma trivially holds as there are no

unvisited nodes and S ′ contains only one state element.

For k > 0 we can assume the lemma holds for concrete state-derivations of length

at most k − 1. We perform a case analysis over the last concrete rule in the concrete

state-derivation.

• For Case we have that S = (t, Q)i1m | . . . | (t, Q)
ij
m | ?m | Sr with |Slice(P , t)| = j.

There are two cases depending on whether there is an index l ∈ {1, . . . , j} with

Hil ← Bil ∈ P and Hil ∼ t. If there is at least one such index, let l be the smallest

index with this property. Then we have to apply the Backtrack rule for the first

l − 1 state elements of S. Thus, we reach the state (t, Q)ilm | . . . | (t, Q)
ij
m | ?m | Sr.

Now we apply the Eval rule and obtain the state S ′ = B′ilσ,Qσ | . . . | (t, Q)
ij
m | ?m |

Sr where B′il = Transformed(Bil ,m) and σ = mgu(t,Hil). If we added new nodes to

the set of unvisited nodes in T by applying the Case rule, there are state elements

(t, Q)
il′
m in S ′ which can be evaluated to the desired state elements by applying the
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Eval rule. As all other state elements introduced by the Case rule can be dropped

using the rules Backtrack and Failure and we have suitable state elements for

the not newly introduced unvisited nodes in Sr by the induction hypothesis or we

reach the state ε from Sr by the induction hypothesis if no unvisited nodes exist,

the lemma still holds.

If there is no such index l, we have to apply the Backtrack rule to the first j

state elements of S. Afterwards, we apply the Failure rule to ?m. There are two

cases depending on whether there are unvisited nodes in T . If there are unvisited

nodes, we obtain by the induction hypothesis that we reach the desired state S ′ for

the first unvisited node being the next current node from Sr using no other rules

than those from the set {Backtrack,Eval,Failure}. If there are no unvisited

states, we know by the induction hypothesis that Sr can be evaluated to ε using

only the rules from {Backtrack,Eval,Failure}. Hence, the lemma still holds.

• For AtomicFail, CompoundFail, EqualsFail, Fail, NonvarFail, NoUnify-

Fail, Success, UnequalsFail, UnifyFail and VarFail we just drop the first

state element from the state we reached just before S. Thus, all conditions are

implied by the induction hypothesis.

• For AtomicSuccess, CompoundSuccess, Conjunction, EqualsSuccess,

Newline, NonvarSuccess, NoUnifySuccess, Once, UnequalsSuccess,

UnifySuccess, VarSuccess, Write, WriteCanonical and Writeq we have

S = S ′ and all conditions are implied by the induction hypothesis.

• For Backtrack, Eval and Failure we obtain all conditions trivially by the

induction hypothesis as these rules do not modify T .

• For Call we have that S = t, Q | ?m | Sr = S ′. Additionally, we reach the state Sr

from ?m | Sr by applying the Failure rule. We obtain the remaining conditions by

the induction hypothesis.

• For Cut we have that S = Q | ?m | Sr = S ′. As we dropped all unvisited nodes

having corresponding state elements before Sr, we know that the possibly remaining

unvisited nodes have corresponding state elements in Sr. As we reach Sr from ?m | Sr
by applying the Failure rule, the remaining conditions follow by the induction

hypothesis.

• For CutAll we have S = Q = S ′ and we dropped all unvisited nodes. As S ′

contains only one state element, the lemma trivially holds.

• For Disjunction we have that S = t1, Q | t2, Q | Sr = S ′. We directly reach a

suitable state for the first unvisited node from t2, Q | Sr. The remaining conditions

follow by the induction hypothesis.
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• For Halt, Halt1, Throw, UndefinedError and VariableError we have

S = ε = S ′ and no current node or unvisited nodes. Thus, the lemma trivially

holds.

• For IfThen we have that S = call(t1), !m, t2, Q | ?m | Sr = S ′. Additionally, we

reach the state Sr from ?m | Sr by applying the Failure rule. We obtain the

remaining conditions by the induction hypothesis.

• For IfThenElse we have that S = call(t1), !m, t2, Q | t3, Q | ?m | Sr = S ′. We

directly reach a suitable state for the first unvisited node from t3, Q | ?m | Sr. The

state Sr is reachable from ?m | Sr by applying the Failure rule. The remaining

conditions follow by the induction hypothesis.

• For Not we have that S = call(t), !m, fail | Q | ?m | Sr = S ′. We directly reach a

suitable state for the first unvisited node from Q | ?m | Sr. The state Sr is reachable

from ?m | Sr by applying the Failure rule. The remaining conditions follow by the

induction hypothesis.

• For Repeat we have that S = Q | repeat, Q | Sr = S ′. We directly reach a suitable

state for the first unvisited node from repeat, Q | Sr. The remaining conditions

follow by the induction hypothesis.

• For True we have that S = S ′ emerges from the state reached before by just

dropping the first term true from the goal in the first state element. Thus, all

conditions are implied by the induction hypothesis.

Now we are ready to prove our central theorem of this chapter which connects execu-

tions of Prolog programs according to the ISO standard with concrete state-derivations

represented by termination graphs. The assumptions we make in this theorem correspond

to the default configurations of most Prolog implementations.

Theorem 5.11 (Operational Semantics for Standard Prolog without Unhandled Pred-

icates). Given a standard conforming Prolog processor using unification without occurs-

check with the flag unknown set to error as defined in [DEC96], a Prolog program P not

using any built-in predicates from UnhandledBuiltInPredicates or other built-in predicates

than those defined in [DEC96] and a goal Q, for the execution of Q w.r.t. P by the proces-

sor, i.e., for the Prolog search-tree as defined for the execution model in [DEC96], there

is a concrete state-derivation using the rules from Definition 5.1 representing this Prolog

search-tree, assuming that an error or the achieved execution of Q lead to the termina-

tion of the execution without manipulating the search-tree obtained before achieving the

execution or throwing the error and that we never have to transform terms with infinitely

many predication positions due to meta-calls during the execution.
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Proof. We perform the proof by induction over the number k of execution steps in the

execution model.

For k = 1 we start from the root as current node, labeled by the initial goal and the

empty substitution with no unvisited nodes. Thus, the empty concrete state-derivation

from the state S0 containing the initial goal represents this Prolog search-tree.

For k > 1 we can assume the theorem holds for executions with at most k − 1 steps.

In particular, we obtain a concrete state-derivation leading from the state S0 to a state

S representing the Prolog search-tree T reached before executing the last step of the

execution by the induction hypothesis. By Lemma 5.10 we can w.l.o.g. assume that the

first state element of S contains the current goal of the current node of T where the goal

2 as the first state element of S corresponds to the current goal true of the current node

of T and labeled cuts are replaced by unlabeled cuts. We perform a case analysis over

the last execution step.

• If the last execution step corresponds to step 2 of the search-tree visit and construc-

tion algorithm, the current node of T is labeled with true. Therefore, the first state

element of S must be 2. Thus, we apply the Success rule to S and the represented

Prolog search-tree changes its current node to the next unvisited node in T while

dropping this node from the set of unvisited nodes. Hence, we represent the Prolog

search-tree reached by the last execution step.

• If the last execution step corresponds to step 4 of the search-tree visit and construc-

tion algorithm, the current node of T is labeled with a goal having true as its first

predication and at least two predications in total. Therefore, the first state element

of S must start with the term true. Thus, we apply the True rule to S and the

current node of the represented Prolog search-tree is changed according to step 4

of the search-tree visit and construction algorithm. Hence, we represent the Prolog

search-tree reached by the last execution step.

• If the last execution step corresponds to step 5a of the search-tree visit and construc-

tion algorithm, the current node of T is labeled with a goal of the form t, Q with

Slice(P , t) 6= ∅ and there is no clause H ← B ∈ Slice(P , t) with t ∼ H. Therefore,

the first state element of S must be the goal t, Q. Thus, we apply the Case rule

to S and the current node of the represented Prolog search-tree is changed to the

first node n in the set of unvisited nodes and n is dropped from this set. Hence, we

represent the Prolog search-tree reached by the last execution step.

• If the last execution step corresponds to step 5b of the search-tree visit and construc-

tion algorithm, the current node of T is labeled with a goal of the form t, Q with

Slice(P , t) 6= ∅ and there is at least one clause H ← B ∈ Slice(P , t) with t ∼ H.

Therefore, the first state element of S must be the goal t, Q. Thus, we apply the
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Case rule to S and the represented Prolog search-tree is modified by adding children

to the current node of T for each clause H ← B ∈ Slice(P , t) with t ∼ H in the or-

der of the clauses with the label B′σ,Qσ and σ where B′ = Transformed(B,m)[!m/!]

for some m ∈ IN and σ = mgu(t,H) while the current node becomes the first child

of the current node of T . Hence, we represent the Prolog search-tree reached by the

last execution step.

• If the last execution step corresponds to step 6 of the search-tree visit and con-

struction algorithm, the current node of T is labeled with a goal of the form t, Q

with root(t) ∈ BuiltInPredicates . As we assume that no built-in predicates other

than those in HandledBuiltInPredicates are used in P and the initial query, we

obtain that root(t) ∈ HandledBuiltInPredicates . By inspection of Definition 5.8

we obtain that each rule for a built-in predicate from HandledBuiltInPredicates \
{nl/0, throw/1,write/1,write canonical/1,writeq/1}modifies T as defined in [DEC96].

For throw/1 note that we do not use the built-in predicate catch/3. Thus, the ex-

ecution of throw/1 will always cause a system error or an instantiation error. In

both cases the computation will terminate without modifying the Prolog search-

tree according to our assumptions. For nl/0, write/1, write canonical/1 and writeq/1

note that we do not use any built-in predicates capable of changing the current

output stream. Thus, it must be the default output stream which is a text stream.

Hence, these built-in predicates cannot cause an error according to their definition

in [DEC96] and they modify the Prolog search-tree as defined in Definition 5.8.

• If the last execution step corresponds to step 7 of the search-tree visit and construc-

tion algorithm, the current node of T is labeled with a goal of the form t, Q with

Slice(P , t) = ∅ and root(t) /∈ BuiltInPredicates . Therefore, the first state element

of S must be the goal t, Q and we apply the UndefinedError rule to S. As we

assume that T is not modified in case of an error and the computation terminates,

we represent the Prolog search-tree reached by the last execution step.

As step 3 of the search-tree visit and construction algorithm does not perform an

execution step, we have considered all cases for the last execution step and, thus, proved

the theorem.
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5.4 Summary

We stated the operational semantics of Prolog as defined in the ISO standard and intro-

duced a representation of Prolog search-trees by concrete state-derivations. Using this

representation we showed that we can simulate any execution of a Prolog program w.r.t. a

query not using built-in predicates we cannot handle in our setting, assuming the default

configuration of most Prolog implementations. Thus, we have shown that our approach

is capable of analyzing real Prolog applications.



6 Deterministic Construction of

Termination Graphs

So far, we have introduced concrete and abstract inference rules to construct termination

graphs for Prolog programs w.r.t. a class of queries. Furthermore, we showed that the con-

crete inference rules can be used to simulate the operational semantics of Prolog according

to the ISO standard [DEC96]. However, up to now we have applied the abstract rules

non-deterministically to obtain termination graphs. The reason for this is that the rules

for obtaining finite graphs overlap with the rules simulating the concrete state-derivations.

In order to have a fully mechanizable method, we need to make the application of abstract

inference rules deterministic, i.e., we need an algorithm which decides when to use which

abstract inference rule. In other words, we need to decide when to evaluate an abstract

state and when to try to find instances, i.e., close the graph. For the latter we also have

to give a strategy how to find instances for the current abstract state. In particular, this

strategy must decide how and when to generalize or split abstract states to find instances

for its successors if there is no instance father for the respective abstract state itself.

Structure of the Chapter

In Section 6.1 we introduce the notion of (partial) termination graphs and give some

example graphs for the two example programs even.pl and divremain.pl from the beginning

of Chapter 3 where we equivalently modified the latter by using built-in predicates.

Section 6.2 deals with the deterministic construction of termination graphs for a given

Prolog program and a class of queries by using a heuristic. After introducing the relevant

notions and illustrating them with examples we present the standard heuristic which has

shown to be successful on a great number of examples from the TPDB.

After its presentation we prove in Section 6.3 that this heuristic is always terminating

and constructs either a termination graph or fails due to the situations where our abstract

inference rules are stuck (see the explanations after Definition 3.11 and Definition 3.21).

Finally, we summarize the contributions of this chapter in Section 6.4.
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6.1 Termination Graphs

For a graph G and a rule Rule, we use the notation Rule(G) to denote all nodes of G

to which Rule has been applied. We denote by Succ(i, n) the i-th child of n and by

Succ(i,Rule(G)) the set of i-th children of nodes from Rule(G).

We start by defining what graphs are considered being termination graphs.

Definition 6.1 (Termination Graph). A finite graph built from an initial state (s;KB)

using the rules from Definitions 3.21 – 3.50 is called a termination graph if, and only

if, there is no cycle only consisting of Instance and Generalization nodes and all

leaves are of the form (ε;KB′) for some arbitrary knowledge bases KB′.

First, we must not have cycles consisting only of Instance and Generalization

nodes as this would lead to a cycle without any concrete evaluation and, thus, this cycle

could trivially be repeated infinitely often.

Second, we must have applied some rule to all nodes of the graph except for empty

states, since every concrete evaluation must stop at such a state if it stops at all.

Example 6.2. Consider again the graph from Example 3.39. All leaves are abstract

states of the form ε; (∅,∅,∅). The only cycle traversing the only Instance node

c(f(e, f(o, ∗∗)), T4); ({T4},∅,∅) also contains, for instance, the Case node

c(f(e, f(o, ∗∗)), T2); ({T2},∅,∅). Thus, this graph is indeed a termination graph.

Example 6.3. However, the termination graph from Example 6.2 does not use the rules

Parallel and Split. We give a more complex example of a termination graph where

we have to use these rules to obtain a finite graph. Consider again the Prolog program

divremain.pl in its modified form according to built-in predicates from Example 4.22.

We can construct the following termination graph for the query set Q as defined in

Example 3.1. To save space, we define the following knowledge bases used in this graph.

KB1 = ({T1, T2}, {X, Y, Z,R}, {(div(X, 0, Z,R), div(T1, T2, T3, T4)), (div(0, Y, Z,R),

div(T1, T2, T3, T4))}),
KB2 = ({T12, T13}, {U,X, Y, Z,R}, {(div(X, 0, Z,R), div(T12, T13, T3, T4)),

(div(0, Y, Z,R), div(T12, T13, T3, T4))}),
KB3 = ({T12, T13}, {U,X, Y, Z,R}, {(div(X, 0, Z,R), div(T12, T13, T3, T4)),

(div(0, Y, Z,R), div(T12, T13, T3, T4)), (minus(X, 0, X), minus(T12, T13, U))}),
KB4 = ({T13, T23}, {X, Y, Z,R}, {(div(X, 0, Z,R), div(T23, T13, T3, T4)), (div(0, Y, Z,R),

div(T23, T13, T3, T4))})
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div(T1, T2, T3, T4); ({T1, T2},∅,∅)

(div(T1, T2, T3, T4))551 | (div(T1, T2, T3, T4))561 |
(div(T1, T2, T3, T4))571 | (div(T1, T2, T3, T4))581 ;

({T1, T2},∅,∅)

Case

!1, fail |
(div(T5, 0, T3, T4))561 |
(div(T5, 0, T3, T4))571 |
(div(T5, 0, T3, T4))581 ;

({T5},∅,∅) Eval

T1/T5, T2/0,

T3/T6, T4/T7

div(T1, T2, T3, T4)561 | div(T1, T2, T3, T4)571 | div(T1, T2, T3, T4)581 ;

({T1, T2}, {X,Z,R}, {(div(X, 0, Z, R), div(T1, T2, T3, T4))})

Evalfail; (∅,∅,∅)

CutAll

!1,=(T9, 0),=(T10, 0) | div(0, T8, T3, T4)571 |
div(0, T8, T3, T4)581 ; ({T8}, {X,Z,R},
{(div(X, 0, Z, R), div(0, T8, T3, T4))})

Eval

T1/0, T2/T8,

T3/T9, T4/T10

div(T1, T2, T3, T4)571 |
div(T1, T2, T3, T4)581 ;KB1

Eval
ε; (∅,∅,∅)

Fail

=(T9, 0),=(T10, 0); (∅,∅,∅)

CutAll

div(T1, T2, T3, T4)571 ;KB1

Parallel

div(T1, T2, T3, T4)581 ;KB1

Parallel

=(T11, 0); (∅,∅,∅)

UnifyCase

T9/0, T10/T11

ε; (∅,∅,∅)

UnifyCase

minus(T12, T13, U), !1,

div(U, T13, T14, T15);KB2

Eval
T1/T12, T2/T13,

T3/s(T14), T4/T15
ε; (∅,∅,∅)

Eval

2; (∅,∅,∅)

Eval

T1/T24, T2/T25,

T3/0, T4/T24

ε; (∅,∅,∅)

Eval

2; (∅,∅,∅)

UnifyCase

T11/0

ε; (∅,∅,∅)

UnifyCase

minus(T12, T13, U);KB2

Split

!1, div(T23, T13, T14, T15);KB4

Split

U/T23

ε; (∅,∅,∅)

Success

ε; (∅,∅,∅)

Success

(minus(T12, T13, U))592 |
(minus(T12, T13, U))602 ;KB2

Case

div(T23, T13, T14, T15);KB4

CutAll

Instance

(minus(T12, T13, U))602 ;KB3

Backtrack

minus(T16, T17, T18); ({T16, T17},∅,∅)

EvalT12/s(T16), T13/s(T17), U/T18

ε; (∅,∅,∅)
Eval

(minus(T16, T17, T18))593 | (minus(T16, T17, T18))603 ; ({T16, T17},∅,∅)

Case

(minus(T16, T17, T18))593 ; ({T19},∅,∅)

Parallel

(minus(T16, T17, T18))603 ; ({T16, T17},∅,∅)

Parallel

2; (∅,∅,∅)

Eval

T16/T19, T17/0, T18/T19

ε; (∅,∅,∅)

Eval

minus(T20, T21, T22); ({T20, T21},∅,∅

Eval

T16/s(T20), T17/s(T21), T18/T22

Instance

ε; (∅,∅,∅)

Eval

ε; (∅,∅,∅)

Success

Now, for the construction of such a termination graph, we start with an initial state

given by the query set and expand this state according to the abstract inference rules

from the preceding chapters. During this process, the graph is not a termination graph

as in Definition 6.1, but a graph which can possibly be extended to a termination graph.
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Definition 6.4 (Partial Termination Graph). A finite graph G built from an initial state

(s;KB) using the rules from Definitions 3.21 – 3.50 is called a partial termination graph

if, and only if, there is no cycle only consisting of Instance and Generalization

nodes.

We denote the root state (s;KB) of a (partial) termination graph G by root(G).

Example 6.5. Every termination graph is also a partial termination graph. If we take

only the finite part of the infinite graph from Example 3.30 shown there (without the

dots), this is in fact a partial termination graph as it does not have any cycles at all.

6.2 The Standard Heuristic

In this section we show how to use the abstract inference rules deterministically to obtain

a termination graph for a given Prolog program and query set.

Before we start to define the heuristic for the construction of a termination graph, we

need the notion of recursive symbols. These are exactly the symbols for which we can

potentially have infinite abstract state-derivations. To define recursive symbols in the

presence of meta-programming, we first need a generalized notion for predications.

Definition 6.6 (Meta-Predication). Given a term t ∈ T rat(Σ,V) and a position pos ∈
Occ(t), we call t|pos a meta-predication w.r.t. t iff for all positions pos ′ ∈ Occ(t) with

pos ′ C pos we have root(t|pos′) ∈ GoalJunctors ∪ {call/1, \+/1, once/1}. For a finite list

L of terms t1, . . . , tk we also call ti|posi a meta-predication w.r.t. L if ti|posi is a meta-

predication w.r.t. ti.

Definition 6.7 (Recursive Function Symbols and Clauses). We call a function symbol

f ∈ Σ \ BuiltInPredicates recursive w.r.t. a Prolog program P, if there is a sequence of

clauses H0 ← B0, H1 ← B1, . . . , Hk ← Bk with Hi ← Bi ∈ P for all i ∈ {0, . . . , k},
root(H0) = f , there is a meta-predication t in Bi−1 with root(Hi) = root(t) for all i ∈
{1, . . . , k} and ((∃j ∈ {0, . . . , k− 1} : root(Hj) = root(Hk))∨ (there is a meta-predication

t′ in Bk with root(t′) = repeat/0∨Bk has infinitely many meta-predications)). The built-in

predicate repeat/0 is additionally considered being recursive.

We call a clause H ← B ∈ P recursive w.r.t. P if B has a meta-predication t with

root(t) being recursive or B has infinitely many meta-predications.
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Example 6.8. Consider the following Prolog program P :

p ← q.

q ← q.

a ← b.

b ← c.

c ← 2.

As we have the sequence p← q, q← q, q← q, the function symbols p and q are recursive

w.r.t. P , while the function symbols a, b and c are not recursive w.r.t. P .

Also, the clauses p ← q and q ← q are recursive w.r.t. P , while the clauses a ← b,

b← c and c← 2 are not recursive w.r.t. P .

We will now describe a heuristic which has shown to be successful on a great number

of examples from the TPDB. Since it is designed to work on arbitrary examples and not

for special purposes, we call it the standard heuristic. Some parts of this heuristic rely

on parameters for which we will state values found to be advantageous in the empirical

results section from Chapter 8.

Several ideas belong to the intuition behind this heuristic. First, we try to use short-

ening rules, i.e., rules which reduce the number of terms or state elements in a state

without introducing any new terms or state elements, without looking for instances as

these rules cannot lead to infinite abstract state-derivations alone. Also, we try to evaluate

terms which cannot lead to infinite abstract state-derivations completely. Additionally,

we continue to evaluate states as long as we did not perform enough evaluating steps.

The corresponding parameter of the heuristic is used to ensure that we gather enough

knowledge due to evaluations before we close the graph. The more knowledge we gather

the better are our chances to synthesize DT problems which are easy to analyze in the

next section. On the other hand we might continue the evaluation (and need computation

time) without gathering additional knowledge. In fact, we might even obtain DT prob-

lems which are more difficult to analyze due to their growing size. Thus, the parameter

for the required number of evaluation steps has to be chosen heuristically.

Example 6.9. Consider the following Prolog program P

q(X) ← p(s(s(0)), X), r(X). (65)

p(0, 0) ← 2. (66)

p(s(X), s(Y )) ← p(X, Y ). (67)

r(s(s(0))) ← !. (68)

r(X) ← r(X). (69)
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and the query set Q = {q(t) | q(t) ∈ PrologTerms(Σ,N )}. This program is terminating

w.r.t. Q. Now consider the following graph we would build if we try to find instances for

recursive predicates as soon as possible.

q(T1); (∅,∅,∅)

(q(T1))651 ; (∅,∅,∅)

Case

p(s(s(0)), T2), r(T2); (∅,∅,∅)

OnlyEvalT1/T2

p(s(s(0)), T2); (∅,∅,∅)

Split

r(T3); ({T3},∅,∅)

Split

T2/T3

(p(s(s(0)), T2))662 |
(p(s(s(0)), T2))672 ; (∅,∅,∅)

Case

(r(T3))685 | (r(T3))695 ; ({T3},∅,∅)

Case

(p(s(s(0)), T2))672 ; (∅,∅,∅)

Backtrack
!5 | (r(s(s(0))))695 ; (∅,∅,∅)

Eval

T3/s(s(0))

(r(T3))695 ; ({T3},∅,
{(r(s(s(0))), r(T3))})

Eval

p(s(0), T4); (∅,∅,∅)

EvalT2/s(T4)

ε; (∅,∅,∅)

Eval

2; (∅,∅,∅)

CutAll

r(T6); ({T6},∅, {(r(s(s(0))), r(T6))})

OnlyEvalT3/T6

Instance

(p(s(0), T4))663 |
(p(s(0), T4))673 ; (∅,∅,∅)

Case

ε; (∅,∅,∅)

Success

(p(s(0), T4))673 ; (∅,∅,∅)

Backtrack

p(0, T5); (∅,∅,∅)

EvalT4/s(T5)

ε; (∅,∅,∅)

Eval

(p(0, T5))664 | (p(0, T5))674 ; (∅,∅,∅)

Case

2 | (p(0, T5))674 ; (∅,∅,∅)

EvalT5/0

(p(0, T5))674 ; (∅,∅, {(p(0, 0), p(0, T5))}

Eval

(p(0, T5))674 ; (∅,∅,∅)

Success

ε; (∅,∅,∅)

Backtrack

ε; (∅,∅,∅)

Backtrack

The cycle in this graph can be traversed infinitely often since the information that

the second argument of p is instantiated with a ground term is not sufficient to ensure

unification with the first clause for r.
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If we demand to evaluate at least four times using Case before trying to find instances,

we obtain the following acyclic graph because we keep the shape information about the

second argument of p.

q(T1); (∅,∅,∅) (q(T1))651 ; (∅,∅,∅)
Case

p(s(s(0)), T2), r(T2); (∅,∅,∅)

OnlyEval

T1/T2

(p(s(s(0)), T2), r(T2))662 | (p(s(s(0)), T2), r(T2))672 ; (∅,∅,∅)

Case

(p(s(s(0)), T2), r(T2))672 ; (∅,∅,∅)

Backtrack

p(s(0), T3), r(s(T3)); (∅,∅,∅)

EvalT2/s(T3)

ε; (∅,∅,∅)

Eval

(p(s(0), T3), r(s(T3)))663 | (p(s(0), T3), r(s(T3)))673 ; (∅,∅,∅)

Case

(p(s(0), T3), r(s(T3)))673 ; (∅,∅,∅)

Backtrack

p(0, T4), r(s(s(T4))); (∅,∅,∅)

EvalT3/s(T4)

ε; (∅,∅,∅)

Eval

(p(0, T4), r(s(s(T4))))664 | (p(0, T4), r(s(s(T4))))674 ; (∅,∅,∅)

Case

r(s(s(0))) | (p(0, T4), r(s(s(T4))))674 ; (∅,∅,∅)

EvalT4/0

(p(0, T4), r(s(s(T4))))674 ;

(∅,∅, {(p(0, 0), p(0, T4))}

Eval

(r(s(s(0))))685 | (r(s(s(0))))695 | ?5 | (p(0, T4), r(s(s(T4))))674 ; (∅,∅,∅)

Case

ε; (∅,∅,∅)

Backtrack

!5 | (r(s(s(0))))695 | ?5 | (p(0, T4), r(s(s(T4))))674 ; (∅,∅,∅)

OnlyEval

2 | (p(0, T4), r(s(s(T4))))674 ; (∅,∅,∅)

Cut

(p(0, T4), r(s(s(T4))))674 ; (∅,∅,∅)

Success

ε; (∅,∅,∅)

Backtrack
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If we already have applied enough evaluating rules, no shortening rule is applicable and

we have a recursive term, we try to find an instance father for the current state starting

with this term and, therefore, to close the graph in order to obtain a finite analysis. To

this end, we need to use the Instance rule instead of expanding the graph infinitely

often. But since the Instance rule may lose precision (or even violate the conditions for

a termination graph), we try to delay its application as long as possible to gather more

knowledge about the evaluation of the states in our graph. In particular, we can exclude

some states from the set of possible candidates for the application of the Instance rule.

On the one hand, we have to exclude states which would lead to a cycle of only Instance

and Generalization edges. On the other hand, we may also exclude states for which

we will safely find better candidates.

First, we demand that an instance candidate is no Instance node itself and, thus,

an instance child. Second, for every path from the instance candidate to the respective

node, we must have applied an abstract inference rule other than Instance and Gen-

eralization. This last condition ensures that we do not build cycles only consisting of

Instance and Generalization edges. In addition to that there is no reason to choose

a state as an instance candidate which is an instance child itself, since we can choose its

instance father instead.

The last condition is a heuristical one. If we draw an Instance edge to a state with

more different variables than the state under consideration, then we will unnecessarily lose

information about the structure of the already evaluated terms in our states, since we have

to instantiate different variables with terms containing no or some equal variables. If we

delay the instantiation until we find an instance candidate with less or an equal number

of different variables, such information can be preserved. If this condition is already true

for the complete set of variables, we check it again for the abstract variables only. In

particular, the way we will transform the termination graphs into DT problems relies on

the different variables occurring in the states used for instantiation. Therefore, it is a

good idea to keep their number as small as possible (cf. Chapter 7).

Example 6.10. Consider the following Prolog program P

p(X,X, a) ← !. (70)

p(X, Y, Z) ← =(Z, a),=(X, Y ), p(X, Y, Z). (71)

and the query set Q = {p(t1, t2, t3) | p(t1, t2, t3) ∈ PrologTerms(Σ,N )}. P is terminating

w.r.t. Q.

Now consider the following two termination graphs where we try to use every matching

state as an instance father.
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p(T1, T2, T3); (∅,∅,∅)

(p(T1, T2, T3))701 | (p(T1, T2, T3))711 ; (∅,∅,∅)

Case

!1 | (p(T1, T2, T3))711 ; (∅,∅,∅)

Eval

T1/T4, T2/T4, T3/a

(p(T1, T2, T3))711 ; (∅, {X}, {(p(X,X, a), p(T1, T2, T3))})

Eval

2; (∅,∅,∅)

CutAll

=(T7, a),=(T5, T6), p(T5, T6, T7); (∅,∅,∅)

OnlyEval

T1/T5, T2/T6, T3/T7

ε; (∅,∅,∅)

Success

=(T8, T9), p(T8, T9, a); (∅,∅,∅)

UnifyCaseT5/T8, T6/T9, T7/a

ε; (∅,∅,∅)

UnifyCase

p(T10, T10, a); (∅,∅,∅)

UnifyCase

T8/T10, T9/T10

Instance

ε; (∅,∅,∅)

UnifyCase

While in fact the cycle in this graph cannot be traversed infinitely often, we will read

off a DT problem for this graph which is not terminating. The reason is that the cycle

contains a right successor of an Eval node which is not reachable anymore after one

traversal of the cycle. Unfortunately, the DT problem cannot recognize this. Anyway,

this cycle is not necessary in this graph. By closing the graph too early we lose important

information. Here, we match a state with three different variables to a state containing

only one variable. Thus, we lose the information that the first two arguments of P are

equal and that the third argument is in fact a and not an arbitrary term. By preventing

to close the graph in such situations due to the last condition for instance candidates,

we obtain a more precise analysis. This can be seen in the following acyclic termination

graph which we obtain if we adhere to this condition.
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p(T1, T2, T3); (∅,∅,∅)

(p(T1, T2, T3))701 | (p(T1, T2, T3))711 ; (∅,∅,∅)

Case

!1 | (p(T1, T2, T3))711 ; (∅,∅,∅)

Eval

T1/T4, T2/T4, T3/a

(p(T1, T2, T3))711 ; (∅, {X}, {(p(X,X, a), p(T1, T2, T3))})

Eval

2; (∅,∅,∅)

CutAll

=(T7, a),=(T5, T6), p(T5, T6, T7); (∅,∅,∅)

OnlyEval

T1/T5, T2/T6, T3/T7

ε; (∅,∅,∅)

Success

=(T8, T9), p(T8, T9, a); (∅,∅,∅)

UnifyCaseT5/T8, T6/T9, T7/a

ε; (∅,∅,∅)

UnifyCase

p(T10, T10, a); (∅,∅,∅)

UnifyCase

T8/T10, T9/T10

ε; (∅,∅,∅)

UnifyCase

(p(T10, T10, a))702 | (p(T10, T10, a))702 ; (∅,∅,∅)

Case

!2 | (p(T10, T10, a))702 ; (∅,∅,∅)

OnlyEvalT10/T11

2; (∅,∅,∅)

CutAll

ε; (∅,∅,∅)

Success

However, me make an exception for those terms having a recursive root symbol whose

branching factor is too big as the graph may grow exponentially with the number of

applicable rules for the terms. The parameter determining the allowed value for the

branching factor is again chosen heuristically as we would lose too much precision for too

small values while obtaining infeasible big graphs for too big values.
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Example 6.11. Consider the Prolog program soundex.pl from the TPDB

goal(Name,Code) ← eq(Name, .(First ,Others)),

reduce(Others , s(0),First ,Reduced),

eq(Code,Reduced).

reduce(X, s(s(s(s(0)))), Z, []) ← !.

reduce([], Y, Z, []) ← !.

reduce(.(Current ,Others),

Count ,

Current ,

Code) ← vowel h w y(Current),

!,

reduce(Others ,Count ,Current ,Code).

reduce(.(Letter ,Others),

Count ,

Letter ,

Code) ← !,

reduce(Others ,Count ,Letter ,Code).

reduce(.(Current ,Others),

Count ,

Z,

.(Current ,Code)) ← reduce(Others , s(Count),Current ,Code).

vowel h w y(97) ← 2.

vowel h w y(101) ← 2.

vowel h w y(105) ← 2.

vowel h w y(111) ← 2.

vowel h w y(117) ← 2.

vowel h w y(104) ← 2.

vowel h w y(119) ← 2.

vowel h w y(121) ← 2.

eq(X,X) ← 2.

and the set of queries Q = {goal(t1, t2) | t1 is ground}. For a maximal branching factor

of 5 or higher, we are not able to construct a termination graph for this program within

60 seconds with our fully automated termination prover AProVE running on a 2.67 GHz
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Intel Core i7. However, for a maximal branching factor of 4 or less we can construct a

termination graph and prove termination of this program w.r.t. Q in about 3.9 seconds.

If no instance father can be found, we next try to generalize or simplify the state by

splitting it with Parallel or Split until we find an instance father for it or we have

reduced the state to contain only a single goal with a single term. In the latter case we

continue to evaluate the state, but as we will see in the proofs following the definition of

the heuristic, this cannot happen infinitely often.

For the simplification with Parallel, we can detect cases where we can safely simplify

the current state without losing precision. This is the case if the first state element of

the current state does not contain any active cuts. Then it is impossible to get rid of

the following state elements during the evaluation of the first and we have to analyze

them anyway. Thus, we can split off the first state element using Parallel. This safe

simplification can be performed even before we check for instances.

The generalization is controlled by four parameters. While Generalization virtually

always significantly loses precision, it is needed to limit the number of different terms

modulo scope variants and variable renaming we might encounter during evaluation. Then

we can guarantee to find instances for any state after finitely many steps. For finite terms,

we can limit the number of different terms modulo scope variants and variable renaming

by the nested depth of function symbols occurring in the terms. Then the length of the

finite paths in the terms is limited by the number of different function symbols in Σ.

However, for infinite rational terms this idea is not as useful as the nested depth of some

function symbol is always infinity. We would therefore have to generalize all infinite terms.

Instead, we exploit the property of rational terms to have only a finite number of different

subterms. Hence, we can limit the number of different infinite rational terms modulo scope

variants and variable renaming by limiting the number of different subterms. While this

would also be possible for finite terms, limiting the nested depth instead of the number

of different subterms allows for more different terms in case of finite terms and we have

to use Generalization less often. Still, the controlling parameters have to be chosen

heuristically as too high values lead to infeasible big graphs.

Example 6.12. Consider again the termination graph from Example 3.42. There we

have generalized terms with a nested depth of function symbols greater than one. Even

for such a small generalization depth and short program the graph is comparatively big.

If we raise the allowed nested depth of function symbols by one, the resulting termination

graph grows by a complete subgraph consisting of seven nodes. Termination graphs for

more complex programs may even grow exponentially in the maximal nested depth of

function symbols.
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Consider on the other hand the following Prolog program P

q ← p(s(s(0))). (72)

p(s(X)) ← p(X). (73)

p(0) ← 2. (74)

p(s(s(s(0)))) ← p(s(s(s(0)))). (75)

and the query set Q consisting of the single query q. P is obviously terminating w.r.t.

Q. However, if we use a maximal nested depth of one here, we obtain the following

termination graph.

q; (∅,∅,∅)

(q)721 ; (∅,∅,∅)

Case

p(s(s(0))); (∅,∅,∅)

OnlyEval

p(s(T1)); ({T1},∅,∅)

Generalization

(p(s(T1)))732 | (p(s(T1)))742 |
(p(s(T1)))752 ; ({T1},∅,∅)

Case

(p(s(T1)))732 ; ({T1},∅,∅)

Parallel

(p(s(T1)))742 |
(p(s(T1)))752 ; ({T1},∅,∅)

Parallel

p(T2); ({T2},∅,∅)

OnlyEval

T1/T2

(p(s(T1)))752 ; ({T1},∅,∅)

Backtrack

(p(T2))733 | (p(T2))743 |
(p(T2))753 ; ({T2},∅,∅)

Case

p(s(s(s(0)))); (∅,∅,∅)

Eval

T1/s(s(0))

Instance

ε; (∅,∅,∅)

Eval

(p(T2))733 ; ({T2},∅,∅)

Parallel

(p(T2))743 |
(p(T2))753 ; ({T2},∅,∅)

Parallel

p(T3); ({T3},∅,∅)

Eval

T2/s(T3)

Instance

ε; (∅,∅,∅)

Eval

2 | (p(0))753 ; (∅,∅,∅)

Eval

T2/0

(p(T2))753 ; ({T2},∅,∅)

Eval

(p(0))753 ; (∅,∅,∅) Success

p(s(s(s(0)))); (∅,∅,∅)

Eval

T2/s(s(s(0)))

Instance

ε; (∅,∅,∅)

Eval

ε; (∅,∅,∅)Backtrack
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The cycles in this termination graph do not terminate. Due to the early generalization

we lose too much information about the shape of p’s argument.

Additionally, we have to determine at which position we want to generalize the terms

satisfying the conditions for generalization. While generalizing the terms at a position

close to the root allows to find instances quickly, this loses more precision than generalizing

at deeper positions as we keep more knowledge about the shape of the generalized terms.

Thus, we have a trade-off between speed and precision again.

We make another exception for the simplification of states by Parallel and Split

if we detect that a cut must be reached by further evaluating the state. Then we just

evaluate it until we reach the cut as this will simplify the state without losing precision.

To have a description for states where we definitely reach cuts, we introduce the notion

of cuttable goals and states.

Definition 6.13 (Cuttable Goals and States). Let P be a Prolog program and KB a

knowledge base. We call an unlabeled goal t1, . . . , tn cuttable w.r.t. P and KB iff there

is an index i ∈ {1, . . . , n} such that ti = !m for some scope m ∈ IN and for all j ∈
{1, . . . , i − 1} we have that (root(tj) is not recursive w.r.t. P or root(tj) = repeat/0 or

root(tj) is no built-in predicate and we have Slice(P , tj) = {Hc1 ← Bc1 , . . . , Hck ← Bck}
with k > 0 such that there is an index i′ where the abstract OnlyEval rule is applicable

to the state (tj)
ci′
m ;KB while the abstract Backtrack rule is applicable to the state

(tj)
cj′
m ;KB for all j′ ∈ {1, . . . , i′ − 1} and Bci′

= 2).

We call a labeled goal (t, Q)cm cuttable w.r.t. P and KB iff the abstract OnlyEval

rule is applicable to the state (t, Q)cm;KB and the goal B′cσ
′, Qσ′ is cuttable w.r.t. P and

KBσ|G where B′c, σ
′ and σ|G are defined as in the abstract OnlyEval rule for the clause

Hc ← Bc.

We call a state S;KB′ cuttable w.r.t. P iff the first state element of S is cuttable w.r.t.

P and KB′.

Example 6.14. Consider the following Prolog program P

q ← p(s(0)), !. (76)

p(0) ← r. (77)

p(X) ← 2. (78)

r ← r. (79)

and the knowledge base KB = (∅,∅, {(p(0), p(T1))}).
The goals (p(T1), !1) and (q)76

1 are cuttable w.r.t. P and KB while the goals (p(0), !1),

(p(T2), !1), (p(s(0)), p(T1)) and (p(s(0)), q) are not cuttable w.r.t. P and KB. Note how-

ever that the last two goals would not cause any problems if we would evaluate them

instead of trying to simplify them.
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The notion of cuttable goals is a heuristical one. The last goal (p(s(0)), q) is not cuttable

w.r.t. P and KB in spite of the fact that we would definitely reach a cut. We leave a

more sophisticated notion of cuttable goals to future work.

Example 6.15. Consider the following Prolog program ts09.pl which is terminating for

the query p:

p ← q, r, !. (80)

q ← 2. (81)

q ← q. (82)

r ← 2. (83)

If we use the Split rule after the first evaluation of p, we obtain the first of the following

termination graphs, where we omit the knowledge bases as we do not have any variables

in this Prolog program:

p

(p)801

Case

q, r, !1

OnlyEval

q

Split

r, !1

Split

q81
2 | q82

2

Case

2 | q82
2

OnlyEval

q82
2

Success

q

OnlyEval

Instance

(r, !1)833

Case

!1

OnlyEval

2

CutAll

ε

Success

p

(p)801

Case

q, r, !1

OnlyEval

(q, r, !1)812 | (q, r, !1)822

Case

r, !1 | (q, r, !1)822

OnlyEval

(r, !1)833 | (q, r, !1)822

Case

!1 | (q, r, !1)822

OnlyEval

2

CutAll

ε

Success

As we can see, the cycle in this termination graph does not terminate since we cannot

use the cut for q after splitting this first recursive predicate from the remaining goal.

By detecting that we will reach the cut because the first defining clause for q is not

recursive, we obtain the second acyclic termination graph instead.

Now, the standard heuristic is defined as follows.
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Definition 6.16 (Standard Heuristic for Termination Graph Conctruction). Given a

partial termination graph G = (V,E) and a Prolog program P, we perform the following

algorithm for each leaf n in V which is not empty until we either abort the heuristic or

G is a termination graph, i.e., all leaves are empty. This algorithm is called standard

heuristic. The parameters for the standard heuristic are:

• MinExSteps ∈ IN

• MaxBranchingFactor ∈ IN

• FiniteGeneralizationDepth ∈ IN \ {0, 1}
• InfiniteGeneralizationDepth ∈ IN \ {0, 1}
• FiniteGeneralizationPosition ∈ {1, . . . ,FiniteGeneralizationDepth}
• InfiniteGeneralizationPosition ∈ IN \ {0}

In the following algorithm, we demand that the algorithm ends for the node n and

proceeds from the beginning with the next non-empty leaf of G whenever a rule is applied.

(i) Try to apply a rule from ShorteningRules to n

(ii) If there is a path π from root(G) to n with no nodes from Instance(G) and at least

MinExSteps nodes from Case(G) ∪ Call(G) ∪ Repeat(G) and (head(n) is recursive

w.r.t. P or n is starting with a labeled goal whose corresponding clause is recursive

w.r.t. P) and n is not cuttable w.r.t. P:

(a) If n = S1 | . . . | Sk;KB with k > 1, ∀i ∈ {1, . . . , k} : Si ∈ StateElements

and AC(S1) = ∅: Apply the Parallel rule to obtain the states S1;KB and

S2 | . . . | Sk;KB

(b) If n is starting with an unlabeled goal: Try to apply the Instance rule to the

current node n and a node out of InstanceCandidates(n,G,P)

(c) If there is a finite term t in n with k ≥ FiniteGeneralizationDepth positions

pos1 C pos2 C . . . C posk ∈ Occ(t) with ∀i ∈ {1, . . . , k} : root(t|posi) = f for a

single f ∈ Σ or there is an infinite term t′ in n with k′ ≥ InfiniteGeneraliza-

tionDepth different subterms: Apply a generalization step to n

(d) If n = S1 | · · · | Sk;KB with k > 1, ∀i ∈ {1, . . . , k} : Si ∈ StateElements:

Apply a parallel step to n

(e) If n = S;KB = t1, . . . , tk;KB with k > 1: Apply the Split rule to n

(iii) Try to apply a rule from EvaluationRules to n

(iv) Abort the heuristic
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The set EvaluationRules contains exactly the rules Call, Case, Conjunction, Dis-

junction, Eval, IfThen, IfThenElse, Not, Once, OnlyEval and Repeat while

the set ShorteningRules is defined as AbstractInferenceRules \ (EvaluationRules ∪
{Generalization, Instance,Parallel,Split}).

For a node n or a state S we denote by head(n) = f and head(S) = f respectively that

n and S are starting with an unlabeled goal as their first state element where this goal has

a first term t with root(t) = f .

The set of instance candidates (denoted InstanceCandidates(n,G,P)) for n w.r.t. G

and P contains all nodes nc ∈ V for which the following conditions hold:

• nc /∈ Instance(G)

• for all paths π from nc to n we have ∃n′ ∈ π : n′ ∈ Rule(G) where Rule ∈
AbstractInferenceRules \ {Instance,Generalization}

• (|V(n)| ≥ |V(nc)| and |V(n)| = |V(nc)| =⇒ |A(n)| ≥ |A(nc)|) or (head(n) is

recursive w.r.t. P and branchingFactor(head(n),P) > MaxBranchingFactor)

The generalization step for a node n = S; (G,F ,U) works as follows:

(i) Create a new node n′ = S ′; (G ′,F ′,U ′) where S ′ = S,G ′ = G,F ′ = F and U ′ = U

(ii) Initialize the set R = ∅

(iii) While there is an infinite term t in n′ with k ≥ InfiniteGeneralizationDepth different

subterms do:

(a) For all positions pos ∈ Occ(t) with length InfiniteGeneralizationPosition and

t|pos is infinite do:

i. If R contains an element (t|pos , T ): Replace the term t|pos with T

ii. Else: Add the pair (t|pos , T ) to R and replace the term t|pos with T for a

fresh abstract variable T

(iv) While there is a finite term t in n′ with k ≥ FiniteGeneralizationDepth positions

pos1 C . . . C posk ∈ Occ(t) with ∃f ∈ Σ : ∀i ∈ {1, . . . , k} : root(t|posi) = f do:

(a) If R contains an element (t|posFiniteGeneralizationPosition
, T ): Replace the term

t|posFiniteGeneralizationPosition
with T

(b) Else if V(t|posFiniteGeneralizationPosition
) ⊆ G: Add the pair (tposFiniteGeneralizationPosition

, T )

to R, replace the term tposFiniteGeneralizationPosition
with T and add T to G ′ for a fresh

abstract variable T

(c) Else: Add the pair (tposFiniteGeneralizationPosition
, T ) to R and replace the term

tposFiniteGeneralizationPosition
with T for a fresh abstract variable T
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(v) Apply the Generalization rule to n and n′

The parallel step for a node n = S1 | · · · | Sk;KB with k > 1 and ∀i ∈ {1, . . . , k} : Si ∈
StateElements is defined by applying the Parallel rule to n in such a way that we reach

the states S1 | · · · | Sj and Sj+1 | · · · | Sk with the smallest j ∈ {1, . . . , k − 1} for which

the application of Parallel is possible.

Example 6.17. In fact, the termination graph from Example 6.3 was constructed us-

ing this heuristic. To see this, we follow some steps of the heuristic during the con-

struction of this termination graph. We refer to the program as P . As parameters, we

choose MinExSteps = 1, MaxBranchingFactor = 3, FiniteGeneralizationDepth = 7 and

FiniteGeneralizationPosition = 2. The remaining parameters have no effect on this exam-

ple as no infinite terms occur there. Thus, they can be arbitrarily chosen. We choose the

next unprocessed node according to the depth-first, left-to-right order w.r.t. the current

partial termination graph.

We start with the initial state as the first partial termination graph.

div(T1, T2, T3, T4); ({T1, T2},∅,∅)

Since we cannot apply any rules from instruction (i), we only have one state element

and we have not yet applied one evaluating rule, we proceed with instruction (iii) and

apply the Case rule.

div(T1, T2, T3, T4); ({T1, T2},∅,∅)

(div(T1, T2, T3, T4))551 | (div(T1, T2, T3, T4))561 |
(div(T1, T2, T3, T4))571 | (div(T1, T2, T3, T4))581 ;

({T1, T2},∅,∅)

Case

Again, no rule from instruction (i) is applicable. The test in instruction (ii−−a) fails

as the first state element has an active cut and the test in instruction (ii) fails as this

state is cuttable w.r.t. P . Thus, we apply the Eval rule in instruction (iii).

div(T1, T2, T3, T4); ({T1, T2},∅,∅)

(div(T1, T2, T3, T4))551 | (div(T1, T2, T3, T4))561 |
(div(T1, T2, T3, T4))571 | (div(T1, T2, T3, T4))581 ;

({T1, T2},∅,∅)

Case

!1, fail |
(div(T5, 0, T3, T4))561 |
(div(T5, 0, T3, T4))571 |
(div(T5, 0, T3, T4))581 ;

({T5},∅,∅) Eval

T1/T5, T2/0,

T3/T6, T4/T7

div(T1, T2, T3, T4)561 | div(T1, T2, T3, T4)571 | div(T1, T2, T3, T4)581 ;

({T1, T2}, {X,Z,R}, {(div(X, 0, Z, R), div(T1, T2, T3, T4))})

Eval

For the next current node, we apply the CutAll rule in instruction (i).
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div(T1, T2, T3, T4); ({T1, T2},∅,∅)

(div(T1, T2, T3, T4))551 | (div(T1, T2, T3, T4))561 |
(div(T1, T2, T3, T4))571 | (div(T1, T2, T3, T4))581 ;

({T1, T2},∅,∅)

Case

!1, fail |
(div(T5, 0, T3, T4))561 |
(div(T5, 0, T3, T4))571 |
(div(T5, 0, T3, T4))581 ;

({T5},∅,∅) Eval

T1/T5, T2/0,

T3/T6, T4/T7

div(T1, T2, T3, T4)561 | div(T1, T2, T3, T4)571 | div(T1, T2, T3, T4)581 ;

({T1, T2}, {X,Z,R}, {(div(X, 0, Z, R), div(T1, T2, T3, T4))})

Evalfail; (∅,∅,∅)

CutAll

For this node we apply the Fail rule in instruction (i).

div(T1, T2, T3, T4); ({T1, T2},∅,∅)

(div(T1, T2, T3, T4))551 | (div(T1, T2, T3, T4))561 |
(div(T1, T2, T3, T4))571 | (div(T1, T2, T3, T4))581 ;

({T1, T2},∅,∅)

Case

!1, fail |
(div(T5, 0, T3, T4))561 |
(div(T5, 0, T3, T4))571 |
(div(T5, 0, T3, T4))581 ;

({T5},∅,∅) Eval

T1/T5, T2/0,

T3/T6, T4/T7

div(T1, T2, T3, T4)561 | div(T1, T2, T3, T4)571 | div(T1, T2, T3, T4)581 ;

({T1, T2}, {X,Z,R}, {(div(X, 0, Z, R), div(T1, T2, T3, T4))})

Evalfail; (∅,∅,∅)

CutAll

ε; (∅,∅,∅)

Fail

Now this state is empty and we proceed with the next unprocessed state. Again, this

state is cuttable and we apply the Eval rule.

div(T1, T2, T3, T4); ({T1, T2},∅,∅)

(div(T1, T2, T3, T4))551 | (div(T1, T2, T3, T4))561 |
(div(T1, T2, T3, T4))571 | (div(T1, T2, T3, T4))581 ;

({T1, T2},∅,∅)

Case

!1, fail |
(div(T5, 0, T3, T4))561 |
(div(T5, 0, T3, T4))571 |
(div(T5, 0, T3, T4))581 ;

({T5},∅,∅) Eval

T1/T5, T2/0,

T3/T6, T4/T7

div(T1, T2, T3, T4)561 | div(T1, T2, T3, T4)571 | div(T1, T2, T3, T4)581 ;

({T1, T2}, {X,Z,R}, {(div(X, 0, Z, R), div(T1, T2, T3, T4))})

Evalfail; (∅,∅,∅)

CutAll

!1,=(T9, 0),=(T10, 0) | div(0, T8, T3, T4)571 |
div(0, T8, T3, T4)581 ; ({T8}, {X,Z,R},
{(div(X, 0, Z, R), div(0, T8, T3, T4))})

Eval

T1/0, T2/T8,

T3/T9, T4/T10

div(T1, T2, T3, T4)571 |
div(T1, T2, T3, T4)581 ;KB1

Eval
ε; (∅,∅,∅)

Fail

We once more apply the CutAll rule.
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div(T1, T2, T3, T4); ({T1, T2},∅,∅)

(div(T1, T2, T3, T4))551 | (div(T1, T2, T3, T4))561 |
(div(T1, T2, T3, T4))571 | (div(T1, T2, T3, T4))581 ;

({T1, T2},∅,∅)

Case

!1, fail |
(div(T5, 0, T3, T4))561 |
(div(T5, 0, T3, T4))571 |
(div(T5, 0, T3, T4))581 ;

({T5},∅,∅) Eval

T1/T5, T2/0,

T3/T6, T4/T7

div(T1, T2, T3, T4)561 | div(T1, T2, T3, T4)571 | div(T1, T2, T3, T4)581 ;

({T1, T2}, {X,Z,R}, {(div(X, 0, Z, R), div(T1, T2, T3, T4))})

Evalfail; (∅,∅,∅)

CutAll

!1,=(T9, 0),=(T10, 0) | div(0, T8, T3, T4)571 |
div(0, T8, T3, T4)581 ; ({T8}, {X,Z,R},
{(div(X, 0, Z, R), div(0, T8, T3, T4))})

Eval

T1/0, T2/T8,

T3/T9, T4/T10

div(T1, T2, T3, T4)571 |
div(T1, T2, T3, T4)581 ;KB1

Eval
ε; (∅,∅,∅)

Fail

=(T9, 0),=(T10, 0); (∅,∅,∅)

CutAll

Now we apply the UnifyCase rule.

div(T1, T2, T3, T4); ({T1, T2},∅,∅)

(div(T1, T2, T3, T4))551 | (div(T1, T2, T3, T4))561 |
(div(T1, T2, T3, T4))571 | (div(T1, T2, T3, T4))581 ;

({T1, T2},∅,∅)

Case

!1, fail |
(div(T5, 0, T3, T4))561 |
(div(T5, 0, T3, T4))571 |
(div(T5, 0, T3, T4))581 ;

({T5},∅,∅) Eval

T1/T5, T2/0,

T3/T6, T4/T7

div(T1, T2, T3, T4)561 | div(T1, T2, T3, T4)571 | div(T1, T2, T3, T4)581 ;

({T1, T2}, {X,Z,R}, {(div(X, 0, Z, R), div(T1, T2, T3, T4))})

Evalfail; (∅,∅,∅)

CutAll

!1,=(T9, 0),=(T10, 0) | div(0, T8, T3, T4)571 |
div(0, T8, T3, T4)581 ; ({T8}, {X,Z,R},
{(div(X, 0, Z, R), div(0, T8, T3, T4))})

Eval

T1/0, T2/T8,

T3/T9, T4/T10

div(T1, T2, T3, T4)571 |
div(T1, T2, T3, T4)581 ;KB1

Eval
ε; (∅,∅,∅)

Fail

=(T9, 0),=(T10, 0); (∅,∅,∅)

CutAll

=(T11, 0); (∅,∅,∅)

UnifyCase

T9/0, T10/T11

ε; (∅,∅,∅)

UnifyCase

We apply the UnifyCase rule once more.
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div(T1, T2, T3, T4); ({T1, T2},∅,∅)

(div(T1, T2, T3, T4))551 | (div(T1, T2, T3, T4))561 |
(div(T1, T2, T3, T4))571 | (div(T1, T2, T3, T4))581 ;

({T1, T2},∅,∅)

Case

!1, fail |
(div(T5, 0, T3, T4))561 |
(div(T5, 0, T3, T4))571 |
(div(T5, 0, T3, T4))581 ;

({T5},∅,∅) Eval

T1/T5, T2/0,

T3/T6, T4/T7

div(T1, T2, T3, T4)561 | div(T1, T2, T3, T4)571 | div(T1, T2, T3, T4)581 ;

({T1, T2}, {X,Z,R}, {(div(X, 0, Z, R), div(T1, T2, T3, T4))})

Evalfail; (∅,∅,∅)

CutAll

!1,=(T9, 0),=(T10, 0) | div(0, T8, T3, T4)571 |
div(0, T8, T3, T4)581 ; ({T8}, {X,Z,R},
{(div(X, 0, Z, R), div(0, T8, T3, T4))})

Eval

T1/0, T2/T8,

T3/T9, T4/T10

div(T1, T2, T3, T4)571 |
div(T1, T2, T3, T4)581 ;KB1

Eval
ε; (∅,∅,∅)

Fail

=(T9, 0),=(T10, 0); (∅,∅,∅)

CutAll

=(T11, 0); (∅,∅,∅)

UnifyCase

T9/0, T10/T11

ε; (∅,∅,∅)

UnifyCase

2; (∅,∅,∅)

UnifyCase

T11/0

ε; (∅,∅,∅)

UnifyCase

Finally, we apply the Success rule to obtain another empty state.

div(T1, T2, T3, T4); ({T1, T2},∅,∅)

(div(T1, T2, T3, T4))551 | (div(T1, T2, T3, T4))561 |
(div(T1, T2, T3, T4))571 | (div(T1, T2, T3, T4))581 ;

({T1, T2},∅,∅)

Case

!1, fail |
(div(T5, 0, T3, T4))561 |
(div(T5, 0, T3, T4))571 |
(div(T5, 0, T3, T4))581 ;

({T5},∅,∅) Eval

T1/T5, T2/0,

T3/T6, T4/T7

div(T1, T2, T3, T4)561 | div(T1, T2, T3, T4)571 | div(T1, T2, T3, T4)581 ;

({T1, T2}, {X,Z,R}, {(div(X, 0, Z, R), div(T1, T2, T3, T4))})

Evalfail; (∅,∅,∅)

CutAll

!1,=(T9, 0),=(T10, 0) | div(0, T8, T3, T4)571 |
div(0, T8, T3, T4)581 ; ({T8}, {X,Z,R},
{(div(X, 0, Z, R), div(0, T8, T3, T4))})

Eval

T1/0, T2/T8,

T3/T9, T4/T10

div(T1, T2, T3, T4)571 |
div(T1, T2, T3, T4)581 ;KB1

Eval
ε; (∅,∅,∅)

Fail

=(T9, 0),=(T10, 0); (∅,∅,∅)

CutAll

=(T11, 0); (∅,∅,∅)

UnifyCase

T9/0, T10/T11

ε; (∅,∅,∅)

UnifyCase

2; (∅,∅,∅)

UnifyCase

T11/0

ε; (∅,∅,∅)

UnifyCase

ε; (∅,∅,∅)

Success

The next unprocessed state is not cuttable and, thus, we perform a parallel step.
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div(T1, T2, T3, T4); ({T1, T2},∅,∅)

(div(T1, T2, T3, T4))551 | (div(T1, T2, T3, T4))561 |
(div(T1, T2, T3, T4))571 | (div(T1, T2, T3, T4))581 ;

({T1, T2},∅,∅)

Case

!1, fail |
(div(T5, 0, T3, T4))561 |
(div(T5, 0, T3, T4))571 |
(div(T5, 0, T3, T4))581 ;

({T5},∅,∅) Eval

T1/T5, T2/0,

T3/T6, T4/T7

div(T1, T2, T3, T4)561 | div(T1, T2, T3, T4)571 | div(T1, T2, T3, T4)581 ;

({T1, T2}, {X,Z,R}, {(div(X, 0, Z, R), div(T1, T2, T3, T4))})

Evalfail; (∅,∅,∅)

CutAll

!1,=(T9, 0),=(T10, 0) | div(0, T8, T3, T4)571 |
div(0, T8, T3, T4)581 ; ({T8}, {X,Z,R},
{(div(X, 0, Z, R), div(0, T8, T3, T4))})

Eval

T1/0, T2/T8,

T3/T9, T4/T10

div(T1, T2, T3, T4)571 |
div(T1, T2, T3, T4)581 ;KB1

Eval
ε; (∅,∅,∅)

Fail

=(T9, 0),=(T10, 0); (∅,∅,∅)

CutAll

div(T1, T2, T3, T4)571 ;KB1

Parallel

div(T1, T2, T3, T4)581 ;KB1

Parallel

=(T11, 0); (∅,∅,∅)

UnifyCase

T9/0, T10/T11

ε; (∅,∅,∅)

UnifyCase

2; (∅,∅,∅)

UnifyCase

T11/0

ε; (∅,∅,∅)

UnifyCase

ε; (∅,∅,∅)

Success

As the current state has only one state element, we apply the Eval rule.

div(T1, T2, T3, T4); ({T1, T2},∅,∅)

(div(T1, T2, T3, T4))551 | (div(T1, T2, T3, T4))561 |
(div(T1, T2, T3, T4))571 | (div(T1, T2, T3, T4))581 ;

({T1, T2},∅,∅)

Case

!1, fail |
(div(T5, 0, T3, T4))561 |
(div(T5, 0, T3, T4))571 |
(div(T5, 0, T3, T4))581 ;

({T5},∅,∅) Eval

T1/T5, T2/0,

T3/T6, T4/T7

div(T1, T2, T3, T4)561 | div(T1, T2, T3, T4)571 | div(T1, T2, T3, T4)581 ;

({T1, T2}, {X,Z,R}, {(div(X, 0, Z, R), div(T1, T2, T3, T4))})

Evalfail; (∅,∅,∅)

CutAll

!1,=(T9, 0),=(T10, 0) | div(0, T8, T3, T4)571 |
div(0, T8, T3, T4)581 ; ({T8}, {X,Z,R},
{(div(X, 0, Z, R), div(0, T8, T3, T4))})

Eval

T1/0, T2/T8,

T3/T9, T4/T10

div(T1, T2, T3, T4)571 |
div(T1, T2, T3, T4)581 ;KB1

Eval
ε; (∅,∅,∅)

Fail

=(T9, 0),=(T10, 0); (∅,∅,∅)

CutAll

div(T1, T2, T3, T4)571 ;KB1

Parallel

div(T1, T2, T3, T4)581 ;KB1

Parallel

=(T11, 0); (∅,∅,∅)

UnifyCase

T9/0, T10/T11

ε; (∅,∅,∅)

UnifyCase

minus(T12, T13, U), !1,

div(U, T13, T14, T15);KB2

Eval
T1/T12, T2/T13,

T3/s(T14), T4/T15
ε; (∅,∅,∅)

Eval

2; (∅,∅,∅)

UnifyCase

T11/0

ε; (∅,∅,∅)

UnifyCase

ε; (∅,∅,∅)

Success
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Still, the current state is not cuttable. The reason is that the first clause for minus

does not unify with the first term in the current goal. Hence, we apply the Split rule.

The groundness analysis based on argument filtering used in AProVE finds out that the

variable U will be instantiated by a ground term. As we only instantiate a free variable, we

do not have to replace the remaining non-ground variables in the states by fresh abstract

variables.

div(T1, T2, T3, T4); ({T1, T2},∅,∅)

(div(T1, T2, T3, T4))551 | (div(T1, T2, T3, T4))561 |
(div(T1, T2, T3, T4))571 | (div(T1, T2, T3, T4))581 ;

({T1, T2},∅,∅)

Case

!1, fail |
(div(T5, 0, T3, T4))561 |
(div(T5, 0, T3, T4))571 |
(div(T5, 0, T3, T4))581 ;

({T5},∅,∅) Eval

T1/T5, T2/0,

T3/T6, T4/T7

div(T1, T2, T3, T4)561 | div(T1, T2, T3, T4)571 | div(T1, T2, T3, T4)581 ;

({T1, T2}, {X,Z,R}, {(div(X, 0, Z, R), div(T1, T2, T3, T4))})

Evalfail; (∅,∅,∅)

CutAll

!1,=(T9, 0),=(T10, 0) | div(0, T8, T3, T4)571 |
div(0, T8, T3, T4)581 ; ({T8}, {X,Z,R},
{(div(X, 0, Z, R), div(0, T8, T3, T4))})

Eval

T1/0, T2/T8,

T3/T9, T4/T10

div(T1, T2, T3, T4)571 |
div(T1, T2, T3, T4)581 ;KB1

Eval
ε; (∅,∅,∅)

Fail

=(T9, 0),=(T10, 0); (∅,∅,∅)

CutAll

div(T1, T2, T3, T4)571 ;KB1

Parallel

div(T1, T2, T3, T4)581 ;KB1

Parallel

=(T11, 0); (∅,∅,∅)

UnifyCase

T9/0, T10/T11

ε; (∅,∅,∅)

UnifyCase

minus(T12, T13, U), !1,

div(U, T13, T14, T15);KB2

Eval
T1/T12, T2/T13,

T3/s(T14), T4/T15
ε; (∅,∅,∅)

Eval

2; (∅,∅,∅)

UnifyCase

T11/0

ε; (∅,∅,∅)

UnifyCase

minus(T12, T13, U);KB2

Split

!1, div(T23, T13, T14, T15);KB4

Split

U/T23

ε; (∅,∅,∅)

Success

We continue in this manner for the evaluation of the state minus(T12, T13, U);KB2.

However, we now skip the further abstract state-derivation for this left successor state

of the Split rule to see how we find an instance father for its right successor state

!1, div(T23, T13, T14, T15);KB4.
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div(T1, T2, T3, T4); ({T1, T2},∅,∅)

(div(T1, T2, T3, T4))551 | (div(T1, T2, T3, T4))561 |
(div(T1, T2, T3, T4))571 | (div(T1, T2, T3, T4))581 ;

({T1, T2},∅,∅)

Case

!1, fail |
(div(T5, 0, T3, T4))561 |
(div(T5, 0, T3, T4))571 |
(div(T5, 0, T3, T4))581 ;

({T5},∅,∅) Eval

T1/T5, T2/0,

T3/T6, T4/T7

div(T1, T2, T3, T4)561 | div(T1, T2, T3, T4)571 | div(T1, T2, T3, T4)581 ;

({T1, T2}, {X,Z,R}, {(div(X, 0, Z, R), div(T1, T2, T3, T4))})

Evalfail; (∅,∅,∅)

CutAll

!1,=(T9, 0),=(T10, 0) | div(0, T8, T3, T4)571 |
div(0, T8, T3, T4)581 ; ({T8}, {X,Z,R},
{(div(X, 0, Z, R), div(0, T8, T3, T4))})

Eval

T1/0, T2/T8,

T3/T9, T4/T10

div(T1, T2, T3, T4)571 |
div(T1, T2, T3, T4)581 ;KB1

Eval
ε; (∅,∅,∅)

Fail

=(T9, 0),=(T10, 0); (∅,∅,∅)

CutAll

div(T1, T2, T3, T4)571 ;KB1

Parallel

div(T1, T2, T3, T4)581 ;KB1

Parallel

=(T11, 0); (∅,∅,∅)

UnifyCase

T9/0, T10/T11

ε; (∅,∅,∅)

UnifyCase

minus(T12, T13, U), !1,

div(U, T13, T14, T15);KB2

Eval
T1/T12, T2/T13,

T3/s(T14), T4/T15
ε; (∅,∅,∅)

Eval

2; (∅,∅,∅)

UnifyCase

T11/0

ε; (∅,∅,∅)

UnifyCase

minus(T12, T13, U);KB2

Split

!1, div(T23, T13, T14, T15);KB4

Split

U/T23

ε; (∅,∅,∅)

Success

(minus(T12, T13, U))592 |
(minus(T12, T13, U))602 ;KB2

Case

(minus(T12, T13, U))602 ;KB3

Backtrack

minus(T16, T17, T18); ({T16, T17},∅,∅)

EvalT12/s(T16), T13/s(T17), U/T18

ε; (∅,∅,∅)
Eval

(minus(T16, T17, T18))593 | (minus(T16, T17, T18))603 ; ({T16, T17},∅,∅)

Case

(minus(T16, T17, T18))593 ; ({T19},∅,∅)

Parallel

(minus(T16, T17, T18))603 ; ({T16, T17},∅,∅)

Parallel

2; (∅,∅,∅)

Eval

T16/T19, T17/0, T18/T19

ε; (∅,∅,∅)

Eval

minus(T20, T21, T22); ({T20, T21},∅,∅

Eval

T16/s(T20), T17/s(T21), T18/T22

Instance

ε; (∅,∅,∅)

Eval

ε; (∅,∅,∅)

Success

First, we have to apply the CutAll rule in instruction (i).



6.2. The Standard Heuristic 161

div(T1, T2, T3, T4); ({T1, T2},∅,∅)

(div(T1, T2, T3, T4))551 | (div(T1, T2, T3, T4))561 |
(div(T1, T2, T3, T4))571 | (div(T1, T2, T3, T4))581 ;

({T1, T2},∅,∅)

Case

!1, fail |
(div(T5, 0, T3, T4))561 |
(div(T5, 0, T3, T4))571 |
(div(T5, 0, T3, T4))581 ;

({T5},∅,∅) Eval

T1/T5, T2/0,

T3/T6, T4/T7

div(T1, T2, T3, T4)561 | div(T1, T2, T3, T4)571 | div(T1, T2, T3, T4)581 ;

({T1, T2}, {X,Z,R}, {(div(X, 0, Z, R), div(T1, T2, T3, T4))})

Evalfail; (∅,∅,∅)

CutAll

!1,=(T9, 0),=(T10, 0) | div(0, T8, T3, T4)571 |
div(0, T8, T3, T4)581 ; ({T8}, {X,Z,R},
{(div(X, 0, Z, R), div(0, T8, T3, T4))})

Eval

T1/0, T2/T8,

T3/T9, T4/T10

div(T1, T2, T3, T4)571 |
div(T1, T2, T3, T4)581 ;KB1

Eval
ε; (∅,∅,∅)

Fail

=(T9, 0),=(T10, 0); (∅,∅,∅)

CutAll

div(T1, T2, T3, T4)571 ;KB1

Parallel

div(T1, T2, T3, T4)581 ;KB1

Parallel

=(T11, 0); (∅,∅,∅)

UnifyCase

T9/0, T10/T11

ε; (∅,∅,∅)

UnifyCase

minus(T12, T13, U), !1,

div(U, T13, T14, T15);KB2

Eval
T1/T12, T2/T13,

T3/s(T14), T4/T15
ε; (∅,∅,∅)

Eval

2; (∅,∅,∅)

UnifyCase

T11/0

ε; (∅,∅,∅)

UnifyCase

minus(T12, T13, U);KB2

Split

!1, div(T23, T13, T14, T15);KB4

Split

U/T23

ε; (∅,∅,∅)

Success

(minus(T12, T13, U))592 |
(minus(T12, T13, U))602 ;KB2

Case

div(T23, T13, T14, T15);KB4

CutAll

(minus(T12, T13, U))602 ;KB3

Backtrack

minus(T16, T17, T18); ({T16, T17},∅,∅)

EvalT12/s(T16), T13/s(T17), U/T18

ε; (∅,∅,∅)
Eval

(minus(T16, T17, T18))593 | (minus(T16, T17, T18))603 ; ({T16, T17},∅,∅)

Case

(minus(T16, T17, T18))593 ; ({T19},∅,∅)

Parallel

(minus(T16, T17, T18))603 ; ({T16, T17},∅,∅)

Parallel

2; (∅,∅,∅)

Eval

T16/T19, T17/0, T18/T19

ε; (∅,∅,∅)

Eval

minus(T20, T21, T22); ({T20, T21},∅,∅

Eval

T16/s(T20), T17/s(T21), T18/T22

Instance

ε; (∅,∅,∅)

Eval

ε; (∅,∅,∅)

Success

Now, due to the groundness analysis we know that the first two arguments of div are

ground terms. Also, we have an equal number of different abstract variables in the current

and the initial state. Thus, we can close the graph here for the recursive predicate div

and, after further evaluation of the remaining Parallel branch, obtain the termination

graph from Example 6.3.
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6.3 Proving Termination and Correctness of the

Standard Heuristic

To prove termination of this heuristic, we first need to look at the possibilities of applying

abstract inference rules to abstract states, as the heuristic applies one rule in each step

(unless it is aborted). To describe the successive application of abstract inference rules

we introduce the notion of a rule chain.

Definition 6.18 (Rule Chain). A rule chain w.r.t. a Prolog program P is a (possi-

bly infinite) sequence of abstract inference rules Ri and abstract states Si of the form

S0, R1, S1, R2, S2, . . . such that we reach the state Si from the state Si−1 by applying the

inference rule Ri w.r.t. P. Infinite rule chains may not contain the Instance rule, while

finite rule chains may only contain the Instance rule as the last rule of the sequence.

The first step in proving termination of the heuristic is to see that we would need to

apply the Call, Case, Generalization or Repeat rule infinitely often to obtain an

infinite rule chain.

Lemma 6.19 (Infinite Rule Chains Contain Infinitely Many CCGR Rules). Every in-

finite rule chain contains infinitely many rules from the set CCGR = {Call,Case,

Generalization,Repeat}.

Proof. We consider the possible applications of other abstract inference rules than the

ones in CCGR before applying one of the rules from this set.

• After application of Instance we finish the rule chain and, thus, it cannot be

infinite.

• As Call is not defined for terms having an infinite path with function symbols from

GoalJunctors only, it is not possible to have such a term as a predication. Since

the rules Conjunction, Disjunction, IfThen and IfThenElse, reduce the

number of symbols from GoalJunctors in a state, they cannot be applied infinitely

often before applying the Call rule which is from CCGR.

• Parallel can only be applied finitely often. The reason for this is that Parallel

is only applicable to states with more than one state element and both children of

Parallel have less state elements than their parent. The only rules where at least

some children have more state elements than their parent not being from CCGR are

Disjunction, IfThen, IfThenElse and Not where the first three rules are only

finitely often applicable and introduce only a finite number of new state elements.

For Not we must have a state of the form \+(t′), Q | S. After application of Not

we obtain a state call(t′), !m, fail | Q | ?m | S. Thus, the number of state elements
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added by the Not rule is always two, but as we cannot apply the Not rule to a

state starting with the first or third state element, the number of state elements

cannot be raised infinitely often by the application of the Not rule.

• Eval and OnlyEval are only finitely often applicable, because they are only ap-

plicable to states starting with a labeled goal and reach states starting with an

unlabeled goal or (in the case of Eval) without the first state element of their par-

ent respectively. So the number of labeled goals is reduced by one for every child of

such a rule. The only rule introducing new labeled goals is Case ∈ CCGR.

• Cut and CutAll can only be applied finitely often, since their application reduces

the number of cuts in the state at least by one and the only rules not being from

CCGR and introducing new cuts to their children are Eval and OnlyEval which

can only be applied finitely often and introduce a finite number of cuts.

• As Split can only be applied to an unlabeled goal with more than one term in the

list of terms and no further backtracking possibilities, it can only be applied finitely

often, since it reduces the number of terms in the list of terms at least by one and

the only rules not from CCGR which can introduce new unlabeled goals or add

terms to existing ones are Disjunction, Eval and OnlyEval which can only be

applied finitely often and introduce only one or two unlabeled goals per application.

• Halt, Halt1, Throw, VariableError and UndefinedError lead to the

empty state for which no rule is applicable anymore. Thus, they cannot be part of

an infinite rule chain.

• AtomicFail, Backtrack, CompoundFail, EqualsFail, Fail, Failure, Non-

varFail, NoUnifyFail, Success, UnequalsFail UnifyFail and VarFail drop

one state element and can, therefore, only be applied finitely often with the analo-

gous argument as for Parallel.

• AtomicSuccess, CompoundSuccess, EqualsSuccess, Newline, Nonvar-

Success, NoUnifySuccess, True, UnequalsSuccess, UnifySuccess, Var-

Success, Write, WriteCanonical and Writeq reduce the number of terms

in the first state element. The only rules introducing new terms and not being from

CCGR are Eval and OnlyEval which can only be applied finitely often.

• AtomicCase, CompoundCase, EqualsCase, NonvarCase, NoUnifyCase,

UnequalsCase, UnifyCase and VarCase have two successor states where one

term in the first state element or one state element is reduced. Hence, they cannot be

applied infinitely often before applying a rule from CCGR by the identical arguments

as for the two cases before.
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• For Not we must have a state of the form \+(t′), Q | S. After application of Not

we obtain a state call(t′), !m, fail | Q | ?m | S. Since we cannot apply the Not rule

to any term of the first state element or to the third state element of this resulting

state and Q and S are not modified, we can apply the Cut rule only finitely often

as we reduce the number of terms where Not is applicable.

• For Once we must have a state of the form once(t′), Q | S and we reach the state

call(,(t′, !)), Q | S after application of Once. Thus, the number of terms where

Once is applicable is reduced after every application of Once and we can apply

Once only finitely often.

The next observation is that there are only finitely many different terms by which a

state may start such that we can apply the Call, Case or Repeat rule to it and do not

apply the Generalization rule first.

Lemma 6.20 (Finite Set of Terms for Call, Case and Repeat without Preceding

Generalization). The set CCRTerms = {t ∈ PrologTerms(Σ,V) | t is finite and there are

at most k < FiniteGeneralizationDepth positions pos1 C pos2 C . . . C posk ∈ Occ(t)

with ∀i ∈ {1, . . . , k} : root(t|posi) = f for a single f ∈ Σ or t is infinite and has at

most InfiniteGeneralizationDepth different subterms} is finite modulo scope variants and

separate variable renaming on N and A for all FiniteGeneralizationDepth, InfiniteGen-

eralizationDepth ∈ IN \ {0, 1}.

Proof. Remember that a finite term is a finite tree. We consider a path from the root to

a leaf in such a tree. By definition of CCRTerms such a path may not contain a certain

function symbol more than FiniteGeneralizationDepth− 1 times. Thus, the length of the

path is limited by the finite product of (|Σ| − 1) and (FiniteGeneralizationDepth − 1)

(since the infinitely many labeled cuts and variables do not have any arguments). As all

function symbols in Σ have a finite arity the number of finite terms in CCRTerms is finite

modulo scope variants and separate variable renaming on N and A.

As the infinite terms in CCRTerms may at most contain InfiniteGeneralizationDepth−1

different subterms and each subterm has a root symbol from Σ or is a labeled cut or is a

variable fromN or A, their number modulo scope variants and separate variable renaming

onN andA is limited by (|Σ|+3·(InfiniteGeneralizationDepth−1))InfiniteGeneralizationDepth−1

and, therefore, finite.

Finally, we show that the evaluation of non-recursive function symbols cannot lead to

infinite rule chains alone.
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Lemma 6.21 (Non-Recursive Symbols Finite Abstract State-Derivations). Let S = t;KB

be a state where root(t) is not recursive w.r.t. a given Prolog program P. If we do not

use Instance or Generalization, all abstract state-derivations from S;KB lead to a

finite acyclic termination graph.

Proof. We perform the proof by induction over the lexicographic combination of first the

number k of function symbols used as root symbols for clause heads in P , second the

number of meta-predications t′ w.r.t. t where the rules IfThen, IfThenElse, Not or

Once are applicable to the state t′;KB′ for some knowledge base KB′, third the number

of predications t′′ w.r.t. t where the rules Call, Conjunction or Disjunction are

applicable to the state t′′;KB′′ for some knowledge base KB′′. This relation is well-

founded as t may not have infinitely many meta-predications.

First, we consider the case root(t) ∈ BuiltInPredicates . As root(t) is not recursive, we

know that root(t) 6= repeat/0. All successor states of abstract inference rules applicable

to S except for the rules Call, Conjunction, Disjunction, IfThen, IfThenElse,

Not and Once lead to the empty state ε for S as they drop at least the first term. Thus,

the lemma trivially holds in such cases.

We perform a case analysis over the remaining rules for built-in predicates.

• Call drops one call/1 symbol from the root of t leading to the goal t′ | ?m having

one meta-predication less than t where Call is applicable and an equal number of

meta-predications where the other remaining rules are applicable. Thus, we obtain

a finite termination graph G for t′ | ?m by the induction hypothesis. By inserting

the abstract state-derivation from t to t′ | ?m at the root of G, we obtain a finite

termination graph for t.

• Conjunction drops one ,/2 symbol from the root of t leading to the goal t1, t2

having one meta-predication less than t where Conjunction is applicable while

leaving the number of meta-predications for the other rules unchanged. By the

induction hypothesis we obtain a finite termination graph G for the state t1, t2. By

inserting the abstract state-derivation from t to t1, t2 at the root of G, we obtain a

finite termination graph for t.

• Disjunction drops one ;/2 symbol from the root of t leading to the state t1 | t2
having one meta-predication less than t where Disjunction is applicable while

leaving the number of meta-predications for the other rules unchanged. By the

induction hypothesis we obtain a finite termination graph G for the state t1 | t2. By

inserting the abstract state-derivation from t to t1 | t2 at the root of G, we obtain

a finite termination graph for t.

• IfThen drops one ->/2 symbol from the root of t leading to the state call(t1), !m, t2 |
?m for some scope m having one meta-predication less than t where IfThen is appli-
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cable while leaving the number of meta-predications for the rules IfThenElse, Not

and Once unchanged. By the induction hypothesis we obtain a finite termination

graph G for the state call(t1), !m, t2 | ?m. By inserting the abstract state-derivation

from t to call(t1), !m, t2 | ?m at the root of G, we obtain a finite termination graph

for t.

• IfThenElse drops one ;/2 symbol from the root of t and one ->/2 symbol from t’s

first argument leading to the state call(t1), !m, t2 | t3 | ?m for some scope m having

one meta-predication less than t where IfThenElse and IfThen are applicable

while leaving the number of meta-predications for the rules Not and Once un-

changed. By the induction hypothesis we obtain a finite termination graph G for

the state call(t1), !m, t2 | t3 | ?m. By inserting the abstract state-derivation from t to

call(t1), !m, t2 | ?m at the root of G, we obtain a finite termination graph for t.

• Not drops one \+/1 symbol from the root of t leading to the state call(t′), !m, fail |
2 | ?m for some scope m having one meta-predication less than t where Not is

applicable while leaving the number of meta-predications for the rules IfThen,

IfThenElse and Once unchanged. We obtain a finite termination graph G for

call(t′), !m, fail | 2 | ?m by the induction hypothesis. By inserting the abstract state-

derivation from t to call(t′), !m, fail | 2 | ?m at the root of G, we obtain a finite

termination graph for t.

• Once drops one once/1 symbol from the root of t leading to the state call(t′, !)

having one meta-predication less than t where Once is applicable while leaving

the number of meta-predications for the rules IfThen, IfThenElse and Not

unchanged. We obtain a finite termination graph G for call(t′, !) by the induction

hypothesis. By inserting the abstract state-derivation from t to call(t′, !) at the root

of G, we obtain a finite termination graph for t.

Now let root(t) /∈ BuiltInPredicates . For k = 0 we have an empty program and, hence,

the state t has only one abstract state-derivation with UndefinedError to ε. Thus,

the lemma trivially holds.

For k > 0 we can assume the lemma holds for every program using k′ < k function

symbols. Consider the set Slice(P , t). If it is empty, the only abstract state-derivation

leads with UndefinedError to the empty state. Otherwise we have Slice(P , t) =

{H1 ← B1, . . . , Hn ← Bn}. As root(t) is not recursive, we know that Bi does not have

any meta-predication t′ with (root(t′) = root(t) ∨ root(t′) = repeat/0) and not infinitely

many meta-predications for all i ∈ {1, . . . , n}. Also, we know that Bi may not use any

clause leading to such a meta-predication in a sequence of clause applications. Thus, the

further evaluation of Bi w.r.t. P is equivalent to an evaluation w.r.t. P ′ where P ′ contains
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all clauses from P except for the clauses having root(t) as the root symbol of their heads.

Hence, we can use the induction hypothesis to obtain the claim of the lemma.

Now we are ready to prove termination of the standard heuristic.

Lemma 6.22 (Termination of the Standard Heuristic). The standard heuristic from

Definition 6.16 always terminates after finitely many steps.

Proof. First, we see that every rule application is terminating as they produce only finitely

many successor states and all tests and calculations used in the abstract inference rules

are terminating. For the latter remember that rational terms have only finitely many

different subterms such that it is sufficient to check for a loop of function symbols from

GoalJunctors in the representation of rational terms to determine if t has only finitely

many predication positions for a rational term t.

Second, we show that the algorithm performs only finitely many steps for each node.

The first instruction consists of attempts to apply some abstract inference rules only.

Hence, it clearly terminates. Instruction (ii) contains a test for the existence of a certain

path in the partial termination graph, a test if a certain function symbol or clause is

recursive, a test if enough rules from the set {Call,Case,Repeat} have been applied

so far and a test if the current state is cuttable. As every partial termination graph is finite,

the test for the existence of a certain path clearly terminates. To determine if a function

symbol or clause is recursive, one only has to detect loops in the finite Prolog program

or rational terms having loops containing function symbols used for meta-programming.

Consequently, this test also terminates. The comparison of a counter with a natural

number obviously terminates. The check whether the current state is cuttable terminates

as we only have to check finitely many terms and clauses. Now, if one of the tests fails,

we continue with instruction (iii). Otherwise we first try to apply the Parallel rule if

we have a state with more than one state elements where the first state element has no

active cuts. This clearly terminates. Then we attempt to apply the Instance rule to an

instance candidate for the current node if this node starts with an unlabeled goal. As the

partial termination graph is finite and all conditions for instance candidates can be tested

in finitely many steps, this instruction terminates, too. To see the latter, remember that

we can determine the branching factor of a function symbol by a simple look-up in the

finite program. Thus, its comparison with a natural number clearly terminates. If we

did not apply the Instance rule, we perform a test for a generalization step. As we can

perform this test for the finite representation of rational terms in finitely many steps, this

test terminates as well. The generalization step also terminates as it consists of a node

and set creation and replacements with fresh variables followed by a rule application. The

replacements can be performed just like the test before and to find fresh variables it suffices

to keep track of the finitely many variables used so far by using enumerated variables and

using the next number to obtain a fresh variable. If we did not perform a generalization
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step, we check if the current state contains more than one state element and possibly apply

a parallel step. The check clearly terminates and the parallel step terminates as we have

only finitely many partitions of the state elements. If we did not apply the parallel step,

we test whether the current node consists of a single state element which is an unlabeled

goal. Again, this test obviously terminates and the possibly following application of the

Split rule terminates as well. If we did not apply any abstract inference rule so far, we

continue with instruction (iii) which only consists of further attempts to apply abstract

inference rules. If we did not apply any rule up to this point, we abort the heuristic which

trivially terminates.

Finally, we have to show that we do not create infinitely many new nodes while per-

forming this algorithm. Assume we create infinitely many new nodes. To create new

nodes, we have to apply some abstract inference rule to the current node. Thus, we

have to construct an infinite rule chain χ as every rule only introduces a finite number of

new nodes and we do not abort the heuristic. By Lemma 6.19 we know that χ contains

infinitely many applications of rules from CCGR.

We continue by showing that we apply Generalization only finitely often. In order to

apply Generalization we must have a current node n without any instance candidates

for which Instance is applicable and where head(n) is recursive. After application of a

generalization step, the resulting node does not satisfy the conditions of the test for the

generalization step anymore. To see this, note that we replace every subterm satisfying

the conditions of the test for a generalization step with a fresh abstract variable. By

Lemma 6.20 we know that there are only finitely many different terms modulo scope

variants and separate variable renaming on N and A we might obtain by a generalization

step. So after finitely many applications of the Generalization rule we obtain a state

S = t, Q | Sr;KB where there is another state S ′ = t′, Q′ | S ′r;KB′ in our graph and

t and t′ are equal modulo scope variants and separate variable renaming on N and A.

Note that all terms in Q, Sr and KB are also generalized. If t, Q is cuttable w.r.t. P
and KB, we will reach a cut in Q after finitely many steps and reduce the number of

state elements in S or the number of terms in t, Q as all newly introduced state elements

must be inserted before the corresponding question mark for the cut. If otherwise t, Q

is not cuttable w.r.t. P and KB, we will separate t by repeatedly applying Parallel

and Split. This is possible as we can always apply Parallel to split at least the

last state element from a state, we cannot apply any rule from ShorteningRules to S

and S must still satisfy the conditions for the tests in instruction ii. But then w.l.o.g.

we have done the same with S ′ and we obtain the states t;KB and t′;KB′. t′;KB′ is

an instance candidate for t;KB as w.l.o.g. it is not an instance child itself (otherwise

we consider its instance father) and we did not apply the Generalization rule to it

since it does not satisfy the conditions of the tests for the generalization step. Thus,

another rule was applied to t′;KB′ and, hence, the only outgoing edges from t′;KB′
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are neither Instance nor Generalization edges. The conditions |V(t)| ≥ |V(t′)| and

|V(t)| = |V(t′)| =⇒ |A(t)| ≥ |A(t′)| are trivially satisfied as t and t′ are equal modulo

scope variants and separate variable renaming on N and A. Thus, the µ we need for the

application of Instance is just the variable renaming between t and t′. W.l.o.g. we can

also assume that KB and KB′ are equal modulo scope variants and separate variable

renaming on N and A. The reason for this is that there are only finitely many relevant

knowledge bases modulo scope variants and separate variable renaming onN and A which

can be obtained during the execution of the standard heuristic. To see this, note that

for some relevant knowledge base (G,F ,U) w.r.t. a state S; (G,F ,U) we have G ⊆ V(S),

F ⊆ V(S) and ∀(s, s′) ∈ U : (V(s) ∪ V(s′)) ∩ V(S) 6= ∅ ∧ s ∼ s′. As we generalize every

non-relevant information implicitly, we know that KB and KB′ are relevant knowledge

bases w.r.t. t and t′. As |V(t)| = |V(t′)| is finite, there are only finitely many different sets

G and F relevant for t and t′. As we also generalize the terms in U , there are only finitely

many different pairs of terms modulo scope variants and separate variable renaming on

N and A according to Lemma 6.20. Therefore, we can apply Instance to t;KB and

t′;KB′. Analogously, we find instances for all the terms in Q. Thus, we can reduce

the number of state elements after a finite number of generalization steps at least by

one in finitely many abstract state-derivation steps and, hence, obtain a finite abstract

state-derivation for generalized states using the standard heuristic. Thus, we apply the

Generalization rule only finitely often.

By Lemma 6.21 and the fact that we use the Generalization rule only finitely of-

ten, we know that we can drop all terms having a non-recursive root symbol without

introducing new terms or state elements instead in finitely many steps using the standard

heuristic.

We are, thus, left to show that we obtain finite abstract state-derivations for terms with

recursive root symbols to contradict our assumption. First, we know that the test for a

minimal number of nodes from {Call(G),Case(G),RepeatG} in instruction (ii) will be

true after finitely many steps as χ must contain infinitely many rule applications from

the set {Call,Case,Repeat}. So we will try to find an instance for the current state

after finitely many steps. If we do not apply the Instance rule to a state, we continue

by checking if the state has to be generalized. As shown above there are only finitely

many different terms and knowledge bases we might have in our abstract state-derivation

without generalizing them. Since we apply the Generalization rule only finitely often,

we will reach states S = t, Q | Sr;KB where there is another state S ′ = t′, Q′ | S ′r;KB′ in

our graph and t and t′ are equal modulo scope variants and separate variable renaming

on N and A as in the case above. By the identical argument as before we obtain a finite

abstract state-derivation for these states and, hence a finite abstract state-derivation for

all states in the partial termination graph. This contradicts our assumption and, hence,

proves the lemma.
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As the standard heuristic terminates, we can easily show its correctness which is stated

by the following central theorem of this section.

Theorem 6.23 (Correctness of the Standard Heuristic). The standard heuristic from

Definition 6.16 results in a termination graph or an abortion for every partial termination

graph G and Prolog program P.

Proof. As we know by Lemma 6.22 that the standard heuristic terminates, it results in

an abortion or a graph where all leaves are empty. In the first case the theorem clearly

holds. For the second case we have to show that the resulting graph does not contain

any cycles only consisting of Instance and Generalization edges. As we start with

a partial termination graph, this condition is satisfied in the beginning of the standard

heuristic. Thus, we are left to show that we do not construct such cycles during the

execution of the standard heuristic. As the only rule to construct cycles is Instance and

we apply this rule only to instance candidates of the current node in the execution of the

standard heuristic, we know that every path from an instance candidate to the current

node contains at least one node not from Instance(G)∪Generalization(G). In particular,

the cycle we construct by the application of the Instance rule contains such a node and,

hence, cannot consist of Instance and Generalization edges only.

6.4 Summary

We introduced an always terminating heuristic which computes a termination graph for

every Prolog program and query set as long as the construction of the termination graph

does not reach a situation where our approach is stuck due to abstract meta-calls or

transformations of terms with infinitely many predication positions. We also explained

the parameters of this heuristic to allow for some heuristical tuning according to the set of

examples which has to be analyzed. Moreover, we gave some example termination graphs

for Prolog programs using several features we have handled in Chapter 3 and Chapter 4.



7 Transformation into Dependency

Triple Problems

Once we have constructed a finite termination graph for a Prolog program w.r.t. a class

of queries, we still cannot prove termination of this program w.r.t. the class of queries in

general as our graph may contain cycles. Thus, we need a way to prove that the cycles in

the termination graph cannot be traversed infinitely often from a starting query. While

[Sch08] synthesizes a new Prolog program from a termination graph whose termination

implies the well-foundedness of the edge relation w.r.t. the starting queries and, hence,

termination of the original program w.r.t. the class of queries represented by the root state

of the termination graph, we will synthesize DT problems with the same property which

allow for a more powerful termination analysis. The reason for this is that DT problems

allow for two different kinds of clauses which suits our needs to analyze intermediate goals

which occur due to the splitting of goals in the termination graph differently compared

to analyzing goals representing the traversal of cycles.

Structure of the Chapter

We start in Section 7.1 by defining the DT problem which is represented by a termination

graph. This is illustrated with an example termination graph from the preceding chapter.

In Section 7.2 we continue by proving that termination of the represented DT problem

implies termination of the original Prolog program w.r.t. the class of queries represented

by the root node of the respective termination graph.

Afterwards we give a number of example transformations for Prolog programs used in

this thesis in Section 7.3.

A summary of the contributions of this chapter is given in Section 7.4.

7.1 From Termination Graphs to DT Problems

In this section we show how to synthesize a DT problem from a termination graph built

by the abstract rules from the preceding chapters where termination of the DT problem

implies termination of the original Prolog program w.r.t. a set of queries for which the

termination graph was constructed.
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Our goal is to show termination of a Prolog program w.r.t. to a set of queries. This

corresponds directly to the termination of the initial state of a termination graph which

represents the set of queries. Since we have already proved that our abstract rules are

sound, we are left to prove that the cycles in our graph cannot be traversed infinitely

often, i.e. the Instance edges cannot be used infinitely often.

Example 7.1. Consider again the termination graph for the Prolog program computing

division with remainder from Example 6.3. There are two cycles, one corresponding to

the recursive execution of the minus and one for the div predicate. We have to show

that these cycles cannot be traversed infinitely often when starting with a query from the

initial state. This will prove termination of the original Prolog program w.r.t. the set of

queries represented by the initial state.

To this end, [Sch08] builds clauses for a new cut-free logic program where these clauses

correspond to the traversal of a path through the termination graph from a state, which is

an instance father of another state, to a state, which is an instance child of another state.

Termination of this program implies that the cycles in the termination graph cannot be

traversed infinitely often. Unfortunately, due to the Split nodes in termination graphs,

the clauses may contain intermediate goals representing the left successors of Split nodes,

which have to be successfully evaluated before one can evaluate the right successor of a

Split node. This evaluation is needed to obtain an answer substitution for the right

successor. One problem with this approach is, that we have to build and analyze clauses

for the evaluation of intermediate goals, even if these clauses for the answer substitutions

do not necessarily have to terminate universally for universal termination of the cycles in

the graph.

We try to improve the approach of [Sch08] by building DT problems instead of new

logic programs, since we can distinguish between the simulation of the cycles and the

evaluation of intermediate goals in DT problems. For the cycles we build DTs and for the

intermediate goals we build clauses. A new problem arises with the use of DT problems

in form of a call set which we have to specify. In this thesis, we restrict ourselves to use

a call set which is general enough to contain all possible calls occurring in the evaluation

of the starting queries. We leave a more detailed analysis of the call set to future work.

Example 7.2. Let us use this idea to prove termination of Example 4.22 by building a

DT problem for the termination graph from Example 6.3 and prove termination of this

represented DT problem instead. We still use the knowledge bases KB1 to KB4 defined

in Example 6.3.

We use fresh predicates to represent each node with the different variables occurring in

the respective node as arguments.
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First, we consider the paths in the graph from the root to the beginning of a cycle, i.e.,

to an Instance node or the successor of an Instance node where we do not traverse such

a node between the first and the last node. We look at the substitutions along the path

whose composition corresponds to the answer substitution a concrete state-derivation

would have along the path. Then we build a DT for the path where the intuition is, that

we reach the node (represented by the respective fresh predicate) at the end of the path

from the node at the beginning of the path if we apply the corresponding substitutions

to the node at the beginning. For Instance nodes, however, we consider their instance

father instead where we apply the matching substitution for the respective instance child.

Thus, for the path from div(T1, T2, T3, T4); ({T1, T2},∅,∅) to div(T23, T13, T14, T15;KB4),

we obtain the head div1(T12, T13, s(T14), T15) and the goal div1(T23, T13, T14, T15). For the

path from div(T1, T2, T3, T4); ({T1, T2},∅,∅) to minus(T16, T17, T18); ({T16, T17},∅,∅), we

obtain the head div1(s(T16), s(T17), s(T14), T15) and the goal minus22(T16, T17, T18).

Now, these paths contain a Split node where the second successor of that node is

only reachable if the first successor is successfully evaluated. Hence, we have to add

intermediate goals for those paths traversing a Split node along its right successor which

correspond to the evaluation of the left successor. We also have to apply the answer

substitution to such intermediate goals, but as the nodes only contain terms where the

preceding substitutions have already been applied to, it is sufficient to apply only the

following substitutions from the respective Split node.

So we obtain the intermediate goal minusc19(T12, T13, T23) for the first of the above

paths. Note that we use a different predicate for this intermediate goal than for the

goal from the second path since it represents a different node. Altogether, we obtain

the two DTs div1(T12, T13, s(T14), T15) ← minusc19(T12, T13, T23), div1(T23, T13, T14, T15) and

div1(s(T16), s(T17), s(T14), T15)← minus22(T16, T17, T18).

Next, we also build DTs for the cycles themselves. Therefore, we consider those paths

in the graph starting from a successor of an Instance node and ending in an Instance

node or the successor of an Instance node again. Since the root node is a succes-

sor of an Instance node, we do not have to consider paths starting from this node

again. For the other successor of an Instance node, we have one more path from

minus(T16, T17, T18); ({T16, T17},∅,∅) to minus(T20, T21, T22); ({T20, T21},∅,∅). So for this

path we obtain one more DT minus22(s(T20), s(T21), T22)← minus22(T20, T21, T22).

Concerning the evaluation for left successors of Split nodes, we do not build DTs, but

normal clauses for the DT problem. Still, the method how we construct the clauses is the

same as for the DTs - with the only exception that we consider different paths and that

we also may obtain facts. Therefore, we now consider paths starting in a left successor

of a Split node and ending in a Success node. The goal of the corresponding clause is

then 2. However, in addition to the condition that we do not traverse Instance nodes

or their successors, such a path may not traverse another left successor of a Split node
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as we are only interested in completely successful evaluations. Thus, the right successor

of a Split node must be reached. Here, we have no such path.

Now, the evaluation for left successors of Split nodes may also traverse cycles before

it reaches a fact. Hence, we also have to consider paths starting in the left successor of

a Split node or the successor of an Instance node and ending in an Instance node, a

successor of an Instance node or a Success node. Still, the conditions for the traversal

of other nodes must hold. Thus, we have paths from div(T1, T2, T3, T4); ({T1, T2},∅,∅) to

div(T23, T13, T14, T15;KB4), from div(T1, T2, T3, T4); ({T1, T2},∅,∅) to 2; (∅,∅,∅),

from minus(T12, T13, U);KB2 to minus(T16, T17, T18); ({T16, T17},∅,∅), from

minus(T16, T17, T18); ({T16, T17},∅,∅) to minus(T20, T21, T22); ({T20, T21},∅,∅) and from

minus(T16, T17, T18); ({T16, T17},∅,∅) to 2 | minus(T19, 0, T19); ({T19},∅,∅).

After building clauses for all these paths, we obtain the following DT problem

(DG, CG,PG) for the termination graph G from Example 6.3 where DG contains the DTs

div1(T12, T13, s(T14), T15) ← minusc19(T12, T13, T23), div1(T23, T13, T14, T15).

div1(s(T16), s(T17), s(T14), T15) ← minus22(T16, T17, T18).

minus22(s(T20), s(T21), T22) ← minus22(T20, T21, T22).

and PG consists of the following clauses.

divc1(0, T8, 0, 0) ← 2.

divc1(T12, T13, s(T14), T15) ← minusc19(T12, T13, T23), divc1(T23, T13, T14, T15).

minusc19(s(T16), s(T17), T18) ← minusc22(T16, T17, T18).

minusc22(T19, 0, T19) ← 2.

minusc22(s(T20), s(T21), T22) ← minusc22(T20, T21, T22).

We assume that CG contains all reachable goals for queries div1(t1, t2, t3, t4) w.r.t. DG∪PG
where t1 and t2 are ground terms.

This DT problem is easily shown to be terminating by our fully automated termination

prover AProVE.

We now show how to obtain a DT problem from a termination graph in general. To

this end, we first need the notions of triple and clause paths to characterize paths in the

termination graph from which we generate the DTs and clauses respectively for the DT

problem.



7.1. From Termination Graphs to DT Problems 175

Definition 7.3 (Triple Path, Clause Path). A path π = n1 . . . nk is a triple path w.r.t.

G if, and only if, k > 1 and the following conditions are satisfied:

• n1 ∈ Succ(1, Instance(G) ∪Generalization(G)) ∪ {root(G)}

• nk ∈ Instance(G) ∪Generalization(G) ∪ Succ(1, Instance(G) ∪Generalization(G))

• for all 1 ≤ j < k, nj /∈ Instance(G) ∪ Generalization(G) ∪ Succ(1, Instance(G) ∪
Generalization(G))

A path π = n1 . . . nk is a clause path w.r.t. G if, and only if, k > 1 and the following

conditions are satisfied:

• n1 ∈ Succ(1, Instance(G) ∪Generalization(G) ∪ Split(G))

• nk ∈ Success(G) ∪ Instance(G) ∪ Generalization(G) ∪ Succ(1, Instance(G) ∪
Generalization(G))

• for all 1 ≤ j < k, nj /∈ Instance(G) ∪ Generalization(G) ∪ Succ(1, Instance(G) ∪
Generalization(G))

• for all 1 < j ≤ k, nj−1 ∈ Split(G) =⇒ nj = Succ(2, nj−1)

The above definition of triple paths characterizes all non-trivial paths starting at the

successor of an Instance or Generalization node or at the root node of G and ending

at an Instance or Generalization node or their successors while not traversing other

nodes of this kind. In other words, triple paths connect the root node with the cycles in

the graph and the cycles themselves consist of triple paths again. Subsequent Instance

and Generalization edges will not yield additional paths, since they will be connected

by their matching substitutions instead.

Clause paths, however, characterize all non-trivial paths starting at the successor of an

Instance or Generalization node or at the left successor of a Split node and ending

at a Success, Instance or Generalization node or the successor of an Instance

or Generalization node while not traversing other Instance or Generalization

nodes, their successors or other left children of Split nodes. Clause paths are used to

simulate the evaluation of intermediate goals which occur due to Split nodes. Whenever

we traverse the right child of a Split node, we need to know that and how the left child

of that Split node has been evaluated to use the corresponding answer substitution for

the further evaluation. In other words, one can reach the end of a clause or triple path, if

all left children of Split nodes along the respective path can be successfully evaluated.

Example 7.4. Consider once more the termination graph G from Example 6.3 for which

we synthesized a DT problem in Example 7.2. The paths for which we constructed DTs

are in fact all triple paths in G while the paths for which we constructed clauses are all

clause paths in G.
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The basic idea for the synthesis of a DT problem is to construct a DT for each triple

path and a clause for each clause path. The head of the DT or clause respectively is

the renamed first state of the corresponding path where we apply the substitutions along

the path. The last body term is the renamed last state of the respective path. The

intermediate body terms are the renamed left children of Split nodes along the path

where we apply the substitutions between the respective Split node and the last node of

the path.

As in [Sch08], the renaming is useful, because we can use different predicate symbols

for different nodes and, thus, obtain a more precise mapping from the evaluation in the

graph to the evaluation for the DT problem. Additionally it simplifies the problem by

reducing a whole state with arbitrary many state elements and terms to one atom.

Considering the substitutions we have to apply along a path, we must take care of back-

tracking, since this cancels the effects of the substitutions belonging to the backtracked

state elements. To follow the state element reached at the end of the path, we use a skip

value to jump over backtracked or cut state elements preceding the one we are interested

in. We gather the substitutions backwards while starting with a skip value of zero as

the last state of the path cannot start with a state element which has been backtracked

already along the path. Whenever we traverse nodes which backtrack or cut state el-

ements, we have to increase the skip value by the number of backtracked or cut state

elements. For this purpose, the second successor state of Parallel can be interpreted as

a massively backtracked state where we have to increase the skip value by the number of

states in the first successor state of Parallel. Moreover, the cutting of state elements

may only raise the skip value if we are not interested in the first state element as this

remains in the successor state. On the other hand, whenever we traverse nodes where

we introduce new state elements, we have to reduce the skip value accordingly. Thus, by

gathering only those substitutions which are applied to a state element with a skip value

of zero, we obtain the correct answer substitution. For those abstract rules which apply a

substitution to the state elements following the first, we have to apply these substitutions

also for skip values greater than zero, of course.

Example 7.5. Consider the following simple Prolog program P

p(X) ← q(X). (84)

p(b) ← 2. (85)

q(a) ← 2. (86)

and the query set Q = {p(t) | p(t) ∈ PrologTerms(Σ,N )}. Using the standard heuristic

with the same parameters as in Example 6.17, we obtain the following termination graph

for P and Q.
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p(T1); (∅,∅,∅)

(p(T1))841 | (p(T1))851 ; (∅,∅,∅)

Case

q(T2) | (p(T1))851 ; (∅,∅,∅)

OnlyEval T1/T2

2 | (p(T1))851 ; (∅,∅,∅)

Eval

T2/a

(p(T1))851 ; (∅,∅,∅)

Eval

(p(T1))851 ; (∅,∅,∅)

Success

2; (∅,∅,∅)

EvalT1/b

ε; (∅,∅,∅)

Eval

2; (∅,∅,∅)

Eval

T1/b

ε; (∅,∅,∅)

Eval

ε; (∅,∅,∅)

Success

ε; (∅,∅,∅)

Success

Now consider the path from the root node to the second last node on the leftmost path

in this termination graph. If we successively apply all substitutions along this path the

resulting substitution is [T1/a]. This is not what we want since the answer substitution

for the complete path is [T1/b]. The problem is that we first reach a Success node for

the answer substitution [T1/a] before we reach the second Success node for the answer

substitution [T1/b]. To detect the latter, we make use of the skip values. Starting at the

Success node with a skip value of 0 we do not modify this value along the Eval edge

for the left successor of the Eval node while gathering the substitution [T1/b]. Then we

traverse a Success edge and increase the skip value by 1. Thus, for the next Eval edge

for the left successor of the Eval node we only gather substitutions for ground terms

as the skip value is greater than 0. So here, we only gather id . By the same reason

we only gather id along the next edge for the OnlyEval node. Finally, we traverse a

Case edge where we reduce the skip value to 0 again. Altogether, we obtain the intended

substitution [T1/b].

Note that we do not have to regard the skip value for Split nodes since such nodes

must have only one state element and, thus, cannot be backtracked by reaching a non-

empty state. Also note that the omitted trailing question marks are not problematic for

skip values as no triple or clause path ends in a Failure or empty node.

Now, we define the represented DT problem for a termination graph.
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Definition 7.6 (DT Problem from Termination Graph). The DT Problem DTP(G)

for a termination graph G = (V,E) constructed from a Prolog program P and

query set Q is defined as (DG, CG,PG) with DG =
⋃
π triple path w.r.t. G Triple(π),

PG =
⋃
π clause path w.r.t. G Clause(π) and CG ⊇ Call(Start(G),DG ∪ PG).16

The set Start(G) is defined as {proot(G)(V(root(G)))σ | ∀x ∈ V : A(xσ) = ∅∧
(x ∈ G =⇒ V(xσ) = ∅) and root(G) = S; (G,F ,U)}.

For a path π = n1 . . . nk, we define Clause(π) = Rename(n1)σπ,0 ← Iπ,Rename(nk) and

Triple(π) = RenameTriple(n1)σπ,0 ← Iπ,RenameTriple(nk). Here, the Rename function is

defined as follows:

Rename(n) =



2 if n ∈ Success(G)

Rename(Succ(1, n))µ if n ∈ Instance(G) ∪Generalization(G) where

µ is the substitution associated with n

pn(V(n)) otherwise, where pn is a fresh predicate symbol

and V(S;KB) = V(S).

Moreover, the RenameTriple function is likewise defined as follows.

RenameTriple(n) =



2 if n ∈ Success(G)

Rename(Succ(1, n))µ if n ∈ Instance(G) ∪Generalization(G)

where µ is the substitution associated

with n

qn(V(n)) otherwise, where qn is a fresh predicate

symbol and V(S;KB) = V(S).

The predicate symbols pn and qn must be different from each other.

16This set can for example be over-approximated by defining a moding function mG(p, i) = in if, and only
if, for all triple and clause paths π = (n1; (G,F ,U)) . . . w.r.t. G, whenever Rename(n1) = p(x1, . . . , xn)
then xi ∈ G.
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Furthermore, σπ,s and Iπ are defined as follows:

σn1...nj ,s =



id if j = 1

σn1...nj−1,sAnsSub(nj−1) if (nj−1 ∈ Split(G), nj = Succ(2, nj−1)

or nj−1 ∈ EqualsCase(G), nj = Succ(1, nj−i))

or (nj−1 ∈ Eval(G) ∪OnlyEval(G)∪

UnifyCase(G) ∪ UnifySuccess(G),

nj = Succ(1, nj−1), s = 0)

σn1...nj−1,sBackSub(nj−1) if nj−1 ∈ Eval(G) ∪OnlyEval(G)∪

UnifyCase(G) ∪ UnifySuccess(G),

nj = Succ(1, nj−1), s > 0

σn1...nj−1,s+1BackSub(nj−1) if (nj−1 ∈ NoUnifyCase(G)∪

UnequalsCase(G), nj = Succ(2, nj−1))

or nj−1 ∈ NoUnifyFail(G)

σn1...nj−1,sσi−1 if nj−1 ∈ VarCase(G) where nj−1 has more

than i children, nj = Succ(i, nj−1) and

σi−1 is the substitution used for nj

σn1...nj−1,s+change(nj−1,nj) if (nj−1 ∈ BacktrackSecond(G),

nj = Succ(2, nj−1))

or (nj−1 ∈ Backtracking(G))

or (nj−1 ∈ VarCase(G) where nj−1 has k

children and nj = Succ(k, nj−1))

or (nj−1 ∈ Cut(G) and s > 0)

σn1...nj−1,reduce(nj−1,nj ,s) if nj−1 ∈ Introducing(G)

σn1...nj−1,s otherwise

Inj ...nk =


2 if j = k

Rename(Succ(1, nj))σnj ...nk,0, Inj+1...nk if nj ∈ Split(G), nj+1 = Succ(2, nj)

Inj+1...nk otherwise

Here, AnsSub : V → Subst(Σ,V) and BackSub : V → Subst(Σ,V) are defined by:



180 Chapter 7. Transformation into Dependency Triple Problems

AnsSub(n) =



σ if n ∈ EqualsCase(G) where σ is the substitution

used for Succ(1, n)

σ′ if n ∈ Eval(G) ∪OnlyEval(G) ∪ UnifyCase(G)

∪UnifySuccess(G) where σ′ is the substitution

used for Succ(1, n)

µ if n ∈ Split(G) where µ is the substitution

used for Succ(2, n)

id otherwise

BackSub(n) =



σ|G if n ∈ Eval(G) ∪ NoUnifyFail(G) ∪OnlyEval(G)

∪UnifyCase(G) ∪ UnifySuccess(G) where

σ|G is the substitution used for Succ(1, n)

σ|G if n ∈ NoUnifyCase(G) where σ|G is the

substitution used for Succ(2, n)

σ if n ∈ UnequalsCase(G) where σ is the substitution

used for Succ(2, n)

id otherwise

The functions change : V × V → IN and reduce : V × V × IN→ IN are defined by:

change(n1, n2) =



1 if (n1 ∈ BacktrackSecond(G) \ {Parallel}, n2 = Succ(2, n1)) or

(n1 ∈ Backtracking(G)) or (n1 ∈ VarCase(G) where

n1 has k children and n2 = Succ(k, n1)) or

(n1 ∈ Call(G) ∪ Disjunction(G) ∪ IfThen(G) ∪ Repeat(G))

2 if n1 ∈ IfThenElse(G) ∪ Not(G)

k if (n1 ∈ Parallel(G), n2 = Succ(2, n1),

Succ(1, n1) = S1 | . . . | Sk;KB where

Si ∈ StateElements ∀i ∈ {1, . . . , k})

or (n1 ∈ Cut(G), n1 = !m, Q | S1 | . . . | Sk | ?m | S;KB

where Si ∈ StateElements \ {?m} ∀i ∈ {1, . . . , k})

or (n1 ∈ Case(G), n1 = t, Q | S;KB and |Slice(P , t)| = k)

0 otherwise

reduce(n1, n2, s) = max(0, s− change(n1, n2))



7.1. From Termination Graphs to DT Problems 181

Finally, the set Backtracking(G) is defined as the union of the sets

• AtomicFail(G)

• Backtrack(G)

• CompoundFail(G)

• EqualsFail(G)

• Fail(G)

• Failure(G)

• NonvarFail(G)

• Success(G)

• UnequalsFail(G)

• UnifyFail(G)

• VarFail(G)

while the set BacktrackSecond(G) is defined as the union of the sets

• AtomicCase(G)

• CompoundCase(G)

• EqualsCase(G)

• Eval(G)

• NonvarCase(G)

• Parallel(G)

• UnifyCase(G)

and the set Introducing(G) is defined as the union of the sets

• Call(G)

• Case(G)

• Disjunction(G)

• IfThen(G)

• IfThenElse(G)

• Not(G)

• Repeat(G)

Example 7.7. The DT problem with the triples

div1(T12, T13, s(T14), T15) ← minusc19(T12, T13, T23), div1(T23, T13, T14, T15).

div1(s(T16), s(T17), s(T14), T15) ← minus22(T16, T17, T18).

minus22(s(T20), s(T21), T22) ← minus22(T20, T21, T22).

and clauses

divc1(0, T8, 0, 0) ← 2.

divc1(T12, T13, s(T14), T15) ← minusc19(T12, T13, T23), divc1(T23, T13, T14, T15).

minusc19(s(T16), s(T17), T18) ← minusc22(T16, T17, T18).

minusc22(T19, 0, T19) ← 2.

minusc22(s(T20), s(T21), T22) ← minusc22(T20, T21, T22).

from Example 7.2 is in fact the represented DT problem for the termination graph from

Example 6.3.
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7.2 Proving the Correctness of the Transformation

The following lemmata show how the DTs and clauses of DTP(G) can be used to simulate

concrete state-derivations of concrete states described by the root state of the graph.

Before we start to state the lemmata, we introduce the notions of a state prefix and

extension respectively which will be used in the following proofs.

Definition 7.8 (State Prefix, State Extension). Let S be a state with S = S1 | · · · | Sk
where ∀i ∈ {1, . . . , k} : Si ∈ StateElements. Let S ′ be another state. S is a state prefix of

S ′ iff there is a bijection f : IN → IN and S ′ = S ′1 | · · · | S ′k | S ′′ for some state S ′′ where

we have for all i ∈ {1, . . . , k}:

• Si ∈ IN =⇒ f(Si) = S ′i

• Si = 2 =⇒ Si = S ′i

• Si = Q =⇒ S ′i = Q′, Q′′ for some list of terms Q′′ where Q′ = Qξ

• Si = (Q)nm =⇒ S ′i = (Q′, Q′′)nf(m) for some list of terms Q′′ where Q′ = Qξ

Here, we define ξ = [!i/!f(i)∀i ∈ IN].

For two states S and S ′, S ′ is a state extension of S iff S is a state prefix of S ′.

Example 7.9. Consider the state S = t1, t2 | (t3)im. The state t1 is a state prefix of S

while the state t1, t2 | (t3)im | (t4)i
′

m′ is a state extension of S.

The notions of a state prefix and extension respectively are useful to describe the

connection between a termination graph and the concrete state-derivations it represents.

Due to the splitting of backtracking lists and goals with the rules Parallel and Split,

the concrete state-derivation may contain states which are not represented by only one

abstract state, but by several different abstract states instead. Still, we have to take this

difference into account while we prove the correctness of our transformation.
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Thus, for the simulation of concrete state-derivations by abstract state-derivations, we

need to follow not only linear paths, but tree paths in a termination graph. This is also

due to the splitting of goals by the Split rule and to the splitting of backtracking lists

we encounter at Parallel nodes. The following definition therefore gives us a structure

for describing the way of a concrete state-derivation through a termination graph.

Definition 7.10 (Tree Path). For a termination graph G = (V,E) we call a (possibly

infinite) word π = (n0, v0, p0), (n1, v1, p1), (n2, v2, p2), . . . over the set IN×V ×(IN∪{none})
a tree path w.r.t. G iff the following conditions are satisfied for all i, j ∈ IN:

• p0 = none,

• ni = nj =⇒ i = j,

• pi = none =⇒ i = 0,

• pi ∈ {n0, n1, n2, . . . },

• ni = pj =⇒ (vi, vj) ∈ E and

• pi < ni

• there are indices i0, . . . , imi ∈ {n0, n1, n2, . . . } with imi = 0, i0 = i and pir−1 = nir

for all r ∈ {1, . . . ,mi}.

We call (ni, vi, pi) a leaf of π iff there is no (nj, vj, pj) ∈ π with pj = ni. For (ni, vi, pi) and

(nj, vj, pj) we call (ni, vi, pi) an ancestor of (nj, vj, pj) iff there are indices i0, . . . , imi ∈
{n0, n1, n2, . . . } with imi = i, i0 = j and pir−1 = nir for all r ∈ {1, . . . ,mi}.

To really follow a complete concrete state-derivation we would have to fork on Par-

allel nodes, but as we will be interested in the relevant parts of the concrete state-

derivations for the reached states only, we may skip the failing branches due to backtrack-

ing. Thus, the only nodes where we have to fork our tree path are Split nodes.



184 Chapter 7. Transformation into Dependency Triple Problems

Example 7.11. Consider for the last time the termination graph from Example 6.3 and

the concrete derivation from Example 5.9. The corresponding tree path is given as follows.

div(T1, T2, T3, T4); ({T1, T2},∅,∅)

(div(T1, T2, T3, T4))551 | (div(T1, T2, T3, T4))561 |
(div(T1, T2, T3, T4))571 | (div(T1, T2, T3, T4))581 ;

({T1, T2},∅,∅)

Case

div(T1, T2, T3, T4)561 | div(T1, T2, T3, T4)571 | div(T1, T2, T3, T4)581 ;

({T1, T2}, {X,Z,R}, {(div(X, 0, Z, R), div(T1, T2, T3, T4))})

Eval

div(T1, T2, T3, T4)571 |
div(T1, T2, T3, T4)581 ;KB1

Eval

div(T1, T2, T3, T4)571 ;KB1

Parallel

minus(T12, T13, U), !1,

div(U, T13, T14, T15);KB2

EvalT1/T12, T2/T13, T3/s(T14), T4/T15

minus(T12, T13, U);KB2

Split

!1, div(T23, T13, T14, T15);KB4

Split

U/T23

(minus(T12, T13, U))592 |
(minus(T12, T13, U))602 ;KB2

Case

div(T23, T13, T14, T15);KB4

CutAll

(minus(T12, T13, U))602 ;KB3

Backtrack

minus(T16, T17, T18); ({T16, T17},∅,∅)

EvalT12/s(T16), T13/s(T17), U/T18

(minus(T16, T17, T18))593 |
(minus(T16, T17, T18))603 ; ({T16, T17},∅,∅)

Case

(minus(T16, T17, T18))593 ; ({T19},∅,∅)

Parallel

2; (∅,∅,∅)

EvalT16/T19, T17/0, T18/T19

div(T1, T2, T3, T4); ({T1, T2},∅,∅)

Instance

(div(T1, T2, T3, T4))551 | (div(T1, T2, T3, T4))561 |
(div(T1, T2, T3, T4))571 | (div(T1, T2, T3, T4))581 ;

({T1, T2},∅,∅)

Case

div(T1, T2, T3, T4)561 | div(T1, T2, T3, T4)571 | div(T1, T2, T3, T4)581 ;

({T1, T2}, {X,Z,R}, {(div(X, 0, Z, R), div(T1, T2, T3, T4))})

Eval

!1,=(T9, 0),=(T10, 0) | div(0, T8, T3, T4)571 |
div(0, T8, T3, T4)581 ; ({T8}, {X,Z,R},
{(div(X, 0, Z, R), div(0, T8, T3, T4))})

EvalT1/0, T2/T8, T3/T9, T4/T10

=(T9, 0),=(T10, 0); (∅,∅,∅)

CutAll

=(T11, 0); (∅,∅,∅)

UnifyCaseT9/0, T10/T11

2; (∅,∅,∅)

UnifyCaseT11/0
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Lemma 7.12 (Success Tree for Concrete State-Derivations in Termination Graph). Let

Sγ ∈ CON (S;KB) with S;KB = n ∈ G for a termination graph G = (V,E) and

there is a concrete state-derivation with l steps from Sγ to a state S ′′. Then there

is a node n′ ∈ V , a concretization γ′ and a variable renaming ρ on N with n′ =

S ′;KB′, S ′γ′ ∈ CON (S ′;KB′), S ′γ′ρ is a state prefix of S ′′ and there is a tree path

π = (0, v0, p0), . . . , (k, vk, pk) w.r.t. G with the following properties:

• v0 = n

• for all i ∈ {0, . . . , k} there are concretizations γi and variable renamings ρi on N
such that the concrete state-derivation reaches a scope variant of a state extension

of Siγiρi in li ≤ l steps where vi = Si;KBi and Siγi ∈ CON (Si;KBi)

• for all leaves (i, vi, pi) of π with i 6= k we have vi ∈ Success(G)

• for all (i, vi, pi) with more than one successor in π, we have vi ∈ Split(G)

• for all (i, vi, pi) with vi ∈ Split(G) and only one successor (j, vj, i) in π, we have

vj = Succ(1, vi)

• vk = n′

Proof. We perform the proof by induction over the lexicographic combination of first

the length l of the concrete state-derivation and second the edge relation of G′. Here,

G′ is like G except that it only contains outgoing edges of Instance, Generalization,

Parallel and Split nodes. Note that this induction relation is indeed well-founded asG′

is an acyclic and finite graph. The reason is that when traversing nodes (S;KB) in G′ the

number of terms in S cannot increase. Since this number is strictly decreased in Parallel

and Split nodes any infinite path in G′ must in the end only traverse Instance and

Generalization nodes. This is in contradiction to the definition of termination graphs

which disallows cycles consisting only of Instance and Generalization edges.

We first show that the lemma holds for nodes S;KB where one of the abstract rules

Instance, Generalization, Parallel or Split have been applied. Here, whenever

we have to define the concretization γ′ and the variable renaming ρ and if these are not

specified then γ′ = γ and ρ = id .

• If we applied the Instance or Generalization rule to n, we have Succ(1, n) =

S ′;KB′ with S = S ′′′µ where S ′′′ is a scope variant of S ′. By Lemma 3.37 and

Lemma 3.38 we know that there is a concretization γ′′ such that S ′γ′′ ∈
CON (S ′;KB′) and Sγ = S ′′′γ′′µ|N . As µ|N is a variable renaming and S ′′′ is

a scope variant of S ′ we conclude that the concrete state-derivation from Sγ to

a state extension of S ′′ can be completely simulated by a corresponding concrete

state-derivation from S ′γ′′ to a state extension of S ′′′′ of length l where the only
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difference is the application of µ|N . To be more precise, if Si is the i-th state in the

concrete state-derivation from Sγ to a state extension of S ′′ then there also is an

i-th state S ′i in the concrete state-derivation from S ′γ′′ to a state extension of S ′′′′

and S ′iµ|N = Si. Hence, we can use the induction hypothesis for the latter concrete

state-derivation to obtain a tree path π′ with root S ′;KB′. To obtain π from π′ we

first modify all variable renamings by additionally adding µ|N (ρi = ρ′iµ|N ). Then

we add the node S;KB as new root and start the path with the edge from S;KB

to S ′, KB′.

• If we applied the Parallel rule to n, we reach two states S1;KB and S2;KB

where S = S1 | S2. There are two cases depending on whether the concrete state-

derivation reaches a state extension of S2γ. If the concrete state-derivation reaches

such a state, we use Succ(2, n) instead of n and insert the path from n to Succ(2, n)

before the tree path we obtain by the induction hypothesis for Succ(2, n). If the

concrete state-derivation does not reach such a state, we know from the soundness

proof of Parallel that a state prefix of S ′′ must be reachable from S1γ and as we

clearly have that S1 is a state prefix of S, we use Succ(1, n) instead of n and insert

the path from n to Succ(1, n) before the tree path we obtain for Succ(1, n) by the

induction hypothesis.

• If we applied the Split rule to n, we know that S = t, Q, Succ(1, n) = t;KB and

Succ(2, n) = Qµ;KB′.

If the concrete state-derivation reaches a state extension of Qγµ′ for some answer

substitution µ′, we know by Lemma 3.51 that there is a concretization γ′ w.r.t. KB′

such that Qγµ′ = Qµγ′. Additionally, we know that the concrete state-derivation

reaches a state extension of 2 from tγ. As this concrete state-derivation is shorter

than the one of (t, Q)γ we obtain a node n′′ ∈ Success(G) and a tree path π′ for

Succ(1, n) by the induction hypothesis. Also, we obtain a node n′′′ and a tree path

π′′ for Succ(2, n) by the induction hypothesis for the concrete state-derivation of

(Qµ)γ′ to S ′′. Using γ′ and id for Succ(2, n), we obtain the node n′ = n′′′ and the

desired tree path π by using n as the root with π′ as its left and π′′ as its right

subtree path.

If the concrete state-derivation does not reach a state extension of Qγµ′ for any

answer substitution µ′, we know by the soundness proof of Split that a state prefix

of S ′′ must be reachable from tγ within l steps. Hence, we can apply the induction

hypothesis and add (S;KB) as a new root with only one edge to (t;KB).

For l = 0 we know that Sγ = S ′′ ∈ CON (S;KB). Thus, for γ0 = γ, ρ0 = id and n′ = n

we obtain π = (0, n, none) as the desired tree path. For l > 0, we can assume the lemma

holds for concrete state-derivations of length at most l − 1.
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We perform a case analysis over the first concrete inference rule applied in the con-

crete state-derivation where we can assume that the abstract inference rules Instance,

Generalization, Parallel and Split were not applied to n.

• For Case we have S = t, Q | Sr where root(t) /∈ BuiltInPredicates and Slice(P , t) 6=
∅ and the concrete state-derivation reaches the state (t, Q)i1j γ | · · · | (t, Q)imj γ | Srγ.

So the only applicable abstract inference rule for n is Case.

By applying the Case rule to n, we reach the state n′′ = (t, Q)i1j | · · · | (t, Q)imj |
Sr;KB. By the induction hypothesis we obtain a node n′′′ and a tree path π′ with

the properties in Lemma 7.12 for n′′. We obtain the desired node n′ = n′′′ and the

tree path π by inserting the path from n to n′′ before π′ for n′′.

• For Success we have S = 2 | Sr and the concrete state-derivation reaches the state

Srγ. So the only applicable abstract inference rule for n is Success.

By applying the Success rule, we reach the state Sr;KB. By the induction hy-

pothesis we obtain a node n′ and a tree path π′ with the properties in Lemma 7.12

for Sr;KB. Thus, we obtain the desired node n′ and the tree path π by inserting

the path from n to Sr;KB before π′ using γ and id for Sr;KB.

• For Failure, Cut and CutAll the proof is analogous to the case where the

Success rule is the first rule in the concrete state-derivation.

• For VariableError we have S = call(x), Q | Sr and the concrete state-derivation

reaches the state ε. So the only applicable abstract inference rule for n is Vari-

ableError.

By applying the VariableError rule, we reach the state ε;KB. As the concrete

state-derivation has to end here, we obtain the desired node ε;KB and the tree

path π = (0, S;KB,none), (1, ε;KB, 0) using id and id for ε;KB.

• For UndefinedError, Throw, Halt and Halt1 the proof is analogous to the

case where the VariableError rule is the first rule in the concrete state-derivation.

• For Eval we have S = (t, Q)ij | Sr and the concrete state-derivation reaches the

state B′iσ,Qγσ | Srγ as defined in the Eval rule. From the soundness proof of

Backtrack we know that the only applicable abstract inference rules for n are

Eval and OnlyEval.

If we applied the Eval rule we have Succ(1, n) = B′iσ
′, Qσ′ | Srσ|G;KB′ as defined

in Eval. From the soundness proof of Eval we know that there is a concretization

γ′′ w.r.t. KB′ with B′iσ
′γ′′, Qσ′γ′′ | Srσ|Gγ′′ = B′iσ,Qγσ | Srγ. By the induction

hypothesis we obtain a node n′ and a tree path π′ with the properties in Lemma 7.12

for B′iσ
′, Qσ′ | Srσ|G;KB′. Thus, we obtain the desired node n′ and the tree path
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π by inserting the path from n to B′iσ
′, Qσ′ | Srσ|G;KB′ before π′ using γ′′ and id

for B′iσ
′, Qσ′ | Srσ|G;KB′.

If we applied the OnlyEval rule we have Succ(1, n) = B′iσ
′, Qσ′ | Srσ|G;KB′ again

and, hence, the same case as for Eval.

• For Backtrack we have S = (t, Q)ij | Sr and the concrete state-derivation reaches

the state Srγ. From the soundness proof of OnlyEval we know that the only

applicable abstract inference rules for n are Eval and Backtrack.

If we applied the Eval rule we have Succ(2, n) = Sr;KB
′ as defined in Eval where

we know by the soundness proof of Eval that γ is a concretization w.r.t. KB′. By

the induction hypothesis we obtain a node n′ and a tree path π′ with the properties

in Lemma 7.12 for Sr;KB
′. Thus, we obtain the desired node n′ and the tree path

π by inserting the path from n to Sr;KB
′ before π′ using γ and id for Sr;KB

′.

If we applied the Backtrack rule we have Succ(1, n) = Sr;KB
′ and, hence, the

same case for Succ(1, n) here as for Succ(2, n) in the case of Eval.

• For Call we have S = call(t′), Q | Sr and the concrete state-derivation reaches the

state t′′γ,Qγ | ?m | Srγ for t′′ = Transformed(t′,m). So the only applicable abstract

inference rule for n is Call.

By applying the Call rule, we reach the state t′′, Q | ?m | Sr;KB. By the induction

hypothesis we obtain a node n′ and a tree path π′ with the properties in Lemma 7.12

for t′′, Q | ?m | Sr;KB. Thus, we obtain the desired node n′ and the tree path π

by inserting the path from n to t′′, Q | ?m | Sr;KB before π′ using γ and id for

t′′, Q | ?m | Sr;KB.

• For AtomicFail we have S = atomic(t′), Q | Sr where t′γ is no constant and the

concrete state-derivation reaches the state Srγ. So the only applicable abstract

inference rules for n are AtomicFail and AtomicCase.

If we applied the AtomicCase rule, we have Succ(2, n) = Sr;KB. By the induction

hypothesis we obtain a node n′ and a tree path π′ with the properties in Lemma 7.12

for Sr;KB. Thus, we obtain the desired node n′ and the tree path π by inserting

the path from n to Sr;KB before π′ using γ and id for Sr;KB.

If we applied the AtomicFail rule, we have Succ(1, n) = Sr;KB and, hence, the

same case for Succ(1, n) here as for Succ(2, n) in the case of AtomicCase.

• For AtomicSuccess we have S = atomic(t′), Q | Sr where t′γ is a constant and the

concrete state-derivation reaches the state Qγ | Srγ. So the only applicable abstract

inference rules for n are AtomicSuccess and AtomicCase.
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If we applied the AtomicCase rule, we have Succ(1, n) = Q | Sr;KB′ as defined

for AtomicCase where we know by the soundness proof of AtomicCase that γ is

a concretization w.r.t. KB′. By the induction hypothesis we obtain a node n′ and

a tree path π′ with the properties in Lemma 7.12 for Q | Sr;KB′. Thus, we obtain

the desired node n′ and the tree path π by inserting the path from n to Q | Sr;KB′

before π′ using γ and id for Q | Sr;KB′.

If we applied the AtomicSuccess rule, we have Succ(1, n) = Q | Sr;KB′ again

and, hence, the same case as for AtomicCase.

• For CompoundFail, EqualsFail and NonvarFail the proof is analogous to the

case for AtomicFail.

• For CompoundSuccess, NonvarSuccess, NoUnifySuccess and Unequals-

Success the proof is analogous to the case for AtomicSuccess.

• For Conjunction we have S = ,(t1, t2), Q | Sr and the concrete state-derivation

reaches the state t1, t2, Q | Sr. So the only applicable abstract inference rule for n

is Conjunction.

By applying the Conjunction rule, we have Succ(1, n) = t1, t2, Q | Sr;KB. By

the induction hypothesis we obtain a node n′ and a tree path π′ with the properties

in Lemma 7.12 for t1, t2, Q | Sr;KB. Thus, we obtain the desired node n′ and the

tree path π by inserting the path from n to t1, t2, Q | Sr;KB before π′ using γ and

id for t1, t2, Q | Sr;KB.

• For Disjunction, IfThen, IfThenElse, Not, Once and Repeat the proof is

analogous to the case where the Conjunction rule is the first rule in the concrete

state-derivation.

• For EqualsSuccess we have S = ==(t1, t2), Q | Sr where t1γ = t2γ and the

concrete state-derivation reaches the state Qγ | Srγ. So the only applicable abstract

inference rules for n are EqualsSuccess and EqualsCase.

If we applied the EqualsCase rule, we have Succ(1, n) = Qσ | Srσ;KB′ as defined

for EqualsCase where we know by the soundness proof of EqualsCase that

γ = σγ is a concretization w.r.t. KB′. By the induction hypothesis we obtain a

node n′ and a tree path π′ with the properties in Lemma 7.12 for Qσ | Srσ;KB′.

Thus, we obtain the desired node n′ and the tree path π by inserting the path from

n to Qσ | Srσ;KB′ before π′ using γ and id for Qσ | Srσ;KB′.

If we applied the EqualsSuccess rule, we have t1 = t2 and Succ(1, n) = Q |
Sr;KB. By the induction hypothesis we obtain a node n′ and a tree path π′ with

the properties in Lemma 7.12 for Q | Sr;KB. Thus, we obtain the desired node n′
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and the tree path π by inserting the path from n to Q | Sr;KB before π′ using γ

and id for Q | Sr;KB.

• For Fail we have S = fail, Q | Sr. So the only applicable abstract inference rule for

n is Fail.

By applying the Fail rule, we have Succ(1, n) = Sr;KB. By the induction hypoth-

esis we obtain a node n′ and a tree path π′ with the properties in Lemma 7.12 for

Sr;KB. Thus, we obtain the desired node n′ and the tree path π by inserting the

path from n to Sr;KB before π′ using γ and id for Sr;KB.

• For Newline we have S = nl, Q | Sr. So the only applicable abstract inference rule

for n is Newline.

By applying the Newline rule, we have Succ(1, n) = Q | Sr;KB. By the induction

hypothesis we obtain a node n′ and a tree path π′ with the properties in Lemma 7.12

for Q | Sr;KB. Thus, we obtain the desired node n′ and the tree path π by inserting

the path from n to Q | Sr;KB before π′.

• For NoUnifyFail we have S = \=(t1, t2), Q | Sr where t1γ ∼ t2γ and the con-

crete state-derivation reaches the state Srγ. From the soundness proof of NoUni-

fySuccess we know that the only applicable abstract inference rules for n are

NoUnifyCase and NoUnifyFail.

If we applied the NoUnifyCase rule we have Succ(2, n) = Srσ|G;KB′ as defined

in NoUnifyCase. From the soundness proof of NoUnifyCase we know that

γ = σGγ is a concretization w.r.t. KB′. By the induction hypothesis we obtain a

node n′ and a tree path π′ with the properties in Lemma 7.12 for Srσ|G;KB′. Thus,

we obtain the desired node n′ and the tree path π by inserting the path from n to

Srσ|G;KB′ before π′ using γ and id for Srσ|G;KB′.

If we applied the NoUnifyFail rule we have Succ(1, n) = Srγ|G;KB′ again and,

hence the same case for Succ(1, n) here as for Succ(2, n) in the case of NoUnify-

Case.

• For True the proof is analogous to the case for Newline.

• For UnequalsFail we have S = \==(t1, t2), Q | Sr where t1γ = t2γ and the

concrete state-derivation reaches the state Srγ. So the only applicable abstract

inference rules for n are UnequalsFail and UnequalsCase.

If we applied the UnequalsCase rule, we have Succ(2, n) = Srσ;KB′ as defined

for UnequalsCase where we know by the soundness proof of UnequalsCase

that γ = σγ is a concretization w.r.t. KB′. By the induction hypothesis we obtain

a node n′ and a tree path π′ with the properties in Lemma 7.12 for Srσ;KB′. Thus,
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we obtain the desired node n′ and the tree path π by inserting the path from n to

Srσ;KB′ before π′ using γ and id for Srσ;KB′.

If we applied the UnequalsFail rule, we have t1 = t2 and Succ(1, n) = Sr;KB. By

the induction hypothesis we obtain a node n′ and a tree path π′ with the properties

in Lemma 7.12 for Sr;KB. Thus, we obtain the desired node n′ and the tree path

π by inserting the path from n to Sr;KB before π′ using γ and id for Sr;KB.

• For UnifyFail the proof is analogous to the case for Backtrack.

• For UnifySuccess the proof is analogous to the case for Eval.

• For VarFail we have S = var(t′), Q | Sr where t′γ is no variable and the concrete

state-derivation reaches the state Srγ. So the only applicable abstract inference

rules for n are VarFail and VarCase.

If we applied the VarCase rule and n has j children, we have Succ(j, n) = Sr;KB.

By the induction hypothesis we obtain a node n′ and a tree path π′ with the prop-

erties in Lemma 7.12 for Sr;KB. Thus, we obtain the desired node n′ and the tree

path π by inserting the path from n to Sr;KB before π′ using γ and id for Sr;KB.

If we applied the VarFail rule, we have Succ(1, n) = Sr;KB and, hence, the same

case for Succ(1, n) here as for Succ(j, n) in the case of VarCase.

• For VarSuccess we have S = var(t′), Q | Sr where t′γ ∈ N and the concrete state-

derivation reaches the state Qγ | Srγ. So the only applicable abstract inference

rules for n are VarSuccess and VarCase.

Since t′γ ∈ N , we know that t′ ∈ A \ G.

If we applied the VarCase rule and n has j children, there are two cases depending

on whether t′γ ∈ N (Q) ∪N (Sr) ∪N (KB).

If t′γ ∈ N (Q)∪N (Sr)∪N (KB) there is an index j′ with 1 < j′ < j and Succ(j′, n) =

Qσj′+1 | Srσj′+1;KBσj′+1 where σj′+1 = [t′/t′γ]. Thus we have Qσj′+1γ | Srσj′+1γ =

Qγ | Srγ and γ is a concretization w.r.t. KBσj′+1. By the induction hypothesis

we obtain a node n′ and a tree path π′ with the properties in Lemma 7.12 for

Qσj′+1 | Srσj′+1;KBσj′+1. Thus, we obtain the desired node n′ and the tree path π

by inserting the path from n to Qσj′+1 | Srσj′+1;KBσj′+1 before π′.

If t′γ /∈ N (Q) ∪ N (Sr) ∪ N (KB), we have Succ(1, n) = Qσ0 | Srσ0;KBσ0 where

σ0 = [t′/x] and x ∈ Nfresh . By the soundness proof of VarCase we know that

there is a concretization γ′′ w.r.t. KBσ0 and a variable renaming ρ′ on N such

that γρ′ = γ′′ and Qσ0γρ
′ | Srσ0γρ

′ = Qσ0γ
′′ | Srσ0γ

′′ = Qγ′′ | Srγ′′. By the

induction hypothesis we obtain a node n′ and a tree path π′ with the properties

in Lemma 7.12 for Qσ0 | Srσ0;KBσ0. Thus, using γ and ρ′ for Qσ0 | Srσ0;KBσ0
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we obtain the desired node n′ and the tree path π by inserting the path from n to

Qσ0 | Srσ0;KBσ0 before π′.

If we applied the VarSuccess rule, we have Succ(1, n) = Q | Sr;KB. By the

induction hypothesis we obtain a node n′ and a tree path π′ with the properties in

Lemma 7.12 for Q | Sr;KB. Thus, we obtain the desired node n′ and the tree path

π by inserting the path from n to Q | Sr;KB before π′.

• For Write we have S = write(t′), Q | Sr. So the only applicable abstract inference

rule for n is Write.

By applying the Write rule, we have Succ(1, n) = Q | Sr;KB. By the induction

hypothesis we obtain a node n′ and a tree path π′ with the properties in Lemma 7.12

for Q | Sr;KB. Thus, we obtain the desired node n′ and the tree path π by inserting

the path from n to Q | Sr;KB before π′.

• For WriteCanonical and Writeq the proof is analogous to the case for Write.

Next, we show that we can use the same concretization and variable renaming as long

as we do not traverse Instance or Generalization nodes.

Lemma 7.13 (Single Concretization and Variable Renaming). Given a path π = n1 . . . nk

with nj /∈ Instance(G)∪Generalization(G) for all j ∈ {1, . . . , k−1} and a concrete state-

derivation such that there are variable renamings ρ1, . . . , ρk and concretizations γ1, . . . , γk

w.r.t. KB1, . . . , KBk where ni = Si;KBi for all i ∈ {1, . . . , k} and the concrete state-

derivation goes from a state extension of S1γ1ρ1 to a state extension of Skγkρk by reaching

state extensions of all Siγiρi, then there is a variable renaming ρ and a concretization γ

w.r.t. all knowledge bases KBi such that Siγiρi = Siγρ.

Proof. We perform the proof by induction over the length k of the path π.

For k = 1 we have n1 = nk and only one variable renaming and concretization γ1ρ1 = γρ.

Hence, the lemma trivially holds.

For k > 1 we can assume the lemma holds for paths of length at most k − 1. By

inspection of all abstract inference rules other than Instance and Generalization we

know that only fresh variables are introduced by these rules. We perform a case analysis

over n1 and n2.

• If n1 ∈ Split(G) and n2 = Succ(2, n1), i.e., we traverse the right child of a Split

node, we have n1 = t, Q;KB and n2 = Qµ;KB′ as defined in the Split rule.

By the induction hypothesis we obtain a variable renaming ρ and a concretiza-

tion γ′ w.r.t. KBj for all j ∈ {2, . . . , k} such that Sjγjρj = Sjγ
′ρ. In par-

ticular, we have Qµγ2ρ2 = Qµγ′ρ. By Lemma 3.51 and the fact that the con-

crete state-derivation reaches a state extension of Qµγ2ρ2 from a state extension
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of (t, Q)γ1ρ1 with some answer substitution µ′, we obtain γ1ρ1µ
′ = µγ2ρ2 with

γ1|A(t)∪A(Q)∪A(KB) = γ2|A(t)∪A(Q)∪A(KB) and ρ1 = ρ2. Since only fresh abstract vari-

ables are introduced along π, we have for all abstract variables T ∈ (A(t)∪A(Q)∪
A(KB)) \ (A(Qµ)∪A(KB′)) that T /∈ A(Sj)∪A(KBj). Hence, we can define the

concretization γ by Tγ = Tγ1 for T ∈ (A(t)∪A(Q)∪A(KB)) \ (A(Qµ)∪A(KB′))

and Tγ = Tγ′ otherwise. Then we obviously have Siγρ = Siγiρi for all i ∈ {1, . . . , k}
and Sjγρ = Sjγ

′ρ for all j ∈ {2, . . . , k}. As γ is equally defined to γ′ for all variables

occurring in the knowledge bases KBj, we clearly have that γ is a concretization

w.r.t. KBj. Moreover, as γ is equally defined to γ1 for all variables occurring in

KB1, it is also a concretization w.r.t. KB1.

• If n1 ∈ Eval(G) and n2 = Succ(1, n1), i.e., we traverse the left child of an Eval

node, we have n1 = (t, Q)cm | S;KB and n2 = B′cσ
′, Qσ′ | Sσ|G;KB′ as defined

in the Eval rule. By the induction hypothesis we obtain a variable renaming ρ

and a concretization γ′ w.r.t. KBj for all j ∈ {2, . . . , k} such that Sjγjρj = Sjγ
′ρ.

In particular, we have B′cσ
′γ2ρ2, Qσ

′γ2ρ2 | Sσ|Gγ2ρ2 = B′cσ
′γ′ρ,Qσ′γ′ρ | Sσ|Gγ′ρ.

By Lemma 3.28 and the fact that the concrete state-derivation reaches a state ex-

tension of B′cσ
′γ2ρ2, Qσ

′γ2ρ2 | Sσ|Gγ2ρ2 from a state extension of (t, Q)cmγ1ρ1 |
Sγ1ρ1 with answer substitution σ′′ and ρ1 = ρ2, we obtain γ1ρ1σ

′′ = σ′γ2ρ2 with

γ1|A(t)∪A(Q)∪A(S)∪A(KB) = γ2|A(t)∪A(Q)∪A(S)∪A(KB). Since only fresh abstract vari-

ables are introduced along π, we have for all abstract variables T ∈ (A(t)∪A(Q)∪
A(S)∪A(KB))\(A(B′cσ

′)∪A(Qσ′)∪A(Sσ|G)∪A(KB′)) that T /∈ A(Sj)∪A(KBj).

Hence, we can define the concretization γ by Tγ = Tγ1 for T ∈ (A(t) ∪ A(Q) ∪
A(S) ∪ A(KB)) \ (A(B′cσ

′) ∪ A(Qσ′) ∪ A(Sσ|G) ∪ A(KB′)) and Tγ = Tγ′ other-

wise. Then we obviously have Siγρ = Siγiρi for all i ∈ {1, . . . , k} and Sjγρ = Sjγ
′ρ

for all j ∈ {2, . . . , k}. As γ is equally defined to γ′ for all variables occurring in

the knowledge bases KBj, we clearly have that γ is a concretization w.r.t. KBj.

Moreover, as γ is equally defined to γ1 for all variables occurring in KB1, it is also

a concretization w.r.t. KB1.

• If n1 ∈ OnlyEval(G) and n2 = Succ(1, n1), i.e., we traverse an OnlyEval node,

we have n1 = (t, Q)cm | S;KB and n2 = B′cσ
′, Qσ′ | Sσ|G;KB′ as defined in the

OnlyEval rule. By the induction hypothesis we obtain a variable renaming ρ

and a concretization γ′ w.r.t. KBj for all j ∈ {2, . . . , k} such that Sjγjρj = Sjγ
′ρ.

In particular, we have B′cσ
′γ2ρ2, Qσ

′γ2ρ2 | Sσ|Gγ2ρ2 = B′cσ
′γ′ρ,Qσ′γ′ρ | Sσ|Gγ′ρ.

By Lemma 3.29 and the fact that the concrete state-derivation reaches a state ex-

tension of B′cσ
′γ2ρ2, Qσ

′γ2ρ2 | Sσ|Gγ2ρ2 from a state extension of (t, Q)cmγ1ρ1 |
Sγ1ρ1 with answer substitution σ′′ and ρ1 = ρ2, we obtain γ1ρ1σ

′′ = σ′γ2ρ2 with
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γ1|A(t)∪A(Q)∪A(S)∪A(KB) = γ2|A(t)∪A(Q)∪A(S)∪A(KB). Since only fresh abstract variables

are introduced along π, we have for all abstract variables T ∈ (A(t)∪A(Q)∪A(S)∪
A(KB)) \ (A(B′cσ

′) ∪ A(Qσ′) ∪ A(Sσ|G) ∪ A(KB′)) that T /∈ A(Sj) ∪ A(KBj).

Hence, we can define the concretization γ by Tγ = Tγ1 for T ∈ (A(t) ∪ A(Q) ∪
A(S)∪A(KB))\ (A(B′cσ

′)∪A(Qσ′)∪A(Sσ|G)∪A(KB′)) and Tγ = Tγ′ otherwise.

Then we obviously have Siγρ = Siγiρi for all i ∈ {1, . . . , k} and Sjγρ = Sjγ
′ρ

for all j ∈ {2, . . . , k}. As γ is equally defined to γ′ for all variables occurring in

the knowledge bases KBj, we clearly have that γ is a concretization w.r.t. KBj.

Moreover, as γ is equally defined to γ1 for all variables occurring in KB1, it is also

a concretization w.r.t. KB1.

• If n1 ∈ UnifyCase(G) and n2 = Succ(1, n1), i.e., we traverse the left child of a

UnifyCase node, we have n1 = =(t1, t2), Q | S;KB and n2 = Qσ′ | Sσ|G;KB′

as defined in the UnifyCase rule. By the induction hypothesis we obtain a vari-

able renaming ρ and a concretization γ′ w.r.t. KBj for all j ∈ {2, . . . , k} such

that Sjγjρj = Sjγ
′ρ. In particular, we have Qσ′γ2ρ2 | Sσ|Gγ2ρ2 = Qσ′γ′ρ |

Sσ|Gγ′ρ. By the soundness proof of UnifyCase and the fact that the concrete

state-derivation reaches a state extension of Qσ′γ2ρ2 | Sσ|Gγ2ρ2 from a state exten-

sion of (=(t1, t2), Q)γ1ρ1 | Sγ1ρ1 with answer substitution σ′′ and ρ1 = ρ2, we obtain

γ1ρ1σ
′′ = σ′γ2ρ2 with γ1|A(t1)∪A(t2)∪A(Q)∪A(S)∪A(KB) = γ2|A(t1)∪A(t2)∪A(Q)∪A(S)∪A(KB).

Since only fresh abstract variables are introduced along π, we have for all abstract

variables T ∈ (A(t1)∪A(t2)∪A(Q)∪A(S)∪A(KB))\(A(Qσ′)∪A(Sσ|G)∪A(KB′))

that T /∈ A(Sj)∪A(KBj). Hence, we can define the concretization γ by Tγ = Tγ1

for T ∈ (A(t1)∪A(t2)∪A(Q)∪A(S)∪A(KB))\(A(Qσ′)∪A(Sσ|G)∪A(KB′)) and

Tγ = Tγ′ otherwise. Then we obviously have Siγρ = Siγiρi for all i ∈ {1, . . . , k}
and Sjγρ = Sjγ

′ρ for all j ∈ {2, . . . , k}. As γ is equally defined to γ′ for all variables

occurring in the knowledge bases KBj, we clearly have that γ is a concretization

w.r.t. KBj. Moreover, as γ is equally defined to γ1 for all variables occurring in

KB1, it is also a concretization w.r.t. KB1.

• If n1 ∈ UnifySuccess(G) and n2 = Succ(1, n1), i.e., we traverse a UnifySuccess

node, we have n1 = =(t1, t2), Q | S;KB and n2 = Qσ′ | Sσ|G;KB′ as defined

in the UnifySuccess rule. By the induction hypothesis we obtain a variable

renaming ρ and a concretization γ′ w.r.t. KBj for all j ∈ {2, . . . , k} such that

Sjγjρj = Sjγ
′ρ. In particular, we have Qσ′γ2ρ2 | Sσ|Gγ2ρ2 = Qσ′γ′ρ | Sσ|Gγ′ρ.

By the soundness proof of UnifySuccess and the fact that the concrete state-

derivation reaches a state extension of Qσ′γ2ρ2 | Sσ|Gγ2ρ2 from a state extension

of (=(t1, t2), Q)γ1ρ1 | Sγ1ρ1 with answer substitution σ′′ and ρ1 = ρ2, we obtain
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γ1ρ1σ
′′ = σ′γ2ρ2 with γ1|A(t1)∪A(t2)∪A(Q)∪A(S)∪A(KB) = γ2|A(t1)∪A(t2)∪A(Q)∪A(S)∪A(KB).

Since only fresh abstract variables are introduced along π, we have for all abstract

variables T ∈ (A(t1)∪A(t2)∪A(Q)∪A(S)∪A(KB))\(A(Qσ′)∪A(Sσ|G)∪A(KB′))

that T /∈ A(Sj)∪A(KBj). Hence, we can define the concretization γ by Tγ = Tγ1

for T ∈ (A(t1)∪A(t2)∪A(Q)∪A(S)∪A(KB))\(A(Qσ′)∪A(Sσ|G)∪A(KB′)) and

Tγ = Tγ′ otherwise. Then we obviously have Siγρ = Siγiρi for all i ∈ {1, . . . , k}
and Sjγρ = Sjγ

′ρ for all j ∈ {2, . . . , k}. As γ is equally defined to γ′ for all variables

occurring in the knowledge bases KBj, we clearly have that γ is a concretization

w.r.t. KBj. Moreover, as γ is equally defined to γ1 for all variables occurring in

KB1, it is also a concretization w.r.t. KB1.

• If n1 ∈ NoUnifyCase(G) and n2 = Succ(2, n1), i.e., we traverse the right child of

a NoUnifyCase node, we have n1 = \=(t1, t2), Q | S;KB and n2 = Sσ|G;KB′

as defined in the NoUnifyCase rule. By the induction hypothesis we obtain

a variable renaming ρ and a concretization γ′ w.r.t. KBj for all j ∈ {2, . . . , k}
such that Sjγjρj = Sjγ

′ρ. In particular, we have Sσ|Gγ2ρ2 = Sσ|Gγ′ρ. By the

soundness proof of NoUnifyCase and the fact that the concrete state-derivation

reaches a state extension of Sσ|Gγ2ρ2 from a state extension of (\=(t1, t2), Q)γ1ρ1 |
Sγ1ρ1 with answer substitution σ′′ and ρ1 = ρ2, we obtain γ1ρ1σ

′′ = σ′γ2ρ2 with

γ1|A(t1)∪A(t2)∪A(Q)∪A(S)∪A(KB) = γ2|A(t1)∪A(t2)∪A(Q)∪A(S)∪A(KB). Since only fresh ab-

stract variables are introduced along π, we have for all abstract variables T ∈
(A(t1) ∪ A(t2) ∪ A(Q) ∪ A(S) ∪ A(KB)) \ (A(Qσ′) ∪ A(Sσ|G) ∪ A(KB′)) that

T /∈ A(Sj) ∪ A(KBj). Hence, we can define the concretization γ by Tγ = Tγ1 for

T ∈ (A(t1) ∪A(t2) ∪A(Q) ∪A(S) ∪A(KB)) \ (A(Qσ′) ∪A(Sσ|G) ∪A(KB′)) and

Tγ = Tγ′ otherwise. Then we obviously have Siγρ = Siγiρi for all i ∈ {1, . . . , k}
and Sjγρ = Sjγ

′ρ for all j ∈ {2, . . . , k}. As γ is equally defined to γ′ for all variables

occurring in the knowledge bases KBj, we clearly have that γ is a concretization

w.r.t. KBj. Moreover, as γ is equally defined to γ1 for all variables occurring in

KB1, it is also a concretization w.r.t. KB1.

• If n1 ∈ NoUnifyFail(G) and n2 = Succ(1, n1), i.e., we traverse a NoUnifyFail

node, we have n1 = \=(t1, t2), Q | S;KB and n2 = Sσ|G;KB′ as defined in the

NoUnifyFail rule. By the induction hypothesis we obtain a variable renaming ρ

and a concretization γ′ w.r.t. KBj for all j ∈ {2, . . . , k} such that Sjγjρj = Sjγ
′ρ.

In particular, we have Sσ|Gγ2ρ2 = Sσ|Gγ′ρ. By the soundness proof of NoUni-

fyFail and the fact that the concrete state-derivation reaches a state extension of

Sσ|Gγ2ρ2 from a state extension of (\=(t1, t2), Q)γ1ρ1 | Sγ1ρ1 with answer substitu-

tion σ′′ and ρ1 = ρ2, we obtain γ1ρ1σ
′′ = σ′γ2ρ2 with γ1|A(t1)∪A(t2)∪A(Q)∪A(S)∪A(KB) =

γ2|A(t1)∪A(t2)∪A(Q)∪A(S)∪A(KB). Since only fresh abstract variables are introduced
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along π, we have for all abstract variables T ∈ (A(t1) ∪ A(t2) ∪ A(Q) ∪ A(S) ∪
A(KB)) \ (A(Qσ′)∪A(Sσ|G)∪A(KB′)) that T /∈ A(Sj)∪A(KBj). Hence, we can

define the concretization γ by Tγ = Tγ1 for T ∈ (A(t1) ∪ A(t2) ∪ A(Q) ∪ A(S) ∪
A(KB))\(A(Qσ′)∪A(Sσ|G)∪A(KB′)) and Tγ = Tγ′ otherwise. Then we obviously

have Siγρ = Siγiρi for all i ∈ {1, . . . , k} and Sjγρ = Sjγ
′ρ for all j ∈ {2, . . . , k}. As

γ is equally defined to γ′ for all variables occurring in the knowledge bases KBj, we

clearly have that γ is a concretization w.r.t. KBj. Moreover, as γ is equally defined

to γ1 for all variables occurring in KB1, it is also a concretization w.r.t. KB1.

• If n1 ∈ VarCase(G) and n2 = Succ(1, n1), i.e., we traverse the first child of a

VarCase node where we introduce a fresh non-abstract variable, we have n1 =

var(a), Q | S;KB with a ∈ A \ G and n2 = Qσ0 | Sσ0;KBσ0 with σ0 = [a/x]

and x ∈ Nfresh as defined in the VarCase rule. By the induction hypothesis

we obtain a variable renaming ρ′ and a concretization γ′ w.r.t. KBj for all j ∈
{2, . . . , k} such that Sjγjρj = Sjγ

′ρ′. In particular, we have Qσ0γ2ρ2 | Sσ0γ2ρ2 =

Qσ0γ
′ρ′ | Sσ0γ

′ρ′. By the soundness proof of VarCase and the fact that the

concrete state-derivation reaches a state extension of Qσ0γ2ρ2 | Sσ0γ2ρ2 from a

state extension of (var(a), Q)γ1ρ1 | Sγ1ρ1 with an empty answer substitution, we

obtain a variable renaming ρ such that γ1ρ1ρ = σ0γ1ρ2 = σ0γ2ρ2 and a′γ1 = a′γ2

for a′ 6= a. We define γ by a′γ = a′γ′ for a′ 6= a and aγ = aγ1. Since x is

fresh and only fresh variables are introduced along π, we have for all non-abstract

variables x′ ∈ (N (Q) ∪ N (S) ∪ N (KB)) \ (N (Qσ0) ∪ N (Sσ0) ∪ N (KB′)) that

x′ /∈ N (Sj) ∪ N (KBj). Hence, we can define the variable renaming ρ by xρ = aγ2

and x′ρ = x′ρ′ for x′ ∈ (N (Q)∪N (S)∪N (KB)) \ (N (Qσ0)∪N (Sσ0)∪N (KB′)).

Then we obviously have Siγρ = Siγiρi for all i ∈ {1, . . . , k} and Sjγρ = Sjγ
′ρ′ for

all j ∈ {2, . . . , k}. Since γ is equally defined to γ′ for all variables occurring in

the knowledge bases KBj, we clearly have that γ is a concretization w.r.t. KBj.

Moreover, as γ is equally defined to γ1 for all variables occurring in KB1, it is also

a concretization w.r.t. KB1.

• For all other cases we know that γ1ρ1 = γ2ρ2. Hence, the lemma follows by the

induction hypothesis.

Furthermore, we show that our definition of skip values follows exactly the number of

backtracked or cut state elements at the beginning of a state. For this we can already

use the result of Lemma 7.13 and show this only for concrete state-derivations using the

same concretization and variable renaming along a path. Moreover, we can assume that

the path does not end in an empty state as we cannot have any triple or clause paths

with such a path as a subpath.
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Lemma 7.14 (Positive Skip Values Correspond to Backtracking or Cutting). Given a path

π = n1 . . . nk with k > 1, nj /∈ Instance(G)∪Generalization(G) for all j ∈ {1, . . . , k− 1},
a concrete state-derivation such that there is a variable renaming ρ and a concretization

γ w.r.t. KB1, . . . , KBk where ni = Si;KBi for all i ∈ {1, . . . , k} and the concrete state-

derivation goes from a state extension of S1γρ to a state extension of Skγρ by reaching

state extensions of all Siγρ, and Sk 6= ε, then σπ,0 = σn1n2,dσn2...nk,0 iff the concrete state-

derivation backtracks or cuts the first d state elements of the state extension of S2γρ until

it reaches the state extension of Skγρ.

Proof. We perform the proof by induction over the length k of π.

For k = 2 we have σπ,0 = σn1n2,0 = σn1n2,0id = σn1n2,0σn2,0 and as the concrete state-

derivation cannot backtrack or cut any state elements from the state extension of S2 to

the same state extension of S2, the lemma holds. For k > 2 we can assume the lemma

holds for paths of length at most k − 1.

By the induction hypothesis we obtain that σn2...nk,0 = σn2n3,d′σn3...nk,0 iff the concrete

state-derivation backtracks or cuts d′ state elements of S3γρ until it reaches the state

extension of Skγρ. By Definition 7.6 we also know that σπ,0 = σn1n2,dσn2...nk for some

d ∈ IN. We perform a case analysis over n2 and n3.

• If n2 ∈ NoUnifyCase(G) ∪ UnequalsCase(G) and n3 = Succ(2, n2), i.e., we traverse

the right child of a NoUnifyCase or UnequalsCase node, we have d = d′ + 1.

Furthermore, the concrete state-derivation backtracks exactly one state element

from the state extension of S2γρ to the state extension of S3γρ. As the concrete

state-derivation backtracks or cuts the first d′ state elements of the state extension

of S3γρ, it backtracks or cuts the first d′+1 = d state elements of the state extension

of S2γρ and the lemma holds.

• If n2 ∈ Parallel(G) and n3 = Succ(2, n2), i.e., we traverse the right child of a

Parallel node, we have d = d′ + j where Succ(1, n2) contains j state elements.

Furthermore, as the concrete state-derivation reaches a state extension of S3γρ from

a state extension of S2γρ, it must backtrack or cut the first j state elements of of

S2γρ from the state extension of S2γρ to the state extension of S3γρ. As the concrete

state-derivation backtracks or cuts the first d′ state elements of the state extension

of S3γρ, it backtracks or cuts the first d′+j = d state elements of the state extension

of S2γρ and the lemma holds.

• If n2 ∈ Cut(G) and n3 = Succ(1, n2), i.e., we traverse a Cut node, there are two

cases depending on whether d′ = 0. If d′ = 0, we have d = 0 and the concrete

state-derivation does not backtrack or cut any state element before the first state

element of the state extension of S3γρ. Since this first state element of the state

extension of S3γρ corresponds to the first state element of the state extension of
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S2γρ the concrete state-derivation does not backtrack or cut any state element

before the first state element of the state extension of S2γρ and the lemma holds.

If otherwise d′ > 0, we have d = d′ + j where n2 = !m, Q | S ′1 | . . . | S ′j | ?m | S ′

and S ′i ∈ StateElements \ {?m} ∀i ∈ {1, . . . , j}. Furthermore, the concrete state-

derivation cuts exactly j state element from the state extension of S2γρ to the state

extension of S3γρ. Since d′ > 0 these state elements must belong to the first state

elements of the state extension of S2γρ which are backtracked or cut during the

concrete state-derivation. As the concrete state-derivation backtracks or cuts the

first d′ state elements of the state extension of S3γρ, it backtracks or cuts the first

d′ + j = d state elements of the state extension of S2γρ and the lemma holds.

• If n2 ∈ CutAll(G) and n3 = Succ(1, n2), i.e., we traverse a CutAll node, we must

have d′ = 0 since otherwise the concrete state-derivation would have backtracked

or cut at least one state element of the state extension of S3γρ. As S3 contains

only one state element, this is in contradiction to the condition Sk 6= ε. So we have

d = 0 and the concrete state-derivation does not backtrack or cut any state element

before the first state element of the state extension of S3γρ. Since this first state

element of the state extension of S3γρ corresponds to the first state element of the

state extension of S2γρ the concrete state-derivation does not backtrack or cut any

state element before the first state element of the state extension of S2γρ and the

lemma holds.

• If n2 ∈ BacktrackSecond(G)\{Parallel} and n3 = Succ(2, n2), we have d = d′+1.

Furthermore, the concrete state-derivation backtracks exactly one state element

from the state extension of S2γρ to the state extension of S3γρ. As the concrete

state-derivation backtracks or cuts the first d′ state elements of the state extension

of S3γρ, it backtracks or cuts the first d′+1 = d state elements of the state extension

of S2γρ and the lemma holds.

• If n2 ∈ Backtracking(G) and n3 = Succ(1, n2), we have d = d′ + 1. Furthermore,

the concrete state-derivation backtracks exactly one state element from the state

extension of S2γρ to the state extension of S3γρ. As the concrete state-derivation

backtracks or cuts the first d′ state elements of the state extension of S3γρ, it

backtracks or cuts the first d′ + 1 = d state elements of the state extension of S2γρ

and the lemma holds.

• If n2 ∈ VarCase(G) and n3 = Succ(j, n2) where n2 has j children, we have d = d′+1.

Furthermore, the concrete state-derivation backtracks exactly one state element

from the state extension of S2γρ to the state extension of S3γρ. As the concrete

state-derivation backtracks or cuts the first d′ state elements of the state extension
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of S3γρ, it backtracks or cuts the first d′+1 = d state elements of the state extension

of S2γρ and the lemma holds.

• If n2 ∈ Call(G) ∪ Disjunction(G) ∪ IfThen(G) ∪ Repeat(G) and n3 = Succ(1, n2),

i.e., we traverse a Call, Disjunction, IfThen or Repeat node, we have d =

max(0, d′ − 1). There are two cases depending on whether d′ > 1. If d′ > 1, we

have d = d′ − 1. Furthermore, the concrete state-derivation introduces exactly one

additional state element from the state extension of S2γρ to the state extension of

S3γρ which belongs to the first d′ state elements of the state extension of S3γρ. As

the concrete state-derivation backtracks or cuts the first d′ state elements of the

state extension of S3γρ, it backtracks or cuts the first d′ − 1 = d state elements of

the state extension of S2γρ and the lemma holds. If otherwise d′ ≤ 1, we have d = 0.

Furthermore, the concrete state-derivation introduces exactly one additional state

element from the state extension of S2γρ to the state extension of S3γρ. As the

concrete state-derivation backtracks or cuts the first d′ state elements of the state

extension of S3γρ and, thus, backtracks or cuts at most as many state elements

as introduced from the state extension of S2γρ to the state extension of S3γρ, it

backtracks or cuts no state elements before the first state element of the state

extension of S2γρ and the lemma holds.

• If n2 ∈ IfThenElse(G) ∪ Not(G) and n3 = Succ(1, n2), i.e., we traverse an

IfThenElse or Not node, we have d = max(0, d′ − 2). There are two cases

depending on whether d′ > 2. If d′ > 2, we have d = d′ − 2. Furthermore, the

concrete state-derivation introduces exactly two additional state elements from the

state extension of S2γρ to the state extension of S3γρ which belong to the first d′

state elements of the state extension of S3γρ. As the concrete state-derivation back-

tracks or cuts the first d′ state elements of the state extension of S3γρ, it backtracks

or cuts the first d′ − 2 = d state elements of the state extension of S2γρ and the

lemma holds. If otherwise d′ ≤ 2, we have d = 0. Furthermore, the concrete state-

derivation introduces exactly two additional state element from the state extension

of S2γρ to the state extension of S3γρ. As the concrete state-derivation backtracks

or cuts the first d′ state elements of the state extension of S3γρ and, thus, backtracks

or cuts at most as many state elements as introduced from the state extension of

S2γρ to the state extension of S3γρ, it backtracks or cuts no state elements before

the first state element of the state extension of S2γρ and the lemma holds.

• If n2 ∈ Case(G) and n3 = Succ(1, n2), i.e., we traverse a Case node, we have

d = max(0, d′ − j) where S2 = t, Q | Sr and |Slice(P , t)| = j. There are two cases

depending on whether d′ > j. If d′ > j, we have d = d′ − j. Furthermore, the

concrete state-derivation introduces exactly j additional state elements from the

state extension of S2γρ to the state extension of S3γρ which belong to the first
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d′ state elements of the state extension of S3γρ. As the concrete state-derivation

backtracks or cuts the first d′ state elements of the state extension of S3γρ, it

backtracks or cuts the first d′ − j = d state elements of the state extension of

S2γρ and the lemma holds. If otherwise d′ ≤ j, we have d = 0. Furthermore, the

concrete state-derivation introduces exactly j additional state element from the state

extension of S2γρ to the state extension of S3γρ. As the concrete state-derivation

backtracks or cuts the first d′ state elements of the state extension of S3γρ and,

thus, backtracks or cuts at most as many state elements as introduced from the

state extension of S2γρ to the state extension of S3γρ, it backtracks or cuts no state

elements before the first state element of the state extension of S2γρ and the lemma

holds.

• For all other cases we have d = d′ and the concrete state-derivation neither back-

tracks or cuts nor introduces state elements from the state extension of S2γρ to the

state extension of S3γρ. Thus, the lemma holds.

Now we can show that the substitutions we use for the clause heads or intermediate

goals of DTs or clauses read for triple and clause paths respectively correspond to the

answer substitutions of the concrete state-derivations along the respective path.

Lemma 7.15 (Answer Substitutions are Instances of Path Substitutions). Given a path

π = n1 . . . nk with nj /∈ Instance(G) ∪ Generalization(G) for all j ∈ {1, . . . , k − 1} and

a concrete state-derivation such that there is a variable renaming ρ and a concretization

γ w.r.t. KB1, . . . , KBk where ni = Si;KBi for all i ∈ {1, . . . , k} and the concrete state-

derivation goes from a state extension of S1γρ to a state extension of Skγρ with answer

substitution δ by reaching state extensions of all Siγρ, then σπ,0γρ = γρδ and Skγρδ =

Skγρ.

Proof. We perform the proof by induction over the length k of the path π.

For k = 1 we have n1 = nk and the empty answer substitution δ = id = σn1,0. Hence,

the lemma trivially holds.

For k > 1 we can assume the lemma holds for paths of length at most k − 1. We

perform a case analysis over n1 and n2.

• If n1 ∈ Split(G) and n2 = Succ(2, n1), i.e., we traverse the right child of a Split

node, we have n1 = t, Q;KB and n2 = Qµ;KB′ as defined in the Split rule.

By the induction hypothesis we obtain σn2...nk,0γρ = γρδ′′ where δ′′ is the answer

substitution of the concrete state-derivation from a state extension of Qµγρ to

a state extension of Skγρ and Skγρδ
′′ = Skγρ. For the answer substitution µ′



7.2. Proving the Correctness of the Transformation 201

of the concrete state-derivation from a state extension of (t, Q)γρ to a state ex-

tension of Qµγρ we know by Lemma 3.51 that γρµ′ = µγρ. Therefore, we have

γρδ = γρµ′δ′′ = µγρδ′′ = µσn2...nk,0γρ = σπ,0γρ. Furthermore, we know that µ

is idempotent as all variables in the range of µ are fresh. As we applied µ to S2

already and we know by inspection of the abstract inference rules other than In-

stance and Generalization that only fresh variables are introduced along π, we

obtain Skµ = Sk. Hence, we have Skγρδ = Skγρµ
′δ′′ = Skµγρδ

′′ = Skγρδ
′′ = Skγρ.

• If n1 ∈ Eval(G) and n2 = Succ(1, n1), i.e., we traverse the left child of an Eval

node, we have n1 = (t, Q)cm | S;KB and n2 = B′cσ
′, Qσ′ | Sσ|G;KB′ as defined in

the Eval rule. By the induction hypothesis we obtain σn2...nk,0γρ = γρδ′′ where δ′′

is the answer substitution of the concrete state-derivation from a state extension

of B′cσ
′γρ,Qσ′γρ | Sσ|Gγρ to a state extension of Skγρ and Skγρδ

′′ = Skγρ. For

the answer substitution σ′′ of the concrete state-derivation from a state extension

of (t, Q)cmγρ | Sγρ to a state extension of B′cσ
′γρ,Qσ′γρ | Sσ|Gγρ we know by

Lemma 3.28 that γρσ′′ = σ′γρ and γρ = σ|Gγρ. Furthermore, we know that σ′ is

idempotent as the range of σ′ contains only fresh variables. Now there are two cases

depending on whether σπ,0 starts with σ′ or σ|G. In the first case we know by defini-

tion of σπ,0 and Lemma 7.14 that the concrete state-derivation did not backtrack the

substitution σ′′. Hence, we obtain γρδ = γρσ′′δ′′ = σ′γρδ′′ = σ′σn2...nk,0γρ = σπ,0γρ.

Additionally, we already applied σ′ to S2. As we know by inspection of all abstract

inference rules other than Instance and Generalization that only fresh vari-

ables are introduced along π, we obtain Skσ
′ = Sk by σ′ being idempotent. Hence,

we have Skγρδ = Skγρσ
′′δ′′ = Skσ

′γρδ′′ = Skγρδ
′′ = Skγρ. In the second case

we know by definition of σπ,0 and Lemma 7.14 that the concrete state-derivation

did backtrack the substitution σ′′ and we have the same answer substitution δ′′ for

the complete concrete state-derivation. This amounts to γρδ = γρδ′′ = σGγρδ
′′ =

σGσn2...nk,0γρ = σπ,0γρ. Moreover, we obtain Skγρδ = Skγρδ
′′ = Skγρ.

• If n1 ∈ OnlyEval(G) and n2 = Succ(1, n1), i.e., we traverse an OnlyEval node,

we have n1 = (t, Q)cm | S;KB and n2 = B′cσ
′, Qσ′ | Sσ|G;KB′ as defined in the

OnlyEval rule. By the induction hypothesis we obtain σn2...nk,0γρ = γρδ′′ where

δ′′ is the answer substitution of the concrete state-derivation from a state extension

of B′cσ
′γρ,Qσ′γρ | Sσ|Gγρ to a state extension of Skγρ and Skγρδ

′′ = Skγρ. For

the answer substitution σ′′ of the concrete state-derivation from a state extension

of (t, Q)cmγρ | Sγρ to a state extension of B′cσ
′γρ,Qσ′γρ | Sσ|Gγρ we know by

Lemma 3.29 that γρσ′′ = σ′γρ and γρ = σ|Gγρ. Furthermore, we know that σ′ is

idempotent as the range of σ′ contains only fresh variables. Now there are two cases

depending on whether σπ,0 starts with σ′ or σ|G. In the first case we know by defini-

tion of σπ,0 and Lemma 7.14 that the concrete state-derivation did not backtrack the



202 Chapter 7. Transformation into Dependency Triple Problems

substitution σ′′. Hence, we obtain γρδ = γρσ′′δ′′ = σ′γρδ′′ = σ′σn2...nk,0γρ = σπ,0γρ.

Additionally, we already applied σ′ to S2. As we know by inspection of all abstract

inference rules other than Instance and Generalization that only fresh vari-

ables are introduced along π, we obtain Skσ
′ = Sk by σ′ being idempotent. Hence,

we have Skγρδ = Skγρσ
′′δ′′ = Skσ

′γρδ′′ = Skγρδ
′′ = Skγρ. In the second case

we know by definition of σπ,0 and Lemma 7.14 that the concrete state-derivation

did backtrack the substitution σ′′ and we have the same answer substitution δ′′ for

the complete concrete state-derivation. This amounts to γρδ = γρδ′′ = σGγρδ
′′ =

σGσn2...nk,0γρ = σπ,0γρ. Moreover, we obtain Skγρδ = Skγρδ
′′ = Skγρ.

• If n1 ∈ UnifyCase(G) and n2 = Succ(1, n1), i.e., we traverse the left child of a

UnifyCase node, we have n1 = =(t1, t2), Q | S;KB and n2 = Qσ′ | Sσ|G;KB′ as

defined in the UnifyCase rule. By the induction hypothesis we obtain σn2...nk,0γρ =

γρδ′′ where δ′′ is the answer substitution of the concrete state-derivation from a state

extension of Qσ′γρ | Sσ|Gγρ to a state extension of Skγρ and Skγρδ
′′ = Skγρ. For

the answer substitution σ′′ of the concrete state-derivation from a state extension

of (=(t1, t2), Q)γρ | Sγρ to a state extension of Qσ′γρ | Sσ|Gγρ we know by the

soundness proof of UnifyCase that γρσ′′ = σ′γρ and γρ = σ|Gγρ. Furthermore,

we know that σ′ is idempotent as the range of σ′ contains only fresh variables.

Now there are two cases depending on whether σπ,0 starts with σ′ or σ|G. In the

first case we know by definition of σπ,0 and Lemma 7.14 that the concrete state-

derivation did not backtrack the substitution σ′′. Hence, we obtain γρδ = γρσ′′δ′′ =

σ′γρδ′′ = σ′σn2...nk,0γρ = σπ,0γρ. Additionally, we already applied σ′ to S2. As

we know by inspection of all abstract inference rules other than Instance and

Generalization that only fresh variables are introduced along π, we obtain Skσ
′ =

Sk by σ′ being idempotent. Hence, we have Skγρδ = Skγρσ
′′δ′′ = Skσ

′γρδ′′ =

Skγρδ
′′ = Skγρ. In the second case we know by definition of σπ,0 and Lemma 7.14

that the concrete state-derivation did backtrack the substitution σ′′ and we have

the same answer substitution δ′′ for the complete concrete state-derivation. This

amounts to γρδ = γρδ′′ = σGγρδ
′′ = σGσn2...nk,0γρ = σπ,0γρ. Moreover, we obtain

Skγρδ = Skγρδ
′′ = Skγρ.

• If n1 ∈ UnifySuccess(G) and n2 = Succ(1, n1), i.e., we traverse a UnifySuccess

node, we have n1 = =(t1, t2), Q | S;KB and n2 = Qσ′ | Sσ|G;KB′ as defined in

the UnifySuccess rule. By the induction hypothesis we obtain σn2...nk,0γρ = γρδ′′

where δ′′ is the answer substitution of the concrete state-derivation from a state

extension of Qσ′γρ | Sσ|Gγρ to a state extension of Skγρ and Skγρδ
′′ = Skγρ. For

the answer substitution σ′′ of the concrete state-derivation from a state extension

of (=(t1, t2), Q)γρ | Sγρ to a state extension of Qσ′γρ | Sσ|Gγρ we know by the

soundness proof of UnifySuccess that γρσ′′ = σ′γρ and γρ = σ|Gγρ. Furthermore,
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we know that σ′ is idempotent as the range of σ′ contains only fresh variables.

Now there are two cases depending on whether σπ,0 starts with σ′ or σ|G. In the

first case we know by definition of σπ,0 and Lemma 7.14 that the concrete state-

derivation did not backtrack the substitution σ′′. Hence, we obtain γρδ = γρσ′′δ′′ =

σ′γρδ′′ = σ′σn2...nk,0γρ = σπ,0γρ. Additionally, we already applied σ′ to S2. As

we know by inspection of all abstract inference rules other than Instance and

Generalization that only fresh variables are introduced along π, we obtain Skσ
′ =

Sk by σ′ being idempotent. Hence, we have Skγρδ = Skγρσ
′′δ′′ = Skσ

′γρδ′′ =

Skγρδ
′′ = Skγρ. In the second case we know by definition of σπ,0 and Lemma 7.14

that the concrete state-derivation did backtrack the substitution σ′′ and we have

the same answer substitution δ′′ for the complete concrete state-derivation. This

amounts to γρδ = γρδ′′ = σGγρδ
′′ = σGσn2...nk,0γρ = σπ,0γρ. Moreover, we obtain

Skγρδ = Skγρδ
′′ = Skγρ.

• If n1 ∈ NoUnifyCase(G) and n2 = Succ(2, n1), i.e., we traverse the right child of

a NoUnifyCase node, we have n1 = \=(t1, t2), Q | S;KB and n2 = Sσ|G;KB′

as defined in the NoUnifyCase rule. By the induction hypothesis we obtain

σn2...nk,0γρ = γρδ′′ where δ′′ is the answer substitution of the concrete state-derivation

from a state extension of Sσ|Gγρ to a state extension of Skγρ and Skγρδ
′′ =

Skγρ. We know by the soundness proof of NoUnifyCase that γρ = σ|Gγρ. As

the answer substitution of the concrete state-derivation from a state extension of

(\=(t1, t2), Q)γρ | Sγρ to a state extension of Sσ|Gγρ is empty, we know that δ = δ′′

and, hence, γρδ = γρδ′′ = σGγρδ
′′ = σGσn2...nk,0γρ = σπ,0γρ. Moreover, we obtain

Skγρδ = Skγρδ
′′ = Skγρ.

• If n1 ∈ NoUnifyFail(G) and n2 = Succ(1, n1), i.e., we traverse a NoUnifyFail

node, we have n1 = \=(t1, t2), Q | S;KB and n2 = Sσ|G;KB′ as defined in the

NoUnifyFail rule. By the induction hypothesis we obtain σn2...nk,0γρ = γρδ′′

where δ′′ is the answer substitution of the concrete state-derivation from a state

extension of Sσ|Gγρ to a state extension of Skγρ and Skγρδ
′′ = Skγρ. We know by

the soundness proof of NoUnifyFail that γρ = σ|Gγρ. As the answer substitution

of the concrete state-derivation from a state extension of (\=(t1, t2), Q)γρ | Sγρ to a

state extension of Sσ|Gγρ is empty, we know that δ = δ′′ and, hence, γρδ = γρδ′′ =

σGγρδ
′′ = σGσn2...nk,0γρ = σπ,0γρ. Moreover, we obtain Skγρδ = Skγρδ

′′ = Skγρ.

• If n1 ∈ EqualsCase(G) and n2 = Succ(1, n1), i.e., we traverse the left child of

an EqualsCase node, we have n1 = ==(t1, t2), Q | S;KB and n2 = Qσ |
Sσ;KB′ as defined in the EqualsCase rule. By the induction hypothesis we

obtain σn2...nk,0γρ = γρδ′′ where δ′′ is the answer substitution of the concrete state-

derivation from a state extension of Qσγρ | Sσγρ to a state extension of Skγρ and

Skγρδ
′′ = Skγρ. We know by the soundness proof of EqualsCase that γρ = σγρ.



204 Chapter 7. Transformation into Dependency Triple Problems

As the answer substitution of the concrete state-derivation from a state extension

of (==(t1, t2), Q)γρ | Sγρ to a state extension of Qσγρ | Sσγρ is empty, we know

that δ = δ′′ and, hence, γρδ = γρδ′′ = σγρδ′′ = σσn2...nk,0γρ = σπ,0γρ. Moreover, we

obtain Skγρδ = Skγρδ
′′ = Skγρ.

• If n1 ∈ UnequalsCase(G) and n2 = Succ(2, n1), i.e., we traverse the right child

of an UnequalsCase node, we have n1 = \==(t1, t2), Q | S;KB and n2 =

Sσ;KB′ as defined in the UnequalsCase rule. By the induction hypothesis

we obtain σn2...nk,0γρ = γρδ′′ where δ′′ is the answer substitution of the concrete

state-derivation from a state extension of Sσγρ to a state extension of Skγρ and

Skγρδ
′′ = Skγρ. We know by the soundness proof of UnequalsCase that γρ =

σγρ. As the answer substitution of the concrete state-derivation from a state ex-

tension of (\==(t1, t2), Q)γρ | Sγρ to a state extension of Sσγρ is empty, we know

that δ = δ′′ and, hence, γρδ = γρδ′′ = σγρδ′′ = σσn2...nk,0γρ = σπ,0γρ. Moreover, we

obtain Skγρδ = Skγρδ
′′ = Skγρ.

• For all other cases we know that the concrete state-derivation has the empty answer

substitution from the state extension of S1γρ to the state extension of S2γρ. By the

induction hypothesis we obtain σn2...nk,0γρ = γρδ′′ where δ′′ is the answer substitu-

tion of the concrete state-derivation from a state extension of S2γρ to a state exten-

sion of Skγρ and Skγρδ
′′ = Skγρ. Then we have γρδ = γρδ′′ = σn2...nk,0γρ = σπ,0γρ

and Skγρδ = Skγρδ
′′ = Skγρ.

Now, using the preceding results, we can simulate the evaluation of intermediate goals

with the clauses from PG. We use the connection between concrete and abstract state-

derivations by tree paths and the connection between the answer substitutions of successful

evaluations and the substitutions we read off from a path in a termination graph.

Lemma 7.16 (Simulation of Intermediate Goals Using PG). Let S;KB ∈
Succ(1, Instance(G) ∪Generalization(G) ∪ Split(G)).

If there is a variable renaming ρ on N and a concretization γ w.r.t. KB such that

there is a concrete state-derivation from Sγρ to a state extension of 2, then we have

Rename(S;KB)γρ `∗PG 2.

Proof. From Lemma 7.12 we know that there is a tree path πtree = (0, v0, none), (1, v1, p1),

. . . , (k, vk, pk) with the following properties:
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• v0 = S;KB

• for all i ∈ {0, . . . , k} there are concretizations γi and variable renamings ρi on N
such that the concrete state-derivation reaches a scope variant of a state extension

of Siγiρi in li ≤ l steps where vi = Si;KBi and Siγi ∈ CON (Si;KBi)

• for all (i, vi, pi) with more than one successor in πtree , we have vi ∈ Split(G)

• for all (i, vi, pi) with vi ∈ Split(G) and only one successor (j, vj, i) in πtree , we have

vj = Succ(1, vi)

• for all leaves (i, vi, pi) of πtree we have vi ∈ Success(G)

The last property follows from the fact that the concrete state-derivation reaches a state

extension of 2.

We perform the proof by induction over the length k of the tree path πtree which is at

least 1.

For k = 1 we have πtree = (0, S;KB,none) and S;KB ∈ Success(G). Thus, we have

Rename(S;KB) = 2 `∗PG 2. For k > 1 we can assume the lemma holds for tree paths of

length at most k − 1.

Consider the rightmost path π through the tree path πtree . As the concrete state-

derivation reaches a state extension of 2, π must be a sequence of clause paths w.r.t.

G. If this sequence has the length 1, we obtain Rename(S;KB)σπ,0 ← Iπ ∈ PG and by

Lemma 7.13 we can w.l.o.g. assume that all concretizations and variable renamings used

in π are equal to γ and ρ. By Lemma 7.15 we know that Rename(S;KB)σπ,0 unifies

with Rename(S;KB)γρ by γρδ where δ is the answer substitution of the concrete state-

derivation from Sγρ to a state extension of 2. Thus, we obtain Rename(S;KB)γρ `∗PG
Iπγρδ. As we have for all intermediate goals in Iπ some subtree paths in π such that the

concrete state-derivation reaches a state extension of 2 from the respective intermediate

goal in Iπγρ, we can use the induction hypothesis and obtain Iπγρ `∗PG 2. Now, since δ is

the answer substitution for the complete concrete state-derivation, we obtain Iπγρδ `∗PG 2

by Lemma 7.15. Now let the length of the sequence be greater than 1. For the first clause

path in the sequence to a node vi we obtain Rename(S;KB)γρ `∗PG Rename(vi)γρ by

the identical argument as for the sequence of length 1. The remaining tree path from

(i, vi, pi) is shorter than k and, therefore, we obtain Rename(vi)γρ `∗PG 2 by the induction

hypothesis.

As we can simulate intermediate goals with PG, we can simulate the evaluation along

triple paths with the DTs in DTP(G).
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Lemma 7.17 (Simulation of Concrete State-Derivations Using DTP(G)). Given a con-

crete state-derivation and a corresponding tree path πtree w.r.t. G with the properties from

Lemma 7.12 and a rightmost path π = n0 . . . nk in πtree where for i < k, ni 6∈ Instance(G)∪
Generalization(G), we have RenameTriple(n0)γ0ρ0 `Triple(π) ◦ `∗PG RenameTriple(nk)γkρk

where the γj and ρj are the concretizations and variable renamings respectively used in

πtree .

Proof. We perform the proof by induction over k, which is the length of π minus one.

For k = 0 we have n0 = nk and, therefore, Triple(π) = RenameTriple(n0) ←
RenameTriple(n0). Thus, obviously we have RenameTriple(n0)γ0ρ0 `Triple(π)

RenameTriple(n0)γ0ρ0. For k > 0, we can assume the lemma holds for paths of length

at most k. By Lemma 7.13 we can w.l.o.g. assume that γ0 = . . . = γk = γ and

ρ0 = . . . = ρk = ρ.

We now perform a case analysis based on nk and nk−1.

If nk−1 ∈ Split(G) and nk = Succ(2, nk−1), i.e., we traverse the right child of a Split

node, we know by the induction hypothesis that RenameTriple(n0)γρ `Triple(n1...nk−1)◦`∗PG
RenameTriple(nk−1)γρ. From the Lemma 3.51 we know that γρµ′ = µγρ where

Rename(Succ(1, nk−1))γρ `∗PG 2 with answer substitution µ′. The latter follows from

Lemma 7.16 and the fact that the concrete state-derivation must reach a state extension

of 2 from Succ(1, nk−1)γρ. By Lemma 7.15, we also know that RenameTriple(n0)γρ unifies

with the head of Triple(π) by γρδ where δ is the answer substitution for the complete

concrete state-derivation and that we do not have to apply δ to RenameTriple(nk) com-

pletely. Furthermore, we obtain the same derivation for Rename(Succ(1, nk−1))γρδ as

for Rename(Succ(1, nk−1))γρ, but with the empty answer substitution by Lemma 7.15.

Thus, we obtain:

RenameTriple(n0)γρ

`Triple(π) ◦ `∗PG Rename(Succ(1, nk−1))γρδ,RenameTriple(nk)µ
−1γρµ′

`∗PG RenameTriple(nk)µ
−1γρµ′

= RenameTriple(nk)µ
−1µγρ

= RenameTriple(nk)γρ

If nk−1 ∈ Eval(G) and nk = Succ(1, nk−1), i.e., we traverse the left child of an Eval

node, we know by the induction hypothesis that RenameTriple(n0)γρ `Triple(n1...nk−1) ◦ `∗PG
RenameTriple(nk−1)γρ. From Lemma 3.28 we know that Qγρσ′′ = Qσ′γρ and Sγρ =

Sσ|Gγρ. By Lemma 7.15, we also know that RenameTriple(n0)γρ unifies with the head

of Triple(π) by γρδ where δ is the answer substitution for the complete concrete state-

derivation and that we do not have to apply δ to RenameTriple(nk) completely. Let
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nk−1 = (t, Q)im | S; (G,F ,U). Then, we obtain:

RenameTriple(n0)γρ

`Triple(π) ◦ `∗PG RenameTriple(Qγρσ′′ | Sγρ; (G,F ,U))

= RenameTriple(Qσ′γρ | Sσ|Gγρ; (G ′,F ′,Uσ|G))

= RenameTriple(nk)γρ

If nk−1 ∈ OnlyEval(G), we have the same case as for nk−1 ∈ Eval(G) and nk =

Succ(1, nk−1).

If nk−1 ∈ UnifyCase(G) and nk = Succ(1, nk−1), i.e., we traverse the left child of

an UnifyCase node, we know by the induction hypothesis that RenameTriple(n0)γρ

`Triple(n1...nk−1) ◦ `∗PG RenameTriple(nk−1)γρ. From the proof of UnifyCase we know that

Qγρσ′′ = Qσ′γρ and Sγρ = Sσ|Gγρ. By Lemma 7.15, we also know that

RenameTriple(n0)γρ unifies with the head of Triple(π) by γρδ where δ is the answer sub-

stitution for the complete concrete state-derivation and that we do not have to apply δ to

RenameTriple(nk) completely. Let nk−1 = (=(t1, t2), Q)bm | S; (G,F ,U). Then, we obtain:

RenameTriple(n0)γρ

`Triple(π) ◦ `∗PG RenameTriple(Qγρσ′′ | Sγρ; (G,F ,U))

= RenameTriple(Qσ′γρ | Sσ|Gγρ; (G ′,F ′,Uσ|G))

= RenameTriple(nk)γρ

If nk−1 ∈ UnifySuccess(G), we have the same case as for nk−1 ∈ UnifyCase(G) and

nk = Succ(1, nk−1).

If nk−1 ∈ EqualsCase(G) and nk = Succ(1, nk−1), i.e., we traverse the left child of

an EqualsCase node, we know by the induction hypothesis that RenameTriple(n0)γρ

`Triple(n1...nk−1) ◦ `∗PG RenameTriple(nk−1)γρ. From the proof of EqualsCase we know

that γρ = σγρ. By Lemma 7.15, we also know that RenameTriple(n0)γρ unifies with the

head of Triple(π) by γρδ where δ is the answer substitution for the complete concrete

state-derivation and that we do not have to apply δ to RenameTriple(nk) completely. Let

nk−1 = ==(t1, t2), Q | S; (G,F ,U). Then, we obtain:

RenameTriple(n0)γρ

`Triple(π) ◦ `∗PG RenameTriple(Qγρ | Sγρ; (G,F ,U))

= RenameTriple(Qσγρ | Sσγρ; (G ′,F ,U ′))

= RenameTriple(nk)γρ

If nk−1 ∈ UnequalsCase(G) and nk = Succ(2, nk−1), i.e., we traverse the right child of
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an UnequalsCase node, we know by the induction hypothesis that RenameTriple(n0)γρ

`Triple(n1...nk−1) ◦ `∗PG RenameTriple(nk−1)γρ. From the proof of UnequalsCase we know

that γρ = σγρ. By Lemma 7.15, we also know that RenameTriple(n0)γρ unifies with the

head of Triple(π) by γρδ where δ is the answer substitution for the complete concrete

state-derivation and that we do not have to apply δ to RenameTriple(nk) completely. Let

nk−1 = \==(t1, t2), Q | S; (G,F ,U). Then, we obtain:

RenameTriple(n0)γρ

`Triple(π) ◦ `∗PG RenameTriple(Sγρ; (G,F ,U))

= RenameTriple(Sσγρ; (G ′,F ,U ′))

= RenameTriple(nk)γρ

If nk−1 ∈ NoUnifyCase(G) and nk = Succ(2, nk−1), i.e., we traverse the right child of

a NoUnifyCase node, we know by the induction hypothesis that RenameTriple(n0)γρ

`Triple(n1...nk−1) ◦ `∗PG RenameTriple(nk−1)γρ. From the proof of NoUnifyCase we know

that Sγρ = Sσ|Gγρ. By Lemma 7.15, we also know that RenameTriple(n0)γρ unifies with

the head of Triple(π) by γρδ where δ is the answer substitution for the complete concrete

state-derivation and that we do not have to apply δ to RenameTriple(nk) completely. Let

nk−1 = \=(t1, t2), Q | S; (G,F ,U). Then, we obtain:

RenameTriple(n0)γρ

`Triple(π) ◦ `∗PG RenameTriple(Sγρ; (G,F ,U))

= RenameTriple(Sσ|Gγρ; (G ′,F ′,Uσ|G))

= RenameTriple(nk)γρ

If nk−1 ∈ NoUnifyFail(G), we have the same case as for nk−1 ∈ NoUnifyCase(G) and

nk = Succ(2, nk−1).

If nk−1 ∈ VarCase(G), nk−1 has l children, 1 < i < l and nk = Succ(i, nk−1), i.e., we

traverse a child of a VarCase node where we consider the case of an already existing

variable, we know by the induction hypothesis that RenameTriple(n0)γρ `Triple(n1...nk−1)

◦ `∗PG RenameTriple(nk−1)γρ. From the proof of VarCase we know that γρ = σiγρ. By

Lemma 7.15, we also know that RenameTriple(n0)γρ unifies with the head of Triple(π)

by γρδ where δ is the answer substitution for the complete concrete state-derivation and

that we do not have to apply δ to RenameTriple(nk) completely. Let nk−1 = var(a), Q |
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S; (G,F ,U). Then, we obtain:

RenameTriple(n0)γρ

`Triple(π) ◦ `∗PG RenameTriple(Qγρ | Sγρ; (G,F ,U))

= RenameTriple(Qσiγρ | Sσiγρ; (G,F ,Uσi))

= RenameTriple(nk)γρ

If nk−1 ∈ VarCase(G) and nk = Succ(1, nk−1), i.e., we traverse a child of a Var-

Case node where we consider the case of a variable not already existing in the state,

we know by the induction hypothesis that RenameTriple(n0)γρ `Triple(n1...nk−1) ◦ `∗PG
RenameTriple(nk−1)γρ. From the proof of VarCase and Lemma 7.13 we know that

σ0γρ = γρ. By Lemma 7.15, we also know that RenameTriple(n0)γρ unifies with the

head of Triple(π) by γρδ where δ is the answer substitution for the complete concrete

state-derivation and that we do not have to apply δ to RenameTriple(nk) completely. Let

nk−1 = var(a), Q | S; (G,F ,U). Then, we obtain:

RenameTriple(n0)γρ

`Triple(π) ◦ `∗PG RenameTriple(Qγρ | Sγρ; (G,F ,U))

= RenameTriple(Qσ0γρ | Sσ0γρ; (G,F ,Uσ0))

= RenameTriple(nk)γρ

If nk−1 ∈ BacktrackSecond(G) and nk = Succ(2, nk−1) or nk−1 ∈ Backtracking(G),

i.e., we backtrack by removing the first element of the backtracking list, we know by

Lemma 7.15 that RenameTriple(n0)γρ unifies with the head of Triple(π) by γρδ where δ

is the answer substitution for the complete concrete state-derivation and that we do not

have to apply δ to RenameTriple(nk) completely. We perform a case analysis based on the

existence of a node from the set Introducing(G). If such a node does not exist in our path,

there is also no Split node in our path. Thus, Iπ = 2. Furthermore, we have that σπ,0

can only contain backtrack substitutions or substitutions introduced by the EqualsCase

rule. To see this, remember that the only rules which reduce the skip value for σπ,0 are

from the set Introducing(G). As we rise this value from nk to nk−1 at least by one, we

cannot use any other substitutions than backtrack substitutions, substitutions introduced

by the EqualsCase rule or substitutions generalizing answer substitutions for Split

nodes. Since we do not have the latter on the path π, we only have substitutions of the

first two kinds. Both of these kinds of substitutions must correspond to the concretization

γ as the concrete state-derivation reaches state extensions of all concretized states along

πtree . Thus, we obtain RenameTriple(n0)γρ `Triple(π) RenameTriple(nk)γρ. If there is such

a node in our path, i.e., there is a j such that nj ∈ Introducing(G) and on the remaining

path π′ = nj . . . nk we have ni /∈ Introducing(G) for all i ∈ {j, . . . , k}, we know by the
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induction hypothesis that RenameTriple(n0)γρ `Triple(n1...nj) ◦ `∗PG RenameTriple(nj)γρ.

For the remaining path π′ we have Iπ′ = 2 and σπ′,0 consisting of backtrack substitutions

and substitutions introduced by the EqualsCase rule only by the identical argument as

before. Thus, we obtain RenameTriple(n0)γρ `Triple(π) ◦ `∗PG RenameTriple(nk)γρ.

Finally, if nk−1 is in none of the above sets, we have σπ = σn1...nk−1
and Iπ = In1...nk−1

.

Again, from the induction hypothesis we know that RenameTriple(n0)γρ `Triple(n1...nk−1)

◦ `∗PG RenameTriple(nk−1)γρ. From the definition of the abstract rules used, we know that

V(sk) ⊆ V(sk−1) as they do not apply any substitutions and, thus, RenameTriple(n0)γρ

`Triple(π) ◦ `∗PG RenameTriple(nk)γρ.

We now state the central theorem of this section where we prove that termination of

the represented DT problem implies termination of the original Prolog program w.r.t. the

specified set of queries represented by the root state of the termination graph for the

Prolog program.

Theorem 7.18 (Correctness). If G is a termination graph for a Prolog program P such

that (DG, CG,PG) is terminating then all concretizations of root(G) have only finite con-

crete state-derivations w.r.t. the rules of Definition 5.1.

Proof. Assume (DG, CG,PG) is terminating, but there is a concretization Sγ ∈
CON (S;KB) from root(G) = n0 = S;KB that has an infinite concrete state-derivation.

Then, according to Lemma 7.12 there is an infinite tree path πtree where the rightmost

path π = n0, n1, n2, . . . in πtree is an infinite sequence of triple paths π0, π1, π2, . . . and

there are indices l0, l1, l2, . . . such that πm = nlm , . . . .

Now, according to Lemma 7.17 we know that for all m ∈ IN there are concretiza-

tions γm and variable renamings ρm such that RenameTriple(nlm)γlmρm `Triple(πm) ◦ `∗PG
RenameTriple(nlm+1)γlm+1ρm+1.

Thus, RenameTriple(nl0)γl0ρ0 ∈ CG starts an infinite (DG, CG,PG)-chain

(RenameTriple(nl0)σπ0,∅ ← Iπ0 ,RenameTriple(nl1)),

(RenameTriple(nl1)σπ1,∅ ← Iπ1 ,RenameTriple(nl2)),

. . .

which contradicts our initial assumption and, hence, proves the theorem.

Corollary 7.19 (Termination Analysis of Prolog). A Prolog program P is terminating

w.r.t. a class of queries Q described by a symbol p ∈ Σ and a moding function m : Σ×IN→
{in,out} if G is a termination graph for the initial node S(p,m) and (DG, CG,PG) is

terminating.

Still, as for the approach in [Sch08], the reverse direction of this corollary does not

hold as our method is not termination-preserving. There are two reasons for that. First,

we may have lost too much precision during the construction of the termination graph

and obtain non-terminating cycles. Second, the represented DT problem may also lose
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precision compared to the termination graph. We illustrate these issues with the following

two examples.

Example 7.20. Consider again the first termination graph from Example 6.9 for the

Prolog program P which is terminating w.r.t. the query set Q from the same example.

We obtain the following DTs for this termination graph.

q1(T3) ← pc4(T3), r5(T3).

r5(T6) ← r5(T6).

Moreover, we obtain the following clauses.

rc5(s(s(0))) ← 2.

rc5(T6) ← rc5(T6).

pc4(s(s(0))) ← 2.

As we assume that the call set contains all possible goals for the renamed states, this DT

problem is not terminating.

Note that we can obtain a terminating DT problem for P and Q by constructing an

alternative termination graph like the second one from Example 6.9.

Especially the following example demonstrates that the analysis of existential termina-

tion for Prolog programs is hard for our approach despite the fact that our method is in

principle capable of analyzing existential termination. In particular, the constructed ter-

mination graph in the example contains all relevant information, but we need a stronger

transformation to use it.

Example 7.21. Consider the following Prolog program P

q(X) ← once(p(X)). (87)

p(0) ← 2. (88)

p(s(X)) ← p(X). (89)

and query set Q = {q(t) | q(t) ∈ PrologTerms(Σ,N )}. P is terminating w.r.t. Q. Using

the standard heuristic with the same parameters as in Example 6.3 except for MinExSteps

where we use a value of 2, we obtain the following termination graph.
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q(T1); (∅,∅,∅)

(q(T1))871 ; (∅,∅,∅)

Case

once(p(T2)); (∅,∅,∅)

OnlyEvalT1/T2

call(p(T2), !); (∅,∅,∅)

Once

p(T2), !2; (∅,∅,∅)

Call

(p(T2), !2)883 | (p(T2), !2)893 ; (∅,∅,∅)

Case

!2 | (p(T2), !2)893 ; (∅,∅,∅)

Eval

T2/0

(p(T2), !2)893 ; (∅,∅, {(p(0), p(T2))})

Eval

2; (∅,∅,∅)

CutAll

p(T3), !2; (∅,∅,∅)

EvalT2/s(T3)

Instance

ε; (∅,∅,∅)

Eval

ε; (∅,∅,∅)

Success

This termination graph represents the following DTs.

q1(T2) ← p5(T2).

p5(s(T3)) ← p5(T3).

Moreover, we obtain the following clauses.

pc5(0) ← 2.

pc5(s(T3)) ← pc5(T3).

According to our assumptions concerning the call set, this DT problem is not terminating.

The reason for the lost precision is that we lose the context of the trailing cut by our

renaming which only considers the variables occurring in a state.



7.3. Example Transformations 213

7.3 Example Transformations

We now give some examples for our transformation using Prolog programs from this thesis

or the TPDB.

Example 7.22. Consider the termination graph from Example 3.39. We obtain the

following DTs for this termination graph.

even1(T2) ← c5(T2).

c5(s(s(T4))) ← c5(T4).

Moreover, we obtain the following clauses.

cc5(0) ← 2.

cc5(s(s(T4))) ← cc5(T4).

Example 7.23. Consider the termination graph from Example 3.42. We obtain the

following DTs for this termination graph.

q1(s(s(T4))) ← p18(T4, s(0)).

p18(s(T7), T8) ← p18(T7, s(T8)).

Moreover, we obtain the following clauses.

pc18(0, T6) ← 2.

pc18(s(T7), T8) ← pc18(T7, s(T8)).

Example 7.24. Consider the termination graph from Example 3.47. We obtain the

following DT for this termination graph.

p1(s(T2)) ← p1(T2).

Moreover, we obtain the following (equal) clause.

pc1(s(T2)) ← pc1(T2).
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Example 7.25. Consider the termination graph from Example 3.48. We obtain the

following DT for this termination graph.

p1(s(T2)) ← p1(T2).

Moreover, we obtain the following clauses.

pc1(T3) ← 2.

pc1(s(T2)) ← pc1(T2).

Example 7.26. Consider the termination graph from Example 3.52. We obtain the

following DT for this termination graph.

p1(s(T2)) ← p1(T2).

Moreover, we obtain the following clause.

pc1(s(T2)) ← pc1(T2).

Note that we obtain this clause for the clause path to the Success node while we obtain

no clause for the left successor of the Split node since this node is an Instance node

itself.

Example 7.27. Consider the second termination graph from Example 6.9. We obtain

no DTs for this termination graph and no clauses. Hence, the represented DT problem

trivially terminates. For acyclic termination graphs G, we always obtain DT problems

(DG, CG,PG) where DG is empty. Thus, we do not need to detect that a termination

graph is acyclic to obtain a trivial termination proof.

Example 7.28. Consider the two termination graphs from Example 6.10. For the first

graph, we obtain the following DT.

p1(T10, T10, a) ← p1(T10, T10, a).

Moreover, we obtain the following clauses.

pc1(T4, T4, a) ← 2.

pc1(T10, T10, a) ← pc1(T10, T10, a).

As mentioned in Example 6.10, this DT problem is obviously not terminating. However,

for the second termination graph we obtain no DTs again and can, thus, trivially prove

termination of the original Prolog program.
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Example 7.29. Consider the termination graph from Example 6.12. We obtain the

following DTs for this termination graph.

q1 ← p4(s(s(0))).

p4(s(s(0))) ← p8(s(s(s(0)))).

p4(T2) ← p8(T2).

p8(s(T3)) ← p8(T3).

p8(s(s(s(0)))) ← p8(s(s(s(0)))).

Moreover, we obtain the following clauses.

pc4(s(s(0))) ← pc8(s(s(s(0)))).

pc4(T2) ← pc8(T2).

pc8(0) ← 2.

pc8(s(T3)) ← pc8(T3).

pc8(s(s(s(0)))) ← pc8(s(s(s(0)))).

As mentioned in Example 6.12, this DT problem is obviously not terminating according to

our assumptions for the call set as we reach the last DT which is already not terminating

alone.

Example 7.30. Consider the two termination graphs from Example 6.15. For the first

graph, we obtain the following DTs.

p1 ← q4.

q4 ← q4.

Moreover, we obtain the following clauses.

qc4 ← 2.

qc4 ← qc4.

As mentioned in Example 6.15, this DT problem is obviously not terminating. However,

for the second termination graph we obtain no DTs again and can, thus, trivially prove

termination of the original Prolog program.
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Example 7.31. To show that the transformation into DT problems is in fact more power-

ful than the pre-processing for Prolog programs, we consider the following Prolog program

giesl97.pl from the TPDB

f(0, Y, 0) ← 2.

f(s(X), Y, Z) ← f(X, Y, U), f(U, Y, Z).

and the set of queries Q = {f(t1, t2, t3) | t1 is ground}. This program terminates w.r.t. Q.

Although the program is very small, the termination graph we construct for it using the

standard heuristic with the same parameters as in Example 7.21 is already quite complex.

Thus, we omit the graph for this example.

Using the pre-processing from [Sch08], we obtain the following Prolog program P

f1(0, T5, 0) ← 2.

f1(s(T9), T12, T13) ← p7(T9, T12, X13, T13).

p7(0, T27, 0, 0) ← 2.

p7(s(T32), T34, X47, T35) ← f23(T32, T34, X46).

p7(s(T32), T39, X47, T40) ← f23(T32, T39, T38), p7(T38, T39, X47, T40).

f23(0, T47, 0) ← 2.

f23(s(T52), T54, X74) ← f23(T52, T54, X73).

f23(s(T52), T58, X74) ← f23(T52, T58, T57), f23(T57, T58, X74).

and the set of queries Q′ = {f1(t1, t2, t3) | t1 is ground}. P is not terminating w.r.t.

Q′. To see this, consider the query f1(s(s(s(s(0)))), Y, Z). This query can have the fol-

lowing derivation: f1(s(s(s(s(0)))), Y, Z) ` p7(s(s(s(0))), Y,X13, Z) ` f23(s(s(0)), Y,X46) `
f23(s(0), Y, T57), f23(T57, Y,X46) ` f23(0, Y,X73), f23(T57, Y,X46) ` f23(T57, Y,X46). Now,

this last query does not terminate universally.

However, using our transformation into DT problems, we obtain the DTs

f1(s(T9), T12, T13) ← p7(T9, T12, X13, T13).

p7(s(T32), T34, X47, T35) ← f23(T32, T34, X46).

p7(s(T32), T39, X47, T40) ← fc23(T32, T39, T38), p7(T38, T39, X47, T40).

f23(s(T52), T54, X74) ← f23(T52, T54, X73).

f23(s(T52), T58, X74) ← fc23(T52, T58, T57), f23(T57, T58, X74).
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and the following clauses.

qc7(0, T27, 0, 0) ← 2.

qc7(s(T32), T39, X47, T40) ← fc23(T32, T39, T38), qc7(T38, T39, X47, T40).

fc23(0, T47, 0) ← 2.

fc23(s(T52), T58, X74) ← fc23(T52, T58, T57), fc23(T57, T58, X74).

This DT problem is terminating according to our assumptions regarding the call set and

our fully automated termination prover AProVE manages to prove this.

Example 7.32. Finally, we demonstrate the complete transformation for the Prolog pro-

gram computing addition of natural numbers from Example 4.11.

Using the standard heuristic with the same parameters as for Example 6.3, we obtain

the termination graph depicted on the next page. In this graph, we use the following

knowledge bases.

KB1 = ({T8}, {P,X}, {(add(X, 0, X), add(T1, T8, T3))

KB2 = ({T8}, {P,X}, {(add(X, 0, X), add(T1, T8, T3)), (isZero(0), isZero(T8))})

KB3 = ({T8}, {P,X}, {(add(X, 0, X), add(T1, T8, T3)), (isZero(0), isZero(T8)),

(p(0, 0), p(T8, P ))})

This termination graph represents the following DT.

add1(T7, s(T10), s(T9)) ← add1(T7, T10, T9).

Moreover, the following clauses are represented as well.

addc1(T4, 0, T4) ← 2.

addc1(T7, s(T10), s(T9)) ← addc1(T7, T10, T9).

Using the same assumption for the call set as in Example 7.2, AProVE can easily prove

termination of this DT problem.



218 Chapter 7. Transformation into Dependency Triple Problems

add(T1, T2, T3); ({T2},∅,∅)(add(T1, T2, T3))501 | (add(T1, T2, T3))511 ; ({T2},∅,∅)
Case

2 | (add(T1, 0, T3))511 ; (∅,∅,∅)

Eval

T1/T4, T2/0, T3/T4

(add(T1, T2, T3))511 ; ({T2}, {X}, {(add(X, 0, X), add(T1, T2, T3))})

Eval

(add(T1, 0, T3))511 ; (∅,∅,∅)

Success

\+(isZero(T8)), p(T8, P ), add(T7, P, T9);KB1

Eval

T1/T7, T2/T8, T3/s(T9)

ε; (∅,∅,∅)

Eval

\+(isZero(0)), p(0, P ),

add(T5, P, T6); (∅,∅,∅)

EvalT1/T5, T3/s(T6)

ε; (∅,∅,∅)

Eval

call(isZero(T8)), !5, fail |
p(T8, P ), add(T7, P, T9);KB1

Not

call(isZero(0)), !2, fail |
p(0, P ), add(T5, P, T6); (∅,∅,∅)

Not

isZero(T8), !5, fail | ?6 |
p(T8, P ), add(T7, P, T9);KB1

Call

isZero(0), !2, fail | ?3 |
p(0, P ), add(T5, P, T6); (∅,∅,∅)

Call

(isZero(T8), !5, fail)547 | ?7 | ?6 |
p(T8, P ), add(T7, P, T9);KB1

Case

(isZero(0), !2, fail)544 | ?4 | ?3 |
p(0, P ), add(T5, P, T6); (∅,∅,∅)

Case

?7 | ?6 | p(T8, P ), add(T7, P, T9);KB2

Backtrack

!2, fail | ?4 | ?3 |
p(0, P ), add(T5, P, T6); (∅,∅,∅)

OnlyEval

?6 | p(T8, P ), add(T7, P, T9);KB2

Failure

fail; (∅,∅,∅)

CutAll

p(T8, P ), add(T7, P, T9);KB2

Failure

ε; (∅,∅,∅)

Fail

(p(T8, P ), add(T7, P, T9))528 | (p(T8, P ), add(T7, P, T9))538 ;KB2

Case

(p(T8, P ), add(T7, P, T9))538 ;KB3

Backtrack

add(T7, T10, T9); ({T10},∅,∅)

Eval
T8/s(T10), P/T10

Instance

ε; (∅,∅,∅)
Eval

7.4 Summary

We defined the DT problem which is represented by a termination graph for a Prolog

program and query set and proved that termination of the DT problem implies termina-

tion of the original Prolog program w.r.t. the specified query set. Hence, we can apply

any technique for termination analysis of DT problems to prove termination of Prolog

programs. Furthermore, we gave the DT problems which are represented by a number of

example termination graphs for Prolog programs from this thesis.
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In Chapter 3 we extended the approach from [Sch08] to fully handle the use of cuts

and meta-programming (C1) according to the ISO standard for Prolog [DEC96] in the

presence of rational terms and unification without occurs-check (C3). We also introduced

additional inference rules to handle errors due to uninstantiated variable or undefined

predicate calls (C2). Additionally, we closed a gap in the automation of the approach by

introducing a new backtracking criterion (C4) while we also improved the precision and

speed of this approach by extending the inference rules for evaluation, instantiation and

splitting of goals (C5).

We further extended the method to altogether handle 26 built-in predicates (C6) by

introducing 33 additional concrete and 41 additional sound abstract inference rules in

Chapter 4. Furthermore, we discussed the problems occurring by trying to handle the

remaining built-in predicates defined in the ISO standard and gave ideas how to solve

these problems in extensions of our method for future work. The results of Chapter 3

were also adapted to the extended rule set where necessary.

We proved in Chapter 5 that the concrete inference rules from our approach can be

used to simulate the operational semantics of Prolog according to the ISO standard (C7).

Thus, the analysis of termination graphs yields valid results for Prolog programs.

For the deterministic construction of termination graphs for a given Prolog program and

query set we introduced an always terminating standard heuristic (C8) which controls the

application of graph closing rules in contrast to evaluating rules in Chapter 6.

Afterwards we showed how to obtain a DT problem from a termination graph where

termination of the DT problem implies termination of the original Prolog program w.r.t.

the query set for which the termination graph was constructed (C9) in Chapter 7. Thus,

we can use every technique for termination analysis of DT problems to analyze termination

of Prolog programs. Therefore, we have turned the pre-processing for Prolog programs

from [Sch08] into a transformation from Prolog programs to DT problems which further

increases the precision of this approach.

Throughout the thesis we used examples to illustrate definitions and problems where

we have submitted most of these examples to the TPDB and where already 76 examples

have been accepted and used for the international Termination Competition 2009 (C11).
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Combining the Contributions

Starting with a Prolog program and query set to analyze, Chapter 5 connects such Prolog

programs and queries with the concrete inference rules and, consequently, abstract infer-

ence rules and termination graphs used in our approach. While Chapter 3 and Chapter 4

allow for an analysis of Prolog programs using more features offered by the ISO standard or

real Prolog implementations, Chapter 6 yields an algorithm to deterministically apply the

abstract inference rules in order to obtain a termination graph for the Prolog program and

query set. According to Chapter 7, this termination graph represents a DT problem whose

termination implies termination of the original Prolog program w.r.t. the specified query

set. Afterwards, every technique for termination analysis of DT problems can be used to

analyze the resulting DT problem. Thus, we have made all such techniques for termina-

tion analysis of DT problems available for termination analysis of real Prolog programs as

opposed to standard logic programs. Since DT problems can be transformed into depen-

dency pair problems [Sch08, SGN09], all techniques for termination analysis of dependency

pair problems (e.g., [AG00, GTSF03, GTS05, TGS04, HM05, GTSF06]) and, therefore,

term rewriting (e.g., [Der87, Zan95, AG00, GTSF06, EWZ06, Sch08, FGP+09, SKW+09])

can also be applied to analyze Prolog programs in combination with our transformation.

Empirical Evaluation

The following contributions of this thesis have already been implemented in the fully

automated termination prover AProVE and used for the international Termination Com-

petition 2009 [MZ07] (C10).

• We used the more precise and fully automatable abstract evaluation rules Back-

track, Eval and OnlyEval from this thesis.

• We used the pre-processing from [Sch08] to show termination of Prolog programs

using cuts and negation-as-failure. The correctness of this method relies on our proof

that concrete state-derivations can be used to simulate the operational semantics of

Prolog programs.

• To construct termination graphs automatically we used a simplified version of the

standard heuristic presented in this thesis. This heuristic already makes use of the

distinction between the Instance and Generalization rule.

During the international Termination Competition 2009, AProVE was the only submitted

tool capable of analyzing logic programs with cuts, i.e., Prolog programs not using other

built-in predicates than !/0 and only using a simplified form of meta-programming without

the transformation into applications of the built-in predicate call/1. Since not all examples

from the TPDB [TPD09] were used in the international Termination Competition 2009,
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we also ran AProVE on all 104 Prolog programs from the TPDB category LP CUT. These

Prolog programs make use of the cut and, to some extent, of meta-programming as used for

negation-as-failure. From these 104 examples there are 10 known to be non-terminating.

AProVE managed to prove termination of 78 of the remaining 94 potentially terminating

examples. To see the progress of AProVE on Prolog programs using cuts, we additionally

ran a version of AProVE on the same example set where both versions are identical except

that the second version does not use the pre-processing. Both versions of AProVE were

run on a 2.67 GHz Intel Core i7 and, as in the international Termination Competition,

we used a time-out of 60 seconds for each example.

For both versions we give the number of examples which could be proved terminating

(denoted “Successes”), the number of examples where termination could not be shown

(“Failures”), the number of examples for which the timeout of 60 seconds was reached

(“Timeouts”), and the total running time (“Total”) in seconds. Here, AProVE cut is

the version of AProVE using the pre-processing and AProVE 09 is the version where the

pre-processing is deactivated.

AProVE cut AProVE 09

Successes 78 10

Failures 22 89

Timeouts 4 5

Total 583.7 1069.7

The table shows the significant advance in the termination analysis of Prolog programs

using cuts. All details of this empirical evaluation can also be seen online and one can

run AProVE on arbitrary examples via a web interface [SGS+10].

Nevertheless, except for the features concerning unification without occurs-check, all

theoretical contributions of this thesis have been implemented in AProVE, too. By the

transformation into DT problems, we can show termination of four additional examples

while reducing the average time needed to find termination proofs by half. A very strong

increase of power can, however, be seen on the examples from the category LP LP, which

contains only definite logic programs. Considering the parameters of the heuristic, we

have tested AProVE on the complete example set with several combinations of param-

eter values. The best results yielding a superset of proved examples compared to all

other combinations of parameters on this example set was achieved using the param-

eters MinExSteps = 2, MaxBranchingFactor = 3, FiniteGeneralizationDepth = 7 and

FiniteGeneralizationPosition = 2. The following table shows the empirical results for

AProVE using the new transformation (AProVE DT) compared to the version AProVE cut

and a version of AProVE, using a direct transformation into term rewriting and the pre-

processing (AProVE parallel cut) or the transformation into DT problems (AProVE parallel

DT) in parallel on the category LP LP containing 298 examples.
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AProVE cut AProVE DT AProVE parallel cut AProVE parallel DT

Successes 181 233 234 235

Failures 107 57 50 52

Timeouts 10 8 14 11

Total 2395.5 1835.8 1497.7 1667.2

For the category LP CUT we obtain the following results.

AProVE parallel cut AProVE DT AProVE parallel DT

Successes 78 82 82

Failures 22 20 19

Timeouts 4 2 3

Total 892.5 475.8 591.8

The parallel execution of the direct transformation into term rewriting and the new

transformation into DT problems yields a real superset of proved examples compared to

all other versions of AProVE.

Future Work

While the contributions of this thesis significantly improve the state of the art in termi-

nation analysis of real Prolog programs, there are still some problems left to solve.

The precision of the abstract inference rules from Chapter 3 and Chapter 4 can be

further improved by for example adding knowledge about inequality of terms (as opposed

to non-unifiability) or abstract variables which do not represent non-abstract variables

themselves (as opposed to ground terms which do not contain variables at all) to the

knowledge bases or refining the conditions and approximations used in the abstract infer-

ence rules. Especially a more detailed shape analysis could strongly improve the precision

of our approach. Also, a more sophisticated analysis of the call set for the DT problems

represented by termination graphs might yield a more precise method. Further improve-

ments of both precision and speed might be achieved by extending the standard heuristic

or finding alternative or more specialized heuristics and methods to automatically decide

which heuristic and which parameters to choose for a certain pair of programs and inputs.

Furthermore, there are still some features of real Prolog programs which are not handled

in this thesis. The most important features which should be analyzed are the arithmetical

features of Prolog. While there are already existing approaches capable of analyzing

numerical features [SD04], another promising approach would be to adapt the results for

integer term rewriting [FGP+09] to logic programming or, even better, the dependency

triple framework. However, as discussed in Chapter 4, the heuristic for the construction

of termination graphs must also be adapted to generalize numbers in order to be still

terminating as soon as we consider numbers in our approach. Anyway, the extension
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of this framework to analyze programs over an infinite or growing signature would also

be important to better handle, e.g., the built-in predicates for type testing. Another

point would be to gather knowledge about numerical properties of abstract variables in

the knowledge bases. Further important features like error handling or input and output

are also open topics. In addition to that, real Prolog implementations usually offer more

features than defined in the ISO standard. Definite clause grammars and constraint

logic programming are examples for features which are widely supported by real Prolog

implementations while they do not belong to the ISO standard. It is practically relevant to

handle such features as many real Prolog applications make use of them. For instance, the

approaches from [MR03] and [MB05] are capable of analyzing constraint logic programs.

However, by handling more features of Prolog some of the assumptions we make in this

thesis will not hold anymore, such that some of the features already considered in this

thesis have to be re-considered.
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