0 Prolog
↳1 PrologToDTProblemTransformerProof (⇐)
↳2 TRIPLES
↳3 TriplesToPiDPProof (⇐)
↳4 PiDP
↳5 DependencyGraphProof (⇔)
↳6 AND
↳7 PiDP
↳8 UsableRulesProof (⇔)
↳9 PiDP
↳10 PiDPToQDPProof (⇔)
↳11 QDP
↳12 QDPSizeChangeProof (⇔)
↳13 YES
↳14 PiDP
↳15 PiDPToQDPProof (⇔)
↳16 QDP
↳17 QDPSizeChangeProof (⇔)
↳18 YES
SUBSET1_IN_GG(.(T21, T7), .(T22, T23)) → U2_GG(T21, T7, T22, T23, member10_in_gg(T21, T23))
SUBSET1_IN_GG(.(T21, T7), .(T22, T23)) → MEMBER10_IN_GG(T21, T23)
MEMBER10_IN_GG(T42, .(T43, T44)) → U1_GG(T42, T43, T44, member10_in_gg(T42, T44))
MEMBER10_IN_GG(T42, .(T43, T44)) → MEMBER10_IN_GG(T42, T44)
SUBSET1_IN_GG(.(T21, T7), .(T22, T23)) → U3_GG(T21, T7, T22, T23, memberc10_in_gg(T21, T23))
U3_GG(T21, T7, T22, T23, memberc10_out_gg(T21, T23)) → U4_GG(T21, T7, T22, T23, subset1_in_gg(T7, .(T22, T23)))
U3_GG(T21, T7, T22, T23, memberc10_out_gg(T21, T23)) → SUBSET1_IN_GG(T7, .(T22, T23))
SUBSET1_IN_GG(.(T66, T7), .(T66, T67)) → U5_GG(T66, T7, T67, subset1_in_gg(T7, .(T66, T67)))
SUBSET1_IN_GG(.(T66, T7), .(T66, T67)) → SUBSET1_IN_GG(T7, .(T66, T67))
memberc10_in_gg(T42, .(T43, T44)) → U10_gg(T42, T43, T44, memberc10_in_gg(T42, T44))
memberc10_in_gg(T52, .(T52, T53)) → memberc10_out_gg(T52, .(T52, T53))
U10_gg(T42, T43, T44, memberc10_out_gg(T42, T44)) → memberc10_out_gg(T42, .(T43, T44))
Infinitary Constructor Rewriting Termination of PiDP implies Termination of TRIPLES
SUBSET1_IN_GG(.(T21, T7), .(T22, T23)) → U2_GG(T21, T7, T22, T23, member10_in_gg(T21, T23))
SUBSET1_IN_GG(.(T21, T7), .(T22, T23)) → MEMBER10_IN_GG(T21, T23)
MEMBER10_IN_GG(T42, .(T43, T44)) → U1_GG(T42, T43, T44, member10_in_gg(T42, T44))
MEMBER10_IN_GG(T42, .(T43, T44)) → MEMBER10_IN_GG(T42, T44)
SUBSET1_IN_GG(.(T21, T7), .(T22, T23)) → U3_GG(T21, T7, T22, T23, memberc10_in_gg(T21, T23))
U3_GG(T21, T7, T22, T23, memberc10_out_gg(T21, T23)) → U4_GG(T21, T7, T22, T23, subset1_in_gg(T7, .(T22, T23)))
U3_GG(T21, T7, T22, T23, memberc10_out_gg(T21, T23)) → SUBSET1_IN_GG(T7, .(T22, T23))
SUBSET1_IN_GG(.(T66, T7), .(T66, T67)) → U5_GG(T66, T7, T67, subset1_in_gg(T7, .(T66, T67)))
SUBSET1_IN_GG(.(T66, T7), .(T66, T67)) → SUBSET1_IN_GG(T7, .(T66, T67))
memberc10_in_gg(T42, .(T43, T44)) → U10_gg(T42, T43, T44, memberc10_in_gg(T42, T44))
memberc10_in_gg(T52, .(T52, T53)) → memberc10_out_gg(T52, .(T52, T53))
U10_gg(T42, T43, T44, memberc10_out_gg(T42, T44)) → memberc10_out_gg(T42, .(T43, T44))
MEMBER10_IN_GG(T42, .(T43, T44)) → MEMBER10_IN_GG(T42, T44)
memberc10_in_gg(T42, .(T43, T44)) → U10_gg(T42, T43, T44, memberc10_in_gg(T42, T44))
memberc10_in_gg(T52, .(T52, T53)) → memberc10_out_gg(T52, .(T52, T53))
U10_gg(T42, T43, T44, memberc10_out_gg(T42, T44)) → memberc10_out_gg(T42, .(T43, T44))
MEMBER10_IN_GG(T42, .(T43, T44)) → MEMBER10_IN_GG(T42, T44)
MEMBER10_IN_GG(T42, .(T43, T44)) → MEMBER10_IN_GG(T42, T44)
From the DPs we obtained the following set of size-change graphs:
SUBSET1_IN_GG(.(T21, T7), .(T22, T23)) → U3_GG(T21, T7, T22, T23, memberc10_in_gg(T21, T23))
U3_GG(T21, T7, T22, T23, memberc10_out_gg(T21, T23)) → SUBSET1_IN_GG(T7, .(T22, T23))
SUBSET1_IN_GG(.(T66, T7), .(T66, T67)) → SUBSET1_IN_GG(T7, .(T66, T67))
memberc10_in_gg(T42, .(T43, T44)) → U10_gg(T42, T43, T44, memberc10_in_gg(T42, T44))
memberc10_in_gg(T52, .(T52, T53)) → memberc10_out_gg(T52, .(T52, T53))
U10_gg(T42, T43, T44, memberc10_out_gg(T42, T44)) → memberc10_out_gg(T42, .(T43, T44))
SUBSET1_IN_GG(.(T21, T7), .(T22, T23)) → U3_GG(T21, T7, T22, T23, memberc10_in_gg(T21, T23))
U3_GG(T21, T7, T22, T23, memberc10_out_gg(T21, T23)) → SUBSET1_IN_GG(T7, .(T22, T23))
SUBSET1_IN_GG(.(T66, T7), .(T66, T67)) → SUBSET1_IN_GG(T7, .(T66, T67))
memberc10_in_gg(T42, .(T43, T44)) → U10_gg(T42, T43, T44, memberc10_in_gg(T42, T44))
memberc10_in_gg(T52, .(T52, T53)) → memberc10_out_gg(T52, .(T52, T53))
U10_gg(T42, T43, T44, memberc10_out_gg(T42, T44)) → memberc10_out_gg(T42, .(T43, T44))
memberc10_in_gg(x0, x1)
U10_gg(x0, x1, x2, x3)
From the DPs we obtained the following set of size-change graphs: