(0) Obligation:

Clauses:

append([], Ys, Ys).
append(.(X, Xs), Ys, .(X, Zs)) :- append(Xs, Ys, Zs).
sublist(X, Y) :- ','(append(P, X1, Y), append(X2, X, P)).

Queries:

sublist(g,g).

(1) PrologToPrologProblemTransformerProof (SOUND transformation)

Built Prolog problem from termination graph.

(2) Obligation:

Clauses:

append17([], T41, T41).
append17(.(X97, X98), X99, .(X97, T44)) :- append17(X98, X99, T44).
append32([], T81, T81).
append32(.(X158, X159), T86, .(X158, T87)) :- append32(X159, T86, T87).
sublist1([], T15).
sublist1(T5, .(X56, T26)) :- append17(X57, X58, T26).
sublist1(.(T65, T66), .(T65, T26)) :- append17(T66, T35, T26).
sublist1(T73, .(X132, T26)) :- ','(append17(T74, T35, T26), append32(X133, T73, T74)).

Queries:

sublist1(g,g).

(3) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
sublist1_in: (b,b)
append17_in: (f,f,b) (b,f,b)
append32_in: (f,b,b)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

sublist1_in_gg([], T15) → sublist1_out_gg([], T15)
sublist1_in_gg(T5, .(X56, T26)) → U3_gg(T5, X56, T26, append17_in_aag(X57, X58, T26))
append17_in_aag([], T41, T41) → append17_out_aag([], T41, T41)
append17_in_aag(.(X97, X98), X99, .(X97, T44)) → U1_aag(X97, X98, X99, T44, append17_in_aag(X98, X99, T44))
U1_aag(X97, X98, X99, T44, append17_out_aag(X98, X99, T44)) → append17_out_aag(.(X97, X98), X99, .(X97, T44))
U3_gg(T5, X56, T26, append17_out_aag(X57, X58, T26)) → sublist1_out_gg(T5, .(X56, T26))
sublist1_in_gg(.(T65, T66), .(T65, T26)) → U4_gg(T65, T66, T26, append17_in_gag(T66, T35, T26))
append17_in_gag([], T41, T41) → append17_out_gag([], T41, T41)
append17_in_gag(.(X97, X98), X99, .(X97, T44)) → U1_gag(X97, X98, X99, T44, append17_in_gag(X98, X99, T44))
U1_gag(X97, X98, X99, T44, append17_out_gag(X98, X99, T44)) → append17_out_gag(.(X97, X98), X99, .(X97, T44))
U4_gg(T65, T66, T26, append17_out_gag(T66, T35, T26)) → sublist1_out_gg(.(T65, T66), .(T65, T26))
sublist1_in_gg(T73, .(X132, T26)) → U5_gg(T73, X132, T26, append17_in_aag(T74, T35, T26))
U5_gg(T73, X132, T26, append17_out_aag(T74, T35, T26)) → U6_gg(T73, X132, T26, append32_in_agg(X133, T73, T74))
append32_in_agg([], T81, T81) → append32_out_agg([], T81, T81)
append32_in_agg(.(X158, X159), T86, .(X158, T87)) → U2_agg(X158, X159, T86, T87, append32_in_agg(X159, T86, T87))
U2_agg(X158, X159, T86, T87, append32_out_agg(X159, T86, T87)) → append32_out_agg(.(X158, X159), T86, .(X158, T87))
U6_gg(T73, X132, T26, append32_out_agg(X133, T73, T74)) → sublist1_out_gg(T73, .(X132, T26))

The argument filtering Pi contains the following mapping:
sublist1_in_gg(x1, x2)  =  sublist1_in_gg(x1, x2)
[]  =  []
sublist1_out_gg(x1, x2)  =  sublist1_out_gg(x1, x2)
.(x1, x2)  =  .(x1, x2)
U3_gg(x1, x2, x3, x4)  =  U3_gg(x1, x2, x3, x4)
append17_in_aag(x1, x2, x3)  =  append17_in_aag(x3)
append17_out_aag(x1, x2, x3)  =  append17_out_aag(x1, x2, x3)
U1_aag(x1, x2, x3, x4, x5)  =  U1_aag(x1, x4, x5)
U4_gg(x1, x2, x3, x4)  =  U4_gg(x1, x2, x3, x4)
append17_in_gag(x1, x2, x3)  =  append17_in_gag(x1, x3)
append17_out_gag(x1, x2, x3)  =  append17_out_gag(x1, x2, x3)
U1_gag(x1, x2, x3, x4, x5)  =  U1_gag(x1, x2, x4, x5)
U5_gg(x1, x2, x3, x4)  =  U5_gg(x1, x2, x3, x4)
U6_gg(x1, x2, x3, x4)  =  U6_gg(x1, x2, x3, x4)
append32_in_agg(x1, x2, x3)  =  append32_in_agg(x2, x3)
append32_out_agg(x1, x2, x3)  =  append32_out_agg(x1, x2, x3)
U2_agg(x1, x2, x3, x4, x5)  =  U2_agg(x1, x3, x4, x5)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(4) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

sublist1_in_gg([], T15) → sublist1_out_gg([], T15)
sublist1_in_gg(T5, .(X56, T26)) → U3_gg(T5, X56, T26, append17_in_aag(X57, X58, T26))
append17_in_aag([], T41, T41) → append17_out_aag([], T41, T41)
append17_in_aag(.(X97, X98), X99, .(X97, T44)) → U1_aag(X97, X98, X99, T44, append17_in_aag(X98, X99, T44))
U1_aag(X97, X98, X99, T44, append17_out_aag(X98, X99, T44)) → append17_out_aag(.(X97, X98), X99, .(X97, T44))
U3_gg(T5, X56, T26, append17_out_aag(X57, X58, T26)) → sublist1_out_gg(T5, .(X56, T26))
sublist1_in_gg(.(T65, T66), .(T65, T26)) → U4_gg(T65, T66, T26, append17_in_gag(T66, T35, T26))
append17_in_gag([], T41, T41) → append17_out_gag([], T41, T41)
append17_in_gag(.(X97, X98), X99, .(X97, T44)) → U1_gag(X97, X98, X99, T44, append17_in_gag(X98, X99, T44))
U1_gag(X97, X98, X99, T44, append17_out_gag(X98, X99, T44)) → append17_out_gag(.(X97, X98), X99, .(X97, T44))
U4_gg(T65, T66, T26, append17_out_gag(T66, T35, T26)) → sublist1_out_gg(.(T65, T66), .(T65, T26))
sublist1_in_gg(T73, .(X132, T26)) → U5_gg(T73, X132, T26, append17_in_aag(T74, T35, T26))
U5_gg(T73, X132, T26, append17_out_aag(T74, T35, T26)) → U6_gg(T73, X132, T26, append32_in_agg(X133, T73, T74))
append32_in_agg([], T81, T81) → append32_out_agg([], T81, T81)
append32_in_agg(.(X158, X159), T86, .(X158, T87)) → U2_agg(X158, X159, T86, T87, append32_in_agg(X159, T86, T87))
U2_agg(X158, X159, T86, T87, append32_out_agg(X159, T86, T87)) → append32_out_agg(.(X158, X159), T86, .(X158, T87))
U6_gg(T73, X132, T26, append32_out_agg(X133, T73, T74)) → sublist1_out_gg(T73, .(X132, T26))

The argument filtering Pi contains the following mapping:
sublist1_in_gg(x1, x2)  =  sublist1_in_gg(x1, x2)
[]  =  []
sublist1_out_gg(x1, x2)  =  sublist1_out_gg(x1, x2)
.(x1, x2)  =  .(x1, x2)
U3_gg(x1, x2, x3, x4)  =  U3_gg(x1, x2, x3, x4)
append17_in_aag(x1, x2, x3)  =  append17_in_aag(x3)
append17_out_aag(x1, x2, x3)  =  append17_out_aag(x1, x2, x3)
U1_aag(x1, x2, x3, x4, x5)  =  U1_aag(x1, x4, x5)
U4_gg(x1, x2, x3, x4)  =  U4_gg(x1, x2, x3, x4)
append17_in_gag(x1, x2, x3)  =  append17_in_gag(x1, x3)
append17_out_gag(x1, x2, x3)  =  append17_out_gag(x1, x2, x3)
U1_gag(x1, x2, x3, x4, x5)  =  U1_gag(x1, x2, x4, x5)
U5_gg(x1, x2, x3, x4)  =  U5_gg(x1, x2, x3, x4)
U6_gg(x1, x2, x3, x4)  =  U6_gg(x1, x2, x3, x4)
append32_in_agg(x1, x2, x3)  =  append32_in_agg(x2, x3)
append32_out_agg(x1, x2, x3)  =  append32_out_agg(x1, x2, x3)
U2_agg(x1, x2, x3, x4, x5)  =  U2_agg(x1, x3, x4, x5)

(5) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

SUBLIST1_IN_GG(T5, .(X56, T26)) → U3_GG(T5, X56, T26, append17_in_aag(X57, X58, T26))
SUBLIST1_IN_GG(T5, .(X56, T26)) → APPEND17_IN_AAG(X57, X58, T26)
APPEND17_IN_AAG(.(X97, X98), X99, .(X97, T44)) → U1_AAG(X97, X98, X99, T44, append17_in_aag(X98, X99, T44))
APPEND17_IN_AAG(.(X97, X98), X99, .(X97, T44)) → APPEND17_IN_AAG(X98, X99, T44)
SUBLIST1_IN_GG(.(T65, T66), .(T65, T26)) → U4_GG(T65, T66, T26, append17_in_gag(T66, T35, T26))
SUBLIST1_IN_GG(.(T65, T66), .(T65, T26)) → APPEND17_IN_GAG(T66, T35, T26)
APPEND17_IN_GAG(.(X97, X98), X99, .(X97, T44)) → U1_GAG(X97, X98, X99, T44, append17_in_gag(X98, X99, T44))
APPEND17_IN_GAG(.(X97, X98), X99, .(X97, T44)) → APPEND17_IN_GAG(X98, X99, T44)
SUBLIST1_IN_GG(T73, .(X132, T26)) → U5_GG(T73, X132, T26, append17_in_aag(T74, T35, T26))
U5_GG(T73, X132, T26, append17_out_aag(T74, T35, T26)) → U6_GG(T73, X132, T26, append32_in_agg(X133, T73, T74))
U5_GG(T73, X132, T26, append17_out_aag(T74, T35, T26)) → APPEND32_IN_AGG(X133, T73, T74)
APPEND32_IN_AGG(.(X158, X159), T86, .(X158, T87)) → U2_AGG(X158, X159, T86, T87, append32_in_agg(X159, T86, T87))
APPEND32_IN_AGG(.(X158, X159), T86, .(X158, T87)) → APPEND32_IN_AGG(X159, T86, T87)

The TRS R consists of the following rules:

sublist1_in_gg([], T15) → sublist1_out_gg([], T15)
sublist1_in_gg(T5, .(X56, T26)) → U3_gg(T5, X56, T26, append17_in_aag(X57, X58, T26))
append17_in_aag([], T41, T41) → append17_out_aag([], T41, T41)
append17_in_aag(.(X97, X98), X99, .(X97, T44)) → U1_aag(X97, X98, X99, T44, append17_in_aag(X98, X99, T44))
U1_aag(X97, X98, X99, T44, append17_out_aag(X98, X99, T44)) → append17_out_aag(.(X97, X98), X99, .(X97, T44))
U3_gg(T5, X56, T26, append17_out_aag(X57, X58, T26)) → sublist1_out_gg(T5, .(X56, T26))
sublist1_in_gg(.(T65, T66), .(T65, T26)) → U4_gg(T65, T66, T26, append17_in_gag(T66, T35, T26))
append17_in_gag([], T41, T41) → append17_out_gag([], T41, T41)
append17_in_gag(.(X97, X98), X99, .(X97, T44)) → U1_gag(X97, X98, X99, T44, append17_in_gag(X98, X99, T44))
U1_gag(X97, X98, X99, T44, append17_out_gag(X98, X99, T44)) → append17_out_gag(.(X97, X98), X99, .(X97, T44))
U4_gg(T65, T66, T26, append17_out_gag(T66, T35, T26)) → sublist1_out_gg(.(T65, T66), .(T65, T26))
sublist1_in_gg(T73, .(X132, T26)) → U5_gg(T73, X132, T26, append17_in_aag(T74, T35, T26))
U5_gg(T73, X132, T26, append17_out_aag(T74, T35, T26)) → U6_gg(T73, X132, T26, append32_in_agg(X133, T73, T74))
append32_in_agg([], T81, T81) → append32_out_agg([], T81, T81)
append32_in_agg(.(X158, X159), T86, .(X158, T87)) → U2_agg(X158, X159, T86, T87, append32_in_agg(X159, T86, T87))
U2_agg(X158, X159, T86, T87, append32_out_agg(X159, T86, T87)) → append32_out_agg(.(X158, X159), T86, .(X158, T87))
U6_gg(T73, X132, T26, append32_out_agg(X133, T73, T74)) → sublist1_out_gg(T73, .(X132, T26))

The argument filtering Pi contains the following mapping:
sublist1_in_gg(x1, x2)  =  sublist1_in_gg(x1, x2)
[]  =  []
sublist1_out_gg(x1, x2)  =  sublist1_out_gg(x1, x2)
.(x1, x2)  =  .(x1, x2)
U3_gg(x1, x2, x3, x4)  =  U3_gg(x1, x2, x3, x4)
append17_in_aag(x1, x2, x3)  =  append17_in_aag(x3)
append17_out_aag(x1, x2, x3)  =  append17_out_aag(x1, x2, x3)
U1_aag(x1, x2, x3, x4, x5)  =  U1_aag(x1, x4, x5)
U4_gg(x1, x2, x3, x4)  =  U4_gg(x1, x2, x3, x4)
append17_in_gag(x1, x2, x3)  =  append17_in_gag(x1, x3)
append17_out_gag(x1, x2, x3)  =  append17_out_gag(x1, x2, x3)
U1_gag(x1, x2, x3, x4, x5)  =  U1_gag(x1, x2, x4, x5)
U5_gg(x1, x2, x3, x4)  =  U5_gg(x1, x2, x3, x4)
U6_gg(x1, x2, x3, x4)  =  U6_gg(x1, x2, x3, x4)
append32_in_agg(x1, x2, x3)  =  append32_in_agg(x2, x3)
append32_out_agg(x1, x2, x3)  =  append32_out_agg(x1, x2, x3)
U2_agg(x1, x2, x3, x4, x5)  =  U2_agg(x1, x3, x4, x5)
SUBLIST1_IN_GG(x1, x2)  =  SUBLIST1_IN_GG(x1, x2)
U3_GG(x1, x2, x3, x4)  =  U3_GG(x1, x2, x3, x4)
APPEND17_IN_AAG(x1, x2, x3)  =  APPEND17_IN_AAG(x3)
U1_AAG(x1, x2, x3, x4, x5)  =  U1_AAG(x1, x4, x5)
U4_GG(x1, x2, x3, x4)  =  U4_GG(x1, x2, x3, x4)
APPEND17_IN_GAG(x1, x2, x3)  =  APPEND17_IN_GAG(x1, x3)
U1_GAG(x1, x2, x3, x4, x5)  =  U1_GAG(x1, x2, x4, x5)
U5_GG(x1, x2, x3, x4)  =  U5_GG(x1, x2, x3, x4)
U6_GG(x1, x2, x3, x4)  =  U6_GG(x1, x2, x3, x4)
APPEND32_IN_AGG(x1, x2, x3)  =  APPEND32_IN_AGG(x2, x3)
U2_AGG(x1, x2, x3, x4, x5)  =  U2_AGG(x1, x3, x4, x5)

We have to consider all (P,R,Pi)-chains

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

SUBLIST1_IN_GG(T5, .(X56, T26)) → U3_GG(T5, X56, T26, append17_in_aag(X57, X58, T26))
SUBLIST1_IN_GG(T5, .(X56, T26)) → APPEND17_IN_AAG(X57, X58, T26)
APPEND17_IN_AAG(.(X97, X98), X99, .(X97, T44)) → U1_AAG(X97, X98, X99, T44, append17_in_aag(X98, X99, T44))
APPEND17_IN_AAG(.(X97, X98), X99, .(X97, T44)) → APPEND17_IN_AAG(X98, X99, T44)
SUBLIST1_IN_GG(.(T65, T66), .(T65, T26)) → U4_GG(T65, T66, T26, append17_in_gag(T66, T35, T26))
SUBLIST1_IN_GG(.(T65, T66), .(T65, T26)) → APPEND17_IN_GAG(T66, T35, T26)
APPEND17_IN_GAG(.(X97, X98), X99, .(X97, T44)) → U1_GAG(X97, X98, X99, T44, append17_in_gag(X98, X99, T44))
APPEND17_IN_GAG(.(X97, X98), X99, .(X97, T44)) → APPEND17_IN_GAG(X98, X99, T44)
SUBLIST1_IN_GG(T73, .(X132, T26)) → U5_GG(T73, X132, T26, append17_in_aag(T74, T35, T26))
U5_GG(T73, X132, T26, append17_out_aag(T74, T35, T26)) → U6_GG(T73, X132, T26, append32_in_agg(X133, T73, T74))
U5_GG(T73, X132, T26, append17_out_aag(T74, T35, T26)) → APPEND32_IN_AGG(X133, T73, T74)
APPEND32_IN_AGG(.(X158, X159), T86, .(X158, T87)) → U2_AGG(X158, X159, T86, T87, append32_in_agg(X159, T86, T87))
APPEND32_IN_AGG(.(X158, X159), T86, .(X158, T87)) → APPEND32_IN_AGG(X159, T86, T87)

The TRS R consists of the following rules:

sublist1_in_gg([], T15) → sublist1_out_gg([], T15)
sublist1_in_gg(T5, .(X56, T26)) → U3_gg(T5, X56, T26, append17_in_aag(X57, X58, T26))
append17_in_aag([], T41, T41) → append17_out_aag([], T41, T41)
append17_in_aag(.(X97, X98), X99, .(X97, T44)) → U1_aag(X97, X98, X99, T44, append17_in_aag(X98, X99, T44))
U1_aag(X97, X98, X99, T44, append17_out_aag(X98, X99, T44)) → append17_out_aag(.(X97, X98), X99, .(X97, T44))
U3_gg(T5, X56, T26, append17_out_aag(X57, X58, T26)) → sublist1_out_gg(T5, .(X56, T26))
sublist1_in_gg(.(T65, T66), .(T65, T26)) → U4_gg(T65, T66, T26, append17_in_gag(T66, T35, T26))
append17_in_gag([], T41, T41) → append17_out_gag([], T41, T41)
append17_in_gag(.(X97, X98), X99, .(X97, T44)) → U1_gag(X97, X98, X99, T44, append17_in_gag(X98, X99, T44))
U1_gag(X97, X98, X99, T44, append17_out_gag(X98, X99, T44)) → append17_out_gag(.(X97, X98), X99, .(X97, T44))
U4_gg(T65, T66, T26, append17_out_gag(T66, T35, T26)) → sublist1_out_gg(.(T65, T66), .(T65, T26))
sublist1_in_gg(T73, .(X132, T26)) → U5_gg(T73, X132, T26, append17_in_aag(T74, T35, T26))
U5_gg(T73, X132, T26, append17_out_aag(T74, T35, T26)) → U6_gg(T73, X132, T26, append32_in_agg(X133, T73, T74))
append32_in_agg([], T81, T81) → append32_out_agg([], T81, T81)
append32_in_agg(.(X158, X159), T86, .(X158, T87)) → U2_agg(X158, X159, T86, T87, append32_in_agg(X159, T86, T87))
U2_agg(X158, X159, T86, T87, append32_out_agg(X159, T86, T87)) → append32_out_agg(.(X158, X159), T86, .(X158, T87))
U6_gg(T73, X132, T26, append32_out_agg(X133, T73, T74)) → sublist1_out_gg(T73, .(X132, T26))

The argument filtering Pi contains the following mapping:
sublist1_in_gg(x1, x2)  =  sublist1_in_gg(x1, x2)
[]  =  []
sublist1_out_gg(x1, x2)  =  sublist1_out_gg(x1, x2)
.(x1, x2)  =  .(x1, x2)
U3_gg(x1, x2, x3, x4)  =  U3_gg(x1, x2, x3, x4)
append17_in_aag(x1, x2, x3)  =  append17_in_aag(x3)
append17_out_aag(x1, x2, x3)  =  append17_out_aag(x1, x2, x3)
U1_aag(x1, x2, x3, x4, x5)  =  U1_aag(x1, x4, x5)
U4_gg(x1, x2, x3, x4)  =  U4_gg(x1, x2, x3, x4)
append17_in_gag(x1, x2, x3)  =  append17_in_gag(x1, x3)
append17_out_gag(x1, x2, x3)  =  append17_out_gag(x1, x2, x3)
U1_gag(x1, x2, x3, x4, x5)  =  U1_gag(x1, x2, x4, x5)
U5_gg(x1, x2, x3, x4)  =  U5_gg(x1, x2, x3, x4)
U6_gg(x1, x2, x3, x4)  =  U6_gg(x1, x2, x3, x4)
append32_in_agg(x1, x2, x3)  =  append32_in_agg(x2, x3)
append32_out_agg(x1, x2, x3)  =  append32_out_agg(x1, x2, x3)
U2_agg(x1, x2, x3, x4, x5)  =  U2_agg(x1, x3, x4, x5)
SUBLIST1_IN_GG(x1, x2)  =  SUBLIST1_IN_GG(x1, x2)
U3_GG(x1, x2, x3, x4)  =  U3_GG(x1, x2, x3, x4)
APPEND17_IN_AAG(x1, x2, x3)  =  APPEND17_IN_AAG(x3)
U1_AAG(x1, x2, x3, x4, x5)  =  U1_AAG(x1, x4, x5)
U4_GG(x1, x2, x3, x4)  =  U4_GG(x1, x2, x3, x4)
APPEND17_IN_GAG(x1, x2, x3)  =  APPEND17_IN_GAG(x1, x3)
U1_GAG(x1, x2, x3, x4, x5)  =  U1_GAG(x1, x2, x4, x5)
U5_GG(x1, x2, x3, x4)  =  U5_GG(x1, x2, x3, x4)
U6_GG(x1, x2, x3, x4)  =  U6_GG(x1, x2, x3, x4)
APPEND32_IN_AGG(x1, x2, x3)  =  APPEND32_IN_AGG(x2, x3)
U2_AGG(x1, x2, x3, x4, x5)  =  U2_AGG(x1, x3, x4, x5)

We have to consider all (P,R,Pi)-chains

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 3 SCCs with 10 less nodes.

(8) Complex Obligation (AND)

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APPEND32_IN_AGG(.(X158, X159), T86, .(X158, T87)) → APPEND32_IN_AGG(X159, T86, T87)

The TRS R consists of the following rules:

sublist1_in_gg([], T15) → sublist1_out_gg([], T15)
sublist1_in_gg(T5, .(X56, T26)) → U3_gg(T5, X56, T26, append17_in_aag(X57, X58, T26))
append17_in_aag([], T41, T41) → append17_out_aag([], T41, T41)
append17_in_aag(.(X97, X98), X99, .(X97, T44)) → U1_aag(X97, X98, X99, T44, append17_in_aag(X98, X99, T44))
U1_aag(X97, X98, X99, T44, append17_out_aag(X98, X99, T44)) → append17_out_aag(.(X97, X98), X99, .(X97, T44))
U3_gg(T5, X56, T26, append17_out_aag(X57, X58, T26)) → sublist1_out_gg(T5, .(X56, T26))
sublist1_in_gg(.(T65, T66), .(T65, T26)) → U4_gg(T65, T66, T26, append17_in_gag(T66, T35, T26))
append17_in_gag([], T41, T41) → append17_out_gag([], T41, T41)
append17_in_gag(.(X97, X98), X99, .(X97, T44)) → U1_gag(X97, X98, X99, T44, append17_in_gag(X98, X99, T44))
U1_gag(X97, X98, X99, T44, append17_out_gag(X98, X99, T44)) → append17_out_gag(.(X97, X98), X99, .(X97, T44))
U4_gg(T65, T66, T26, append17_out_gag(T66, T35, T26)) → sublist1_out_gg(.(T65, T66), .(T65, T26))
sublist1_in_gg(T73, .(X132, T26)) → U5_gg(T73, X132, T26, append17_in_aag(T74, T35, T26))
U5_gg(T73, X132, T26, append17_out_aag(T74, T35, T26)) → U6_gg(T73, X132, T26, append32_in_agg(X133, T73, T74))
append32_in_agg([], T81, T81) → append32_out_agg([], T81, T81)
append32_in_agg(.(X158, X159), T86, .(X158, T87)) → U2_agg(X158, X159, T86, T87, append32_in_agg(X159, T86, T87))
U2_agg(X158, X159, T86, T87, append32_out_agg(X159, T86, T87)) → append32_out_agg(.(X158, X159), T86, .(X158, T87))
U6_gg(T73, X132, T26, append32_out_agg(X133, T73, T74)) → sublist1_out_gg(T73, .(X132, T26))

The argument filtering Pi contains the following mapping:
sublist1_in_gg(x1, x2)  =  sublist1_in_gg(x1, x2)
[]  =  []
sublist1_out_gg(x1, x2)  =  sublist1_out_gg(x1, x2)
.(x1, x2)  =  .(x1, x2)
U3_gg(x1, x2, x3, x4)  =  U3_gg(x1, x2, x3, x4)
append17_in_aag(x1, x2, x3)  =  append17_in_aag(x3)
append17_out_aag(x1, x2, x3)  =  append17_out_aag(x1, x2, x3)
U1_aag(x1, x2, x3, x4, x5)  =  U1_aag(x1, x4, x5)
U4_gg(x1, x2, x3, x4)  =  U4_gg(x1, x2, x3, x4)
append17_in_gag(x1, x2, x3)  =  append17_in_gag(x1, x3)
append17_out_gag(x1, x2, x3)  =  append17_out_gag(x1, x2, x3)
U1_gag(x1, x2, x3, x4, x5)  =  U1_gag(x1, x2, x4, x5)
U5_gg(x1, x2, x3, x4)  =  U5_gg(x1, x2, x3, x4)
U6_gg(x1, x2, x3, x4)  =  U6_gg(x1, x2, x3, x4)
append32_in_agg(x1, x2, x3)  =  append32_in_agg(x2, x3)
append32_out_agg(x1, x2, x3)  =  append32_out_agg(x1, x2, x3)
U2_agg(x1, x2, x3, x4, x5)  =  U2_agg(x1, x3, x4, x5)
APPEND32_IN_AGG(x1, x2, x3)  =  APPEND32_IN_AGG(x2, x3)

We have to consider all (P,R,Pi)-chains

(10) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(11) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APPEND32_IN_AGG(.(X158, X159), T86, .(X158, T87)) → APPEND32_IN_AGG(X159, T86, T87)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
APPEND32_IN_AGG(x1, x2, x3)  =  APPEND32_IN_AGG(x2, x3)

We have to consider all (P,R,Pi)-chains

(12) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APPEND32_IN_AGG(T86, .(X158, T87)) → APPEND32_IN_AGG(T86, T87)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(14) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • APPEND32_IN_AGG(T86, .(X158, T87)) → APPEND32_IN_AGG(T86, T87)
    The graph contains the following edges 1 >= 1, 2 > 2

(15) YES

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APPEND17_IN_GAG(.(X97, X98), X99, .(X97, T44)) → APPEND17_IN_GAG(X98, X99, T44)

The TRS R consists of the following rules:

sublist1_in_gg([], T15) → sublist1_out_gg([], T15)
sublist1_in_gg(T5, .(X56, T26)) → U3_gg(T5, X56, T26, append17_in_aag(X57, X58, T26))
append17_in_aag([], T41, T41) → append17_out_aag([], T41, T41)
append17_in_aag(.(X97, X98), X99, .(X97, T44)) → U1_aag(X97, X98, X99, T44, append17_in_aag(X98, X99, T44))
U1_aag(X97, X98, X99, T44, append17_out_aag(X98, X99, T44)) → append17_out_aag(.(X97, X98), X99, .(X97, T44))
U3_gg(T5, X56, T26, append17_out_aag(X57, X58, T26)) → sublist1_out_gg(T5, .(X56, T26))
sublist1_in_gg(.(T65, T66), .(T65, T26)) → U4_gg(T65, T66, T26, append17_in_gag(T66, T35, T26))
append17_in_gag([], T41, T41) → append17_out_gag([], T41, T41)
append17_in_gag(.(X97, X98), X99, .(X97, T44)) → U1_gag(X97, X98, X99, T44, append17_in_gag(X98, X99, T44))
U1_gag(X97, X98, X99, T44, append17_out_gag(X98, X99, T44)) → append17_out_gag(.(X97, X98), X99, .(X97, T44))
U4_gg(T65, T66, T26, append17_out_gag(T66, T35, T26)) → sublist1_out_gg(.(T65, T66), .(T65, T26))
sublist1_in_gg(T73, .(X132, T26)) → U5_gg(T73, X132, T26, append17_in_aag(T74, T35, T26))
U5_gg(T73, X132, T26, append17_out_aag(T74, T35, T26)) → U6_gg(T73, X132, T26, append32_in_agg(X133, T73, T74))
append32_in_agg([], T81, T81) → append32_out_agg([], T81, T81)
append32_in_agg(.(X158, X159), T86, .(X158, T87)) → U2_agg(X158, X159, T86, T87, append32_in_agg(X159, T86, T87))
U2_agg(X158, X159, T86, T87, append32_out_agg(X159, T86, T87)) → append32_out_agg(.(X158, X159), T86, .(X158, T87))
U6_gg(T73, X132, T26, append32_out_agg(X133, T73, T74)) → sublist1_out_gg(T73, .(X132, T26))

The argument filtering Pi contains the following mapping:
sublist1_in_gg(x1, x2)  =  sublist1_in_gg(x1, x2)
[]  =  []
sublist1_out_gg(x1, x2)  =  sublist1_out_gg(x1, x2)
.(x1, x2)  =  .(x1, x2)
U3_gg(x1, x2, x3, x4)  =  U3_gg(x1, x2, x3, x4)
append17_in_aag(x1, x2, x3)  =  append17_in_aag(x3)
append17_out_aag(x1, x2, x3)  =  append17_out_aag(x1, x2, x3)
U1_aag(x1, x2, x3, x4, x5)  =  U1_aag(x1, x4, x5)
U4_gg(x1, x2, x3, x4)  =  U4_gg(x1, x2, x3, x4)
append17_in_gag(x1, x2, x3)  =  append17_in_gag(x1, x3)
append17_out_gag(x1, x2, x3)  =  append17_out_gag(x1, x2, x3)
U1_gag(x1, x2, x3, x4, x5)  =  U1_gag(x1, x2, x4, x5)
U5_gg(x1, x2, x3, x4)  =  U5_gg(x1, x2, x3, x4)
U6_gg(x1, x2, x3, x4)  =  U6_gg(x1, x2, x3, x4)
append32_in_agg(x1, x2, x3)  =  append32_in_agg(x2, x3)
append32_out_agg(x1, x2, x3)  =  append32_out_agg(x1, x2, x3)
U2_agg(x1, x2, x3, x4, x5)  =  U2_agg(x1, x3, x4, x5)
APPEND17_IN_GAG(x1, x2, x3)  =  APPEND17_IN_GAG(x1, x3)

We have to consider all (P,R,Pi)-chains

(17) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(18) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APPEND17_IN_GAG(.(X97, X98), X99, .(X97, T44)) → APPEND17_IN_GAG(X98, X99, T44)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
APPEND17_IN_GAG(x1, x2, x3)  =  APPEND17_IN_GAG(x1, x3)

We have to consider all (P,R,Pi)-chains

(19) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APPEND17_IN_GAG(.(X97, X98), .(X97, T44)) → APPEND17_IN_GAG(X98, T44)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(21) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • APPEND17_IN_GAG(.(X97, X98), .(X97, T44)) → APPEND17_IN_GAG(X98, T44)
    The graph contains the following edges 1 > 1, 2 > 2

(22) YES

(23) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APPEND17_IN_AAG(.(X97, X98), X99, .(X97, T44)) → APPEND17_IN_AAG(X98, X99, T44)

The TRS R consists of the following rules:

sublist1_in_gg([], T15) → sublist1_out_gg([], T15)
sublist1_in_gg(T5, .(X56, T26)) → U3_gg(T5, X56, T26, append17_in_aag(X57, X58, T26))
append17_in_aag([], T41, T41) → append17_out_aag([], T41, T41)
append17_in_aag(.(X97, X98), X99, .(X97, T44)) → U1_aag(X97, X98, X99, T44, append17_in_aag(X98, X99, T44))
U1_aag(X97, X98, X99, T44, append17_out_aag(X98, X99, T44)) → append17_out_aag(.(X97, X98), X99, .(X97, T44))
U3_gg(T5, X56, T26, append17_out_aag(X57, X58, T26)) → sublist1_out_gg(T5, .(X56, T26))
sublist1_in_gg(.(T65, T66), .(T65, T26)) → U4_gg(T65, T66, T26, append17_in_gag(T66, T35, T26))
append17_in_gag([], T41, T41) → append17_out_gag([], T41, T41)
append17_in_gag(.(X97, X98), X99, .(X97, T44)) → U1_gag(X97, X98, X99, T44, append17_in_gag(X98, X99, T44))
U1_gag(X97, X98, X99, T44, append17_out_gag(X98, X99, T44)) → append17_out_gag(.(X97, X98), X99, .(X97, T44))
U4_gg(T65, T66, T26, append17_out_gag(T66, T35, T26)) → sublist1_out_gg(.(T65, T66), .(T65, T26))
sublist1_in_gg(T73, .(X132, T26)) → U5_gg(T73, X132, T26, append17_in_aag(T74, T35, T26))
U5_gg(T73, X132, T26, append17_out_aag(T74, T35, T26)) → U6_gg(T73, X132, T26, append32_in_agg(X133, T73, T74))
append32_in_agg([], T81, T81) → append32_out_agg([], T81, T81)
append32_in_agg(.(X158, X159), T86, .(X158, T87)) → U2_agg(X158, X159, T86, T87, append32_in_agg(X159, T86, T87))
U2_agg(X158, X159, T86, T87, append32_out_agg(X159, T86, T87)) → append32_out_agg(.(X158, X159), T86, .(X158, T87))
U6_gg(T73, X132, T26, append32_out_agg(X133, T73, T74)) → sublist1_out_gg(T73, .(X132, T26))

The argument filtering Pi contains the following mapping:
sublist1_in_gg(x1, x2)  =  sublist1_in_gg(x1, x2)
[]  =  []
sublist1_out_gg(x1, x2)  =  sublist1_out_gg(x1, x2)
.(x1, x2)  =  .(x1, x2)
U3_gg(x1, x2, x3, x4)  =  U3_gg(x1, x2, x3, x4)
append17_in_aag(x1, x2, x3)  =  append17_in_aag(x3)
append17_out_aag(x1, x2, x3)  =  append17_out_aag(x1, x2, x3)
U1_aag(x1, x2, x3, x4, x5)  =  U1_aag(x1, x4, x5)
U4_gg(x1, x2, x3, x4)  =  U4_gg(x1, x2, x3, x4)
append17_in_gag(x1, x2, x3)  =  append17_in_gag(x1, x3)
append17_out_gag(x1, x2, x3)  =  append17_out_gag(x1, x2, x3)
U1_gag(x1, x2, x3, x4, x5)  =  U1_gag(x1, x2, x4, x5)
U5_gg(x1, x2, x3, x4)  =  U5_gg(x1, x2, x3, x4)
U6_gg(x1, x2, x3, x4)  =  U6_gg(x1, x2, x3, x4)
append32_in_agg(x1, x2, x3)  =  append32_in_agg(x2, x3)
append32_out_agg(x1, x2, x3)  =  append32_out_agg(x1, x2, x3)
U2_agg(x1, x2, x3, x4, x5)  =  U2_agg(x1, x3, x4, x5)
APPEND17_IN_AAG(x1, x2, x3)  =  APPEND17_IN_AAG(x3)

We have to consider all (P,R,Pi)-chains

(24) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(25) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APPEND17_IN_AAG(.(X97, X98), X99, .(X97, T44)) → APPEND17_IN_AAG(X98, X99, T44)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
APPEND17_IN_AAG(x1, x2, x3)  =  APPEND17_IN_AAG(x3)

We have to consider all (P,R,Pi)-chains

(26) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APPEND17_IN_AAG(.(X97, T44)) → APPEND17_IN_AAG(T44)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(28) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • APPEND17_IN_AAG(.(X97, T44)) → APPEND17_IN_AAG(T44)
    The graph contains the following edges 1 > 1

(29) YES