(0) Obligation:
Clauses:
nat(0).
nat(s(X)) :- nat(X).
plus(0, X, X) :- nat(X).
plus(s(X), Y, s(Z)) :- plus(X, Y, Z).
ways(0, X1, s(0)).
ways(X2, [], 0).
ways(Amount, .(s(C), Coins), N) :- ','(=(Amount, s(X3)), ','(plus(s(C), NewAmount, Amount), ','(ways(Amount, Coins, N1), ','(ways(NewAmount, .(s(C), Coins), N2), plus(N1, N2, N))))).
ways(Amount, .(s(C), Coins), N) :- ','(=(Amount, s(X4)), ','(plus(Amount, s(X5), s(C)), ways(Amount, Coins, N))).
Queries:
ways(g,g,a).
(1) PredefinedPredicateTransformerProof (SOUND transformation)
Added definitions of predefined predicates [PROLOG].
(2) Obligation:
Clauses:
nat(0).
nat(s(X)) :- nat(X).
plus(0, X, X) :- nat(X).
plus(s(X), Y, s(Z)) :- plus(X, Y, Z).
ways(0, X1, s(0)).
ways(X2, [], 0).
ways(Amount, .(s(C), Coins), N) :- ','(=(Amount, s(X3)), ','(plus(s(C), NewAmount, Amount), ','(ways(Amount, Coins, N1), ','(ways(NewAmount, .(s(C), Coins), N2), plus(N1, N2, N))))).
ways(Amount, .(s(C), Coins), N) :- ','(=(Amount, s(X4)), ','(plus(Amount, s(X5), s(C)), ways(Amount, Coins, N))).
=(X, X).
Queries:
ways(g,g,a).
(3) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
ways_in: (b,b,f)
plus_in: (b,f,b) (b,b,f)
nat_in: (b)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
ways_in_gga(0, X1, s(0)) → ways_out_gga(0, X1, s(0))
ways_in_gga(X2, [], 0) → ways_out_gga(X2, [], 0)
ways_in_gga(Amount, .(s(C), Coins), N) → U4_gga(Amount, C, Coins, N, =_in_ga(Amount, s(X3)))
=_in_ga(X, X) → =_out_ga(X, X)
U4_gga(Amount, C, Coins, N, =_out_ga(Amount, s(X3))) → U5_gga(Amount, C, Coins, N, X3, plus_in_gag(s(C), NewAmount, Amount))
plus_in_gag(0, X, X) → U2_gag(X, nat_in_g(X))
nat_in_g(0) → nat_out_g(0)
nat_in_g(s(X)) → U1_g(X, nat_in_g(X))
U1_g(X, nat_out_g(X)) → nat_out_g(s(X))
U2_gag(X, nat_out_g(X)) → plus_out_gag(0, X, X)
plus_in_gag(s(X), Y, s(Z)) → U3_gag(X, Y, Z, plus_in_gag(X, Y, Z))
U3_gag(X, Y, Z, plus_out_gag(X, Y, Z)) → plus_out_gag(s(X), Y, s(Z))
U5_gga(Amount, C, Coins, N, X3, plus_out_gag(s(C), NewAmount, Amount)) → U6_gga(Amount, C, Coins, N, X3, NewAmount, ways_in_gga(Amount, Coins, N1))
ways_in_gga(Amount, .(s(C), Coins), N) → U9_gga(Amount, C, Coins, N, =_in_ga(Amount, s(X4)))
U9_gga(Amount, C, Coins, N, =_out_ga(Amount, s(X4))) → U10_gga(Amount, C, Coins, N, X4, plus_in_gag(Amount, s(X5), s(C)))
U10_gga(Amount, C, Coins, N, X4, plus_out_gag(Amount, s(X5), s(C))) → U11_gga(Amount, C, Coins, N, ways_in_gga(Amount, Coins, N))
U11_gga(Amount, C, Coins, N, ways_out_gga(Amount, Coins, N)) → ways_out_gga(Amount, .(s(C), Coins), N)
U6_gga(Amount, C, Coins, N, X3, NewAmount, ways_out_gga(Amount, Coins, N1)) → U7_gga(Amount, C, Coins, N, X3, NewAmount, N1, ways_in_gga(NewAmount, .(s(C), Coins), N2))
U7_gga(Amount, C, Coins, N, X3, NewAmount, N1, ways_out_gga(NewAmount, .(s(C), Coins), N2)) → U8_gga(Amount, C, Coins, N, plus_in_gga(N1, N2, N))
plus_in_gga(0, X, X) → U2_gga(X, nat_in_g(X))
U2_gga(X, nat_out_g(X)) → plus_out_gga(0, X, X)
plus_in_gga(s(X), Y, s(Z)) → U3_gga(X, Y, Z, plus_in_gga(X, Y, Z))
U3_gga(X, Y, Z, plus_out_gga(X, Y, Z)) → plus_out_gga(s(X), Y, s(Z))
U8_gga(Amount, C, Coins, N, plus_out_gga(N1, N2, N)) → ways_out_gga(Amount, .(s(C), Coins), N)
The argument filtering Pi contains the following mapping:
ways_in_gga(
x1,
x2,
x3) =
ways_in_gga(
x1,
x2)
0 =
0
ways_out_gga(
x1,
x2,
x3) =
ways_out_gga(
x1,
x2,
x3)
[] =
[]
.(
x1,
x2) =
.(
x1,
x2)
s(
x1) =
s(
x1)
U4_gga(
x1,
x2,
x3,
x4,
x5) =
U4_gga(
x1,
x2,
x3,
x5)
=_in_ga(
x1,
x2) =
=_in_ga(
x1)
=_out_ga(
x1,
x2) =
=_out_ga(
x1,
x2)
U5_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U5_gga(
x1,
x2,
x3,
x6)
plus_in_gag(
x1,
x2,
x3) =
plus_in_gag(
x1,
x3)
U2_gag(
x1,
x2) =
U2_gag(
x1,
x2)
nat_in_g(
x1) =
nat_in_g(
x1)
nat_out_g(
x1) =
nat_out_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x1,
x2)
plus_out_gag(
x1,
x2,
x3) =
plus_out_gag(
x1,
x2,
x3)
U3_gag(
x1,
x2,
x3,
x4) =
U3_gag(
x1,
x3,
x4)
U6_gga(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U6_gga(
x1,
x2,
x3,
x6,
x7)
U9_gga(
x1,
x2,
x3,
x4,
x5) =
U9_gga(
x1,
x2,
x3,
x5)
U10_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U10_gga(
x1,
x2,
x3,
x6)
U11_gga(
x1,
x2,
x3,
x4,
x5) =
U11_gga(
x1,
x2,
x3,
x5)
U7_gga(
x1,
x2,
x3,
x4,
x5,
x6,
x7,
x8) =
U7_gga(
x1,
x2,
x3,
x7,
x8)
U8_gga(
x1,
x2,
x3,
x4,
x5) =
U8_gga(
x1,
x2,
x3,
x5)
plus_in_gga(
x1,
x2,
x3) =
plus_in_gga(
x1,
x2)
U2_gga(
x1,
x2) =
U2_gga(
x1,
x2)
plus_out_gga(
x1,
x2,
x3) =
plus_out_gga(
x1,
x2,
x3)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x1,
x2,
x4)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(4) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
ways_in_gga(0, X1, s(0)) → ways_out_gga(0, X1, s(0))
ways_in_gga(X2, [], 0) → ways_out_gga(X2, [], 0)
ways_in_gga(Amount, .(s(C), Coins), N) → U4_gga(Amount, C, Coins, N, =_in_ga(Amount, s(X3)))
=_in_ga(X, X) → =_out_ga(X, X)
U4_gga(Amount, C, Coins, N, =_out_ga(Amount, s(X3))) → U5_gga(Amount, C, Coins, N, X3, plus_in_gag(s(C), NewAmount, Amount))
plus_in_gag(0, X, X) → U2_gag(X, nat_in_g(X))
nat_in_g(0) → nat_out_g(0)
nat_in_g(s(X)) → U1_g(X, nat_in_g(X))
U1_g(X, nat_out_g(X)) → nat_out_g(s(X))
U2_gag(X, nat_out_g(X)) → plus_out_gag(0, X, X)
plus_in_gag(s(X), Y, s(Z)) → U3_gag(X, Y, Z, plus_in_gag(X, Y, Z))
U3_gag(X, Y, Z, plus_out_gag(X, Y, Z)) → plus_out_gag(s(X), Y, s(Z))
U5_gga(Amount, C, Coins, N, X3, plus_out_gag(s(C), NewAmount, Amount)) → U6_gga(Amount, C, Coins, N, X3, NewAmount, ways_in_gga(Amount, Coins, N1))
ways_in_gga(Amount, .(s(C), Coins), N) → U9_gga(Amount, C, Coins, N, =_in_ga(Amount, s(X4)))
U9_gga(Amount, C, Coins, N, =_out_ga(Amount, s(X4))) → U10_gga(Amount, C, Coins, N, X4, plus_in_gag(Amount, s(X5), s(C)))
U10_gga(Amount, C, Coins, N, X4, plus_out_gag(Amount, s(X5), s(C))) → U11_gga(Amount, C, Coins, N, ways_in_gga(Amount, Coins, N))
U11_gga(Amount, C, Coins, N, ways_out_gga(Amount, Coins, N)) → ways_out_gga(Amount, .(s(C), Coins), N)
U6_gga(Amount, C, Coins, N, X3, NewAmount, ways_out_gga(Amount, Coins, N1)) → U7_gga(Amount, C, Coins, N, X3, NewAmount, N1, ways_in_gga(NewAmount, .(s(C), Coins), N2))
U7_gga(Amount, C, Coins, N, X3, NewAmount, N1, ways_out_gga(NewAmount, .(s(C), Coins), N2)) → U8_gga(Amount, C, Coins, N, plus_in_gga(N1, N2, N))
plus_in_gga(0, X, X) → U2_gga(X, nat_in_g(X))
U2_gga(X, nat_out_g(X)) → plus_out_gga(0, X, X)
plus_in_gga(s(X), Y, s(Z)) → U3_gga(X, Y, Z, plus_in_gga(X, Y, Z))
U3_gga(X, Y, Z, plus_out_gga(X, Y, Z)) → plus_out_gga(s(X), Y, s(Z))
U8_gga(Amount, C, Coins, N, plus_out_gga(N1, N2, N)) → ways_out_gga(Amount, .(s(C), Coins), N)
The argument filtering Pi contains the following mapping:
ways_in_gga(
x1,
x2,
x3) =
ways_in_gga(
x1,
x2)
0 =
0
ways_out_gga(
x1,
x2,
x3) =
ways_out_gga(
x1,
x2,
x3)
[] =
[]
.(
x1,
x2) =
.(
x1,
x2)
s(
x1) =
s(
x1)
U4_gga(
x1,
x2,
x3,
x4,
x5) =
U4_gga(
x1,
x2,
x3,
x5)
=_in_ga(
x1,
x2) =
=_in_ga(
x1)
=_out_ga(
x1,
x2) =
=_out_ga(
x1,
x2)
U5_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U5_gga(
x1,
x2,
x3,
x6)
plus_in_gag(
x1,
x2,
x3) =
plus_in_gag(
x1,
x3)
U2_gag(
x1,
x2) =
U2_gag(
x1,
x2)
nat_in_g(
x1) =
nat_in_g(
x1)
nat_out_g(
x1) =
nat_out_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x1,
x2)
plus_out_gag(
x1,
x2,
x3) =
plus_out_gag(
x1,
x2,
x3)
U3_gag(
x1,
x2,
x3,
x4) =
U3_gag(
x1,
x3,
x4)
U6_gga(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U6_gga(
x1,
x2,
x3,
x6,
x7)
U9_gga(
x1,
x2,
x3,
x4,
x5) =
U9_gga(
x1,
x2,
x3,
x5)
U10_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U10_gga(
x1,
x2,
x3,
x6)
U11_gga(
x1,
x2,
x3,
x4,
x5) =
U11_gga(
x1,
x2,
x3,
x5)
U7_gga(
x1,
x2,
x3,
x4,
x5,
x6,
x7,
x8) =
U7_gga(
x1,
x2,
x3,
x7,
x8)
U8_gga(
x1,
x2,
x3,
x4,
x5) =
U8_gga(
x1,
x2,
x3,
x5)
plus_in_gga(
x1,
x2,
x3) =
plus_in_gga(
x1,
x2)
U2_gga(
x1,
x2) =
U2_gga(
x1,
x2)
plus_out_gga(
x1,
x2,
x3) =
plus_out_gga(
x1,
x2,
x3)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x1,
x2,
x4)
(5) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
WAYS_IN_GGA(Amount, .(s(C), Coins), N) → U4_GGA(Amount, C, Coins, N, =_in_ga(Amount, s(X3)))
WAYS_IN_GGA(Amount, .(s(C), Coins), N) → =_IN_GA(Amount, s(X3))
U4_GGA(Amount, C, Coins, N, =_out_ga(Amount, s(X3))) → U5_GGA(Amount, C, Coins, N, X3, plus_in_gag(s(C), NewAmount, Amount))
U4_GGA(Amount, C, Coins, N, =_out_ga(Amount, s(X3))) → PLUS_IN_GAG(s(C), NewAmount, Amount)
PLUS_IN_GAG(0, X, X) → U2_GAG(X, nat_in_g(X))
PLUS_IN_GAG(0, X, X) → NAT_IN_G(X)
NAT_IN_G(s(X)) → U1_G(X, nat_in_g(X))
NAT_IN_G(s(X)) → NAT_IN_G(X)
PLUS_IN_GAG(s(X), Y, s(Z)) → U3_GAG(X, Y, Z, plus_in_gag(X, Y, Z))
PLUS_IN_GAG(s(X), Y, s(Z)) → PLUS_IN_GAG(X, Y, Z)
U5_GGA(Amount, C, Coins, N, X3, plus_out_gag(s(C), NewAmount, Amount)) → U6_GGA(Amount, C, Coins, N, X3, NewAmount, ways_in_gga(Amount, Coins, N1))
U5_GGA(Amount, C, Coins, N, X3, plus_out_gag(s(C), NewAmount, Amount)) → WAYS_IN_GGA(Amount, Coins, N1)
WAYS_IN_GGA(Amount, .(s(C), Coins), N) → U9_GGA(Amount, C, Coins, N, =_in_ga(Amount, s(X4)))
U9_GGA(Amount, C, Coins, N, =_out_ga(Amount, s(X4))) → U10_GGA(Amount, C, Coins, N, X4, plus_in_gag(Amount, s(X5), s(C)))
U9_GGA(Amount, C, Coins, N, =_out_ga(Amount, s(X4))) → PLUS_IN_GAG(Amount, s(X5), s(C))
U10_GGA(Amount, C, Coins, N, X4, plus_out_gag(Amount, s(X5), s(C))) → U11_GGA(Amount, C, Coins, N, ways_in_gga(Amount, Coins, N))
U10_GGA(Amount, C, Coins, N, X4, plus_out_gag(Amount, s(X5), s(C))) → WAYS_IN_GGA(Amount, Coins, N)
U6_GGA(Amount, C, Coins, N, X3, NewAmount, ways_out_gga(Amount, Coins, N1)) → U7_GGA(Amount, C, Coins, N, X3, NewAmount, N1, ways_in_gga(NewAmount, .(s(C), Coins), N2))
U6_GGA(Amount, C, Coins, N, X3, NewAmount, ways_out_gga(Amount, Coins, N1)) → WAYS_IN_GGA(NewAmount, .(s(C), Coins), N2)
U7_GGA(Amount, C, Coins, N, X3, NewAmount, N1, ways_out_gga(NewAmount, .(s(C), Coins), N2)) → U8_GGA(Amount, C, Coins, N, plus_in_gga(N1, N2, N))
U7_GGA(Amount, C, Coins, N, X3, NewAmount, N1, ways_out_gga(NewAmount, .(s(C), Coins), N2)) → PLUS_IN_GGA(N1, N2, N)
PLUS_IN_GGA(0, X, X) → U2_GGA(X, nat_in_g(X))
PLUS_IN_GGA(0, X, X) → NAT_IN_G(X)
PLUS_IN_GGA(s(X), Y, s(Z)) → U3_GGA(X, Y, Z, plus_in_gga(X, Y, Z))
PLUS_IN_GGA(s(X), Y, s(Z)) → PLUS_IN_GGA(X, Y, Z)
The TRS R consists of the following rules:
ways_in_gga(0, X1, s(0)) → ways_out_gga(0, X1, s(0))
ways_in_gga(X2, [], 0) → ways_out_gga(X2, [], 0)
ways_in_gga(Amount, .(s(C), Coins), N) → U4_gga(Amount, C, Coins, N, =_in_ga(Amount, s(X3)))
=_in_ga(X, X) → =_out_ga(X, X)
U4_gga(Amount, C, Coins, N, =_out_ga(Amount, s(X3))) → U5_gga(Amount, C, Coins, N, X3, plus_in_gag(s(C), NewAmount, Amount))
plus_in_gag(0, X, X) → U2_gag(X, nat_in_g(X))
nat_in_g(0) → nat_out_g(0)
nat_in_g(s(X)) → U1_g(X, nat_in_g(X))
U1_g(X, nat_out_g(X)) → nat_out_g(s(X))
U2_gag(X, nat_out_g(X)) → plus_out_gag(0, X, X)
plus_in_gag(s(X), Y, s(Z)) → U3_gag(X, Y, Z, plus_in_gag(X, Y, Z))
U3_gag(X, Y, Z, plus_out_gag(X, Y, Z)) → plus_out_gag(s(X), Y, s(Z))
U5_gga(Amount, C, Coins, N, X3, plus_out_gag(s(C), NewAmount, Amount)) → U6_gga(Amount, C, Coins, N, X3, NewAmount, ways_in_gga(Amount, Coins, N1))
ways_in_gga(Amount, .(s(C), Coins), N) → U9_gga(Amount, C, Coins, N, =_in_ga(Amount, s(X4)))
U9_gga(Amount, C, Coins, N, =_out_ga(Amount, s(X4))) → U10_gga(Amount, C, Coins, N, X4, plus_in_gag(Amount, s(X5), s(C)))
U10_gga(Amount, C, Coins, N, X4, plus_out_gag(Amount, s(X5), s(C))) → U11_gga(Amount, C, Coins, N, ways_in_gga(Amount, Coins, N))
U11_gga(Amount, C, Coins, N, ways_out_gga(Amount, Coins, N)) → ways_out_gga(Amount, .(s(C), Coins), N)
U6_gga(Amount, C, Coins, N, X3, NewAmount, ways_out_gga(Amount, Coins, N1)) → U7_gga(Amount, C, Coins, N, X3, NewAmount, N1, ways_in_gga(NewAmount, .(s(C), Coins), N2))
U7_gga(Amount, C, Coins, N, X3, NewAmount, N1, ways_out_gga(NewAmount, .(s(C), Coins), N2)) → U8_gga(Amount, C, Coins, N, plus_in_gga(N1, N2, N))
plus_in_gga(0, X, X) → U2_gga(X, nat_in_g(X))
U2_gga(X, nat_out_g(X)) → plus_out_gga(0, X, X)
plus_in_gga(s(X), Y, s(Z)) → U3_gga(X, Y, Z, plus_in_gga(X, Y, Z))
U3_gga(X, Y, Z, plus_out_gga(X, Y, Z)) → plus_out_gga(s(X), Y, s(Z))
U8_gga(Amount, C, Coins, N, plus_out_gga(N1, N2, N)) → ways_out_gga(Amount, .(s(C), Coins), N)
The argument filtering Pi contains the following mapping:
ways_in_gga(
x1,
x2,
x3) =
ways_in_gga(
x1,
x2)
0 =
0
ways_out_gga(
x1,
x2,
x3) =
ways_out_gga(
x1,
x2,
x3)
[] =
[]
.(
x1,
x2) =
.(
x1,
x2)
s(
x1) =
s(
x1)
U4_gga(
x1,
x2,
x3,
x4,
x5) =
U4_gga(
x1,
x2,
x3,
x5)
=_in_ga(
x1,
x2) =
=_in_ga(
x1)
=_out_ga(
x1,
x2) =
=_out_ga(
x1,
x2)
U5_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U5_gga(
x1,
x2,
x3,
x6)
plus_in_gag(
x1,
x2,
x3) =
plus_in_gag(
x1,
x3)
U2_gag(
x1,
x2) =
U2_gag(
x1,
x2)
nat_in_g(
x1) =
nat_in_g(
x1)
nat_out_g(
x1) =
nat_out_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x1,
x2)
plus_out_gag(
x1,
x2,
x3) =
plus_out_gag(
x1,
x2,
x3)
U3_gag(
x1,
x2,
x3,
x4) =
U3_gag(
x1,
x3,
x4)
U6_gga(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U6_gga(
x1,
x2,
x3,
x6,
x7)
U9_gga(
x1,
x2,
x3,
x4,
x5) =
U9_gga(
x1,
x2,
x3,
x5)
U10_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U10_gga(
x1,
x2,
x3,
x6)
U11_gga(
x1,
x2,
x3,
x4,
x5) =
U11_gga(
x1,
x2,
x3,
x5)
U7_gga(
x1,
x2,
x3,
x4,
x5,
x6,
x7,
x8) =
U7_gga(
x1,
x2,
x3,
x7,
x8)
U8_gga(
x1,
x2,
x3,
x4,
x5) =
U8_gga(
x1,
x2,
x3,
x5)
plus_in_gga(
x1,
x2,
x3) =
plus_in_gga(
x1,
x2)
U2_gga(
x1,
x2) =
U2_gga(
x1,
x2)
plus_out_gga(
x1,
x2,
x3) =
plus_out_gga(
x1,
x2,
x3)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x1,
x2,
x4)
WAYS_IN_GGA(
x1,
x2,
x3) =
WAYS_IN_GGA(
x1,
x2)
U4_GGA(
x1,
x2,
x3,
x4,
x5) =
U4_GGA(
x1,
x2,
x3,
x5)
=_IN_GA(
x1,
x2) =
=_IN_GA(
x1)
U5_GGA(
x1,
x2,
x3,
x4,
x5,
x6) =
U5_GGA(
x1,
x2,
x3,
x6)
PLUS_IN_GAG(
x1,
x2,
x3) =
PLUS_IN_GAG(
x1,
x3)
U2_GAG(
x1,
x2) =
U2_GAG(
x1,
x2)
NAT_IN_G(
x1) =
NAT_IN_G(
x1)
U1_G(
x1,
x2) =
U1_G(
x1,
x2)
U3_GAG(
x1,
x2,
x3,
x4) =
U3_GAG(
x1,
x3,
x4)
U6_GGA(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U6_GGA(
x1,
x2,
x3,
x6,
x7)
U9_GGA(
x1,
x2,
x3,
x4,
x5) =
U9_GGA(
x1,
x2,
x3,
x5)
U10_GGA(
x1,
x2,
x3,
x4,
x5,
x6) =
U10_GGA(
x1,
x2,
x3,
x6)
U11_GGA(
x1,
x2,
x3,
x4,
x5) =
U11_GGA(
x1,
x2,
x3,
x5)
U7_GGA(
x1,
x2,
x3,
x4,
x5,
x6,
x7,
x8) =
U7_GGA(
x1,
x2,
x3,
x7,
x8)
U8_GGA(
x1,
x2,
x3,
x4,
x5) =
U8_GGA(
x1,
x2,
x3,
x5)
PLUS_IN_GGA(
x1,
x2,
x3) =
PLUS_IN_GGA(
x1,
x2)
U2_GGA(
x1,
x2) =
U2_GGA(
x1,
x2)
U3_GGA(
x1,
x2,
x3,
x4) =
U3_GGA(
x1,
x2,
x4)
We have to consider all (P,R,Pi)-chains
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
WAYS_IN_GGA(Amount, .(s(C), Coins), N) → U4_GGA(Amount, C, Coins, N, =_in_ga(Amount, s(X3)))
WAYS_IN_GGA(Amount, .(s(C), Coins), N) → =_IN_GA(Amount, s(X3))
U4_GGA(Amount, C, Coins, N, =_out_ga(Amount, s(X3))) → U5_GGA(Amount, C, Coins, N, X3, plus_in_gag(s(C), NewAmount, Amount))
U4_GGA(Amount, C, Coins, N, =_out_ga(Amount, s(X3))) → PLUS_IN_GAG(s(C), NewAmount, Amount)
PLUS_IN_GAG(0, X, X) → U2_GAG(X, nat_in_g(X))
PLUS_IN_GAG(0, X, X) → NAT_IN_G(X)
NAT_IN_G(s(X)) → U1_G(X, nat_in_g(X))
NAT_IN_G(s(X)) → NAT_IN_G(X)
PLUS_IN_GAG(s(X), Y, s(Z)) → U3_GAG(X, Y, Z, plus_in_gag(X, Y, Z))
PLUS_IN_GAG(s(X), Y, s(Z)) → PLUS_IN_GAG(X, Y, Z)
U5_GGA(Amount, C, Coins, N, X3, plus_out_gag(s(C), NewAmount, Amount)) → U6_GGA(Amount, C, Coins, N, X3, NewAmount, ways_in_gga(Amount, Coins, N1))
U5_GGA(Amount, C, Coins, N, X3, plus_out_gag(s(C), NewAmount, Amount)) → WAYS_IN_GGA(Amount, Coins, N1)
WAYS_IN_GGA(Amount, .(s(C), Coins), N) → U9_GGA(Amount, C, Coins, N, =_in_ga(Amount, s(X4)))
U9_GGA(Amount, C, Coins, N, =_out_ga(Amount, s(X4))) → U10_GGA(Amount, C, Coins, N, X4, plus_in_gag(Amount, s(X5), s(C)))
U9_GGA(Amount, C, Coins, N, =_out_ga(Amount, s(X4))) → PLUS_IN_GAG(Amount, s(X5), s(C))
U10_GGA(Amount, C, Coins, N, X4, plus_out_gag(Amount, s(X5), s(C))) → U11_GGA(Amount, C, Coins, N, ways_in_gga(Amount, Coins, N))
U10_GGA(Amount, C, Coins, N, X4, plus_out_gag(Amount, s(X5), s(C))) → WAYS_IN_GGA(Amount, Coins, N)
U6_GGA(Amount, C, Coins, N, X3, NewAmount, ways_out_gga(Amount, Coins, N1)) → U7_GGA(Amount, C, Coins, N, X3, NewAmount, N1, ways_in_gga(NewAmount, .(s(C), Coins), N2))
U6_GGA(Amount, C, Coins, N, X3, NewAmount, ways_out_gga(Amount, Coins, N1)) → WAYS_IN_GGA(NewAmount, .(s(C), Coins), N2)
U7_GGA(Amount, C, Coins, N, X3, NewAmount, N1, ways_out_gga(NewAmount, .(s(C), Coins), N2)) → U8_GGA(Amount, C, Coins, N, plus_in_gga(N1, N2, N))
U7_GGA(Amount, C, Coins, N, X3, NewAmount, N1, ways_out_gga(NewAmount, .(s(C), Coins), N2)) → PLUS_IN_GGA(N1, N2, N)
PLUS_IN_GGA(0, X, X) → U2_GGA(X, nat_in_g(X))
PLUS_IN_GGA(0, X, X) → NAT_IN_G(X)
PLUS_IN_GGA(s(X), Y, s(Z)) → U3_GGA(X, Y, Z, plus_in_gga(X, Y, Z))
PLUS_IN_GGA(s(X), Y, s(Z)) → PLUS_IN_GGA(X, Y, Z)
The TRS R consists of the following rules:
ways_in_gga(0, X1, s(0)) → ways_out_gga(0, X1, s(0))
ways_in_gga(X2, [], 0) → ways_out_gga(X2, [], 0)
ways_in_gga(Amount, .(s(C), Coins), N) → U4_gga(Amount, C, Coins, N, =_in_ga(Amount, s(X3)))
=_in_ga(X, X) → =_out_ga(X, X)
U4_gga(Amount, C, Coins, N, =_out_ga(Amount, s(X3))) → U5_gga(Amount, C, Coins, N, X3, plus_in_gag(s(C), NewAmount, Amount))
plus_in_gag(0, X, X) → U2_gag(X, nat_in_g(X))
nat_in_g(0) → nat_out_g(0)
nat_in_g(s(X)) → U1_g(X, nat_in_g(X))
U1_g(X, nat_out_g(X)) → nat_out_g(s(X))
U2_gag(X, nat_out_g(X)) → plus_out_gag(0, X, X)
plus_in_gag(s(X), Y, s(Z)) → U3_gag(X, Y, Z, plus_in_gag(X, Y, Z))
U3_gag(X, Y, Z, plus_out_gag(X, Y, Z)) → plus_out_gag(s(X), Y, s(Z))
U5_gga(Amount, C, Coins, N, X3, plus_out_gag(s(C), NewAmount, Amount)) → U6_gga(Amount, C, Coins, N, X3, NewAmount, ways_in_gga(Amount, Coins, N1))
ways_in_gga(Amount, .(s(C), Coins), N) → U9_gga(Amount, C, Coins, N, =_in_ga(Amount, s(X4)))
U9_gga(Amount, C, Coins, N, =_out_ga(Amount, s(X4))) → U10_gga(Amount, C, Coins, N, X4, plus_in_gag(Amount, s(X5), s(C)))
U10_gga(Amount, C, Coins, N, X4, plus_out_gag(Amount, s(X5), s(C))) → U11_gga(Amount, C, Coins, N, ways_in_gga(Amount, Coins, N))
U11_gga(Amount, C, Coins, N, ways_out_gga(Amount, Coins, N)) → ways_out_gga(Amount, .(s(C), Coins), N)
U6_gga(Amount, C, Coins, N, X3, NewAmount, ways_out_gga(Amount, Coins, N1)) → U7_gga(Amount, C, Coins, N, X3, NewAmount, N1, ways_in_gga(NewAmount, .(s(C), Coins), N2))
U7_gga(Amount, C, Coins, N, X3, NewAmount, N1, ways_out_gga(NewAmount, .(s(C), Coins), N2)) → U8_gga(Amount, C, Coins, N, plus_in_gga(N1, N2, N))
plus_in_gga(0, X, X) → U2_gga(X, nat_in_g(X))
U2_gga(X, nat_out_g(X)) → plus_out_gga(0, X, X)
plus_in_gga(s(X), Y, s(Z)) → U3_gga(X, Y, Z, plus_in_gga(X, Y, Z))
U3_gga(X, Y, Z, plus_out_gga(X, Y, Z)) → plus_out_gga(s(X), Y, s(Z))
U8_gga(Amount, C, Coins, N, plus_out_gga(N1, N2, N)) → ways_out_gga(Amount, .(s(C), Coins), N)
The argument filtering Pi contains the following mapping:
ways_in_gga(
x1,
x2,
x3) =
ways_in_gga(
x1,
x2)
0 =
0
ways_out_gga(
x1,
x2,
x3) =
ways_out_gga(
x1,
x2,
x3)
[] =
[]
.(
x1,
x2) =
.(
x1,
x2)
s(
x1) =
s(
x1)
U4_gga(
x1,
x2,
x3,
x4,
x5) =
U4_gga(
x1,
x2,
x3,
x5)
=_in_ga(
x1,
x2) =
=_in_ga(
x1)
=_out_ga(
x1,
x2) =
=_out_ga(
x1,
x2)
U5_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U5_gga(
x1,
x2,
x3,
x6)
plus_in_gag(
x1,
x2,
x3) =
plus_in_gag(
x1,
x3)
U2_gag(
x1,
x2) =
U2_gag(
x1,
x2)
nat_in_g(
x1) =
nat_in_g(
x1)
nat_out_g(
x1) =
nat_out_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x1,
x2)
plus_out_gag(
x1,
x2,
x3) =
plus_out_gag(
x1,
x2,
x3)
U3_gag(
x1,
x2,
x3,
x4) =
U3_gag(
x1,
x3,
x4)
U6_gga(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U6_gga(
x1,
x2,
x3,
x6,
x7)
U9_gga(
x1,
x2,
x3,
x4,
x5) =
U9_gga(
x1,
x2,
x3,
x5)
U10_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U10_gga(
x1,
x2,
x3,
x6)
U11_gga(
x1,
x2,
x3,
x4,
x5) =
U11_gga(
x1,
x2,
x3,
x5)
U7_gga(
x1,
x2,
x3,
x4,
x5,
x6,
x7,
x8) =
U7_gga(
x1,
x2,
x3,
x7,
x8)
U8_gga(
x1,
x2,
x3,
x4,
x5) =
U8_gga(
x1,
x2,
x3,
x5)
plus_in_gga(
x1,
x2,
x3) =
plus_in_gga(
x1,
x2)
U2_gga(
x1,
x2) =
U2_gga(
x1,
x2)
plus_out_gga(
x1,
x2,
x3) =
plus_out_gga(
x1,
x2,
x3)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x1,
x2,
x4)
WAYS_IN_GGA(
x1,
x2,
x3) =
WAYS_IN_GGA(
x1,
x2)
U4_GGA(
x1,
x2,
x3,
x4,
x5) =
U4_GGA(
x1,
x2,
x3,
x5)
=_IN_GA(
x1,
x2) =
=_IN_GA(
x1)
U5_GGA(
x1,
x2,
x3,
x4,
x5,
x6) =
U5_GGA(
x1,
x2,
x3,
x6)
PLUS_IN_GAG(
x1,
x2,
x3) =
PLUS_IN_GAG(
x1,
x3)
U2_GAG(
x1,
x2) =
U2_GAG(
x1,
x2)
NAT_IN_G(
x1) =
NAT_IN_G(
x1)
U1_G(
x1,
x2) =
U1_G(
x1,
x2)
U3_GAG(
x1,
x2,
x3,
x4) =
U3_GAG(
x1,
x3,
x4)
U6_GGA(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U6_GGA(
x1,
x2,
x3,
x6,
x7)
U9_GGA(
x1,
x2,
x3,
x4,
x5) =
U9_GGA(
x1,
x2,
x3,
x5)
U10_GGA(
x1,
x2,
x3,
x4,
x5,
x6) =
U10_GGA(
x1,
x2,
x3,
x6)
U11_GGA(
x1,
x2,
x3,
x4,
x5) =
U11_GGA(
x1,
x2,
x3,
x5)
U7_GGA(
x1,
x2,
x3,
x4,
x5,
x6,
x7,
x8) =
U7_GGA(
x1,
x2,
x3,
x7,
x8)
U8_GGA(
x1,
x2,
x3,
x4,
x5) =
U8_GGA(
x1,
x2,
x3,
x5)
PLUS_IN_GGA(
x1,
x2,
x3) =
PLUS_IN_GGA(
x1,
x2)
U2_GGA(
x1,
x2) =
U2_GGA(
x1,
x2)
U3_GGA(
x1,
x2,
x3,
x4) =
U3_GGA(
x1,
x2,
x4)
We have to consider all (P,R,Pi)-chains
(7) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 4 SCCs with 14 less nodes.
(8) Complex Obligation (AND)
(9) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
NAT_IN_G(s(X)) → NAT_IN_G(X)
The TRS R consists of the following rules:
ways_in_gga(0, X1, s(0)) → ways_out_gga(0, X1, s(0))
ways_in_gga(X2, [], 0) → ways_out_gga(X2, [], 0)
ways_in_gga(Amount, .(s(C), Coins), N) → U4_gga(Amount, C, Coins, N, =_in_ga(Amount, s(X3)))
=_in_ga(X, X) → =_out_ga(X, X)
U4_gga(Amount, C, Coins, N, =_out_ga(Amount, s(X3))) → U5_gga(Amount, C, Coins, N, X3, plus_in_gag(s(C), NewAmount, Amount))
plus_in_gag(0, X, X) → U2_gag(X, nat_in_g(X))
nat_in_g(0) → nat_out_g(0)
nat_in_g(s(X)) → U1_g(X, nat_in_g(X))
U1_g(X, nat_out_g(X)) → nat_out_g(s(X))
U2_gag(X, nat_out_g(X)) → plus_out_gag(0, X, X)
plus_in_gag(s(X), Y, s(Z)) → U3_gag(X, Y, Z, plus_in_gag(X, Y, Z))
U3_gag(X, Y, Z, plus_out_gag(X, Y, Z)) → plus_out_gag(s(X), Y, s(Z))
U5_gga(Amount, C, Coins, N, X3, plus_out_gag(s(C), NewAmount, Amount)) → U6_gga(Amount, C, Coins, N, X3, NewAmount, ways_in_gga(Amount, Coins, N1))
ways_in_gga(Amount, .(s(C), Coins), N) → U9_gga(Amount, C, Coins, N, =_in_ga(Amount, s(X4)))
U9_gga(Amount, C, Coins, N, =_out_ga(Amount, s(X4))) → U10_gga(Amount, C, Coins, N, X4, plus_in_gag(Amount, s(X5), s(C)))
U10_gga(Amount, C, Coins, N, X4, plus_out_gag(Amount, s(X5), s(C))) → U11_gga(Amount, C, Coins, N, ways_in_gga(Amount, Coins, N))
U11_gga(Amount, C, Coins, N, ways_out_gga(Amount, Coins, N)) → ways_out_gga(Amount, .(s(C), Coins), N)
U6_gga(Amount, C, Coins, N, X3, NewAmount, ways_out_gga(Amount, Coins, N1)) → U7_gga(Amount, C, Coins, N, X3, NewAmount, N1, ways_in_gga(NewAmount, .(s(C), Coins), N2))
U7_gga(Amount, C, Coins, N, X3, NewAmount, N1, ways_out_gga(NewAmount, .(s(C), Coins), N2)) → U8_gga(Amount, C, Coins, N, plus_in_gga(N1, N2, N))
plus_in_gga(0, X, X) → U2_gga(X, nat_in_g(X))
U2_gga(X, nat_out_g(X)) → plus_out_gga(0, X, X)
plus_in_gga(s(X), Y, s(Z)) → U3_gga(X, Y, Z, plus_in_gga(X, Y, Z))
U3_gga(X, Y, Z, plus_out_gga(X, Y, Z)) → plus_out_gga(s(X), Y, s(Z))
U8_gga(Amount, C, Coins, N, plus_out_gga(N1, N2, N)) → ways_out_gga(Amount, .(s(C), Coins), N)
The argument filtering Pi contains the following mapping:
ways_in_gga(
x1,
x2,
x3) =
ways_in_gga(
x1,
x2)
0 =
0
ways_out_gga(
x1,
x2,
x3) =
ways_out_gga(
x1,
x2,
x3)
[] =
[]
.(
x1,
x2) =
.(
x1,
x2)
s(
x1) =
s(
x1)
U4_gga(
x1,
x2,
x3,
x4,
x5) =
U4_gga(
x1,
x2,
x3,
x5)
=_in_ga(
x1,
x2) =
=_in_ga(
x1)
=_out_ga(
x1,
x2) =
=_out_ga(
x1,
x2)
U5_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U5_gga(
x1,
x2,
x3,
x6)
plus_in_gag(
x1,
x2,
x3) =
plus_in_gag(
x1,
x3)
U2_gag(
x1,
x2) =
U2_gag(
x1,
x2)
nat_in_g(
x1) =
nat_in_g(
x1)
nat_out_g(
x1) =
nat_out_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x1,
x2)
plus_out_gag(
x1,
x2,
x3) =
plus_out_gag(
x1,
x2,
x3)
U3_gag(
x1,
x2,
x3,
x4) =
U3_gag(
x1,
x3,
x4)
U6_gga(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U6_gga(
x1,
x2,
x3,
x6,
x7)
U9_gga(
x1,
x2,
x3,
x4,
x5) =
U9_gga(
x1,
x2,
x3,
x5)
U10_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U10_gga(
x1,
x2,
x3,
x6)
U11_gga(
x1,
x2,
x3,
x4,
x5) =
U11_gga(
x1,
x2,
x3,
x5)
U7_gga(
x1,
x2,
x3,
x4,
x5,
x6,
x7,
x8) =
U7_gga(
x1,
x2,
x3,
x7,
x8)
U8_gga(
x1,
x2,
x3,
x4,
x5) =
U8_gga(
x1,
x2,
x3,
x5)
plus_in_gga(
x1,
x2,
x3) =
plus_in_gga(
x1,
x2)
U2_gga(
x1,
x2) =
U2_gga(
x1,
x2)
plus_out_gga(
x1,
x2,
x3) =
plus_out_gga(
x1,
x2,
x3)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x1,
x2,
x4)
NAT_IN_G(
x1) =
NAT_IN_G(
x1)
We have to consider all (P,R,Pi)-chains
(10) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(11) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
NAT_IN_G(s(X)) → NAT_IN_G(X)
R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains
(12) PiDPToQDPProof (EQUIVALENT transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(13) Obligation:
Q DP problem:
The TRS P consists of the following rules:
NAT_IN_G(s(X)) → NAT_IN_G(X)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(14) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- NAT_IN_G(s(X)) → NAT_IN_G(X)
The graph contains the following edges 1 > 1
(15) TRUE
(16) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
PLUS_IN_GGA(s(X), Y, s(Z)) → PLUS_IN_GGA(X, Y, Z)
The TRS R consists of the following rules:
ways_in_gga(0, X1, s(0)) → ways_out_gga(0, X1, s(0))
ways_in_gga(X2, [], 0) → ways_out_gga(X2, [], 0)
ways_in_gga(Amount, .(s(C), Coins), N) → U4_gga(Amount, C, Coins, N, =_in_ga(Amount, s(X3)))
=_in_ga(X, X) → =_out_ga(X, X)
U4_gga(Amount, C, Coins, N, =_out_ga(Amount, s(X3))) → U5_gga(Amount, C, Coins, N, X3, plus_in_gag(s(C), NewAmount, Amount))
plus_in_gag(0, X, X) → U2_gag(X, nat_in_g(X))
nat_in_g(0) → nat_out_g(0)
nat_in_g(s(X)) → U1_g(X, nat_in_g(X))
U1_g(X, nat_out_g(X)) → nat_out_g(s(X))
U2_gag(X, nat_out_g(X)) → plus_out_gag(0, X, X)
plus_in_gag(s(X), Y, s(Z)) → U3_gag(X, Y, Z, plus_in_gag(X, Y, Z))
U3_gag(X, Y, Z, plus_out_gag(X, Y, Z)) → plus_out_gag(s(X), Y, s(Z))
U5_gga(Amount, C, Coins, N, X3, plus_out_gag(s(C), NewAmount, Amount)) → U6_gga(Amount, C, Coins, N, X3, NewAmount, ways_in_gga(Amount, Coins, N1))
ways_in_gga(Amount, .(s(C), Coins), N) → U9_gga(Amount, C, Coins, N, =_in_ga(Amount, s(X4)))
U9_gga(Amount, C, Coins, N, =_out_ga(Amount, s(X4))) → U10_gga(Amount, C, Coins, N, X4, plus_in_gag(Amount, s(X5), s(C)))
U10_gga(Amount, C, Coins, N, X4, plus_out_gag(Amount, s(X5), s(C))) → U11_gga(Amount, C, Coins, N, ways_in_gga(Amount, Coins, N))
U11_gga(Amount, C, Coins, N, ways_out_gga(Amount, Coins, N)) → ways_out_gga(Amount, .(s(C), Coins), N)
U6_gga(Amount, C, Coins, N, X3, NewAmount, ways_out_gga(Amount, Coins, N1)) → U7_gga(Amount, C, Coins, N, X3, NewAmount, N1, ways_in_gga(NewAmount, .(s(C), Coins), N2))
U7_gga(Amount, C, Coins, N, X3, NewAmount, N1, ways_out_gga(NewAmount, .(s(C), Coins), N2)) → U8_gga(Amount, C, Coins, N, plus_in_gga(N1, N2, N))
plus_in_gga(0, X, X) → U2_gga(X, nat_in_g(X))
U2_gga(X, nat_out_g(X)) → plus_out_gga(0, X, X)
plus_in_gga(s(X), Y, s(Z)) → U3_gga(X, Y, Z, plus_in_gga(X, Y, Z))
U3_gga(X, Y, Z, plus_out_gga(X, Y, Z)) → plus_out_gga(s(X), Y, s(Z))
U8_gga(Amount, C, Coins, N, plus_out_gga(N1, N2, N)) → ways_out_gga(Amount, .(s(C), Coins), N)
The argument filtering Pi contains the following mapping:
ways_in_gga(
x1,
x2,
x3) =
ways_in_gga(
x1,
x2)
0 =
0
ways_out_gga(
x1,
x2,
x3) =
ways_out_gga(
x1,
x2,
x3)
[] =
[]
.(
x1,
x2) =
.(
x1,
x2)
s(
x1) =
s(
x1)
U4_gga(
x1,
x2,
x3,
x4,
x5) =
U4_gga(
x1,
x2,
x3,
x5)
=_in_ga(
x1,
x2) =
=_in_ga(
x1)
=_out_ga(
x1,
x2) =
=_out_ga(
x1,
x2)
U5_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U5_gga(
x1,
x2,
x3,
x6)
plus_in_gag(
x1,
x2,
x3) =
plus_in_gag(
x1,
x3)
U2_gag(
x1,
x2) =
U2_gag(
x1,
x2)
nat_in_g(
x1) =
nat_in_g(
x1)
nat_out_g(
x1) =
nat_out_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x1,
x2)
plus_out_gag(
x1,
x2,
x3) =
plus_out_gag(
x1,
x2,
x3)
U3_gag(
x1,
x2,
x3,
x4) =
U3_gag(
x1,
x3,
x4)
U6_gga(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U6_gga(
x1,
x2,
x3,
x6,
x7)
U9_gga(
x1,
x2,
x3,
x4,
x5) =
U9_gga(
x1,
x2,
x3,
x5)
U10_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U10_gga(
x1,
x2,
x3,
x6)
U11_gga(
x1,
x2,
x3,
x4,
x5) =
U11_gga(
x1,
x2,
x3,
x5)
U7_gga(
x1,
x2,
x3,
x4,
x5,
x6,
x7,
x8) =
U7_gga(
x1,
x2,
x3,
x7,
x8)
U8_gga(
x1,
x2,
x3,
x4,
x5) =
U8_gga(
x1,
x2,
x3,
x5)
plus_in_gga(
x1,
x2,
x3) =
plus_in_gga(
x1,
x2)
U2_gga(
x1,
x2) =
U2_gga(
x1,
x2)
plus_out_gga(
x1,
x2,
x3) =
plus_out_gga(
x1,
x2,
x3)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x1,
x2,
x4)
PLUS_IN_GGA(
x1,
x2,
x3) =
PLUS_IN_GGA(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(17) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(18) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
PLUS_IN_GGA(s(X), Y, s(Z)) → PLUS_IN_GGA(X, Y, Z)
R is empty.
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
PLUS_IN_GGA(
x1,
x2,
x3) =
PLUS_IN_GGA(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(19) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(20) Obligation:
Q DP problem:
The TRS P consists of the following rules:
PLUS_IN_GGA(s(X), Y) → PLUS_IN_GGA(X, Y)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(21) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- PLUS_IN_GGA(s(X), Y) → PLUS_IN_GGA(X, Y)
The graph contains the following edges 1 > 1, 2 >= 2
(22) TRUE
(23) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
PLUS_IN_GAG(s(X), Y, s(Z)) → PLUS_IN_GAG(X, Y, Z)
The TRS R consists of the following rules:
ways_in_gga(0, X1, s(0)) → ways_out_gga(0, X1, s(0))
ways_in_gga(X2, [], 0) → ways_out_gga(X2, [], 0)
ways_in_gga(Amount, .(s(C), Coins), N) → U4_gga(Amount, C, Coins, N, =_in_ga(Amount, s(X3)))
=_in_ga(X, X) → =_out_ga(X, X)
U4_gga(Amount, C, Coins, N, =_out_ga(Amount, s(X3))) → U5_gga(Amount, C, Coins, N, X3, plus_in_gag(s(C), NewAmount, Amount))
plus_in_gag(0, X, X) → U2_gag(X, nat_in_g(X))
nat_in_g(0) → nat_out_g(0)
nat_in_g(s(X)) → U1_g(X, nat_in_g(X))
U1_g(X, nat_out_g(X)) → nat_out_g(s(X))
U2_gag(X, nat_out_g(X)) → plus_out_gag(0, X, X)
plus_in_gag(s(X), Y, s(Z)) → U3_gag(X, Y, Z, plus_in_gag(X, Y, Z))
U3_gag(X, Y, Z, plus_out_gag(X, Y, Z)) → plus_out_gag(s(X), Y, s(Z))
U5_gga(Amount, C, Coins, N, X3, plus_out_gag(s(C), NewAmount, Amount)) → U6_gga(Amount, C, Coins, N, X3, NewAmount, ways_in_gga(Amount, Coins, N1))
ways_in_gga(Amount, .(s(C), Coins), N) → U9_gga(Amount, C, Coins, N, =_in_ga(Amount, s(X4)))
U9_gga(Amount, C, Coins, N, =_out_ga(Amount, s(X4))) → U10_gga(Amount, C, Coins, N, X4, plus_in_gag(Amount, s(X5), s(C)))
U10_gga(Amount, C, Coins, N, X4, plus_out_gag(Amount, s(X5), s(C))) → U11_gga(Amount, C, Coins, N, ways_in_gga(Amount, Coins, N))
U11_gga(Amount, C, Coins, N, ways_out_gga(Amount, Coins, N)) → ways_out_gga(Amount, .(s(C), Coins), N)
U6_gga(Amount, C, Coins, N, X3, NewAmount, ways_out_gga(Amount, Coins, N1)) → U7_gga(Amount, C, Coins, N, X3, NewAmount, N1, ways_in_gga(NewAmount, .(s(C), Coins), N2))
U7_gga(Amount, C, Coins, N, X3, NewAmount, N1, ways_out_gga(NewAmount, .(s(C), Coins), N2)) → U8_gga(Amount, C, Coins, N, plus_in_gga(N1, N2, N))
plus_in_gga(0, X, X) → U2_gga(X, nat_in_g(X))
U2_gga(X, nat_out_g(X)) → plus_out_gga(0, X, X)
plus_in_gga(s(X), Y, s(Z)) → U3_gga(X, Y, Z, plus_in_gga(X, Y, Z))
U3_gga(X, Y, Z, plus_out_gga(X, Y, Z)) → plus_out_gga(s(X), Y, s(Z))
U8_gga(Amount, C, Coins, N, plus_out_gga(N1, N2, N)) → ways_out_gga(Amount, .(s(C), Coins), N)
The argument filtering Pi contains the following mapping:
ways_in_gga(
x1,
x2,
x3) =
ways_in_gga(
x1,
x2)
0 =
0
ways_out_gga(
x1,
x2,
x3) =
ways_out_gga(
x1,
x2,
x3)
[] =
[]
.(
x1,
x2) =
.(
x1,
x2)
s(
x1) =
s(
x1)
U4_gga(
x1,
x2,
x3,
x4,
x5) =
U4_gga(
x1,
x2,
x3,
x5)
=_in_ga(
x1,
x2) =
=_in_ga(
x1)
=_out_ga(
x1,
x2) =
=_out_ga(
x1,
x2)
U5_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U5_gga(
x1,
x2,
x3,
x6)
plus_in_gag(
x1,
x2,
x3) =
plus_in_gag(
x1,
x3)
U2_gag(
x1,
x2) =
U2_gag(
x1,
x2)
nat_in_g(
x1) =
nat_in_g(
x1)
nat_out_g(
x1) =
nat_out_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x1,
x2)
plus_out_gag(
x1,
x2,
x3) =
plus_out_gag(
x1,
x2,
x3)
U3_gag(
x1,
x2,
x3,
x4) =
U3_gag(
x1,
x3,
x4)
U6_gga(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U6_gga(
x1,
x2,
x3,
x6,
x7)
U9_gga(
x1,
x2,
x3,
x4,
x5) =
U9_gga(
x1,
x2,
x3,
x5)
U10_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U10_gga(
x1,
x2,
x3,
x6)
U11_gga(
x1,
x2,
x3,
x4,
x5) =
U11_gga(
x1,
x2,
x3,
x5)
U7_gga(
x1,
x2,
x3,
x4,
x5,
x6,
x7,
x8) =
U7_gga(
x1,
x2,
x3,
x7,
x8)
U8_gga(
x1,
x2,
x3,
x4,
x5) =
U8_gga(
x1,
x2,
x3,
x5)
plus_in_gga(
x1,
x2,
x3) =
plus_in_gga(
x1,
x2)
U2_gga(
x1,
x2) =
U2_gga(
x1,
x2)
plus_out_gga(
x1,
x2,
x3) =
plus_out_gga(
x1,
x2,
x3)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x1,
x2,
x4)
PLUS_IN_GAG(
x1,
x2,
x3) =
PLUS_IN_GAG(
x1,
x3)
We have to consider all (P,R,Pi)-chains
(24) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(25) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
PLUS_IN_GAG(s(X), Y, s(Z)) → PLUS_IN_GAG(X, Y, Z)
R is empty.
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
PLUS_IN_GAG(
x1,
x2,
x3) =
PLUS_IN_GAG(
x1,
x3)
We have to consider all (P,R,Pi)-chains
(26) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(27) Obligation:
Q DP problem:
The TRS P consists of the following rules:
PLUS_IN_GAG(s(X), s(Z)) → PLUS_IN_GAG(X, Z)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(28) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- PLUS_IN_GAG(s(X), s(Z)) → PLUS_IN_GAG(X, Z)
The graph contains the following edges 1 > 1, 2 > 2
(29) TRUE
(30) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
U4_GGA(Amount, C, Coins, N, =_out_ga(Amount, s(X3))) → U5_GGA(Amount, C, Coins, N, X3, plus_in_gag(s(C), NewAmount, Amount))
U5_GGA(Amount, C, Coins, N, X3, plus_out_gag(s(C), NewAmount, Amount)) → U6_GGA(Amount, C, Coins, N, X3, NewAmount, ways_in_gga(Amount, Coins, N1))
U6_GGA(Amount, C, Coins, N, X3, NewAmount, ways_out_gga(Amount, Coins, N1)) → WAYS_IN_GGA(NewAmount, .(s(C), Coins), N2)
WAYS_IN_GGA(Amount, .(s(C), Coins), N) → U4_GGA(Amount, C, Coins, N, =_in_ga(Amount, s(X3)))
WAYS_IN_GGA(Amount, .(s(C), Coins), N) → U9_GGA(Amount, C, Coins, N, =_in_ga(Amount, s(X4)))
U9_GGA(Amount, C, Coins, N, =_out_ga(Amount, s(X4))) → U10_GGA(Amount, C, Coins, N, X4, plus_in_gag(Amount, s(X5), s(C)))
U10_GGA(Amount, C, Coins, N, X4, plus_out_gag(Amount, s(X5), s(C))) → WAYS_IN_GGA(Amount, Coins, N)
U5_GGA(Amount, C, Coins, N, X3, plus_out_gag(s(C), NewAmount, Amount)) → WAYS_IN_GGA(Amount, Coins, N1)
The TRS R consists of the following rules:
ways_in_gga(0, X1, s(0)) → ways_out_gga(0, X1, s(0))
ways_in_gga(X2, [], 0) → ways_out_gga(X2, [], 0)
ways_in_gga(Amount, .(s(C), Coins), N) → U4_gga(Amount, C, Coins, N, =_in_ga(Amount, s(X3)))
=_in_ga(X, X) → =_out_ga(X, X)
U4_gga(Amount, C, Coins, N, =_out_ga(Amount, s(X3))) → U5_gga(Amount, C, Coins, N, X3, plus_in_gag(s(C), NewAmount, Amount))
plus_in_gag(0, X, X) → U2_gag(X, nat_in_g(X))
nat_in_g(0) → nat_out_g(0)
nat_in_g(s(X)) → U1_g(X, nat_in_g(X))
U1_g(X, nat_out_g(X)) → nat_out_g(s(X))
U2_gag(X, nat_out_g(X)) → plus_out_gag(0, X, X)
plus_in_gag(s(X), Y, s(Z)) → U3_gag(X, Y, Z, plus_in_gag(X, Y, Z))
U3_gag(X, Y, Z, plus_out_gag(X, Y, Z)) → plus_out_gag(s(X), Y, s(Z))
U5_gga(Amount, C, Coins, N, X3, plus_out_gag(s(C), NewAmount, Amount)) → U6_gga(Amount, C, Coins, N, X3, NewAmount, ways_in_gga(Amount, Coins, N1))
ways_in_gga(Amount, .(s(C), Coins), N) → U9_gga(Amount, C, Coins, N, =_in_ga(Amount, s(X4)))
U9_gga(Amount, C, Coins, N, =_out_ga(Amount, s(X4))) → U10_gga(Amount, C, Coins, N, X4, plus_in_gag(Amount, s(X5), s(C)))
U10_gga(Amount, C, Coins, N, X4, plus_out_gag(Amount, s(X5), s(C))) → U11_gga(Amount, C, Coins, N, ways_in_gga(Amount, Coins, N))
U11_gga(Amount, C, Coins, N, ways_out_gga(Amount, Coins, N)) → ways_out_gga(Amount, .(s(C), Coins), N)
U6_gga(Amount, C, Coins, N, X3, NewAmount, ways_out_gga(Amount, Coins, N1)) → U7_gga(Amount, C, Coins, N, X3, NewAmount, N1, ways_in_gga(NewAmount, .(s(C), Coins), N2))
U7_gga(Amount, C, Coins, N, X3, NewAmount, N1, ways_out_gga(NewAmount, .(s(C), Coins), N2)) → U8_gga(Amount, C, Coins, N, plus_in_gga(N1, N2, N))
plus_in_gga(0, X, X) → U2_gga(X, nat_in_g(X))
U2_gga(X, nat_out_g(X)) → plus_out_gga(0, X, X)
plus_in_gga(s(X), Y, s(Z)) → U3_gga(X, Y, Z, plus_in_gga(X, Y, Z))
U3_gga(X, Y, Z, plus_out_gga(X, Y, Z)) → plus_out_gga(s(X), Y, s(Z))
U8_gga(Amount, C, Coins, N, plus_out_gga(N1, N2, N)) → ways_out_gga(Amount, .(s(C), Coins), N)
The argument filtering Pi contains the following mapping:
ways_in_gga(
x1,
x2,
x3) =
ways_in_gga(
x1,
x2)
0 =
0
ways_out_gga(
x1,
x2,
x3) =
ways_out_gga(
x1,
x2,
x3)
[] =
[]
.(
x1,
x2) =
.(
x1,
x2)
s(
x1) =
s(
x1)
U4_gga(
x1,
x2,
x3,
x4,
x5) =
U4_gga(
x1,
x2,
x3,
x5)
=_in_ga(
x1,
x2) =
=_in_ga(
x1)
=_out_ga(
x1,
x2) =
=_out_ga(
x1,
x2)
U5_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U5_gga(
x1,
x2,
x3,
x6)
plus_in_gag(
x1,
x2,
x3) =
plus_in_gag(
x1,
x3)
U2_gag(
x1,
x2) =
U2_gag(
x1,
x2)
nat_in_g(
x1) =
nat_in_g(
x1)
nat_out_g(
x1) =
nat_out_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x1,
x2)
plus_out_gag(
x1,
x2,
x3) =
plus_out_gag(
x1,
x2,
x3)
U3_gag(
x1,
x2,
x3,
x4) =
U3_gag(
x1,
x3,
x4)
U6_gga(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U6_gga(
x1,
x2,
x3,
x6,
x7)
U9_gga(
x1,
x2,
x3,
x4,
x5) =
U9_gga(
x1,
x2,
x3,
x5)
U10_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U10_gga(
x1,
x2,
x3,
x6)
U11_gga(
x1,
x2,
x3,
x4,
x5) =
U11_gga(
x1,
x2,
x3,
x5)
U7_gga(
x1,
x2,
x3,
x4,
x5,
x6,
x7,
x8) =
U7_gga(
x1,
x2,
x3,
x7,
x8)
U8_gga(
x1,
x2,
x3,
x4,
x5) =
U8_gga(
x1,
x2,
x3,
x5)
plus_in_gga(
x1,
x2,
x3) =
plus_in_gga(
x1,
x2)
U2_gga(
x1,
x2) =
U2_gga(
x1,
x2)
plus_out_gga(
x1,
x2,
x3) =
plus_out_gga(
x1,
x2,
x3)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x1,
x2,
x4)
WAYS_IN_GGA(
x1,
x2,
x3) =
WAYS_IN_GGA(
x1,
x2)
U4_GGA(
x1,
x2,
x3,
x4,
x5) =
U4_GGA(
x1,
x2,
x3,
x5)
U5_GGA(
x1,
x2,
x3,
x4,
x5,
x6) =
U5_GGA(
x1,
x2,
x3,
x6)
U6_GGA(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U6_GGA(
x1,
x2,
x3,
x6,
x7)
U9_GGA(
x1,
x2,
x3,
x4,
x5) =
U9_GGA(
x1,
x2,
x3,
x5)
U10_GGA(
x1,
x2,
x3,
x4,
x5,
x6) =
U10_GGA(
x1,
x2,
x3,
x6)
We have to consider all (P,R,Pi)-chains
(31) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(32) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U4_GGA(Amount, C, Coins, =_out_ga(Amount, s(X3))) → U5_GGA(Amount, C, Coins, plus_in_gag(s(C), Amount))
U5_GGA(Amount, C, Coins, plus_out_gag(s(C), NewAmount, Amount)) → U6_GGA(Amount, C, Coins, NewAmount, ways_in_gga(Amount, Coins))
U6_GGA(Amount, C, Coins, NewAmount, ways_out_gga(Amount, Coins, N1)) → WAYS_IN_GGA(NewAmount, .(s(C), Coins))
WAYS_IN_GGA(Amount, .(s(C), Coins)) → U4_GGA(Amount, C, Coins, =_in_ga(Amount))
WAYS_IN_GGA(Amount, .(s(C), Coins)) → U9_GGA(Amount, C, Coins, =_in_ga(Amount))
U9_GGA(Amount, C, Coins, =_out_ga(Amount, s(X4))) → U10_GGA(Amount, C, Coins, plus_in_gag(Amount, s(C)))
U10_GGA(Amount, C, Coins, plus_out_gag(Amount, s(X5), s(C))) → WAYS_IN_GGA(Amount, Coins)
U5_GGA(Amount, C, Coins, plus_out_gag(s(C), NewAmount, Amount)) → WAYS_IN_GGA(Amount, Coins)
The TRS R consists of the following rules:
ways_in_gga(0, X1) → ways_out_gga(0, X1, s(0))
ways_in_gga(X2, []) → ways_out_gga(X2, [], 0)
ways_in_gga(Amount, .(s(C), Coins)) → U4_gga(Amount, C, Coins, =_in_ga(Amount))
=_in_ga(X) → =_out_ga(X, X)
U4_gga(Amount, C, Coins, =_out_ga(Amount, s(X3))) → U5_gga(Amount, C, Coins, plus_in_gag(s(C), Amount))
plus_in_gag(0, X) → U2_gag(X, nat_in_g(X))
nat_in_g(0) → nat_out_g(0)
nat_in_g(s(X)) → U1_g(X, nat_in_g(X))
U1_g(X, nat_out_g(X)) → nat_out_g(s(X))
U2_gag(X, nat_out_g(X)) → plus_out_gag(0, X, X)
plus_in_gag(s(X), s(Z)) → U3_gag(X, Z, plus_in_gag(X, Z))
U3_gag(X, Z, plus_out_gag(X, Y, Z)) → plus_out_gag(s(X), Y, s(Z))
U5_gga(Amount, C, Coins, plus_out_gag(s(C), NewAmount, Amount)) → U6_gga(Amount, C, Coins, NewAmount, ways_in_gga(Amount, Coins))
ways_in_gga(Amount, .(s(C), Coins)) → U9_gga(Amount, C, Coins, =_in_ga(Amount))
U9_gga(Amount, C, Coins, =_out_ga(Amount, s(X4))) → U10_gga(Amount, C, Coins, plus_in_gag(Amount, s(C)))
U10_gga(Amount, C, Coins, plus_out_gag(Amount, s(X5), s(C))) → U11_gga(Amount, C, Coins, ways_in_gga(Amount, Coins))
U11_gga(Amount, C, Coins, ways_out_gga(Amount, Coins, N)) → ways_out_gga(Amount, .(s(C), Coins), N)
U6_gga(Amount, C, Coins, NewAmount, ways_out_gga(Amount, Coins, N1)) → U7_gga(Amount, C, Coins, N1, ways_in_gga(NewAmount, .(s(C), Coins)))
U7_gga(Amount, C, Coins, N1, ways_out_gga(NewAmount, .(s(C), Coins), N2)) → U8_gga(Amount, C, Coins, plus_in_gga(N1, N2))
plus_in_gga(0, X) → U2_gga(X, nat_in_g(X))
U2_gga(X, nat_out_g(X)) → plus_out_gga(0, X, X)
plus_in_gga(s(X), Y) → U3_gga(X, Y, plus_in_gga(X, Y))
U3_gga(X, Y, plus_out_gga(X, Y, Z)) → plus_out_gga(s(X), Y, s(Z))
U8_gga(Amount, C, Coins, plus_out_gga(N1, N2, N)) → ways_out_gga(Amount, .(s(C), Coins), N)
The set Q consists of the following terms:
ways_in_gga(x0, x1)
=_in_ga(x0)
U4_gga(x0, x1, x2, x3)
plus_in_gag(x0, x1)
nat_in_g(x0)
U1_g(x0, x1)
U2_gag(x0, x1)
U3_gag(x0, x1, x2)
U5_gga(x0, x1, x2, x3)
U9_gga(x0, x1, x2, x3)
U10_gga(x0, x1, x2, x3)
U11_gga(x0, x1, x2, x3)
U6_gga(x0, x1, x2, x3, x4)
U7_gga(x0, x1, x2, x3, x4)
plus_in_gga(x0, x1)
U2_gga(x0, x1)
U3_gga(x0, x1, x2)
U8_gga(x0, x1, x2, x3)
We have to consider all (P,Q,R)-chains.
(33) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
U10_GGA(Amount, C, Coins, plus_out_gag(Amount, s(X5), s(C))) → WAYS_IN_GGA(Amount, Coins)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:
POL(.(x1, x2)) = x1 + x2
POL(0) = 1
POL(=_in_ga(x1)) = 0
POL(=_out_ga(x1, x2)) = 0
POL(U10_GGA(x1, x2, x3, x4)) = x3 + x4
POL(U10_gga(x1, x2, x3, x4)) = 0
POL(U11_gga(x1, x2, x3, x4)) = 0
POL(U1_g(x1, x2)) = x2
POL(U2_gag(x1, x2)) = x2
POL(U2_gga(x1, x2)) = 0
POL(U3_gag(x1, x2, x3)) = x3
POL(U3_gga(x1, x2, x3)) = 0
POL(U4_GGA(x1, x2, x3, x4)) = x2 + x3
POL(U4_gga(x1, x2, x3, x4)) = 0
POL(U5_GGA(x1, x2, x3, x4)) = x2 + x3
POL(U5_gga(x1, x2, x3, x4)) = 0
POL(U6_GGA(x1, x2, x3, x4, x5)) = x2 + x3
POL(U6_gga(x1, x2, x3, x4, x5)) = 0
POL(U7_gga(x1, x2, x3, x4, x5)) = 0
POL(U8_gga(x1, x2, x3, x4)) = 0
POL(U9_GGA(x1, x2, x3, x4)) = x2 + x3
POL(U9_gga(x1, x2, x3, x4)) = 0
POL(WAYS_IN_GGA(x1, x2)) = x2
POL([]) = 0
POL(nat_in_g(x1)) = x1
POL(nat_out_g(x1)) = 1
POL(plus_in_gag(x1, x2)) = x2
POL(plus_in_gga(x1, x2)) = 0
POL(plus_out_gag(x1, x2, x3)) = 1
POL(plus_out_gga(x1, x2, x3)) = 0
POL(s(x1)) = x1
POL(ways_in_gga(x1, x2)) = 0
POL(ways_out_gga(x1, x2, x3)) = 0
The following usable rules [FROCOS05] were oriented:
plus_in_gag(s(X), s(Z)) → U3_gag(X, Z, plus_in_gag(X, Z))
plus_in_gag(0, X) → U2_gag(X, nat_in_g(X))
U3_gag(X, Z, plus_out_gag(X, Y, Z)) → plus_out_gag(s(X), Y, s(Z))
nat_in_g(0) → nat_out_g(0)
nat_in_g(s(X)) → U1_g(X, nat_in_g(X))
U2_gag(X, nat_out_g(X)) → plus_out_gag(0, X, X)
U1_g(X, nat_out_g(X)) → nat_out_g(s(X))
(34) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U4_GGA(Amount, C, Coins, =_out_ga(Amount, s(X3))) → U5_GGA(Amount, C, Coins, plus_in_gag(s(C), Amount))
U5_GGA(Amount, C, Coins, plus_out_gag(s(C), NewAmount, Amount)) → U6_GGA(Amount, C, Coins, NewAmount, ways_in_gga(Amount, Coins))
U6_GGA(Amount, C, Coins, NewAmount, ways_out_gga(Amount, Coins, N1)) → WAYS_IN_GGA(NewAmount, .(s(C), Coins))
WAYS_IN_GGA(Amount, .(s(C), Coins)) → U4_GGA(Amount, C, Coins, =_in_ga(Amount))
WAYS_IN_GGA(Amount, .(s(C), Coins)) → U9_GGA(Amount, C, Coins, =_in_ga(Amount))
U9_GGA(Amount, C, Coins, =_out_ga(Amount, s(X4))) → U10_GGA(Amount, C, Coins, plus_in_gag(Amount, s(C)))
U5_GGA(Amount, C, Coins, plus_out_gag(s(C), NewAmount, Amount)) → WAYS_IN_GGA(Amount, Coins)
The TRS R consists of the following rules:
ways_in_gga(0, X1) → ways_out_gga(0, X1, s(0))
ways_in_gga(X2, []) → ways_out_gga(X2, [], 0)
ways_in_gga(Amount, .(s(C), Coins)) → U4_gga(Amount, C, Coins, =_in_ga(Amount))
=_in_ga(X) → =_out_ga(X, X)
U4_gga(Amount, C, Coins, =_out_ga(Amount, s(X3))) → U5_gga(Amount, C, Coins, plus_in_gag(s(C), Amount))
plus_in_gag(0, X) → U2_gag(X, nat_in_g(X))
nat_in_g(0) → nat_out_g(0)
nat_in_g(s(X)) → U1_g(X, nat_in_g(X))
U1_g(X, nat_out_g(X)) → nat_out_g(s(X))
U2_gag(X, nat_out_g(X)) → plus_out_gag(0, X, X)
plus_in_gag(s(X), s(Z)) → U3_gag(X, Z, plus_in_gag(X, Z))
U3_gag(X, Z, plus_out_gag(X, Y, Z)) → plus_out_gag(s(X), Y, s(Z))
U5_gga(Amount, C, Coins, plus_out_gag(s(C), NewAmount, Amount)) → U6_gga(Amount, C, Coins, NewAmount, ways_in_gga(Amount, Coins))
ways_in_gga(Amount, .(s(C), Coins)) → U9_gga(Amount, C, Coins, =_in_ga(Amount))
U9_gga(Amount, C, Coins, =_out_ga(Amount, s(X4))) → U10_gga(Amount, C, Coins, plus_in_gag(Amount, s(C)))
U10_gga(Amount, C, Coins, plus_out_gag(Amount, s(X5), s(C))) → U11_gga(Amount, C, Coins, ways_in_gga(Amount, Coins))
U11_gga(Amount, C, Coins, ways_out_gga(Amount, Coins, N)) → ways_out_gga(Amount, .(s(C), Coins), N)
U6_gga(Amount, C, Coins, NewAmount, ways_out_gga(Amount, Coins, N1)) → U7_gga(Amount, C, Coins, N1, ways_in_gga(NewAmount, .(s(C), Coins)))
U7_gga(Amount, C, Coins, N1, ways_out_gga(NewAmount, .(s(C), Coins), N2)) → U8_gga(Amount, C, Coins, plus_in_gga(N1, N2))
plus_in_gga(0, X) → U2_gga(X, nat_in_g(X))
U2_gga(X, nat_out_g(X)) → plus_out_gga(0, X, X)
plus_in_gga(s(X), Y) → U3_gga(X, Y, plus_in_gga(X, Y))
U3_gga(X, Y, plus_out_gga(X, Y, Z)) → plus_out_gga(s(X), Y, s(Z))
U8_gga(Amount, C, Coins, plus_out_gga(N1, N2, N)) → ways_out_gga(Amount, .(s(C), Coins), N)
The set Q consists of the following terms:
ways_in_gga(x0, x1)
=_in_ga(x0)
U4_gga(x0, x1, x2, x3)
plus_in_gag(x0, x1)
nat_in_g(x0)
U1_g(x0, x1)
U2_gag(x0, x1)
U3_gag(x0, x1, x2)
U5_gga(x0, x1, x2, x3)
U9_gga(x0, x1, x2, x3)
U10_gga(x0, x1, x2, x3)
U11_gga(x0, x1, x2, x3)
U6_gga(x0, x1, x2, x3, x4)
U7_gga(x0, x1, x2, x3, x4)
plus_in_gga(x0, x1)
U2_gga(x0, x1)
U3_gga(x0, x1, x2)
U8_gga(x0, x1, x2, x3)
We have to consider all (P,Q,R)-chains.
(35) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.
(36) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U5_GGA(Amount, C, Coins, plus_out_gag(s(C), NewAmount, Amount)) → U6_GGA(Amount, C, Coins, NewAmount, ways_in_gga(Amount, Coins))
U6_GGA(Amount, C, Coins, NewAmount, ways_out_gga(Amount, Coins, N1)) → WAYS_IN_GGA(NewAmount, .(s(C), Coins))
WAYS_IN_GGA(Amount, .(s(C), Coins)) → U4_GGA(Amount, C, Coins, =_in_ga(Amount))
U4_GGA(Amount, C, Coins, =_out_ga(Amount, s(X3))) → U5_GGA(Amount, C, Coins, plus_in_gag(s(C), Amount))
U5_GGA(Amount, C, Coins, plus_out_gag(s(C), NewAmount, Amount)) → WAYS_IN_GGA(Amount, Coins)
The TRS R consists of the following rules:
ways_in_gga(0, X1) → ways_out_gga(0, X1, s(0))
ways_in_gga(X2, []) → ways_out_gga(X2, [], 0)
ways_in_gga(Amount, .(s(C), Coins)) → U4_gga(Amount, C, Coins, =_in_ga(Amount))
=_in_ga(X) → =_out_ga(X, X)
U4_gga(Amount, C, Coins, =_out_ga(Amount, s(X3))) → U5_gga(Amount, C, Coins, plus_in_gag(s(C), Amount))
plus_in_gag(0, X) → U2_gag(X, nat_in_g(X))
nat_in_g(0) → nat_out_g(0)
nat_in_g(s(X)) → U1_g(X, nat_in_g(X))
U1_g(X, nat_out_g(X)) → nat_out_g(s(X))
U2_gag(X, nat_out_g(X)) → plus_out_gag(0, X, X)
plus_in_gag(s(X), s(Z)) → U3_gag(X, Z, plus_in_gag(X, Z))
U3_gag(X, Z, plus_out_gag(X, Y, Z)) → plus_out_gag(s(X), Y, s(Z))
U5_gga(Amount, C, Coins, plus_out_gag(s(C), NewAmount, Amount)) → U6_gga(Amount, C, Coins, NewAmount, ways_in_gga(Amount, Coins))
ways_in_gga(Amount, .(s(C), Coins)) → U9_gga(Amount, C, Coins, =_in_ga(Amount))
U9_gga(Amount, C, Coins, =_out_ga(Amount, s(X4))) → U10_gga(Amount, C, Coins, plus_in_gag(Amount, s(C)))
U10_gga(Amount, C, Coins, plus_out_gag(Amount, s(X5), s(C))) → U11_gga(Amount, C, Coins, ways_in_gga(Amount, Coins))
U11_gga(Amount, C, Coins, ways_out_gga(Amount, Coins, N)) → ways_out_gga(Amount, .(s(C), Coins), N)
U6_gga(Amount, C, Coins, NewAmount, ways_out_gga(Amount, Coins, N1)) → U7_gga(Amount, C, Coins, N1, ways_in_gga(NewAmount, .(s(C), Coins)))
U7_gga(Amount, C, Coins, N1, ways_out_gga(NewAmount, .(s(C), Coins), N2)) → U8_gga(Amount, C, Coins, plus_in_gga(N1, N2))
plus_in_gga(0, X) → U2_gga(X, nat_in_g(X))
U2_gga(X, nat_out_g(X)) → plus_out_gga(0, X, X)
plus_in_gga(s(X), Y) → U3_gga(X, Y, plus_in_gga(X, Y))
U3_gga(X, Y, plus_out_gga(X, Y, Z)) → plus_out_gga(s(X), Y, s(Z))
U8_gga(Amount, C, Coins, plus_out_gga(N1, N2, N)) → ways_out_gga(Amount, .(s(C), Coins), N)
The set Q consists of the following terms:
ways_in_gga(x0, x1)
=_in_ga(x0)
U4_gga(x0, x1, x2, x3)
plus_in_gag(x0, x1)
nat_in_g(x0)
U1_g(x0, x1)
U2_gag(x0, x1)
U3_gag(x0, x1, x2)
U5_gga(x0, x1, x2, x3)
U9_gga(x0, x1, x2, x3)
U10_gga(x0, x1, x2, x3)
U11_gga(x0, x1, x2, x3)
U6_gga(x0, x1, x2, x3, x4)
U7_gga(x0, x1, x2, x3, x4)
plus_in_gga(x0, x1)
U2_gga(x0, x1)
U3_gga(x0, x1, x2)
U8_gga(x0, x1, x2, x3)
We have to consider all (P,Q,R)-chains.
(37) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
U5_GGA(Amount, C, Coins, plus_out_gag(s(C), NewAmount, Amount)) → WAYS_IN_GGA(Amount, Coins)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:
POL(.(x1, x2)) = x1 + x2
POL(0) = 0
POL(=_in_ga(x1)) = 0
POL(=_out_ga(x1, x2)) = 0
POL(U10_gga(x1, x2, x3, x4)) = 0
POL(U11_gga(x1, x2, x3, x4)) = 0
POL(U1_g(x1, x2)) = 0
POL(U2_gag(x1, x2)) = 0
POL(U2_gga(x1, x2)) = 0
POL(U3_gag(x1, x2, x3)) = 0
POL(U3_gga(x1, x2, x3)) = 0
POL(U4_GGA(x1, x2, x3, x4)) = 1 + x3
POL(U4_gga(x1, x2, x3, x4)) = 0
POL(U5_GGA(x1, x2, x3, x4)) = 1 + x3
POL(U5_gga(x1, x2, x3, x4)) = 0
POL(U6_GGA(x1, x2, x3, x4, x5)) = 1 + x3
POL(U6_gga(x1, x2, x3, x4, x5)) = 0
POL(U7_gga(x1, x2, x3, x4, x5)) = 0
POL(U8_gga(x1, x2, x3, x4)) = 0
POL(U9_gga(x1, x2, x3, x4)) = 0
POL(WAYS_IN_GGA(x1, x2)) = x2
POL([]) = 0
POL(nat_in_g(x1)) = 0
POL(nat_out_g(x1)) = 0
POL(plus_in_gag(x1, x2)) = 0
POL(plus_in_gga(x1, x2)) = 0
POL(plus_out_gag(x1, x2, x3)) = 0
POL(plus_out_gga(x1, x2, x3)) = 0
POL(s(x1)) = 1
POL(ways_in_gga(x1, x2)) = 0
POL(ways_out_gga(x1, x2, x3)) = 0
The following usable rules [FROCOS05] were oriented:
none
(38) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U5_GGA(Amount, C, Coins, plus_out_gag(s(C), NewAmount, Amount)) → U6_GGA(Amount, C, Coins, NewAmount, ways_in_gga(Amount, Coins))
U6_GGA(Amount, C, Coins, NewAmount, ways_out_gga(Amount, Coins, N1)) → WAYS_IN_GGA(NewAmount, .(s(C), Coins))
WAYS_IN_GGA(Amount, .(s(C), Coins)) → U4_GGA(Amount, C, Coins, =_in_ga(Amount))
U4_GGA(Amount, C, Coins, =_out_ga(Amount, s(X3))) → U5_GGA(Amount, C, Coins, plus_in_gag(s(C), Amount))
The TRS R consists of the following rules:
ways_in_gga(0, X1) → ways_out_gga(0, X1, s(0))
ways_in_gga(X2, []) → ways_out_gga(X2, [], 0)
ways_in_gga(Amount, .(s(C), Coins)) → U4_gga(Amount, C, Coins, =_in_ga(Amount))
=_in_ga(X) → =_out_ga(X, X)
U4_gga(Amount, C, Coins, =_out_ga(Amount, s(X3))) → U5_gga(Amount, C, Coins, plus_in_gag(s(C), Amount))
plus_in_gag(0, X) → U2_gag(X, nat_in_g(X))
nat_in_g(0) → nat_out_g(0)
nat_in_g(s(X)) → U1_g(X, nat_in_g(X))
U1_g(X, nat_out_g(X)) → nat_out_g(s(X))
U2_gag(X, nat_out_g(X)) → plus_out_gag(0, X, X)
plus_in_gag(s(X), s(Z)) → U3_gag(X, Z, plus_in_gag(X, Z))
U3_gag(X, Z, plus_out_gag(X, Y, Z)) → plus_out_gag(s(X), Y, s(Z))
U5_gga(Amount, C, Coins, plus_out_gag(s(C), NewAmount, Amount)) → U6_gga(Amount, C, Coins, NewAmount, ways_in_gga(Amount, Coins))
ways_in_gga(Amount, .(s(C), Coins)) → U9_gga(Amount, C, Coins, =_in_ga(Amount))
U9_gga(Amount, C, Coins, =_out_ga(Amount, s(X4))) → U10_gga(Amount, C, Coins, plus_in_gag(Amount, s(C)))
U10_gga(Amount, C, Coins, plus_out_gag(Amount, s(X5), s(C))) → U11_gga(Amount, C, Coins, ways_in_gga(Amount, Coins))
U11_gga(Amount, C, Coins, ways_out_gga(Amount, Coins, N)) → ways_out_gga(Amount, .(s(C), Coins), N)
U6_gga(Amount, C, Coins, NewAmount, ways_out_gga(Amount, Coins, N1)) → U7_gga(Amount, C, Coins, N1, ways_in_gga(NewAmount, .(s(C), Coins)))
U7_gga(Amount, C, Coins, N1, ways_out_gga(NewAmount, .(s(C), Coins), N2)) → U8_gga(Amount, C, Coins, plus_in_gga(N1, N2))
plus_in_gga(0, X) → U2_gga(X, nat_in_g(X))
U2_gga(X, nat_out_g(X)) → plus_out_gga(0, X, X)
plus_in_gga(s(X), Y) → U3_gga(X, Y, plus_in_gga(X, Y))
U3_gga(X, Y, plus_out_gga(X, Y, Z)) → plus_out_gga(s(X), Y, s(Z))
U8_gga(Amount, C, Coins, plus_out_gga(N1, N2, N)) → ways_out_gga(Amount, .(s(C), Coins), N)
The set Q consists of the following terms:
ways_in_gga(x0, x1)
=_in_ga(x0)
U4_gga(x0, x1, x2, x3)
plus_in_gag(x0, x1)
nat_in_g(x0)
U1_g(x0, x1)
U2_gag(x0, x1)
U3_gag(x0, x1, x2)
U5_gga(x0, x1, x2, x3)
U9_gga(x0, x1, x2, x3)
U10_gga(x0, x1, x2, x3)
U11_gga(x0, x1, x2, x3)
U6_gga(x0, x1, x2, x3, x4)
U7_gga(x0, x1, x2, x3, x4)
plus_in_gga(x0, x1)
U2_gga(x0, x1)
U3_gga(x0, x1, x2)
U8_gga(x0, x1, x2, x3)
We have to consider all (P,Q,R)-chains.
(39) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
ways_in: (b,b,f)
plus_in: (b,f,b) (b,b,f)
nat_in: (b)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
ways_in_gga(0, X1, s(0)) → ways_out_gga(0, X1, s(0))
ways_in_gga(X2, [], 0) → ways_out_gga(X2, [], 0)
ways_in_gga(Amount, .(s(C), Coins), N) → U4_gga(Amount, C, Coins, N, =_in_ga(Amount, s(X3)))
=_in_ga(X, X) → =_out_ga(X, X)
U4_gga(Amount, C, Coins, N, =_out_ga(Amount, s(X3))) → U5_gga(Amount, C, Coins, N, X3, plus_in_gag(s(C), NewAmount, Amount))
plus_in_gag(0, X, X) → U2_gag(X, nat_in_g(X))
nat_in_g(0) → nat_out_g(0)
nat_in_g(s(X)) → U1_g(X, nat_in_g(X))
U1_g(X, nat_out_g(X)) → nat_out_g(s(X))
U2_gag(X, nat_out_g(X)) → plus_out_gag(0, X, X)
plus_in_gag(s(X), Y, s(Z)) → U3_gag(X, Y, Z, plus_in_gag(X, Y, Z))
U3_gag(X, Y, Z, plus_out_gag(X, Y, Z)) → plus_out_gag(s(X), Y, s(Z))
U5_gga(Amount, C, Coins, N, X3, plus_out_gag(s(C), NewAmount, Amount)) → U6_gga(Amount, C, Coins, N, X3, NewAmount, ways_in_gga(Amount, Coins, N1))
ways_in_gga(Amount, .(s(C), Coins), N) → U9_gga(Amount, C, Coins, N, =_in_ga(Amount, s(X4)))
U9_gga(Amount, C, Coins, N, =_out_ga(Amount, s(X4))) → U10_gga(Amount, C, Coins, N, X4, plus_in_gag(Amount, s(X5), s(C)))
U10_gga(Amount, C, Coins, N, X4, plus_out_gag(Amount, s(X5), s(C))) → U11_gga(Amount, C, Coins, N, ways_in_gga(Amount, Coins, N))
U11_gga(Amount, C, Coins, N, ways_out_gga(Amount, Coins, N)) → ways_out_gga(Amount, .(s(C), Coins), N)
U6_gga(Amount, C, Coins, N, X3, NewAmount, ways_out_gga(Amount, Coins, N1)) → U7_gga(Amount, C, Coins, N, X3, NewAmount, N1, ways_in_gga(NewAmount, .(s(C), Coins), N2))
U7_gga(Amount, C, Coins, N, X3, NewAmount, N1, ways_out_gga(NewAmount, .(s(C), Coins), N2)) → U8_gga(Amount, C, Coins, N, plus_in_gga(N1, N2, N))
plus_in_gga(0, X, X) → U2_gga(X, nat_in_g(X))
U2_gga(X, nat_out_g(X)) → plus_out_gga(0, X, X)
plus_in_gga(s(X), Y, s(Z)) → U3_gga(X, Y, Z, plus_in_gga(X, Y, Z))
U3_gga(X, Y, Z, plus_out_gga(X, Y, Z)) → plus_out_gga(s(X), Y, s(Z))
U8_gga(Amount, C, Coins, N, plus_out_gga(N1, N2, N)) → ways_out_gga(Amount, .(s(C), Coins), N)
The argument filtering Pi contains the following mapping:
ways_in_gga(
x1,
x2,
x3) =
ways_in_gga(
x1,
x2)
0 =
0
ways_out_gga(
x1,
x2,
x3) =
ways_out_gga(
x3)
[] =
[]
.(
x1,
x2) =
.(
x1,
x2)
s(
x1) =
s(
x1)
U4_gga(
x1,
x2,
x3,
x4,
x5) =
U4_gga(
x1,
x2,
x3,
x5)
=_in_ga(
x1,
x2) =
=_in_ga(
x1)
=_out_ga(
x1,
x2) =
=_out_ga(
x2)
U5_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U5_gga(
x1,
x2,
x3,
x6)
plus_in_gag(
x1,
x2,
x3) =
plus_in_gag(
x1,
x3)
U2_gag(
x1,
x2) =
U2_gag(
x1,
x2)
nat_in_g(
x1) =
nat_in_g(
x1)
nat_out_g(
x1) =
nat_out_g
U1_g(
x1,
x2) =
U1_g(
x2)
plus_out_gag(
x1,
x2,
x3) =
plus_out_gag(
x2)
U3_gag(
x1,
x2,
x3,
x4) =
U3_gag(
x4)
U6_gga(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U6_gga(
x2,
x3,
x6,
x7)
U9_gga(
x1,
x2,
x3,
x4,
x5) =
U9_gga(
x1,
x2,
x3,
x5)
U10_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U10_gga(
x1,
x3,
x6)
U11_gga(
x1,
x2,
x3,
x4,
x5) =
U11_gga(
x5)
U7_gga(
x1,
x2,
x3,
x4,
x5,
x6,
x7,
x8) =
U7_gga(
x7,
x8)
U8_gga(
x1,
x2,
x3,
x4,
x5) =
U8_gga(
x5)
plus_in_gga(
x1,
x2,
x3) =
plus_in_gga(
x1,
x2)
U2_gga(
x1,
x2) =
U2_gga(
x1,
x2)
plus_out_gga(
x1,
x2,
x3) =
plus_out_gga(
x3)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x4)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(40) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
ways_in_gga(0, X1, s(0)) → ways_out_gga(0, X1, s(0))
ways_in_gga(X2, [], 0) → ways_out_gga(X2, [], 0)
ways_in_gga(Amount, .(s(C), Coins), N) → U4_gga(Amount, C, Coins, N, =_in_ga(Amount, s(X3)))
=_in_ga(X, X) → =_out_ga(X, X)
U4_gga(Amount, C, Coins, N, =_out_ga(Amount, s(X3))) → U5_gga(Amount, C, Coins, N, X3, plus_in_gag(s(C), NewAmount, Amount))
plus_in_gag(0, X, X) → U2_gag(X, nat_in_g(X))
nat_in_g(0) → nat_out_g(0)
nat_in_g(s(X)) → U1_g(X, nat_in_g(X))
U1_g(X, nat_out_g(X)) → nat_out_g(s(X))
U2_gag(X, nat_out_g(X)) → plus_out_gag(0, X, X)
plus_in_gag(s(X), Y, s(Z)) → U3_gag(X, Y, Z, plus_in_gag(X, Y, Z))
U3_gag(X, Y, Z, plus_out_gag(X, Y, Z)) → plus_out_gag(s(X), Y, s(Z))
U5_gga(Amount, C, Coins, N, X3, plus_out_gag(s(C), NewAmount, Amount)) → U6_gga(Amount, C, Coins, N, X3, NewAmount, ways_in_gga(Amount, Coins, N1))
ways_in_gga(Amount, .(s(C), Coins), N) → U9_gga(Amount, C, Coins, N, =_in_ga(Amount, s(X4)))
U9_gga(Amount, C, Coins, N, =_out_ga(Amount, s(X4))) → U10_gga(Amount, C, Coins, N, X4, plus_in_gag(Amount, s(X5), s(C)))
U10_gga(Amount, C, Coins, N, X4, plus_out_gag(Amount, s(X5), s(C))) → U11_gga(Amount, C, Coins, N, ways_in_gga(Amount, Coins, N))
U11_gga(Amount, C, Coins, N, ways_out_gga(Amount, Coins, N)) → ways_out_gga(Amount, .(s(C), Coins), N)
U6_gga(Amount, C, Coins, N, X3, NewAmount, ways_out_gga(Amount, Coins, N1)) → U7_gga(Amount, C, Coins, N, X3, NewAmount, N1, ways_in_gga(NewAmount, .(s(C), Coins), N2))
U7_gga(Amount, C, Coins, N, X3, NewAmount, N1, ways_out_gga(NewAmount, .(s(C), Coins), N2)) → U8_gga(Amount, C, Coins, N, plus_in_gga(N1, N2, N))
plus_in_gga(0, X, X) → U2_gga(X, nat_in_g(X))
U2_gga(X, nat_out_g(X)) → plus_out_gga(0, X, X)
plus_in_gga(s(X), Y, s(Z)) → U3_gga(X, Y, Z, plus_in_gga(X, Y, Z))
U3_gga(X, Y, Z, plus_out_gga(X, Y, Z)) → plus_out_gga(s(X), Y, s(Z))
U8_gga(Amount, C, Coins, N, plus_out_gga(N1, N2, N)) → ways_out_gga(Amount, .(s(C), Coins), N)
The argument filtering Pi contains the following mapping:
ways_in_gga(
x1,
x2,
x3) =
ways_in_gga(
x1,
x2)
0 =
0
ways_out_gga(
x1,
x2,
x3) =
ways_out_gga(
x3)
[] =
[]
.(
x1,
x2) =
.(
x1,
x2)
s(
x1) =
s(
x1)
U4_gga(
x1,
x2,
x3,
x4,
x5) =
U4_gga(
x1,
x2,
x3,
x5)
=_in_ga(
x1,
x2) =
=_in_ga(
x1)
=_out_ga(
x1,
x2) =
=_out_ga(
x2)
U5_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U5_gga(
x1,
x2,
x3,
x6)
plus_in_gag(
x1,
x2,
x3) =
plus_in_gag(
x1,
x3)
U2_gag(
x1,
x2) =
U2_gag(
x1,
x2)
nat_in_g(
x1) =
nat_in_g(
x1)
nat_out_g(
x1) =
nat_out_g
U1_g(
x1,
x2) =
U1_g(
x2)
plus_out_gag(
x1,
x2,
x3) =
plus_out_gag(
x2)
U3_gag(
x1,
x2,
x3,
x4) =
U3_gag(
x4)
U6_gga(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U6_gga(
x2,
x3,
x6,
x7)
U9_gga(
x1,
x2,
x3,
x4,
x5) =
U9_gga(
x1,
x2,
x3,
x5)
U10_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U10_gga(
x1,
x3,
x6)
U11_gga(
x1,
x2,
x3,
x4,
x5) =
U11_gga(
x5)
U7_gga(
x1,
x2,
x3,
x4,
x5,
x6,
x7,
x8) =
U7_gga(
x7,
x8)
U8_gga(
x1,
x2,
x3,
x4,
x5) =
U8_gga(
x5)
plus_in_gga(
x1,
x2,
x3) =
plus_in_gga(
x1,
x2)
U2_gga(
x1,
x2) =
U2_gga(
x1,
x2)
plus_out_gga(
x1,
x2,
x3) =
plus_out_gga(
x3)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x4)
(41) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
WAYS_IN_GGA(Amount, .(s(C), Coins), N) → U4_GGA(Amount, C, Coins, N, =_in_ga(Amount, s(X3)))
WAYS_IN_GGA(Amount, .(s(C), Coins), N) → =_IN_GA(Amount, s(X3))
U4_GGA(Amount, C, Coins, N, =_out_ga(Amount, s(X3))) → U5_GGA(Amount, C, Coins, N, X3, plus_in_gag(s(C), NewAmount, Amount))
U4_GGA(Amount, C, Coins, N, =_out_ga(Amount, s(X3))) → PLUS_IN_GAG(s(C), NewAmount, Amount)
PLUS_IN_GAG(0, X, X) → U2_GAG(X, nat_in_g(X))
PLUS_IN_GAG(0, X, X) → NAT_IN_G(X)
NAT_IN_G(s(X)) → U1_G(X, nat_in_g(X))
NAT_IN_G(s(X)) → NAT_IN_G(X)
PLUS_IN_GAG(s(X), Y, s(Z)) → U3_GAG(X, Y, Z, plus_in_gag(X, Y, Z))
PLUS_IN_GAG(s(X), Y, s(Z)) → PLUS_IN_GAG(X, Y, Z)
U5_GGA(Amount, C, Coins, N, X3, plus_out_gag(s(C), NewAmount, Amount)) → U6_GGA(Amount, C, Coins, N, X3, NewAmount, ways_in_gga(Amount, Coins, N1))
U5_GGA(Amount, C, Coins, N, X3, plus_out_gag(s(C), NewAmount, Amount)) → WAYS_IN_GGA(Amount, Coins, N1)
WAYS_IN_GGA(Amount, .(s(C), Coins), N) → U9_GGA(Amount, C, Coins, N, =_in_ga(Amount, s(X4)))
U9_GGA(Amount, C, Coins, N, =_out_ga(Amount, s(X4))) → U10_GGA(Amount, C, Coins, N, X4, plus_in_gag(Amount, s(X5), s(C)))
U9_GGA(Amount, C, Coins, N, =_out_ga(Amount, s(X4))) → PLUS_IN_GAG(Amount, s(X5), s(C))
U10_GGA(Amount, C, Coins, N, X4, plus_out_gag(Amount, s(X5), s(C))) → U11_GGA(Amount, C, Coins, N, ways_in_gga(Amount, Coins, N))
U10_GGA(Amount, C, Coins, N, X4, plus_out_gag(Amount, s(X5), s(C))) → WAYS_IN_GGA(Amount, Coins, N)
U6_GGA(Amount, C, Coins, N, X3, NewAmount, ways_out_gga(Amount, Coins, N1)) → U7_GGA(Amount, C, Coins, N, X3, NewAmount, N1, ways_in_gga(NewAmount, .(s(C), Coins), N2))
U6_GGA(Amount, C, Coins, N, X3, NewAmount, ways_out_gga(Amount, Coins, N1)) → WAYS_IN_GGA(NewAmount, .(s(C), Coins), N2)
U7_GGA(Amount, C, Coins, N, X3, NewAmount, N1, ways_out_gga(NewAmount, .(s(C), Coins), N2)) → U8_GGA(Amount, C, Coins, N, plus_in_gga(N1, N2, N))
U7_GGA(Amount, C, Coins, N, X3, NewAmount, N1, ways_out_gga(NewAmount, .(s(C), Coins), N2)) → PLUS_IN_GGA(N1, N2, N)
PLUS_IN_GGA(0, X, X) → U2_GGA(X, nat_in_g(X))
PLUS_IN_GGA(0, X, X) → NAT_IN_G(X)
PLUS_IN_GGA(s(X), Y, s(Z)) → U3_GGA(X, Y, Z, plus_in_gga(X, Y, Z))
PLUS_IN_GGA(s(X), Y, s(Z)) → PLUS_IN_GGA(X, Y, Z)
The TRS R consists of the following rules:
ways_in_gga(0, X1, s(0)) → ways_out_gga(0, X1, s(0))
ways_in_gga(X2, [], 0) → ways_out_gga(X2, [], 0)
ways_in_gga(Amount, .(s(C), Coins), N) → U4_gga(Amount, C, Coins, N, =_in_ga(Amount, s(X3)))
=_in_ga(X, X) → =_out_ga(X, X)
U4_gga(Amount, C, Coins, N, =_out_ga(Amount, s(X3))) → U5_gga(Amount, C, Coins, N, X3, plus_in_gag(s(C), NewAmount, Amount))
plus_in_gag(0, X, X) → U2_gag(X, nat_in_g(X))
nat_in_g(0) → nat_out_g(0)
nat_in_g(s(X)) → U1_g(X, nat_in_g(X))
U1_g(X, nat_out_g(X)) → nat_out_g(s(X))
U2_gag(X, nat_out_g(X)) → plus_out_gag(0, X, X)
plus_in_gag(s(X), Y, s(Z)) → U3_gag(X, Y, Z, plus_in_gag(X, Y, Z))
U3_gag(X, Y, Z, plus_out_gag(X, Y, Z)) → plus_out_gag(s(X), Y, s(Z))
U5_gga(Amount, C, Coins, N, X3, plus_out_gag(s(C), NewAmount, Amount)) → U6_gga(Amount, C, Coins, N, X3, NewAmount, ways_in_gga(Amount, Coins, N1))
ways_in_gga(Amount, .(s(C), Coins), N) → U9_gga(Amount, C, Coins, N, =_in_ga(Amount, s(X4)))
U9_gga(Amount, C, Coins, N, =_out_ga(Amount, s(X4))) → U10_gga(Amount, C, Coins, N, X4, plus_in_gag(Amount, s(X5), s(C)))
U10_gga(Amount, C, Coins, N, X4, plus_out_gag(Amount, s(X5), s(C))) → U11_gga(Amount, C, Coins, N, ways_in_gga(Amount, Coins, N))
U11_gga(Amount, C, Coins, N, ways_out_gga(Amount, Coins, N)) → ways_out_gga(Amount, .(s(C), Coins), N)
U6_gga(Amount, C, Coins, N, X3, NewAmount, ways_out_gga(Amount, Coins, N1)) → U7_gga(Amount, C, Coins, N, X3, NewAmount, N1, ways_in_gga(NewAmount, .(s(C), Coins), N2))
U7_gga(Amount, C, Coins, N, X3, NewAmount, N1, ways_out_gga(NewAmount, .(s(C), Coins), N2)) → U8_gga(Amount, C, Coins, N, plus_in_gga(N1, N2, N))
plus_in_gga(0, X, X) → U2_gga(X, nat_in_g(X))
U2_gga(X, nat_out_g(X)) → plus_out_gga(0, X, X)
plus_in_gga(s(X), Y, s(Z)) → U3_gga(X, Y, Z, plus_in_gga(X, Y, Z))
U3_gga(X, Y, Z, plus_out_gga(X, Y, Z)) → plus_out_gga(s(X), Y, s(Z))
U8_gga(Amount, C, Coins, N, plus_out_gga(N1, N2, N)) → ways_out_gga(Amount, .(s(C), Coins), N)
The argument filtering Pi contains the following mapping:
ways_in_gga(
x1,
x2,
x3) =
ways_in_gga(
x1,
x2)
0 =
0
ways_out_gga(
x1,
x2,
x3) =
ways_out_gga(
x3)
[] =
[]
.(
x1,
x2) =
.(
x1,
x2)
s(
x1) =
s(
x1)
U4_gga(
x1,
x2,
x3,
x4,
x5) =
U4_gga(
x1,
x2,
x3,
x5)
=_in_ga(
x1,
x2) =
=_in_ga(
x1)
=_out_ga(
x1,
x2) =
=_out_ga(
x2)
U5_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U5_gga(
x1,
x2,
x3,
x6)
plus_in_gag(
x1,
x2,
x3) =
plus_in_gag(
x1,
x3)
U2_gag(
x1,
x2) =
U2_gag(
x1,
x2)
nat_in_g(
x1) =
nat_in_g(
x1)
nat_out_g(
x1) =
nat_out_g
U1_g(
x1,
x2) =
U1_g(
x2)
plus_out_gag(
x1,
x2,
x3) =
plus_out_gag(
x2)
U3_gag(
x1,
x2,
x3,
x4) =
U3_gag(
x4)
U6_gga(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U6_gga(
x2,
x3,
x6,
x7)
U9_gga(
x1,
x2,
x3,
x4,
x5) =
U9_gga(
x1,
x2,
x3,
x5)
U10_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U10_gga(
x1,
x3,
x6)
U11_gga(
x1,
x2,
x3,
x4,
x5) =
U11_gga(
x5)
U7_gga(
x1,
x2,
x3,
x4,
x5,
x6,
x7,
x8) =
U7_gga(
x7,
x8)
U8_gga(
x1,
x2,
x3,
x4,
x5) =
U8_gga(
x5)
plus_in_gga(
x1,
x2,
x3) =
plus_in_gga(
x1,
x2)
U2_gga(
x1,
x2) =
U2_gga(
x1,
x2)
plus_out_gga(
x1,
x2,
x3) =
plus_out_gga(
x3)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x4)
WAYS_IN_GGA(
x1,
x2,
x3) =
WAYS_IN_GGA(
x1,
x2)
U4_GGA(
x1,
x2,
x3,
x4,
x5) =
U4_GGA(
x1,
x2,
x3,
x5)
=_IN_GA(
x1,
x2) =
=_IN_GA(
x1)
U5_GGA(
x1,
x2,
x3,
x4,
x5,
x6) =
U5_GGA(
x1,
x2,
x3,
x6)
PLUS_IN_GAG(
x1,
x2,
x3) =
PLUS_IN_GAG(
x1,
x3)
U2_GAG(
x1,
x2) =
U2_GAG(
x1,
x2)
NAT_IN_G(
x1) =
NAT_IN_G(
x1)
U1_G(
x1,
x2) =
U1_G(
x2)
U3_GAG(
x1,
x2,
x3,
x4) =
U3_GAG(
x4)
U6_GGA(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U6_GGA(
x2,
x3,
x6,
x7)
U9_GGA(
x1,
x2,
x3,
x4,
x5) =
U9_GGA(
x1,
x2,
x3,
x5)
U10_GGA(
x1,
x2,
x3,
x4,
x5,
x6) =
U10_GGA(
x1,
x3,
x6)
U11_GGA(
x1,
x2,
x3,
x4,
x5) =
U11_GGA(
x5)
U7_GGA(
x1,
x2,
x3,
x4,
x5,
x6,
x7,
x8) =
U7_GGA(
x7,
x8)
U8_GGA(
x1,
x2,
x3,
x4,
x5) =
U8_GGA(
x5)
PLUS_IN_GGA(
x1,
x2,
x3) =
PLUS_IN_GGA(
x1,
x2)
U2_GGA(
x1,
x2) =
U2_GGA(
x1,
x2)
U3_GGA(
x1,
x2,
x3,
x4) =
U3_GGA(
x4)
We have to consider all (P,R,Pi)-chains
(42) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
WAYS_IN_GGA(Amount, .(s(C), Coins), N) → U4_GGA(Amount, C, Coins, N, =_in_ga(Amount, s(X3)))
WAYS_IN_GGA(Amount, .(s(C), Coins), N) → =_IN_GA(Amount, s(X3))
U4_GGA(Amount, C, Coins, N, =_out_ga(Amount, s(X3))) → U5_GGA(Amount, C, Coins, N, X3, plus_in_gag(s(C), NewAmount, Amount))
U4_GGA(Amount, C, Coins, N, =_out_ga(Amount, s(X3))) → PLUS_IN_GAG(s(C), NewAmount, Amount)
PLUS_IN_GAG(0, X, X) → U2_GAG(X, nat_in_g(X))
PLUS_IN_GAG(0, X, X) → NAT_IN_G(X)
NAT_IN_G(s(X)) → U1_G(X, nat_in_g(X))
NAT_IN_G(s(X)) → NAT_IN_G(X)
PLUS_IN_GAG(s(X), Y, s(Z)) → U3_GAG(X, Y, Z, plus_in_gag(X, Y, Z))
PLUS_IN_GAG(s(X), Y, s(Z)) → PLUS_IN_GAG(X, Y, Z)
U5_GGA(Amount, C, Coins, N, X3, plus_out_gag(s(C), NewAmount, Amount)) → U6_GGA(Amount, C, Coins, N, X3, NewAmount, ways_in_gga(Amount, Coins, N1))
U5_GGA(Amount, C, Coins, N, X3, plus_out_gag(s(C), NewAmount, Amount)) → WAYS_IN_GGA(Amount, Coins, N1)
WAYS_IN_GGA(Amount, .(s(C), Coins), N) → U9_GGA(Amount, C, Coins, N, =_in_ga(Amount, s(X4)))
U9_GGA(Amount, C, Coins, N, =_out_ga(Amount, s(X4))) → U10_GGA(Amount, C, Coins, N, X4, plus_in_gag(Amount, s(X5), s(C)))
U9_GGA(Amount, C, Coins, N, =_out_ga(Amount, s(X4))) → PLUS_IN_GAG(Amount, s(X5), s(C))
U10_GGA(Amount, C, Coins, N, X4, plus_out_gag(Amount, s(X5), s(C))) → U11_GGA(Amount, C, Coins, N, ways_in_gga(Amount, Coins, N))
U10_GGA(Amount, C, Coins, N, X4, plus_out_gag(Amount, s(X5), s(C))) → WAYS_IN_GGA(Amount, Coins, N)
U6_GGA(Amount, C, Coins, N, X3, NewAmount, ways_out_gga(Amount, Coins, N1)) → U7_GGA(Amount, C, Coins, N, X3, NewAmount, N1, ways_in_gga(NewAmount, .(s(C), Coins), N2))
U6_GGA(Amount, C, Coins, N, X3, NewAmount, ways_out_gga(Amount, Coins, N1)) → WAYS_IN_GGA(NewAmount, .(s(C), Coins), N2)
U7_GGA(Amount, C, Coins, N, X3, NewAmount, N1, ways_out_gga(NewAmount, .(s(C), Coins), N2)) → U8_GGA(Amount, C, Coins, N, plus_in_gga(N1, N2, N))
U7_GGA(Amount, C, Coins, N, X3, NewAmount, N1, ways_out_gga(NewAmount, .(s(C), Coins), N2)) → PLUS_IN_GGA(N1, N2, N)
PLUS_IN_GGA(0, X, X) → U2_GGA(X, nat_in_g(X))
PLUS_IN_GGA(0, X, X) → NAT_IN_G(X)
PLUS_IN_GGA(s(X), Y, s(Z)) → U3_GGA(X, Y, Z, plus_in_gga(X, Y, Z))
PLUS_IN_GGA(s(X), Y, s(Z)) → PLUS_IN_GGA(X, Y, Z)
The TRS R consists of the following rules:
ways_in_gga(0, X1, s(0)) → ways_out_gga(0, X1, s(0))
ways_in_gga(X2, [], 0) → ways_out_gga(X2, [], 0)
ways_in_gga(Amount, .(s(C), Coins), N) → U4_gga(Amount, C, Coins, N, =_in_ga(Amount, s(X3)))
=_in_ga(X, X) → =_out_ga(X, X)
U4_gga(Amount, C, Coins, N, =_out_ga(Amount, s(X3))) → U5_gga(Amount, C, Coins, N, X3, plus_in_gag(s(C), NewAmount, Amount))
plus_in_gag(0, X, X) → U2_gag(X, nat_in_g(X))
nat_in_g(0) → nat_out_g(0)
nat_in_g(s(X)) → U1_g(X, nat_in_g(X))
U1_g(X, nat_out_g(X)) → nat_out_g(s(X))
U2_gag(X, nat_out_g(X)) → plus_out_gag(0, X, X)
plus_in_gag(s(X), Y, s(Z)) → U3_gag(X, Y, Z, plus_in_gag(X, Y, Z))
U3_gag(X, Y, Z, plus_out_gag(X, Y, Z)) → plus_out_gag(s(X), Y, s(Z))
U5_gga(Amount, C, Coins, N, X3, plus_out_gag(s(C), NewAmount, Amount)) → U6_gga(Amount, C, Coins, N, X3, NewAmount, ways_in_gga(Amount, Coins, N1))
ways_in_gga(Amount, .(s(C), Coins), N) → U9_gga(Amount, C, Coins, N, =_in_ga(Amount, s(X4)))
U9_gga(Amount, C, Coins, N, =_out_ga(Amount, s(X4))) → U10_gga(Amount, C, Coins, N, X4, plus_in_gag(Amount, s(X5), s(C)))
U10_gga(Amount, C, Coins, N, X4, plus_out_gag(Amount, s(X5), s(C))) → U11_gga(Amount, C, Coins, N, ways_in_gga(Amount, Coins, N))
U11_gga(Amount, C, Coins, N, ways_out_gga(Amount, Coins, N)) → ways_out_gga(Amount, .(s(C), Coins), N)
U6_gga(Amount, C, Coins, N, X3, NewAmount, ways_out_gga(Amount, Coins, N1)) → U7_gga(Amount, C, Coins, N, X3, NewAmount, N1, ways_in_gga(NewAmount, .(s(C), Coins), N2))
U7_gga(Amount, C, Coins, N, X3, NewAmount, N1, ways_out_gga(NewAmount, .(s(C), Coins), N2)) → U8_gga(Amount, C, Coins, N, plus_in_gga(N1, N2, N))
plus_in_gga(0, X, X) → U2_gga(X, nat_in_g(X))
U2_gga(X, nat_out_g(X)) → plus_out_gga(0, X, X)
plus_in_gga(s(X), Y, s(Z)) → U3_gga(X, Y, Z, plus_in_gga(X, Y, Z))
U3_gga(X, Y, Z, plus_out_gga(X, Y, Z)) → plus_out_gga(s(X), Y, s(Z))
U8_gga(Amount, C, Coins, N, plus_out_gga(N1, N2, N)) → ways_out_gga(Amount, .(s(C), Coins), N)
The argument filtering Pi contains the following mapping:
ways_in_gga(
x1,
x2,
x3) =
ways_in_gga(
x1,
x2)
0 =
0
ways_out_gga(
x1,
x2,
x3) =
ways_out_gga(
x3)
[] =
[]
.(
x1,
x2) =
.(
x1,
x2)
s(
x1) =
s(
x1)
U4_gga(
x1,
x2,
x3,
x4,
x5) =
U4_gga(
x1,
x2,
x3,
x5)
=_in_ga(
x1,
x2) =
=_in_ga(
x1)
=_out_ga(
x1,
x2) =
=_out_ga(
x2)
U5_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U5_gga(
x1,
x2,
x3,
x6)
plus_in_gag(
x1,
x2,
x3) =
plus_in_gag(
x1,
x3)
U2_gag(
x1,
x2) =
U2_gag(
x1,
x2)
nat_in_g(
x1) =
nat_in_g(
x1)
nat_out_g(
x1) =
nat_out_g
U1_g(
x1,
x2) =
U1_g(
x2)
plus_out_gag(
x1,
x2,
x3) =
plus_out_gag(
x2)
U3_gag(
x1,
x2,
x3,
x4) =
U3_gag(
x4)
U6_gga(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U6_gga(
x2,
x3,
x6,
x7)
U9_gga(
x1,
x2,
x3,
x4,
x5) =
U9_gga(
x1,
x2,
x3,
x5)
U10_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U10_gga(
x1,
x3,
x6)
U11_gga(
x1,
x2,
x3,
x4,
x5) =
U11_gga(
x5)
U7_gga(
x1,
x2,
x3,
x4,
x5,
x6,
x7,
x8) =
U7_gga(
x7,
x8)
U8_gga(
x1,
x2,
x3,
x4,
x5) =
U8_gga(
x5)
plus_in_gga(
x1,
x2,
x3) =
plus_in_gga(
x1,
x2)
U2_gga(
x1,
x2) =
U2_gga(
x1,
x2)
plus_out_gga(
x1,
x2,
x3) =
plus_out_gga(
x3)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x4)
WAYS_IN_GGA(
x1,
x2,
x3) =
WAYS_IN_GGA(
x1,
x2)
U4_GGA(
x1,
x2,
x3,
x4,
x5) =
U4_GGA(
x1,
x2,
x3,
x5)
=_IN_GA(
x1,
x2) =
=_IN_GA(
x1)
U5_GGA(
x1,
x2,
x3,
x4,
x5,
x6) =
U5_GGA(
x1,
x2,
x3,
x6)
PLUS_IN_GAG(
x1,
x2,
x3) =
PLUS_IN_GAG(
x1,
x3)
U2_GAG(
x1,
x2) =
U2_GAG(
x1,
x2)
NAT_IN_G(
x1) =
NAT_IN_G(
x1)
U1_G(
x1,
x2) =
U1_G(
x2)
U3_GAG(
x1,
x2,
x3,
x4) =
U3_GAG(
x4)
U6_GGA(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U6_GGA(
x2,
x3,
x6,
x7)
U9_GGA(
x1,
x2,
x3,
x4,
x5) =
U9_GGA(
x1,
x2,
x3,
x5)
U10_GGA(
x1,
x2,
x3,
x4,
x5,
x6) =
U10_GGA(
x1,
x3,
x6)
U11_GGA(
x1,
x2,
x3,
x4,
x5) =
U11_GGA(
x5)
U7_GGA(
x1,
x2,
x3,
x4,
x5,
x6,
x7,
x8) =
U7_GGA(
x7,
x8)
U8_GGA(
x1,
x2,
x3,
x4,
x5) =
U8_GGA(
x5)
PLUS_IN_GGA(
x1,
x2,
x3) =
PLUS_IN_GGA(
x1,
x2)
U2_GGA(
x1,
x2) =
U2_GGA(
x1,
x2)
U3_GGA(
x1,
x2,
x3,
x4) =
U3_GGA(
x4)
We have to consider all (P,R,Pi)-chains
(43) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 4 SCCs with 14 less nodes.
(44) Complex Obligation (AND)
(45) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
NAT_IN_G(s(X)) → NAT_IN_G(X)
The TRS R consists of the following rules:
ways_in_gga(0, X1, s(0)) → ways_out_gga(0, X1, s(0))
ways_in_gga(X2, [], 0) → ways_out_gga(X2, [], 0)
ways_in_gga(Amount, .(s(C), Coins), N) → U4_gga(Amount, C, Coins, N, =_in_ga(Amount, s(X3)))
=_in_ga(X, X) → =_out_ga(X, X)
U4_gga(Amount, C, Coins, N, =_out_ga(Amount, s(X3))) → U5_gga(Amount, C, Coins, N, X3, plus_in_gag(s(C), NewAmount, Amount))
plus_in_gag(0, X, X) → U2_gag(X, nat_in_g(X))
nat_in_g(0) → nat_out_g(0)
nat_in_g(s(X)) → U1_g(X, nat_in_g(X))
U1_g(X, nat_out_g(X)) → nat_out_g(s(X))
U2_gag(X, nat_out_g(X)) → plus_out_gag(0, X, X)
plus_in_gag(s(X), Y, s(Z)) → U3_gag(X, Y, Z, plus_in_gag(X, Y, Z))
U3_gag(X, Y, Z, plus_out_gag(X, Y, Z)) → plus_out_gag(s(X), Y, s(Z))
U5_gga(Amount, C, Coins, N, X3, plus_out_gag(s(C), NewAmount, Amount)) → U6_gga(Amount, C, Coins, N, X3, NewAmount, ways_in_gga(Amount, Coins, N1))
ways_in_gga(Amount, .(s(C), Coins), N) → U9_gga(Amount, C, Coins, N, =_in_ga(Amount, s(X4)))
U9_gga(Amount, C, Coins, N, =_out_ga(Amount, s(X4))) → U10_gga(Amount, C, Coins, N, X4, plus_in_gag(Amount, s(X5), s(C)))
U10_gga(Amount, C, Coins, N, X4, plus_out_gag(Amount, s(X5), s(C))) → U11_gga(Amount, C, Coins, N, ways_in_gga(Amount, Coins, N))
U11_gga(Amount, C, Coins, N, ways_out_gga(Amount, Coins, N)) → ways_out_gga(Amount, .(s(C), Coins), N)
U6_gga(Amount, C, Coins, N, X3, NewAmount, ways_out_gga(Amount, Coins, N1)) → U7_gga(Amount, C, Coins, N, X3, NewAmount, N1, ways_in_gga(NewAmount, .(s(C), Coins), N2))
U7_gga(Amount, C, Coins, N, X3, NewAmount, N1, ways_out_gga(NewAmount, .(s(C), Coins), N2)) → U8_gga(Amount, C, Coins, N, plus_in_gga(N1, N2, N))
plus_in_gga(0, X, X) → U2_gga(X, nat_in_g(X))
U2_gga(X, nat_out_g(X)) → plus_out_gga(0, X, X)
plus_in_gga(s(X), Y, s(Z)) → U3_gga(X, Y, Z, plus_in_gga(X, Y, Z))
U3_gga(X, Y, Z, plus_out_gga(X, Y, Z)) → plus_out_gga(s(X), Y, s(Z))
U8_gga(Amount, C, Coins, N, plus_out_gga(N1, N2, N)) → ways_out_gga(Amount, .(s(C), Coins), N)
The argument filtering Pi contains the following mapping:
ways_in_gga(
x1,
x2,
x3) =
ways_in_gga(
x1,
x2)
0 =
0
ways_out_gga(
x1,
x2,
x3) =
ways_out_gga(
x3)
[] =
[]
.(
x1,
x2) =
.(
x1,
x2)
s(
x1) =
s(
x1)
U4_gga(
x1,
x2,
x3,
x4,
x5) =
U4_gga(
x1,
x2,
x3,
x5)
=_in_ga(
x1,
x2) =
=_in_ga(
x1)
=_out_ga(
x1,
x2) =
=_out_ga(
x2)
U5_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U5_gga(
x1,
x2,
x3,
x6)
plus_in_gag(
x1,
x2,
x3) =
plus_in_gag(
x1,
x3)
U2_gag(
x1,
x2) =
U2_gag(
x1,
x2)
nat_in_g(
x1) =
nat_in_g(
x1)
nat_out_g(
x1) =
nat_out_g
U1_g(
x1,
x2) =
U1_g(
x2)
plus_out_gag(
x1,
x2,
x3) =
plus_out_gag(
x2)
U3_gag(
x1,
x2,
x3,
x4) =
U3_gag(
x4)
U6_gga(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U6_gga(
x2,
x3,
x6,
x7)
U9_gga(
x1,
x2,
x3,
x4,
x5) =
U9_gga(
x1,
x2,
x3,
x5)
U10_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U10_gga(
x1,
x3,
x6)
U11_gga(
x1,
x2,
x3,
x4,
x5) =
U11_gga(
x5)
U7_gga(
x1,
x2,
x3,
x4,
x5,
x6,
x7,
x8) =
U7_gga(
x7,
x8)
U8_gga(
x1,
x2,
x3,
x4,
x5) =
U8_gga(
x5)
plus_in_gga(
x1,
x2,
x3) =
plus_in_gga(
x1,
x2)
U2_gga(
x1,
x2) =
U2_gga(
x1,
x2)
plus_out_gga(
x1,
x2,
x3) =
plus_out_gga(
x3)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x4)
NAT_IN_G(
x1) =
NAT_IN_G(
x1)
We have to consider all (P,R,Pi)-chains
(46) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(47) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
NAT_IN_G(s(X)) → NAT_IN_G(X)
R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains
(48) PiDPToQDPProof (EQUIVALENT transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(49) Obligation:
Q DP problem:
The TRS P consists of the following rules:
NAT_IN_G(s(X)) → NAT_IN_G(X)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(50) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- NAT_IN_G(s(X)) → NAT_IN_G(X)
The graph contains the following edges 1 > 1
(51) TRUE
(52) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
PLUS_IN_GGA(s(X), Y, s(Z)) → PLUS_IN_GGA(X, Y, Z)
The TRS R consists of the following rules:
ways_in_gga(0, X1, s(0)) → ways_out_gga(0, X1, s(0))
ways_in_gga(X2, [], 0) → ways_out_gga(X2, [], 0)
ways_in_gga(Amount, .(s(C), Coins), N) → U4_gga(Amount, C, Coins, N, =_in_ga(Amount, s(X3)))
=_in_ga(X, X) → =_out_ga(X, X)
U4_gga(Amount, C, Coins, N, =_out_ga(Amount, s(X3))) → U5_gga(Amount, C, Coins, N, X3, plus_in_gag(s(C), NewAmount, Amount))
plus_in_gag(0, X, X) → U2_gag(X, nat_in_g(X))
nat_in_g(0) → nat_out_g(0)
nat_in_g(s(X)) → U1_g(X, nat_in_g(X))
U1_g(X, nat_out_g(X)) → nat_out_g(s(X))
U2_gag(X, nat_out_g(X)) → plus_out_gag(0, X, X)
plus_in_gag(s(X), Y, s(Z)) → U3_gag(X, Y, Z, plus_in_gag(X, Y, Z))
U3_gag(X, Y, Z, plus_out_gag(X, Y, Z)) → plus_out_gag(s(X), Y, s(Z))
U5_gga(Amount, C, Coins, N, X3, plus_out_gag(s(C), NewAmount, Amount)) → U6_gga(Amount, C, Coins, N, X3, NewAmount, ways_in_gga(Amount, Coins, N1))
ways_in_gga(Amount, .(s(C), Coins), N) → U9_gga(Amount, C, Coins, N, =_in_ga(Amount, s(X4)))
U9_gga(Amount, C, Coins, N, =_out_ga(Amount, s(X4))) → U10_gga(Amount, C, Coins, N, X4, plus_in_gag(Amount, s(X5), s(C)))
U10_gga(Amount, C, Coins, N, X4, plus_out_gag(Amount, s(X5), s(C))) → U11_gga(Amount, C, Coins, N, ways_in_gga(Amount, Coins, N))
U11_gga(Amount, C, Coins, N, ways_out_gga(Amount, Coins, N)) → ways_out_gga(Amount, .(s(C), Coins), N)
U6_gga(Amount, C, Coins, N, X3, NewAmount, ways_out_gga(Amount, Coins, N1)) → U7_gga(Amount, C, Coins, N, X3, NewAmount, N1, ways_in_gga(NewAmount, .(s(C), Coins), N2))
U7_gga(Amount, C, Coins, N, X3, NewAmount, N1, ways_out_gga(NewAmount, .(s(C), Coins), N2)) → U8_gga(Amount, C, Coins, N, plus_in_gga(N1, N2, N))
plus_in_gga(0, X, X) → U2_gga(X, nat_in_g(X))
U2_gga(X, nat_out_g(X)) → plus_out_gga(0, X, X)
plus_in_gga(s(X), Y, s(Z)) → U3_gga(X, Y, Z, plus_in_gga(X, Y, Z))
U3_gga(X, Y, Z, plus_out_gga(X, Y, Z)) → plus_out_gga(s(X), Y, s(Z))
U8_gga(Amount, C, Coins, N, plus_out_gga(N1, N2, N)) → ways_out_gga(Amount, .(s(C), Coins), N)
The argument filtering Pi contains the following mapping:
ways_in_gga(
x1,
x2,
x3) =
ways_in_gga(
x1,
x2)
0 =
0
ways_out_gga(
x1,
x2,
x3) =
ways_out_gga(
x3)
[] =
[]
.(
x1,
x2) =
.(
x1,
x2)
s(
x1) =
s(
x1)
U4_gga(
x1,
x2,
x3,
x4,
x5) =
U4_gga(
x1,
x2,
x3,
x5)
=_in_ga(
x1,
x2) =
=_in_ga(
x1)
=_out_ga(
x1,
x2) =
=_out_ga(
x2)
U5_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U5_gga(
x1,
x2,
x3,
x6)
plus_in_gag(
x1,
x2,
x3) =
plus_in_gag(
x1,
x3)
U2_gag(
x1,
x2) =
U2_gag(
x1,
x2)
nat_in_g(
x1) =
nat_in_g(
x1)
nat_out_g(
x1) =
nat_out_g
U1_g(
x1,
x2) =
U1_g(
x2)
plus_out_gag(
x1,
x2,
x3) =
plus_out_gag(
x2)
U3_gag(
x1,
x2,
x3,
x4) =
U3_gag(
x4)
U6_gga(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U6_gga(
x2,
x3,
x6,
x7)
U9_gga(
x1,
x2,
x3,
x4,
x5) =
U9_gga(
x1,
x2,
x3,
x5)
U10_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U10_gga(
x1,
x3,
x6)
U11_gga(
x1,
x2,
x3,
x4,
x5) =
U11_gga(
x5)
U7_gga(
x1,
x2,
x3,
x4,
x5,
x6,
x7,
x8) =
U7_gga(
x7,
x8)
U8_gga(
x1,
x2,
x3,
x4,
x5) =
U8_gga(
x5)
plus_in_gga(
x1,
x2,
x3) =
plus_in_gga(
x1,
x2)
U2_gga(
x1,
x2) =
U2_gga(
x1,
x2)
plus_out_gga(
x1,
x2,
x3) =
plus_out_gga(
x3)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x4)
PLUS_IN_GGA(
x1,
x2,
x3) =
PLUS_IN_GGA(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(53) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(54) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
PLUS_IN_GGA(s(X), Y, s(Z)) → PLUS_IN_GGA(X, Y, Z)
R is empty.
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
PLUS_IN_GGA(
x1,
x2,
x3) =
PLUS_IN_GGA(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(55) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(56) Obligation:
Q DP problem:
The TRS P consists of the following rules:
PLUS_IN_GGA(s(X), Y) → PLUS_IN_GGA(X, Y)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(57) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- PLUS_IN_GGA(s(X), Y) → PLUS_IN_GGA(X, Y)
The graph contains the following edges 1 > 1, 2 >= 2
(58) TRUE
(59) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
PLUS_IN_GAG(s(X), Y, s(Z)) → PLUS_IN_GAG(X, Y, Z)
The TRS R consists of the following rules:
ways_in_gga(0, X1, s(0)) → ways_out_gga(0, X1, s(0))
ways_in_gga(X2, [], 0) → ways_out_gga(X2, [], 0)
ways_in_gga(Amount, .(s(C), Coins), N) → U4_gga(Amount, C, Coins, N, =_in_ga(Amount, s(X3)))
=_in_ga(X, X) → =_out_ga(X, X)
U4_gga(Amount, C, Coins, N, =_out_ga(Amount, s(X3))) → U5_gga(Amount, C, Coins, N, X3, plus_in_gag(s(C), NewAmount, Amount))
plus_in_gag(0, X, X) → U2_gag(X, nat_in_g(X))
nat_in_g(0) → nat_out_g(0)
nat_in_g(s(X)) → U1_g(X, nat_in_g(X))
U1_g(X, nat_out_g(X)) → nat_out_g(s(X))
U2_gag(X, nat_out_g(X)) → plus_out_gag(0, X, X)
plus_in_gag(s(X), Y, s(Z)) → U3_gag(X, Y, Z, plus_in_gag(X, Y, Z))
U3_gag(X, Y, Z, plus_out_gag(X, Y, Z)) → plus_out_gag(s(X), Y, s(Z))
U5_gga(Amount, C, Coins, N, X3, plus_out_gag(s(C), NewAmount, Amount)) → U6_gga(Amount, C, Coins, N, X3, NewAmount, ways_in_gga(Amount, Coins, N1))
ways_in_gga(Amount, .(s(C), Coins), N) → U9_gga(Amount, C, Coins, N, =_in_ga(Amount, s(X4)))
U9_gga(Amount, C, Coins, N, =_out_ga(Amount, s(X4))) → U10_gga(Amount, C, Coins, N, X4, plus_in_gag(Amount, s(X5), s(C)))
U10_gga(Amount, C, Coins, N, X4, plus_out_gag(Amount, s(X5), s(C))) → U11_gga(Amount, C, Coins, N, ways_in_gga(Amount, Coins, N))
U11_gga(Amount, C, Coins, N, ways_out_gga(Amount, Coins, N)) → ways_out_gga(Amount, .(s(C), Coins), N)
U6_gga(Amount, C, Coins, N, X3, NewAmount, ways_out_gga(Amount, Coins, N1)) → U7_gga(Amount, C, Coins, N, X3, NewAmount, N1, ways_in_gga(NewAmount, .(s(C), Coins), N2))
U7_gga(Amount, C, Coins, N, X3, NewAmount, N1, ways_out_gga(NewAmount, .(s(C), Coins), N2)) → U8_gga(Amount, C, Coins, N, plus_in_gga(N1, N2, N))
plus_in_gga(0, X, X) → U2_gga(X, nat_in_g(X))
U2_gga(X, nat_out_g(X)) → plus_out_gga(0, X, X)
plus_in_gga(s(X), Y, s(Z)) → U3_gga(X, Y, Z, plus_in_gga(X, Y, Z))
U3_gga(X, Y, Z, plus_out_gga(X, Y, Z)) → plus_out_gga(s(X), Y, s(Z))
U8_gga(Amount, C, Coins, N, plus_out_gga(N1, N2, N)) → ways_out_gga(Amount, .(s(C), Coins), N)
The argument filtering Pi contains the following mapping:
ways_in_gga(
x1,
x2,
x3) =
ways_in_gga(
x1,
x2)
0 =
0
ways_out_gga(
x1,
x2,
x3) =
ways_out_gga(
x3)
[] =
[]
.(
x1,
x2) =
.(
x1,
x2)
s(
x1) =
s(
x1)
U4_gga(
x1,
x2,
x3,
x4,
x5) =
U4_gga(
x1,
x2,
x3,
x5)
=_in_ga(
x1,
x2) =
=_in_ga(
x1)
=_out_ga(
x1,
x2) =
=_out_ga(
x2)
U5_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U5_gga(
x1,
x2,
x3,
x6)
plus_in_gag(
x1,
x2,
x3) =
plus_in_gag(
x1,
x3)
U2_gag(
x1,
x2) =
U2_gag(
x1,
x2)
nat_in_g(
x1) =
nat_in_g(
x1)
nat_out_g(
x1) =
nat_out_g
U1_g(
x1,
x2) =
U1_g(
x2)
plus_out_gag(
x1,
x2,
x3) =
plus_out_gag(
x2)
U3_gag(
x1,
x2,
x3,
x4) =
U3_gag(
x4)
U6_gga(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U6_gga(
x2,
x3,
x6,
x7)
U9_gga(
x1,
x2,
x3,
x4,
x5) =
U9_gga(
x1,
x2,
x3,
x5)
U10_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U10_gga(
x1,
x3,
x6)
U11_gga(
x1,
x2,
x3,
x4,
x5) =
U11_gga(
x5)
U7_gga(
x1,
x2,
x3,
x4,
x5,
x6,
x7,
x8) =
U7_gga(
x7,
x8)
U8_gga(
x1,
x2,
x3,
x4,
x5) =
U8_gga(
x5)
plus_in_gga(
x1,
x2,
x3) =
plus_in_gga(
x1,
x2)
U2_gga(
x1,
x2) =
U2_gga(
x1,
x2)
plus_out_gga(
x1,
x2,
x3) =
plus_out_gga(
x3)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x4)
PLUS_IN_GAG(
x1,
x2,
x3) =
PLUS_IN_GAG(
x1,
x3)
We have to consider all (P,R,Pi)-chains
(60) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(61) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
PLUS_IN_GAG(s(X), Y, s(Z)) → PLUS_IN_GAG(X, Y, Z)
R is empty.
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
PLUS_IN_GAG(
x1,
x2,
x3) =
PLUS_IN_GAG(
x1,
x3)
We have to consider all (P,R,Pi)-chains
(62) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(63) Obligation:
Q DP problem:
The TRS P consists of the following rules:
PLUS_IN_GAG(s(X), s(Z)) → PLUS_IN_GAG(X, Z)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(64) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- PLUS_IN_GAG(s(X), s(Z)) → PLUS_IN_GAG(X, Z)
The graph contains the following edges 1 > 1, 2 > 2
(65) TRUE
(66) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
U4_GGA(Amount, C, Coins, N, =_out_ga(Amount, s(X3))) → U5_GGA(Amount, C, Coins, N, X3, plus_in_gag(s(C), NewAmount, Amount))
U5_GGA(Amount, C, Coins, N, X3, plus_out_gag(s(C), NewAmount, Amount)) → U6_GGA(Amount, C, Coins, N, X3, NewAmount, ways_in_gga(Amount, Coins, N1))
U6_GGA(Amount, C, Coins, N, X3, NewAmount, ways_out_gga(Amount, Coins, N1)) → WAYS_IN_GGA(NewAmount, .(s(C), Coins), N2)
WAYS_IN_GGA(Amount, .(s(C), Coins), N) → U4_GGA(Amount, C, Coins, N, =_in_ga(Amount, s(X3)))
WAYS_IN_GGA(Amount, .(s(C), Coins), N) → U9_GGA(Amount, C, Coins, N, =_in_ga(Amount, s(X4)))
U9_GGA(Amount, C, Coins, N, =_out_ga(Amount, s(X4))) → U10_GGA(Amount, C, Coins, N, X4, plus_in_gag(Amount, s(X5), s(C)))
U10_GGA(Amount, C, Coins, N, X4, plus_out_gag(Amount, s(X5), s(C))) → WAYS_IN_GGA(Amount, Coins, N)
U5_GGA(Amount, C, Coins, N, X3, plus_out_gag(s(C), NewAmount, Amount)) → WAYS_IN_GGA(Amount, Coins, N1)
The TRS R consists of the following rules:
ways_in_gga(0, X1, s(0)) → ways_out_gga(0, X1, s(0))
ways_in_gga(X2, [], 0) → ways_out_gga(X2, [], 0)
ways_in_gga(Amount, .(s(C), Coins), N) → U4_gga(Amount, C, Coins, N, =_in_ga(Amount, s(X3)))
=_in_ga(X, X) → =_out_ga(X, X)
U4_gga(Amount, C, Coins, N, =_out_ga(Amount, s(X3))) → U5_gga(Amount, C, Coins, N, X3, plus_in_gag(s(C), NewAmount, Amount))
plus_in_gag(0, X, X) → U2_gag(X, nat_in_g(X))
nat_in_g(0) → nat_out_g(0)
nat_in_g(s(X)) → U1_g(X, nat_in_g(X))
U1_g(X, nat_out_g(X)) → nat_out_g(s(X))
U2_gag(X, nat_out_g(X)) → plus_out_gag(0, X, X)
plus_in_gag(s(X), Y, s(Z)) → U3_gag(X, Y, Z, plus_in_gag(X, Y, Z))
U3_gag(X, Y, Z, plus_out_gag(X, Y, Z)) → plus_out_gag(s(X), Y, s(Z))
U5_gga(Amount, C, Coins, N, X3, plus_out_gag(s(C), NewAmount, Amount)) → U6_gga(Amount, C, Coins, N, X3, NewAmount, ways_in_gga(Amount, Coins, N1))
ways_in_gga(Amount, .(s(C), Coins), N) → U9_gga(Amount, C, Coins, N, =_in_ga(Amount, s(X4)))
U9_gga(Amount, C, Coins, N, =_out_ga(Amount, s(X4))) → U10_gga(Amount, C, Coins, N, X4, plus_in_gag(Amount, s(X5), s(C)))
U10_gga(Amount, C, Coins, N, X4, plus_out_gag(Amount, s(X5), s(C))) → U11_gga(Amount, C, Coins, N, ways_in_gga(Amount, Coins, N))
U11_gga(Amount, C, Coins, N, ways_out_gga(Amount, Coins, N)) → ways_out_gga(Amount, .(s(C), Coins), N)
U6_gga(Amount, C, Coins, N, X3, NewAmount, ways_out_gga(Amount, Coins, N1)) → U7_gga(Amount, C, Coins, N, X3, NewAmount, N1, ways_in_gga(NewAmount, .(s(C), Coins), N2))
U7_gga(Amount, C, Coins, N, X3, NewAmount, N1, ways_out_gga(NewAmount, .(s(C), Coins), N2)) → U8_gga(Amount, C, Coins, N, plus_in_gga(N1, N2, N))
plus_in_gga(0, X, X) → U2_gga(X, nat_in_g(X))
U2_gga(X, nat_out_g(X)) → plus_out_gga(0, X, X)
plus_in_gga(s(X), Y, s(Z)) → U3_gga(X, Y, Z, plus_in_gga(X, Y, Z))
U3_gga(X, Y, Z, plus_out_gga(X, Y, Z)) → plus_out_gga(s(X), Y, s(Z))
U8_gga(Amount, C, Coins, N, plus_out_gga(N1, N2, N)) → ways_out_gga(Amount, .(s(C), Coins), N)
The argument filtering Pi contains the following mapping:
ways_in_gga(
x1,
x2,
x3) =
ways_in_gga(
x1,
x2)
0 =
0
ways_out_gga(
x1,
x2,
x3) =
ways_out_gga(
x3)
[] =
[]
.(
x1,
x2) =
.(
x1,
x2)
s(
x1) =
s(
x1)
U4_gga(
x1,
x2,
x3,
x4,
x5) =
U4_gga(
x1,
x2,
x3,
x5)
=_in_ga(
x1,
x2) =
=_in_ga(
x1)
=_out_ga(
x1,
x2) =
=_out_ga(
x2)
U5_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U5_gga(
x1,
x2,
x3,
x6)
plus_in_gag(
x1,
x2,
x3) =
plus_in_gag(
x1,
x3)
U2_gag(
x1,
x2) =
U2_gag(
x1,
x2)
nat_in_g(
x1) =
nat_in_g(
x1)
nat_out_g(
x1) =
nat_out_g
U1_g(
x1,
x2) =
U1_g(
x2)
plus_out_gag(
x1,
x2,
x3) =
plus_out_gag(
x2)
U3_gag(
x1,
x2,
x3,
x4) =
U3_gag(
x4)
U6_gga(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U6_gga(
x2,
x3,
x6,
x7)
U9_gga(
x1,
x2,
x3,
x4,
x5) =
U9_gga(
x1,
x2,
x3,
x5)
U10_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U10_gga(
x1,
x3,
x6)
U11_gga(
x1,
x2,
x3,
x4,
x5) =
U11_gga(
x5)
U7_gga(
x1,
x2,
x3,
x4,
x5,
x6,
x7,
x8) =
U7_gga(
x7,
x8)
U8_gga(
x1,
x2,
x3,
x4,
x5) =
U8_gga(
x5)
plus_in_gga(
x1,
x2,
x3) =
plus_in_gga(
x1,
x2)
U2_gga(
x1,
x2) =
U2_gga(
x1,
x2)
plus_out_gga(
x1,
x2,
x3) =
plus_out_gga(
x3)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x4)
WAYS_IN_GGA(
x1,
x2,
x3) =
WAYS_IN_GGA(
x1,
x2)
U4_GGA(
x1,
x2,
x3,
x4,
x5) =
U4_GGA(
x1,
x2,
x3,
x5)
U5_GGA(
x1,
x2,
x3,
x4,
x5,
x6) =
U5_GGA(
x1,
x2,
x3,
x6)
U6_GGA(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U6_GGA(
x2,
x3,
x6,
x7)
U9_GGA(
x1,
x2,
x3,
x4,
x5) =
U9_GGA(
x1,
x2,
x3,
x5)
U10_GGA(
x1,
x2,
x3,
x4,
x5,
x6) =
U10_GGA(
x1,
x3,
x6)
We have to consider all (P,R,Pi)-chains
(67) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(68) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U4_GGA(Amount, C, Coins, =_out_ga(s(X3))) → U5_GGA(Amount, C, Coins, plus_in_gag(s(C), Amount))
U5_GGA(Amount, C, Coins, plus_out_gag(NewAmount)) → U6_GGA(C, Coins, NewAmount, ways_in_gga(Amount, Coins))
U6_GGA(C, Coins, NewAmount, ways_out_gga(N1)) → WAYS_IN_GGA(NewAmount, .(s(C), Coins))
WAYS_IN_GGA(Amount, .(s(C), Coins)) → U4_GGA(Amount, C, Coins, =_in_ga(Amount))
WAYS_IN_GGA(Amount, .(s(C), Coins)) → U9_GGA(Amount, C, Coins, =_in_ga(Amount))
U9_GGA(Amount, C, Coins, =_out_ga(s(X4))) → U10_GGA(Amount, Coins, plus_in_gag(Amount, s(C)))
U10_GGA(Amount, Coins, plus_out_gag(s(X5))) → WAYS_IN_GGA(Amount, Coins)
U5_GGA(Amount, C, Coins, plus_out_gag(NewAmount)) → WAYS_IN_GGA(Amount, Coins)
The TRS R consists of the following rules:
ways_in_gga(0, X1) → ways_out_gga(s(0))
ways_in_gga(X2, []) → ways_out_gga(0)
ways_in_gga(Amount, .(s(C), Coins)) → U4_gga(Amount, C, Coins, =_in_ga(Amount))
=_in_ga(X) → =_out_ga(X)
U4_gga(Amount, C, Coins, =_out_ga(s(X3))) → U5_gga(Amount, C, Coins, plus_in_gag(s(C), Amount))
plus_in_gag(0, X) → U2_gag(X, nat_in_g(X))
nat_in_g(0) → nat_out_g
nat_in_g(s(X)) → U1_g(nat_in_g(X))
U1_g(nat_out_g) → nat_out_g
U2_gag(X, nat_out_g) → plus_out_gag(X)
plus_in_gag(s(X), s(Z)) → U3_gag(plus_in_gag(X, Z))
U3_gag(plus_out_gag(Y)) → plus_out_gag(Y)
U5_gga(Amount, C, Coins, plus_out_gag(NewAmount)) → U6_gga(C, Coins, NewAmount, ways_in_gga(Amount, Coins))
ways_in_gga(Amount, .(s(C), Coins)) → U9_gga(Amount, C, Coins, =_in_ga(Amount))
U9_gga(Amount, C, Coins, =_out_ga(s(X4))) → U10_gga(Amount, Coins, plus_in_gag(Amount, s(C)))
U10_gga(Amount, Coins, plus_out_gag(s(X5))) → U11_gga(ways_in_gga(Amount, Coins))
U11_gga(ways_out_gga(N)) → ways_out_gga(N)
U6_gga(C, Coins, NewAmount, ways_out_gga(N1)) → U7_gga(N1, ways_in_gga(NewAmount, .(s(C), Coins)))
U7_gga(N1, ways_out_gga(N2)) → U8_gga(plus_in_gga(N1, N2))
plus_in_gga(0, X) → U2_gga(X, nat_in_g(X))
U2_gga(X, nat_out_g) → plus_out_gga(X)
plus_in_gga(s(X), Y) → U3_gga(plus_in_gga(X, Y))
U3_gga(plus_out_gga(Z)) → plus_out_gga(s(Z))
U8_gga(plus_out_gga(N)) → ways_out_gga(N)
The set Q consists of the following terms:
ways_in_gga(x0, x1)
=_in_ga(x0)
U4_gga(x0, x1, x2, x3)
plus_in_gag(x0, x1)
nat_in_g(x0)
U1_g(x0)
U2_gag(x0, x1)
U3_gag(x0)
U5_gga(x0, x1, x2, x3)
U9_gga(x0, x1, x2, x3)
U10_gga(x0, x1, x2)
U11_gga(x0)
U6_gga(x0, x1, x2, x3)
U7_gga(x0, x1)
plus_in_gga(x0, x1)
U2_gga(x0, x1)
U3_gga(x0)
U8_gga(x0)
We have to consider all (P,Q,R)-chains.
(69) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
U10_GGA(Amount, Coins, plus_out_gag(s(X5))) → WAYS_IN_GGA(Amount, Coins)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:
POL(.(x1, x2)) = x1 + x2
POL(0) = 1
POL(=_in_ga(x1)) = 0
POL(=_out_ga(x1)) = 0
POL(U10_GGA(x1, x2, x3)) = x2 + x3
POL(U10_gga(x1, x2, x3)) = 0
POL(U11_gga(x1)) = 0
POL(U1_g(x1)) = x1
POL(U2_gag(x1, x2)) = x2
POL(U2_gga(x1, x2)) = 1 + x1
POL(U3_gag(x1)) = x1
POL(U3_gga(x1)) = 0
POL(U4_GGA(x1, x2, x3, x4)) = x2 + x3
POL(U4_gga(x1, x2, x3, x4)) = 0
POL(U5_GGA(x1, x2, x3, x4)) = x2 + x3
POL(U5_gga(x1, x2, x3, x4)) = 0
POL(U6_GGA(x1, x2, x3, x4)) = x1 + x2
POL(U6_gga(x1, x2, x3, x4)) = 0
POL(U7_gga(x1, x2)) = 0
POL(U8_gga(x1)) = 0
POL(U9_GGA(x1, x2, x3, x4)) = x2 + x3
POL(U9_gga(x1, x2, x3, x4)) = 0
POL(WAYS_IN_GGA(x1, x2)) = x2
POL([]) = 0
POL(nat_in_g(x1)) = x1
POL(nat_out_g) = 1
POL(plus_in_gag(x1, x2)) = x2
POL(plus_in_gga(x1, x2)) = 1 + x1 + x2
POL(plus_out_gag(x1)) = 1
POL(plus_out_gga(x1)) = 0
POL(s(x1)) = x1
POL(ways_in_gga(x1, x2)) = 0
POL(ways_out_gga(x1)) = 0
The following usable rules [FROCOS05] were oriented:
plus_in_gag(s(X), s(Z)) → U3_gag(plus_in_gag(X, Z))
plus_in_gag(0, X) → U2_gag(X, nat_in_g(X))
U3_gag(plus_out_gag(Y)) → plus_out_gag(Y)
nat_in_g(0) → nat_out_g
nat_in_g(s(X)) → U1_g(nat_in_g(X))
U2_gag(X, nat_out_g) → plus_out_gag(X)
U1_g(nat_out_g) → nat_out_g
(70) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U4_GGA(Amount, C, Coins, =_out_ga(s(X3))) → U5_GGA(Amount, C, Coins, plus_in_gag(s(C), Amount))
U5_GGA(Amount, C, Coins, plus_out_gag(NewAmount)) → U6_GGA(C, Coins, NewAmount, ways_in_gga(Amount, Coins))
U6_GGA(C, Coins, NewAmount, ways_out_gga(N1)) → WAYS_IN_GGA(NewAmount, .(s(C), Coins))
WAYS_IN_GGA(Amount, .(s(C), Coins)) → U4_GGA(Amount, C, Coins, =_in_ga(Amount))
WAYS_IN_GGA(Amount, .(s(C), Coins)) → U9_GGA(Amount, C, Coins, =_in_ga(Amount))
U9_GGA(Amount, C, Coins, =_out_ga(s(X4))) → U10_GGA(Amount, Coins, plus_in_gag(Amount, s(C)))
U5_GGA(Amount, C, Coins, plus_out_gag(NewAmount)) → WAYS_IN_GGA(Amount, Coins)
The TRS R consists of the following rules:
ways_in_gga(0, X1) → ways_out_gga(s(0))
ways_in_gga(X2, []) → ways_out_gga(0)
ways_in_gga(Amount, .(s(C), Coins)) → U4_gga(Amount, C, Coins, =_in_ga(Amount))
=_in_ga(X) → =_out_ga(X)
U4_gga(Amount, C, Coins, =_out_ga(s(X3))) → U5_gga(Amount, C, Coins, plus_in_gag(s(C), Amount))
plus_in_gag(0, X) → U2_gag(X, nat_in_g(X))
nat_in_g(0) → nat_out_g
nat_in_g(s(X)) → U1_g(nat_in_g(X))
U1_g(nat_out_g) → nat_out_g
U2_gag(X, nat_out_g) → plus_out_gag(X)
plus_in_gag(s(X), s(Z)) → U3_gag(plus_in_gag(X, Z))
U3_gag(plus_out_gag(Y)) → plus_out_gag(Y)
U5_gga(Amount, C, Coins, plus_out_gag(NewAmount)) → U6_gga(C, Coins, NewAmount, ways_in_gga(Amount, Coins))
ways_in_gga(Amount, .(s(C), Coins)) → U9_gga(Amount, C, Coins, =_in_ga(Amount))
U9_gga(Amount, C, Coins, =_out_ga(s(X4))) → U10_gga(Amount, Coins, plus_in_gag(Amount, s(C)))
U10_gga(Amount, Coins, plus_out_gag(s(X5))) → U11_gga(ways_in_gga(Amount, Coins))
U11_gga(ways_out_gga(N)) → ways_out_gga(N)
U6_gga(C, Coins, NewAmount, ways_out_gga(N1)) → U7_gga(N1, ways_in_gga(NewAmount, .(s(C), Coins)))
U7_gga(N1, ways_out_gga(N2)) → U8_gga(plus_in_gga(N1, N2))
plus_in_gga(0, X) → U2_gga(X, nat_in_g(X))
U2_gga(X, nat_out_g) → plus_out_gga(X)
plus_in_gga(s(X), Y) → U3_gga(plus_in_gga(X, Y))
U3_gga(plus_out_gga(Z)) → plus_out_gga(s(Z))
U8_gga(plus_out_gga(N)) → ways_out_gga(N)
The set Q consists of the following terms:
ways_in_gga(x0, x1)
=_in_ga(x0)
U4_gga(x0, x1, x2, x3)
plus_in_gag(x0, x1)
nat_in_g(x0)
U1_g(x0)
U2_gag(x0, x1)
U3_gag(x0)
U5_gga(x0, x1, x2, x3)
U9_gga(x0, x1, x2, x3)
U10_gga(x0, x1, x2)
U11_gga(x0)
U6_gga(x0, x1, x2, x3)
U7_gga(x0, x1)
plus_in_gga(x0, x1)
U2_gga(x0, x1)
U3_gga(x0)
U8_gga(x0)
We have to consider all (P,Q,R)-chains.
(71) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.
(72) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U5_GGA(Amount, C, Coins, plus_out_gag(NewAmount)) → U6_GGA(C, Coins, NewAmount, ways_in_gga(Amount, Coins))
U6_GGA(C, Coins, NewAmount, ways_out_gga(N1)) → WAYS_IN_GGA(NewAmount, .(s(C), Coins))
WAYS_IN_GGA(Amount, .(s(C), Coins)) → U4_GGA(Amount, C, Coins, =_in_ga(Amount))
U4_GGA(Amount, C, Coins, =_out_ga(s(X3))) → U5_GGA(Amount, C, Coins, plus_in_gag(s(C), Amount))
U5_GGA(Amount, C, Coins, plus_out_gag(NewAmount)) → WAYS_IN_GGA(Amount, Coins)
The TRS R consists of the following rules:
ways_in_gga(0, X1) → ways_out_gga(s(0))
ways_in_gga(X2, []) → ways_out_gga(0)
ways_in_gga(Amount, .(s(C), Coins)) → U4_gga(Amount, C, Coins, =_in_ga(Amount))
=_in_ga(X) → =_out_ga(X)
U4_gga(Amount, C, Coins, =_out_ga(s(X3))) → U5_gga(Amount, C, Coins, plus_in_gag(s(C), Amount))
plus_in_gag(0, X) → U2_gag(X, nat_in_g(X))
nat_in_g(0) → nat_out_g
nat_in_g(s(X)) → U1_g(nat_in_g(X))
U1_g(nat_out_g) → nat_out_g
U2_gag(X, nat_out_g) → plus_out_gag(X)
plus_in_gag(s(X), s(Z)) → U3_gag(plus_in_gag(X, Z))
U3_gag(plus_out_gag(Y)) → plus_out_gag(Y)
U5_gga(Amount, C, Coins, plus_out_gag(NewAmount)) → U6_gga(C, Coins, NewAmount, ways_in_gga(Amount, Coins))
ways_in_gga(Amount, .(s(C), Coins)) → U9_gga(Amount, C, Coins, =_in_ga(Amount))
U9_gga(Amount, C, Coins, =_out_ga(s(X4))) → U10_gga(Amount, Coins, plus_in_gag(Amount, s(C)))
U10_gga(Amount, Coins, plus_out_gag(s(X5))) → U11_gga(ways_in_gga(Amount, Coins))
U11_gga(ways_out_gga(N)) → ways_out_gga(N)
U6_gga(C, Coins, NewAmount, ways_out_gga(N1)) → U7_gga(N1, ways_in_gga(NewAmount, .(s(C), Coins)))
U7_gga(N1, ways_out_gga(N2)) → U8_gga(plus_in_gga(N1, N2))
plus_in_gga(0, X) → U2_gga(X, nat_in_g(X))
U2_gga(X, nat_out_g) → plus_out_gga(X)
plus_in_gga(s(X), Y) → U3_gga(plus_in_gga(X, Y))
U3_gga(plus_out_gga(Z)) → plus_out_gga(s(Z))
U8_gga(plus_out_gga(N)) → ways_out_gga(N)
The set Q consists of the following terms:
ways_in_gga(x0, x1)
=_in_ga(x0)
U4_gga(x0, x1, x2, x3)
plus_in_gag(x0, x1)
nat_in_g(x0)
U1_g(x0)
U2_gag(x0, x1)
U3_gag(x0)
U5_gga(x0, x1, x2, x3)
U9_gga(x0, x1, x2, x3)
U10_gga(x0, x1, x2)
U11_gga(x0)
U6_gga(x0, x1, x2, x3)
U7_gga(x0, x1)
plus_in_gga(x0, x1)
U2_gga(x0, x1)
U3_gga(x0)
U8_gga(x0)
We have to consider all (P,Q,R)-chains.
(73) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
U5_GGA(Amount, C, Coins, plus_out_gag(NewAmount)) → WAYS_IN_GGA(Amount, Coins)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:
POL(.(x1, x2)) = 1 + x2
POL(0) = 0
POL(=_in_ga(x1)) = 1
POL(=_out_ga(x1)) = 1
POL(U10_gga(x1, x2, x3)) = 1
POL(U11_gga(x1)) = 1
POL(U1_g(x1)) = 0
POL(U2_gag(x1, x2)) = 0
POL(U2_gga(x1, x2)) = 0
POL(U3_gag(x1)) = 1
POL(U3_gga(x1)) = 0
POL(U4_GGA(x1, x2, x3, x4)) = 1 + x3 + x4
POL(U4_gga(x1, x2, x3, x4)) = 1
POL(U5_GGA(x1, x2, x3, x4)) = 1 + x3 + x4
POL(U5_gga(x1, x2, x3, x4)) = x4
POL(U6_GGA(x1, x2, x3, x4)) = 1 + x2 + x4
POL(U6_gga(x1, x2, x3, x4)) = 1
POL(U7_gga(x1, x2)) = x2
POL(U8_gga(x1)) = 1
POL(U9_gga(x1, x2, x3, x4)) = 1
POL(WAYS_IN_GGA(x1, x2)) = 1 + x2
POL([]) = 0
POL(nat_in_g(x1)) = 0
POL(nat_out_g) = 0
POL(plus_in_gag(x1, x2)) = 1
POL(plus_in_gga(x1, x2)) = 0
POL(plus_out_gag(x1)) = 1
POL(plus_out_gga(x1)) = 0
POL(s(x1)) = 0
POL(ways_in_gga(x1, x2)) = 1
POL(ways_out_gga(x1)) = 1
The following usable rules [FROCOS05] were oriented:
ways_in_gga(0, X1) → ways_out_gga(s(0))
ways_in_gga(X2, []) → ways_out_gga(0)
ways_in_gga(Amount, .(s(C), Coins)) → U4_gga(Amount, C, Coins, =_in_ga(Amount))
ways_in_gga(Amount, .(s(C), Coins)) → U9_gga(Amount, C, Coins, =_in_ga(Amount))
=_in_ga(X) → =_out_ga(X)
plus_in_gag(s(X), s(Z)) → U3_gag(plus_in_gag(X, Z))
U4_gga(Amount, C, Coins, =_out_ga(s(X3))) → U5_gga(Amount, C, Coins, plus_in_gag(s(C), Amount))
U5_gga(Amount, C, Coins, plus_out_gag(NewAmount)) → U6_gga(C, Coins, NewAmount, ways_in_gga(Amount, Coins))
U9_gga(Amount, C, Coins, =_out_ga(s(X4))) → U10_gga(Amount, Coins, plus_in_gag(Amount, s(C)))
U10_gga(Amount, Coins, plus_out_gag(s(X5))) → U11_gga(ways_in_gga(Amount, Coins))
U11_gga(ways_out_gga(N)) → ways_out_gga(N)
U6_gga(C, Coins, NewAmount, ways_out_gga(N1)) → U7_gga(N1, ways_in_gga(NewAmount, .(s(C), Coins)))
U7_gga(N1, ways_out_gga(N2)) → U8_gga(plus_in_gga(N1, N2))
U3_gag(plus_out_gag(Y)) → plus_out_gag(Y)
U8_gga(plus_out_gga(N)) → ways_out_gga(N)
(74) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U5_GGA(Amount, C, Coins, plus_out_gag(NewAmount)) → U6_GGA(C, Coins, NewAmount, ways_in_gga(Amount, Coins))
U6_GGA(C, Coins, NewAmount, ways_out_gga(N1)) → WAYS_IN_GGA(NewAmount, .(s(C), Coins))
WAYS_IN_GGA(Amount, .(s(C), Coins)) → U4_GGA(Amount, C, Coins, =_in_ga(Amount))
U4_GGA(Amount, C, Coins, =_out_ga(s(X3))) → U5_GGA(Amount, C, Coins, plus_in_gag(s(C), Amount))
The TRS R consists of the following rules:
ways_in_gga(0, X1) → ways_out_gga(s(0))
ways_in_gga(X2, []) → ways_out_gga(0)
ways_in_gga(Amount, .(s(C), Coins)) → U4_gga(Amount, C, Coins, =_in_ga(Amount))
=_in_ga(X) → =_out_ga(X)
U4_gga(Amount, C, Coins, =_out_ga(s(X3))) → U5_gga(Amount, C, Coins, plus_in_gag(s(C), Amount))
plus_in_gag(0, X) → U2_gag(X, nat_in_g(X))
nat_in_g(0) → nat_out_g
nat_in_g(s(X)) → U1_g(nat_in_g(X))
U1_g(nat_out_g) → nat_out_g
U2_gag(X, nat_out_g) → plus_out_gag(X)
plus_in_gag(s(X), s(Z)) → U3_gag(plus_in_gag(X, Z))
U3_gag(plus_out_gag(Y)) → plus_out_gag(Y)
U5_gga(Amount, C, Coins, plus_out_gag(NewAmount)) → U6_gga(C, Coins, NewAmount, ways_in_gga(Amount, Coins))
ways_in_gga(Amount, .(s(C), Coins)) → U9_gga(Amount, C, Coins, =_in_ga(Amount))
U9_gga(Amount, C, Coins, =_out_ga(s(X4))) → U10_gga(Amount, Coins, plus_in_gag(Amount, s(C)))
U10_gga(Amount, Coins, plus_out_gag(s(X5))) → U11_gga(ways_in_gga(Amount, Coins))
U11_gga(ways_out_gga(N)) → ways_out_gga(N)
U6_gga(C, Coins, NewAmount, ways_out_gga(N1)) → U7_gga(N1, ways_in_gga(NewAmount, .(s(C), Coins)))
U7_gga(N1, ways_out_gga(N2)) → U8_gga(plus_in_gga(N1, N2))
plus_in_gga(0, X) → U2_gga(X, nat_in_g(X))
U2_gga(X, nat_out_g) → plus_out_gga(X)
plus_in_gga(s(X), Y) → U3_gga(plus_in_gga(X, Y))
U3_gga(plus_out_gga(Z)) → plus_out_gga(s(Z))
U8_gga(plus_out_gga(N)) → ways_out_gga(N)
The set Q consists of the following terms:
ways_in_gga(x0, x1)
=_in_ga(x0)
U4_gga(x0, x1, x2, x3)
plus_in_gag(x0, x1)
nat_in_g(x0)
U1_g(x0)
U2_gag(x0, x1)
U3_gag(x0)
U5_gga(x0, x1, x2, x3)
U9_gga(x0, x1, x2, x3)
U10_gga(x0, x1, x2)
U11_gga(x0)
U6_gga(x0, x1, x2, x3)
U7_gga(x0, x1)
plus_in_gga(x0, x1)
U2_gga(x0, x1)
U3_gga(x0)
U8_gga(x0)
We have to consider all (P,Q,R)-chains.
(75) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
U6_GGA(C, Coins, NewAmount, ways_out_gga(N1)) → WAYS_IN_GGA(NewAmount, .(s(C), Coins))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO]:
POL(U5_GGA(x1, x2, x3, x4)) = | 0 | + | | · | x1 | + | | · | x2 | + | | · | x3 | + | | · | x4 |
POL(plus_out_gag(x1)) = | | + | | · | x1 |
POL(U6_GGA(x1, x2, x3, x4)) = | 1 | + | | · | x1 | + | | · | x2 | + | | · | x3 | + | | · | x4 |
POL(ways_in_gga(x1, x2)) = | | + | | · | x1 | + | | · | x2 |
POL(ways_out_gga(x1)) = | | + | | · | x1 |
POL(WAYS_IN_GGA(x1, x2)) = | 0 | + | | · | x1 | + | | · | x2 |
POL(.(x1, x2)) = | | + | | · | x1 | + | | · | x2 |
POL(U4_GGA(x1, x2, x3, x4)) = | 0 | + | | · | x1 | + | | · | x2 | + | | · | x3 | + | | · | x4 |
POL(=_out_ga(x1)) = | | + | | · | x1 |
POL(plus_in_gag(x1, x2)) = | | + | | · | x1 | + | | · | x2 |
POL(U4_gga(x1, x2, x3, x4)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 | + | | · | x4 |
POL(U9_gga(x1, x2, x3, x4)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 | + | | · | x4 |
POL(U5_gga(x1, x2, x3, x4)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 | + | | · | x4 |
POL(U6_gga(x1, x2, x3, x4)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 | + | | · | x4 |
POL(U10_gga(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(U2_gag(x1, x2)) = | | + | | · | x1 | + | | · | x2 |
POL(nat_in_g(x1)) = | | + | | · | x1 |
POL(U7_gga(x1, x2)) = | | + | | · | x1 | + | | · | x2 |
POL(plus_in_gga(x1, x2)) = | | + | | · | x1 | + | | · | x2 |
POL(U2_gga(x1, x2)) = | | + | | · | x1 | + | | · | x2 |
POL(plus_out_gga(x1)) = | | + | | · | x1 |
The following usable rules [FROCOS05] were oriented:
plus_in_gag(s(X), s(Z)) → U3_gag(plus_in_gag(X, Z))
plus_in_gag(0, X) → U2_gag(X, nat_in_g(X))
U3_gag(plus_out_gag(Y)) → plus_out_gag(Y)
nat_in_g(0) → nat_out_g
nat_in_g(s(X)) → U1_g(nat_in_g(X))
U2_gag(X, nat_out_g) → plus_out_gag(X)
U1_g(nat_out_g) → nat_out_g
(76) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U5_GGA(Amount, C, Coins, plus_out_gag(NewAmount)) → U6_GGA(C, Coins, NewAmount, ways_in_gga(Amount, Coins))
WAYS_IN_GGA(Amount, .(s(C), Coins)) → U4_GGA(Amount, C, Coins, =_in_ga(Amount))
U4_GGA(Amount, C, Coins, =_out_ga(s(X3))) → U5_GGA(Amount, C, Coins, plus_in_gag(s(C), Amount))
The TRS R consists of the following rules:
ways_in_gga(0, X1) → ways_out_gga(s(0))
ways_in_gga(X2, []) → ways_out_gga(0)
ways_in_gga(Amount, .(s(C), Coins)) → U4_gga(Amount, C, Coins, =_in_ga(Amount))
=_in_ga(X) → =_out_ga(X)
U4_gga(Amount, C, Coins, =_out_ga(s(X3))) → U5_gga(Amount, C, Coins, plus_in_gag(s(C), Amount))
plus_in_gag(0, X) → U2_gag(X, nat_in_g(X))
nat_in_g(0) → nat_out_g
nat_in_g(s(X)) → U1_g(nat_in_g(X))
U1_g(nat_out_g) → nat_out_g
U2_gag(X, nat_out_g) → plus_out_gag(X)
plus_in_gag(s(X), s(Z)) → U3_gag(plus_in_gag(X, Z))
U3_gag(plus_out_gag(Y)) → plus_out_gag(Y)
U5_gga(Amount, C, Coins, plus_out_gag(NewAmount)) → U6_gga(C, Coins, NewAmount, ways_in_gga(Amount, Coins))
ways_in_gga(Amount, .(s(C), Coins)) → U9_gga(Amount, C, Coins, =_in_ga(Amount))
U9_gga(Amount, C, Coins, =_out_ga(s(X4))) → U10_gga(Amount, Coins, plus_in_gag(Amount, s(C)))
U10_gga(Amount, Coins, plus_out_gag(s(X5))) → U11_gga(ways_in_gga(Amount, Coins))
U11_gga(ways_out_gga(N)) → ways_out_gga(N)
U6_gga(C, Coins, NewAmount, ways_out_gga(N1)) → U7_gga(N1, ways_in_gga(NewAmount, .(s(C), Coins)))
U7_gga(N1, ways_out_gga(N2)) → U8_gga(plus_in_gga(N1, N2))
plus_in_gga(0, X) → U2_gga(X, nat_in_g(X))
U2_gga(X, nat_out_g) → plus_out_gga(X)
plus_in_gga(s(X), Y) → U3_gga(plus_in_gga(X, Y))
U3_gga(plus_out_gga(Z)) → plus_out_gga(s(Z))
U8_gga(plus_out_gga(N)) → ways_out_gga(N)
The set Q consists of the following terms:
ways_in_gga(x0, x1)
=_in_ga(x0)
U4_gga(x0, x1, x2, x3)
plus_in_gag(x0, x1)
nat_in_g(x0)
U1_g(x0)
U2_gag(x0, x1)
U3_gag(x0)
U5_gga(x0, x1, x2, x3)
U9_gga(x0, x1, x2, x3)
U10_gga(x0, x1, x2)
U11_gga(x0)
U6_gga(x0, x1, x2, x3)
U7_gga(x0, x1)
plus_in_gga(x0, x1)
U2_gga(x0, x1)
U3_gga(x0)
U8_gga(x0)
We have to consider all (P,Q,R)-chains.
(77) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 3 less nodes.
(78) TRUE