(0) Obligation:
Clauses:
append([], Ys, Ys).
append(.(X, Xs), Ys, .(X, Zs)) :- append(Xs, Ys, Zs).
sublist(X, Y) :- ','(append(P, X1, Y), append(X2, X, P)).
Queries:
sublist(g,g).
(1) PrologToDTProblemTransformerProof (SOUND transformation)
Built DT problem from termination graph.
(2) Obligation:
Triples:
append17(.(X97, X98), X99, .(X97, T44)) :- append17(X98, X99, T44).
append32(.(X158, X159), T86, .(X158, T87)) :- append32(X159, T86, T87).
sublist1(T5, .(X56, T26)) :- append17(X57, X58, T26).
sublist1(T73, .(X132, T26)) :- ','(appendc17(T74, T35, T26), append32(X133, T73, T74)).
Clauses:
appendc17([], T41, T41).
appendc17(.(X97, X98), X99, .(X97, T44)) :- appendc17(X98, X99, T44).
appendc32([], T81, T81).
appendc32(.(X158, X159), T86, .(X158, T87)) :- appendc32(X159, T86, T87).
Afs:
sublist1(x1, x2) = sublist1(x1, x2)
(3) TriplesToPiDPProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
sublist1_in: (b,b)
append17_in: (f,f,b)
appendc17_in: (f,f,b)
append32_in: (f,b,b)
Transforming
TRIPLES into the following
Term Rewriting System:
Pi DP problem:
The TRS P consists of the following rules:
SUBLIST1_IN_GG(T5, .(X56, T26)) → U3_GG(T5, X56, T26, append17_in_aag(X57, X58, T26))
SUBLIST1_IN_GG(T5, .(X56, T26)) → APPEND17_IN_AAG(X57, X58, T26)
APPEND17_IN_AAG(.(X97, X98), X99, .(X97, T44)) → U1_AAG(X97, X98, X99, T44, append17_in_aag(X98, X99, T44))
APPEND17_IN_AAG(.(X97, X98), X99, .(X97, T44)) → APPEND17_IN_AAG(X98, X99, T44)
SUBLIST1_IN_GG(T73, .(X132, T26)) → U4_GG(T73, X132, T26, appendc17_in_aag(T74, T35, T26))
U4_GG(T73, X132, T26, appendc17_out_aag(T74, T35, T26)) → U5_GG(T73, X132, T26, append32_in_agg(X133, T73, T74))
U4_GG(T73, X132, T26, appendc17_out_aag(T74, T35, T26)) → APPEND32_IN_AGG(X133, T73, T74)
APPEND32_IN_AGG(.(X158, X159), T86, .(X158, T87)) → U2_AGG(X158, X159, T86, T87, append32_in_agg(X159, T86, T87))
APPEND32_IN_AGG(.(X158, X159), T86, .(X158, T87)) → APPEND32_IN_AGG(X159, T86, T87)
The TRS R consists of the following rules:
appendc17_in_aag([], T41, T41) → appendc17_out_aag([], T41, T41)
appendc17_in_aag(.(X97, X98), X99, .(X97, T44)) → U7_aag(X97, X98, X99, T44, appendc17_in_aag(X98, X99, T44))
U7_aag(X97, X98, X99, T44, appendc17_out_aag(X98, X99, T44)) → appendc17_out_aag(.(X97, X98), X99, .(X97, T44))
The argument filtering Pi contains the following mapping:
.(
x1,
x2) =
.(
x1,
x2)
append17_in_aag(
x1,
x2,
x3) =
append17_in_aag(
x3)
appendc17_in_aag(
x1,
x2,
x3) =
appendc17_in_aag(
x3)
appendc17_out_aag(
x1,
x2,
x3) =
appendc17_out_aag(
x1,
x2,
x3)
U7_aag(
x1,
x2,
x3,
x4,
x5) =
U7_aag(
x1,
x4,
x5)
append32_in_agg(
x1,
x2,
x3) =
append32_in_agg(
x2,
x3)
SUBLIST1_IN_GG(
x1,
x2) =
SUBLIST1_IN_GG(
x1,
x2)
U3_GG(
x1,
x2,
x3,
x4) =
U3_GG(
x1,
x2,
x3,
x4)
APPEND17_IN_AAG(
x1,
x2,
x3) =
APPEND17_IN_AAG(
x3)
U1_AAG(
x1,
x2,
x3,
x4,
x5) =
U1_AAG(
x1,
x4,
x5)
U4_GG(
x1,
x2,
x3,
x4) =
U4_GG(
x1,
x2,
x3,
x4)
U5_GG(
x1,
x2,
x3,
x4) =
U5_GG(
x1,
x2,
x3,
x4)
APPEND32_IN_AGG(
x1,
x2,
x3) =
APPEND32_IN_AGG(
x2,
x3)
U2_AGG(
x1,
x2,
x3,
x4,
x5) =
U2_AGG(
x1,
x3,
x4,
x5)
We have to consider all (P,R,Pi)-chains
Infinitary Constructor Rewriting Termination of PiDP implies Termination of TRIPLES
(4) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
SUBLIST1_IN_GG(T5, .(X56, T26)) → U3_GG(T5, X56, T26, append17_in_aag(X57, X58, T26))
SUBLIST1_IN_GG(T5, .(X56, T26)) → APPEND17_IN_AAG(X57, X58, T26)
APPEND17_IN_AAG(.(X97, X98), X99, .(X97, T44)) → U1_AAG(X97, X98, X99, T44, append17_in_aag(X98, X99, T44))
APPEND17_IN_AAG(.(X97, X98), X99, .(X97, T44)) → APPEND17_IN_AAG(X98, X99, T44)
SUBLIST1_IN_GG(T73, .(X132, T26)) → U4_GG(T73, X132, T26, appendc17_in_aag(T74, T35, T26))
U4_GG(T73, X132, T26, appendc17_out_aag(T74, T35, T26)) → U5_GG(T73, X132, T26, append32_in_agg(X133, T73, T74))
U4_GG(T73, X132, T26, appendc17_out_aag(T74, T35, T26)) → APPEND32_IN_AGG(X133, T73, T74)
APPEND32_IN_AGG(.(X158, X159), T86, .(X158, T87)) → U2_AGG(X158, X159, T86, T87, append32_in_agg(X159, T86, T87))
APPEND32_IN_AGG(.(X158, X159), T86, .(X158, T87)) → APPEND32_IN_AGG(X159, T86, T87)
The TRS R consists of the following rules:
appendc17_in_aag([], T41, T41) → appendc17_out_aag([], T41, T41)
appendc17_in_aag(.(X97, X98), X99, .(X97, T44)) → U7_aag(X97, X98, X99, T44, appendc17_in_aag(X98, X99, T44))
U7_aag(X97, X98, X99, T44, appendc17_out_aag(X98, X99, T44)) → appendc17_out_aag(.(X97, X98), X99, .(X97, T44))
The argument filtering Pi contains the following mapping:
.(
x1,
x2) =
.(
x1,
x2)
append17_in_aag(
x1,
x2,
x3) =
append17_in_aag(
x3)
appendc17_in_aag(
x1,
x2,
x3) =
appendc17_in_aag(
x3)
appendc17_out_aag(
x1,
x2,
x3) =
appendc17_out_aag(
x1,
x2,
x3)
U7_aag(
x1,
x2,
x3,
x4,
x5) =
U7_aag(
x1,
x4,
x5)
append32_in_agg(
x1,
x2,
x3) =
append32_in_agg(
x2,
x3)
SUBLIST1_IN_GG(
x1,
x2) =
SUBLIST1_IN_GG(
x1,
x2)
U3_GG(
x1,
x2,
x3,
x4) =
U3_GG(
x1,
x2,
x3,
x4)
APPEND17_IN_AAG(
x1,
x2,
x3) =
APPEND17_IN_AAG(
x3)
U1_AAG(
x1,
x2,
x3,
x4,
x5) =
U1_AAG(
x1,
x4,
x5)
U4_GG(
x1,
x2,
x3,
x4) =
U4_GG(
x1,
x2,
x3,
x4)
U5_GG(
x1,
x2,
x3,
x4) =
U5_GG(
x1,
x2,
x3,
x4)
APPEND32_IN_AGG(
x1,
x2,
x3) =
APPEND32_IN_AGG(
x2,
x3)
U2_AGG(
x1,
x2,
x3,
x4,
x5) =
U2_AGG(
x1,
x3,
x4,
x5)
We have to consider all (P,R,Pi)-chains
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 7 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
APPEND32_IN_AGG(.(X158, X159), T86, .(X158, T87)) → APPEND32_IN_AGG(X159, T86, T87)
The TRS R consists of the following rules:
appendc17_in_aag([], T41, T41) → appendc17_out_aag([], T41, T41)
appendc17_in_aag(.(X97, X98), X99, .(X97, T44)) → U7_aag(X97, X98, X99, T44, appendc17_in_aag(X98, X99, T44))
U7_aag(X97, X98, X99, T44, appendc17_out_aag(X98, X99, T44)) → appendc17_out_aag(.(X97, X98), X99, .(X97, T44))
The argument filtering Pi contains the following mapping:
.(
x1,
x2) =
.(
x1,
x2)
appendc17_in_aag(
x1,
x2,
x3) =
appendc17_in_aag(
x3)
appendc17_out_aag(
x1,
x2,
x3) =
appendc17_out_aag(
x1,
x2,
x3)
U7_aag(
x1,
x2,
x3,
x4,
x5) =
U7_aag(
x1,
x4,
x5)
APPEND32_IN_AGG(
x1,
x2,
x3) =
APPEND32_IN_AGG(
x2,
x3)
We have to consider all (P,R,Pi)-chains
(8) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(9) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
APPEND32_IN_AGG(.(X158, X159), T86, .(X158, T87)) → APPEND32_IN_AGG(X159, T86, T87)
R is empty.
The argument filtering Pi contains the following mapping:
.(
x1,
x2) =
.(
x1,
x2)
APPEND32_IN_AGG(
x1,
x2,
x3) =
APPEND32_IN_AGG(
x2,
x3)
We have to consider all (P,R,Pi)-chains
(10) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APPEND32_IN_AGG(T86, .(X158, T87)) → APPEND32_IN_AGG(T86, T87)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(12) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- APPEND32_IN_AGG(T86, .(X158, T87)) → APPEND32_IN_AGG(T86, T87)
The graph contains the following edges 1 >= 1, 2 > 2
(13) YES
(14) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
APPEND17_IN_AAG(.(X97, X98), X99, .(X97, T44)) → APPEND17_IN_AAG(X98, X99, T44)
The TRS R consists of the following rules:
appendc17_in_aag([], T41, T41) → appendc17_out_aag([], T41, T41)
appendc17_in_aag(.(X97, X98), X99, .(X97, T44)) → U7_aag(X97, X98, X99, T44, appendc17_in_aag(X98, X99, T44))
U7_aag(X97, X98, X99, T44, appendc17_out_aag(X98, X99, T44)) → appendc17_out_aag(.(X97, X98), X99, .(X97, T44))
The argument filtering Pi contains the following mapping:
.(
x1,
x2) =
.(
x1,
x2)
appendc17_in_aag(
x1,
x2,
x3) =
appendc17_in_aag(
x3)
appendc17_out_aag(
x1,
x2,
x3) =
appendc17_out_aag(
x1,
x2,
x3)
U7_aag(
x1,
x2,
x3,
x4,
x5) =
U7_aag(
x1,
x4,
x5)
APPEND17_IN_AAG(
x1,
x2,
x3) =
APPEND17_IN_AAG(
x3)
We have to consider all (P,R,Pi)-chains
(15) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(16) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
APPEND17_IN_AAG(.(X97, X98), X99, .(X97, T44)) → APPEND17_IN_AAG(X98, X99, T44)
R is empty.
The argument filtering Pi contains the following mapping:
.(
x1,
x2) =
.(
x1,
x2)
APPEND17_IN_AAG(
x1,
x2,
x3) =
APPEND17_IN_AAG(
x3)
We have to consider all (P,R,Pi)-chains
(17) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APPEND17_IN_AAG(.(X97, T44)) → APPEND17_IN_AAG(T44)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(19) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- APPEND17_IN_AAG(.(X97, T44)) → APPEND17_IN_AAG(T44)
The graph contains the following edges 1 > 1
(20) YES