(0) Obligation:
Clauses:
member(X, .(Y, Xs)) :- member(X, Xs).
member(X, .(X, Xs)).
subset(.(X, Xs), Ys) :- ','(member(X, Ys), subset(Xs, Ys)).
subset([], Ys).
Queries:
subset(a,g).
(1) PrologToDTProblemTransformerProof (SOUND transformation)
Built DT problem from termination graph.
(2) Obligation:
Triples:
member10(T50, .(T48, T49)) :- member10(T50, T49).
subset1(.(T26, T27), .(T24, T25)) :- member10(T26, T25).
subset1(.(T26, T31), .(T24, T25)) :- ','(memberc10(T26, T25), subset1(T31, .(T24, T25))).
subset1(.(T72, T74), .(T72, T73)) :- subset1(T74, .(T72, T73)).
Clauses:
subsetc1(.(T26, T31), .(T24, T25)) :- ','(memberc10(T26, T25), subsetc1(T31, .(T24, T25))).
subsetc1(.(T72, T74), .(T72, T73)) :- subsetc1(T74, .(T72, T73)).
subsetc1([], T81).
subsetc1([], T83).
memberc10(T50, .(T48, T49)) :- memberc10(T50, T49).
memberc10(T58, .(T58, T59)).
Afs:
subset1(x1, x2) = subset1(x2)
(3) TriplesToPiDPProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
subset1_in: (f,b)
member10_in: (f,b)
memberc10_in: (f,b)
Transforming
TRIPLES into the following
Term Rewriting System:
Pi DP problem:
The TRS P consists of the following rules:
SUBSET1_IN_AG(.(T26, T27), .(T24, T25)) → U2_AG(T26, T27, T24, T25, member10_in_ag(T26, T25))
SUBSET1_IN_AG(.(T26, T27), .(T24, T25)) → MEMBER10_IN_AG(T26, T25)
MEMBER10_IN_AG(T50, .(T48, T49)) → U1_AG(T50, T48, T49, member10_in_ag(T50, T49))
MEMBER10_IN_AG(T50, .(T48, T49)) → MEMBER10_IN_AG(T50, T49)
SUBSET1_IN_AG(.(T26, T31), .(T24, T25)) → U3_AG(T26, T31, T24, T25, memberc10_in_ag(T26, T25))
U3_AG(T26, T31, T24, T25, memberc10_out_ag(T26, T25)) → U4_AG(T26, T31, T24, T25, subset1_in_ag(T31, .(T24, T25)))
U3_AG(T26, T31, T24, T25, memberc10_out_ag(T26, T25)) → SUBSET1_IN_AG(T31, .(T24, T25))
SUBSET1_IN_AG(.(T72, T74), .(T72, T73)) → U5_AG(T72, T74, T73, subset1_in_ag(T74, .(T72, T73)))
SUBSET1_IN_AG(.(T72, T74), .(T72, T73)) → SUBSET1_IN_AG(T74, .(T72, T73))
The TRS R consists of the following rules:
memberc10_in_ag(T50, .(T48, T49)) → U10_ag(T50, T48, T49, memberc10_in_ag(T50, T49))
memberc10_in_ag(T58, .(T58, T59)) → memberc10_out_ag(T58, .(T58, T59))
U10_ag(T50, T48, T49, memberc10_out_ag(T50, T49)) → memberc10_out_ag(T50, .(T48, T49))
The argument filtering Pi contains the following mapping:
subset1_in_ag(
x1,
x2) =
subset1_in_ag(
x2)
.(
x1,
x2) =
.(
x1,
x2)
member10_in_ag(
x1,
x2) =
member10_in_ag(
x2)
memberc10_in_ag(
x1,
x2) =
memberc10_in_ag(
x2)
U10_ag(
x1,
x2,
x3,
x4) =
U10_ag(
x2,
x3,
x4)
memberc10_out_ag(
x1,
x2) =
memberc10_out_ag(
x1,
x2)
SUBSET1_IN_AG(
x1,
x2) =
SUBSET1_IN_AG(
x2)
U2_AG(
x1,
x2,
x3,
x4,
x5) =
U2_AG(
x3,
x4,
x5)
MEMBER10_IN_AG(
x1,
x2) =
MEMBER10_IN_AG(
x2)
U1_AG(
x1,
x2,
x3,
x4) =
U1_AG(
x2,
x3,
x4)
U3_AG(
x1,
x2,
x3,
x4,
x5) =
U3_AG(
x3,
x4,
x5)
U4_AG(
x1,
x2,
x3,
x4,
x5) =
U4_AG(
x3,
x4,
x5)
U5_AG(
x1,
x2,
x3,
x4) =
U5_AG(
x1,
x3,
x4)
We have to consider all (P,R,Pi)-chains
Infinitary Constructor Rewriting Termination of PiDP implies Termination of TRIPLES
(4) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
SUBSET1_IN_AG(.(T26, T27), .(T24, T25)) → U2_AG(T26, T27, T24, T25, member10_in_ag(T26, T25))
SUBSET1_IN_AG(.(T26, T27), .(T24, T25)) → MEMBER10_IN_AG(T26, T25)
MEMBER10_IN_AG(T50, .(T48, T49)) → U1_AG(T50, T48, T49, member10_in_ag(T50, T49))
MEMBER10_IN_AG(T50, .(T48, T49)) → MEMBER10_IN_AG(T50, T49)
SUBSET1_IN_AG(.(T26, T31), .(T24, T25)) → U3_AG(T26, T31, T24, T25, memberc10_in_ag(T26, T25))
U3_AG(T26, T31, T24, T25, memberc10_out_ag(T26, T25)) → U4_AG(T26, T31, T24, T25, subset1_in_ag(T31, .(T24, T25)))
U3_AG(T26, T31, T24, T25, memberc10_out_ag(T26, T25)) → SUBSET1_IN_AG(T31, .(T24, T25))
SUBSET1_IN_AG(.(T72, T74), .(T72, T73)) → U5_AG(T72, T74, T73, subset1_in_ag(T74, .(T72, T73)))
SUBSET1_IN_AG(.(T72, T74), .(T72, T73)) → SUBSET1_IN_AG(T74, .(T72, T73))
The TRS R consists of the following rules:
memberc10_in_ag(T50, .(T48, T49)) → U10_ag(T50, T48, T49, memberc10_in_ag(T50, T49))
memberc10_in_ag(T58, .(T58, T59)) → memberc10_out_ag(T58, .(T58, T59))
U10_ag(T50, T48, T49, memberc10_out_ag(T50, T49)) → memberc10_out_ag(T50, .(T48, T49))
The argument filtering Pi contains the following mapping:
subset1_in_ag(
x1,
x2) =
subset1_in_ag(
x2)
.(
x1,
x2) =
.(
x1,
x2)
member10_in_ag(
x1,
x2) =
member10_in_ag(
x2)
memberc10_in_ag(
x1,
x2) =
memberc10_in_ag(
x2)
U10_ag(
x1,
x2,
x3,
x4) =
U10_ag(
x2,
x3,
x4)
memberc10_out_ag(
x1,
x2) =
memberc10_out_ag(
x1,
x2)
SUBSET1_IN_AG(
x1,
x2) =
SUBSET1_IN_AG(
x2)
U2_AG(
x1,
x2,
x3,
x4,
x5) =
U2_AG(
x3,
x4,
x5)
MEMBER10_IN_AG(
x1,
x2) =
MEMBER10_IN_AG(
x2)
U1_AG(
x1,
x2,
x3,
x4) =
U1_AG(
x2,
x3,
x4)
U3_AG(
x1,
x2,
x3,
x4,
x5) =
U3_AG(
x3,
x4,
x5)
U4_AG(
x1,
x2,
x3,
x4,
x5) =
U4_AG(
x3,
x4,
x5)
U5_AG(
x1,
x2,
x3,
x4) =
U5_AG(
x1,
x3,
x4)
We have to consider all (P,R,Pi)-chains
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 5 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
MEMBER10_IN_AG(T50, .(T48, T49)) → MEMBER10_IN_AG(T50, T49)
The TRS R consists of the following rules:
memberc10_in_ag(T50, .(T48, T49)) → U10_ag(T50, T48, T49, memberc10_in_ag(T50, T49))
memberc10_in_ag(T58, .(T58, T59)) → memberc10_out_ag(T58, .(T58, T59))
U10_ag(T50, T48, T49, memberc10_out_ag(T50, T49)) → memberc10_out_ag(T50, .(T48, T49))
The argument filtering Pi contains the following mapping:
.(
x1,
x2) =
.(
x1,
x2)
memberc10_in_ag(
x1,
x2) =
memberc10_in_ag(
x2)
U10_ag(
x1,
x2,
x3,
x4) =
U10_ag(
x2,
x3,
x4)
memberc10_out_ag(
x1,
x2) =
memberc10_out_ag(
x1,
x2)
MEMBER10_IN_AG(
x1,
x2) =
MEMBER10_IN_AG(
x2)
We have to consider all (P,R,Pi)-chains
(8) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(9) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
MEMBER10_IN_AG(T50, .(T48, T49)) → MEMBER10_IN_AG(T50, T49)
R is empty.
The argument filtering Pi contains the following mapping:
.(
x1,
x2) =
.(
x1,
x2)
MEMBER10_IN_AG(
x1,
x2) =
MEMBER10_IN_AG(
x2)
We have to consider all (P,R,Pi)-chains
(10) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MEMBER10_IN_AG(.(T48, T49)) → MEMBER10_IN_AG(T49)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(12) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- MEMBER10_IN_AG(.(T48, T49)) → MEMBER10_IN_AG(T49)
The graph contains the following edges 1 > 1
(13) YES
(14) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
SUBSET1_IN_AG(.(T26, T31), .(T24, T25)) → U3_AG(T26, T31, T24, T25, memberc10_in_ag(T26, T25))
U3_AG(T26, T31, T24, T25, memberc10_out_ag(T26, T25)) → SUBSET1_IN_AG(T31, .(T24, T25))
SUBSET1_IN_AG(.(T72, T74), .(T72, T73)) → SUBSET1_IN_AG(T74, .(T72, T73))
The TRS R consists of the following rules:
memberc10_in_ag(T50, .(T48, T49)) → U10_ag(T50, T48, T49, memberc10_in_ag(T50, T49))
memberc10_in_ag(T58, .(T58, T59)) → memberc10_out_ag(T58, .(T58, T59))
U10_ag(T50, T48, T49, memberc10_out_ag(T50, T49)) → memberc10_out_ag(T50, .(T48, T49))
The argument filtering Pi contains the following mapping:
.(
x1,
x2) =
.(
x1,
x2)
memberc10_in_ag(
x1,
x2) =
memberc10_in_ag(
x2)
U10_ag(
x1,
x2,
x3,
x4) =
U10_ag(
x2,
x3,
x4)
memberc10_out_ag(
x1,
x2) =
memberc10_out_ag(
x1,
x2)
SUBSET1_IN_AG(
x1,
x2) =
SUBSET1_IN_AG(
x2)
U3_AG(
x1,
x2,
x3,
x4,
x5) =
U3_AG(
x3,
x4,
x5)
We have to consider all (P,R,Pi)-chains
(15) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SUBSET1_IN_AG(.(T24, T25)) → U3_AG(T24, T25, memberc10_in_ag(T25))
U3_AG(T24, T25, memberc10_out_ag(T26, T25)) → SUBSET1_IN_AG(.(T24, T25))
SUBSET1_IN_AG(.(T72, T73)) → SUBSET1_IN_AG(.(T72, T73))
The TRS R consists of the following rules:
memberc10_in_ag(.(T48, T49)) → U10_ag(T48, T49, memberc10_in_ag(T49))
memberc10_in_ag(.(T58, T59)) → memberc10_out_ag(T58, .(T58, T59))
U10_ag(T48, T49, memberc10_out_ag(T50, T49)) → memberc10_out_ag(T50, .(T48, T49))
The set Q consists of the following terms:
memberc10_in_ag(x0)
U10_ag(x0, x1, x2)
We have to consider all (P,Q,R)-chains.
(17) Narrowing (SOUND transformation)
By narrowing [LPAR04] the rule
SUBSET1_IN_AG(
.(
T24,
T25)) →
U3_AG(
T24,
T25,
memberc10_in_ag(
T25)) at position [2] we obtained the following new rules [LPAR04]:
SUBSET1_IN_AG(.(y0, .(x0, x1))) → U3_AG(y0, .(x0, x1), U10_ag(x0, x1, memberc10_in_ag(x1)))
SUBSET1_IN_AG(.(y0, .(x0, x1))) → U3_AG(y0, .(x0, x1), memberc10_out_ag(x0, .(x0, x1)))
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U3_AG(T24, T25, memberc10_out_ag(T26, T25)) → SUBSET1_IN_AG(.(T24, T25))
SUBSET1_IN_AG(.(T72, T73)) → SUBSET1_IN_AG(.(T72, T73))
SUBSET1_IN_AG(.(y0, .(x0, x1))) → U3_AG(y0, .(x0, x1), U10_ag(x0, x1, memberc10_in_ag(x1)))
SUBSET1_IN_AG(.(y0, .(x0, x1))) → U3_AG(y0, .(x0, x1), memberc10_out_ag(x0, .(x0, x1)))
The TRS R consists of the following rules:
memberc10_in_ag(.(T48, T49)) → U10_ag(T48, T49, memberc10_in_ag(T49))
memberc10_in_ag(.(T58, T59)) → memberc10_out_ag(T58, .(T58, T59))
U10_ag(T48, T49, memberc10_out_ag(T50, T49)) → memberc10_out_ag(T50, .(T48, T49))
The set Q consists of the following terms:
memberc10_in_ag(x0)
U10_ag(x0, x1, x2)
We have to consider all (P,Q,R)-chains.
(19) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
U3_AG(
T24,
T25,
memberc10_out_ag(
T26,
T25)) →
SUBSET1_IN_AG(
.(
T24,
T25)) we obtained the following new rules [LPAR04]:
U3_AG(z0, .(z1, z2), memberc10_out_ag(x2, .(z1, z2))) → SUBSET1_IN_AG(.(z0, .(z1, z2)))
U3_AG(z0, .(z1, z2), memberc10_out_ag(z1, .(z1, z2))) → SUBSET1_IN_AG(.(z0, .(z1, z2)))
(20) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SUBSET1_IN_AG(.(T72, T73)) → SUBSET1_IN_AG(.(T72, T73))
SUBSET1_IN_AG(.(y0, .(x0, x1))) → U3_AG(y0, .(x0, x1), U10_ag(x0, x1, memberc10_in_ag(x1)))
SUBSET1_IN_AG(.(y0, .(x0, x1))) → U3_AG(y0, .(x0, x1), memberc10_out_ag(x0, .(x0, x1)))
U3_AG(z0, .(z1, z2), memberc10_out_ag(x2, .(z1, z2))) → SUBSET1_IN_AG(.(z0, .(z1, z2)))
U3_AG(z0, .(z1, z2), memberc10_out_ag(z1, .(z1, z2))) → SUBSET1_IN_AG(.(z0, .(z1, z2)))
The TRS R consists of the following rules:
memberc10_in_ag(.(T48, T49)) → U10_ag(T48, T49, memberc10_in_ag(T49))
memberc10_in_ag(.(T58, T59)) → memberc10_out_ag(T58, .(T58, T59))
U10_ag(T48, T49, memberc10_out_ag(T50, T49)) → memberc10_out_ag(T50, .(T48, T49))
The set Q consists of the following terms:
memberc10_in_ag(x0)
U10_ag(x0, x1, x2)
We have to consider all (P,Q,R)-chains.
(21) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.
s =
SUBSET1_IN_AG(
.(
T72,
T73)) evaluates to t =
SUBSET1_IN_AG(
.(
T72,
T73))
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Matcher: [ ]
- Semiunifier: [ ]
Rewriting sequenceThe DP semiunifies directly so there is only one rewrite step from SUBSET1_IN_AG(.(T72, T73)) to SUBSET1_IN_AG(.(T72, T73)).
(22) NO