(0) Obligation:

Clauses:

transpose(A, B) :- transpose_aux(A, [], B).
transpose_aux(.(R, Rs), X1, .(C, Cs)) :- ','(row2col(R, .(C, Cs), Cols1, [], Accm), transpose_aux(Rs, Accm, Cols1)).
transpose_aux([], X, X).
row2col(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) :- row2col(Xs, Cols, Cols1, .([], A), B).
row2col([], [], [], A, A).

Queries:

transpose(g,a).

(1) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
transpose_in: (b,f)
transpose_aux_in: (b,b,f)
row2col_in: (b,f,f,b,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

transpose_in_ga(A, B) → U1_ga(A, B, transpose_aux_in_gga(A, [], B))
transpose_aux_in_gga(.(R, Rs), X1, .(C, Cs)) → U2_gga(R, Rs, X1, C, Cs, row2col_in_gaaga(R, .(C, Cs), Cols1, [], Accm))
row2col_in_gaaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → U4_gaaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_in_gaaga(Xs, Cols, Cols1, .([], A), B))
row2col_in_gaaga([], [], [], A, A) → row2col_out_gaaga([], [], [], A, A)
U4_gaaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_out_gaaga(Xs, Cols, Cols1, .([], A), B)) → row2col_out_gaaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B)
U2_gga(R, Rs, X1, C, Cs, row2col_out_gaaga(R, .(C, Cs), Cols1, [], Accm)) → U3_gga(R, Rs, X1, C, Cs, transpose_aux_in_gga(Rs, Accm, Cols1))
transpose_aux_in_gga([], X, X) → transpose_aux_out_gga([], X, X)
U3_gga(R, Rs, X1, C, Cs, transpose_aux_out_gga(Rs, Accm, Cols1)) → transpose_aux_out_gga(.(R, Rs), X1, .(C, Cs))
U1_ga(A, B, transpose_aux_out_gga(A, [], B)) → transpose_out_ga(A, B)

The argument filtering Pi contains the following mapping:
transpose_in_ga(x1, x2)  =  transpose_in_ga(x1)
U1_ga(x1, x2, x3)  =  U1_ga(x3)
transpose_aux_in_gga(x1, x2, x3)  =  transpose_aux_in_gga(x1, x2)
.(x1, x2)  =  .(x1, x2)
U2_gga(x1, x2, x3, x4, x5, x6)  =  U2_gga(x2, x6)
row2col_in_gaaga(x1, x2, x3, x4, x5)  =  row2col_in_gaaga(x1, x4)
U4_gaaga(x1, x2, x3, x4, x5, x6, x7, x8)  =  U4_gaaga(x8)
[]  =  []
row2col_out_gaaga(x1, x2, x3, x4, x5)  =  row2col_out_gaaga(x5)
U3_gga(x1, x2, x3, x4, x5, x6)  =  U3_gga(x6)
transpose_aux_out_gga(x1, x2, x3)  =  transpose_aux_out_gga
transpose_out_ga(x1, x2)  =  transpose_out_ga

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(2) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

transpose_in_ga(A, B) → U1_ga(A, B, transpose_aux_in_gga(A, [], B))
transpose_aux_in_gga(.(R, Rs), X1, .(C, Cs)) → U2_gga(R, Rs, X1, C, Cs, row2col_in_gaaga(R, .(C, Cs), Cols1, [], Accm))
row2col_in_gaaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → U4_gaaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_in_gaaga(Xs, Cols, Cols1, .([], A), B))
row2col_in_gaaga([], [], [], A, A) → row2col_out_gaaga([], [], [], A, A)
U4_gaaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_out_gaaga(Xs, Cols, Cols1, .([], A), B)) → row2col_out_gaaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B)
U2_gga(R, Rs, X1, C, Cs, row2col_out_gaaga(R, .(C, Cs), Cols1, [], Accm)) → U3_gga(R, Rs, X1, C, Cs, transpose_aux_in_gga(Rs, Accm, Cols1))
transpose_aux_in_gga([], X, X) → transpose_aux_out_gga([], X, X)
U3_gga(R, Rs, X1, C, Cs, transpose_aux_out_gga(Rs, Accm, Cols1)) → transpose_aux_out_gga(.(R, Rs), X1, .(C, Cs))
U1_ga(A, B, transpose_aux_out_gga(A, [], B)) → transpose_out_ga(A, B)

The argument filtering Pi contains the following mapping:
transpose_in_ga(x1, x2)  =  transpose_in_ga(x1)
U1_ga(x1, x2, x3)  =  U1_ga(x3)
transpose_aux_in_gga(x1, x2, x3)  =  transpose_aux_in_gga(x1, x2)
.(x1, x2)  =  .(x1, x2)
U2_gga(x1, x2, x3, x4, x5, x6)  =  U2_gga(x2, x6)
row2col_in_gaaga(x1, x2, x3, x4, x5)  =  row2col_in_gaaga(x1, x4)
U4_gaaga(x1, x2, x3, x4, x5, x6, x7, x8)  =  U4_gaaga(x8)
[]  =  []
row2col_out_gaaga(x1, x2, x3, x4, x5)  =  row2col_out_gaaga(x5)
U3_gga(x1, x2, x3, x4, x5, x6)  =  U3_gga(x6)
transpose_aux_out_gga(x1, x2, x3)  =  transpose_aux_out_gga
transpose_out_ga(x1, x2)  =  transpose_out_ga

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

TRANSPOSE_IN_GA(A, B) → U1_GA(A, B, transpose_aux_in_gga(A, [], B))
TRANSPOSE_IN_GA(A, B) → TRANSPOSE_AUX_IN_GGA(A, [], B)
TRANSPOSE_AUX_IN_GGA(.(R, Rs), X1, .(C, Cs)) → U2_GGA(R, Rs, X1, C, Cs, row2col_in_gaaga(R, .(C, Cs), Cols1, [], Accm))
TRANSPOSE_AUX_IN_GGA(.(R, Rs), X1, .(C, Cs)) → ROW2COL_IN_GAAGA(R, .(C, Cs), Cols1, [], Accm)
ROW2COL_IN_GAAGA(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → U4_GAAGA(X, Xs, Ys, Cols, Cols1, A, B, row2col_in_gaaga(Xs, Cols, Cols1, .([], A), B))
ROW2COL_IN_GAAGA(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → ROW2COL_IN_GAAGA(Xs, Cols, Cols1, .([], A), B)
U2_GGA(R, Rs, X1, C, Cs, row2col_out_gaaga(R, .(C, Cs), Cols1, [], Accm)) → U3_GGA(R, Rs, X1, C, Cs, transpose_aux_in_gga(Rs, Accm, Cols1))
U2_GGA(R, Rs, X1, C, Cs, row2col_out_gaaga(R, .(C, Cs), Cols1, [], Accm)) → TRANSPOSE_AUX_IN_GGA(Rs, Accm, Cols1)

The TRS R consists of the following rules:

transpose_in_ga(A, B) → U1_ga(A, B, transpose_aux_in_gga(A, [], B))
transpose_aux_in_gga(.(R, Rs), X1, .(C, Cs)) → U2_gga(R, Rs, X1, C, Cs, row2col_in_gaaga(R, .(C, Cs), Cols1, [], Accm))
row2col_in_gaaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → U4_gaaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_in_gaaga(Xs, Cols, Cols1, .([], A), B))
row2col_in_gaaga([], [], [], A, A) → row2col_out_gaaga([], [], [], A, A)
U4_gaaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_out_gaaga(Xs, Cols, Cols1, .([], A), B)) → row2col_out_gaaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B)
U2_gga(R, Rs, X1, C, Cs, row2col_out_gaaga(R, .(C, Cs), Cols1, [], Accm)) → U3_gga(R, Rs, X1, C, Cs, transpose_aux_in_gga(Rs, Accm, Cols1))
transpose_aux_in_gga([], X, X) → transpose_aux_out_gga([], X, X)
U3_gga(R, Rs, X1, C, Cs, transpose_aux_out_gga(Rs, Accm, Cols1)) → transpose_aux_out_gga(.(R, Rs), X1, .(C, Cs))
U1_ga(A, B, transpose_aux_out_gga(A, [], B)) → transpose_out_ga(A, B)

The argument filtering Pi contains the following mapping:
transpose_in_ga(x1, x2)  =  transpose_in_ga(x1)
U1_ga(x1, x2, x3)  =  U1_ga(x3)
transpose_aux_in_gga(x1, x2, x3)  =  transpose_aux_in_gga(x1, x2)
.(x1, x2)  =  .(x1, x2)
U2_gga(x1, x2, x3, x4, x5, x6)  =  U2_gga(x2, x6)
row2col_in_gaaga(x1, x2, x3, x4, x5)  =  row2col_in_gaaga(x1, x4)
U4_gaaga(x1, x2, x3, x4, x5, x6, x7, x8)  =  U4_gaaga(x8)
[]  =  []
row2col_out_gaaga(x1, x2, x3, x4, x5)  =  row2col_out_gaaga(x5)
U3_gga(x1, x2, x3, x4, x5, x6)  =  U3_gga(x6)
transpose_aux_out_gga(x1, x2, x3)  =  transpose_aux_out_gga
transpose_out_ga(x1, x2)  =  transpose_out_ga
TRANSPOSE_IN_GA(x1, x2)  =  TRANSPOSE_IN_GA(x1)
U1_GA(x1, x2, x3)  =  U1_GA(x3)
TRANSPOSE_AUX_IN_GGA(x1, x2, x3)  =  TRANSPOSE_AUX_IN_GGA(x1, x2)
U2_GGA(x1, x2, x3, x4, x5, x6)  =  U2_GGA(x2, x6)
ROW2COL_IN_GAAGA(x1, x2, x3, x4, x5)  =  ROW2COL_IN_GAAGA(x1, x4)
U4_GAAGA(x1, x2, x3, x4, x5, x6, x7, x8)  =  U4_GAAGA(x8)
U3_GGA(x1, x2, x3, x4, x5, x6)  =  U3_GGA(x6)

We have to consider all (P,R,Pi)-chains

(4) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

TRANSPOSE_IN_GA(A, B) → U1_GA(A, B, transpose_aux_in_gga(A, [], B))
TRANSPOSE_IN_GA(A, B) → TRANSPOSE_AUX_IN_GGA(A, [], B)
TRANSPOSE_AUX_IN_GGA(.(R, Rs), X1, .(C, Cs)) → U2_GGA(R, Rs, X1, C, Cs, row2col_in_gaaga(R, .(C, Cs), Cols1, [], Accm))
TRANSPOSE_AUX_IN_GGA(.(R, Rs), X1, .(C, Cs)) → ROW2COL_IN_GAAGA(R, .(C, Cs), Cols1, [], Accm)
ROW2COL_IN_GAAGA(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → U4_GAAGA(X, Xs, Ys, Cols, Cols1, A, B, row2col_in_gaaga(Xs, Cols, Cols1, .([], A), B))
ROW2COL_IN_GAAGA(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → ROW2COL_IN_GAAGA(Xs, Cols, Cols1, .([], A), B)
U2_GGA(R, Rs, X1, C, Cs, row2col_out_gaaga(R, .(C, Cs), Cols1, [], Accm)) → U3_GGA(R, Rs, X1, C, Cs, transpose_aux_in_gga(Rs, Accm, Cols1))
U2_GGA(R, Rs, X1, C, Cs, row2col_out_gaaga(R, .(C, Cs), Cols1, [], Accm)) → TRANSPOSE_AUX_IN_GGA(Rs, Accm, Cols1)

The TRS R consists of the following rules:

transpose_in_ga(A, B) → U1_ga(A, B, transpose_aux_in_gga(A, [], B))
transpose_aux_in_gga(.(R, Rs), X1, .(C, Cs)) → U2_gga(R, Rs, X1, C, Cs, row2col_in_gaaga(R, .(C, Cs), Cols1, [], Accm))
row2col_in_gaaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → U4_gaaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_in_gaaga(Xs, Cols, Cols1, .([], A), B))
row2col_in_gaaga([], [], [], A, A) → row2col_out_gaaga([], [], [], A, A)
U4_gaaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_out_gaaga(Xs, Cols, Cols1, .([], A), B)) → row2col_out_gaaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B)
U2_gga(R, Rs, X1, C, Cs, row2col_out_gaaga(R, .(C, Cs), Cols1, [], Accm)) → U3_gga(R, Rs, X1, C, Cs, transpose_aux_in_gga(Rs, Accm, Cols1))
transpose_aux_in_gga([], X, X) → transpose_aux_out_gga([], X, X)
U3_gga(R, Rs, X1, C, Cs, transpose_aux_out_gga(Rs, Accm, Cols1)) → transpose_aux_out_gga(.(R, Rs), X1, .(C, Cs))
U1_ga(A, B, transpose_aux_out_gga(A, [], B)) → transpose_out_ga(A, B)

The argument filtering Pi contains the following mapping:
transpose_in_ga(x1, x2)  =  transpose_in_ga(x1)
U1_ga(x1, x2, x3)  =  U1_ga(x3)
transpose_aux_in_gga(x1, x2, x3)  =  transpose_aux_in_gga(x1, x2)
.(x1, x2)  =  .(x1, x2)
U2_gga(x1, x2, x3, x4, x5, x6)  =  U2_gga(x2, x6)
row2col_in_gaaga(x1, x2, x3, x4, x5)  =  row2col_in_gaaga(x1, x4)
U4_gaaga(x1, x2, x3, x4, x5, x6, x7, x8)  =  U4_gaaga(x8)
[]  =  []
row2col_out_gaaga(x1, x2, x3, x4, x5)  =  row2col_out_gaaga(x5)
U3_gga(x1, x2, x3, x4, x5, x6)  =  U3_gga(x6)
transpose_aux_out_gga(x1, x2, x3)  =  transpose_aux_out_gga
transpose_out_ga(x1, x2)  =  transpose_out_ga
TRANSPOSE_IN_GA(x1, x2)  =  TRANSPOSE_IN_GA(x1)
U1_GA(x1, x2, x3)  =  U1_GA(x3)
TRANSPOSE_AUX_IN_GGA(x1, x2, x3)  =  TRANSPOSE_AUX_IN_GGA(x1, x2)
U2_GGA(x1, x2, x3, x4, x5, x6)  =  U2_GGA(x2, x6)
ROW2COL_IN_GAAGA(x1, x2, x3, x4, x5)  =  ROW2COL_IN_GAAGA(x1, x4)
U4_GAAGA(x1, x2, x3, x4, x5, x6, x7, x8)  =  U4_GAAGA(x8)
U3_GGA(x1, x2, x3, x4, x5, x6)  =  U3_GGA(x6)

We have to consider all (P,R,Pi)-chains

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 5 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

ROW2COL_IN_GAAGA(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → ROW2COL_IN_GAAGA(Xs, Cols, Cols1, .([], A), B)

The TRS R consists of the following rules:

transpose_in_ga(A, B) → U1_ga(A, B, transpose_aux_in_gga(A, [], B))
transpose_aux_in_gga(.(R, Rs), X1, .(C, Cs)) → U2_gga(R, Rs, X1, C, Cs, row2col_in_gaaga(R, .(C, Cs), Cols1, [], Accm))
row2col_in_gaaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → U4_gaaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_in_gaaga(Xs, Cols, Cols1, .([], A), B))
row2col_in_gaaga([], [], [], A, A) → row2col_out_gaaga([], [], [], A, A)
U4_gaaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_out_gaaga(Xs, Cols, Cols1, .([], A), B)) → row2col_out_gaaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B)
U2_gga(R, Rs, X1, C, Cs, row2col_out_gaaga(R, .(C, Cs), Cols1, [], Accm)) → U3_gga(R, Rs, X1, C, Cs, transpose_aux_in_gga(Rs, Accm, Cols1))
transpose_aux_in_gga([], X, X) → transpose_aux_out_gga([], X, X)
U3_gga(R, Rs, X1, C, Cs, transpose_aux_out_gga(Rs, Accm, Cols1)) → transpose_aux_out_gga(.(R, Rs), X1, .(C, Cs))
U1_ga(A, B, transpose_aux_out_gga(A, [], B)) → transpose_out_ga(A, B)

The argument filtering Pi contains the following mapping:
transpose_in_ga(x1, x2)  =  transpose_in_ga(x1)
U1_ga(x1, x2, x3)  =  U1_ga(x3)
transpose_aux_in_gga(x1, x2, x3)  =  transpose_aux_in_gga(x1, x2)
.(x1, x2)  =  .(x1, x2)
U2_gga(x1, x2, x3, x4, x5, x6)  =  U2_gga(x2, x6)
row2col_in_gaaga(x1, x2, x3, x4, x5)  =  row2col_in_gaaga(x1, x4)
U4_gaaga(x1, x2, x3, x4, x5, x6, x7, x8)  =  U4_gaaga(x8)
[]  =  []
row2col_out_gaaga(x1, x2, x3, x4, x5)  =  row2col_out_gaaga(x5)
U3_gga(x1, x2, x3, x4, x5, x6)  =  U3_gga(x6)
transpose_aux_out_gga(x1, x2, x3)  =  transpose_aux_out_gga
transpose_out_ga(x1, x2)  =  transpose_out_ga
ROW2COL_IN_GAAGA(x1, x2, x3, x4, x5)  =  ROW2COL_IN_GAAGA(x1, x4)

We have to consider all (P,R,Pi)-chains

(8) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

ROW2COL_IN_GAAGA(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → ROW2COL_IN_GAAGA(Xs, Cols, Cols1, .([], A), B)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
[]  =  []
ROW2COL_IN_GAAGA(x1, x2, x3, x4, x5)  =  ROW2COL_IN_GAAGA(x1, x4)

We have to consider all (P,R,Pi)-chains

(10) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ROW2COL_IN_GAAGA(.(X, Xs), A) → ROW2COL_IN_GAAGA(Xs, .([], A))

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(12) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • ROW2COL_IN_GAAGA(.(X, Xs), A) → ROW2COL_IN_GAAGA(Xs, .([], A))
    The graph contains the following edges 1 > 1

(13) TRUE

(14) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

U2_GGA(R, Rs, X1, C, Cs, row2col_out_gaaga(R, .(C, Cs), Cols1, [], Accm)) → TRANSPOSE_AUX_IN_GGA(Rs, Accm, Cols1)
TRANSPOSE_AUX_IN_GGA(.(R, Rs), X1, .(C, Cs)) → U2_GGA(R, Rs, X1, C, Cs, row2col_in_gaaga(R, .(C, Cs), Cols1, [], Accm))

The TRS R consists of the following rules:

transpose_in_ga(A, B) → U1_ga(A, B, transpose_aux_in_gga(A, [], B))
transpose_aux_in_gga(.(R, Rs), X1, .(C, Cs)) → U2_gga(R, Rs, X1, C, Cs, row2col_in_gaaga(R, .(C, Cs), Cols1, [], Accm))
row2col_in_gaaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → U4_gaaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_in_gaaga(Xs, Cols, Cols1, .([], A), B))
row2col_in_gaaga([], [], [], A, A) → row2col_out_gaaga([], [], [], A, A)
U4_gaaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_out_gaaga(Xs, Cols, Cols1, .([], A), B)) → row2col_out_gaaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B)
U2_gga(R, Rs, X1, C, Cs, row2col_out_gaaga(R, .(C, Cs), Cols1, [], Accm)) → U3_gga(R, Rs, X1, C, Cs, transpose_aux_in_gga(Rs, Accm, Cols1))
transpose_aux_in_gga([], X, X) → transpose_aux_out_gga([], X, X)
U3_gga(R, Rs, X1, C, Cs, transpose_aux_out_gga(Rs, Accm, Cols1)) → transpose_aux_out_gga(.(R, Rs), X1, .(C, Cs))
U1_ga(A, B, transpose_aux_out_gga(A, [], B)) → transpose_out_ga(A, B)

The argument filtering Pi contains the following mapping:
transpose_in_ga(x1, x2)  =  transpose_in_ga(x1)
U1_ga(x1, x2, x3)  =  U1_ga(x3)
transpose_aux_in_gga(x1, x2, x3)  =  transpose_aux_in_gga(x1, x2)
.(x1, x2)  =  .(x1, x2)
U2_gga(x1, x2, x3, x4, x5, x6)  =  U2_gga(x2, x6)
row2col_in_gaaga(x1, x2, x3, x4, x5)  =  row2col_in_gaaga(x1, x4)
U4_gaaga(x1, x2, x3, x4, x5, x6, x7, x8)  =  U4_gaaga(x8)
[]  =  []
row2col_out_gaaga(x1, x2, x3, x4, x5)  =  row2col_out_gaaga(x5)
U3_gga(x1, x2, x3, x4, x5, x6)  =  U3_gga(x6)
transpose_aux_out_gga(x1, x2, x3)  =  transpose_aux_out_gga
transpose_out_ga(x1, x2)  =  transpose_out_ga
TRANSPOSE_AUX_IN_GGA(x1, x2, x3)  =  TRANSPOSE_AUX_IN_GGA(x1, x2)
U2_GGA(x1, x2, x3, x4, x5, x6)  =  U2_GGA(x2, x6)

We have to consider all (P,R,Pi)-chains

(15) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

U2_GGA(R, Rs, X1, C, Cs, row2col_out_gaaga(R, .(C, Cs), Cols1, [], Accm)) → TRANSPOSE_AUX_IN_GGA(Rs, Accm, Cols1)
TRANSPOSE_AUX_IN_GGA(.(R, Rs), X1, .(C, Cs)) → U2_GGA(R, Rs, X1, C, Cs, row2col_in_gaaga(R, .(C, Cs), Cols1, [], Accm))

The TRS R consists of the following rules:

row2col_in_gaaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → U4_gaaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_in_gaaga(Xs, Cols, Cols1, .([], A), B))
U4_gaaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_out_gaaga(Xs, Cols, Cols1, .([], A), B)) → row2col_out_gaaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B)
row2col_in_gaaga([], [], [], A, A) → row2col_out_gaaga([], [], [], A, A)

The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
row2col_in_gaaga(x1, x2, x3, x4, x5)  =  row2col_in_gaaga(x1, x4)
U4_gaaga(x1, x2, x3, x4, x5, x6, x7, x8)  =  U4_gaaga(x8)
[]  =  []
row2col_out_gaaga(x1, x2, x3, x4, x5)  =  row2col_out_gaaga(x5)
TRANSPOSE_AUX_IN_GGA(x1, x2, x3)  =  TRANSPOSE_AUX_IN_GGA(x1, x2)
U2_GGA(x1, x2, x3, x4, x5, x6)  =  U2_GGA(x2, x6)

We have to consider all (P,R,Pi)-chains

(17) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U2_GGA(Rs, row2col_out_gaaga(Accm)) → TRANSPOSE_AUX_IN_GGA(Rs, Accm)
TRANSPOSE_AUX_IN_GGA(.(R, Rs), X1) → U2_GGA(Rs, row2col_in_gaaga(R, []))

The TRS R consists of the following rules:

row2col_in_gaaga(.(X, Xs), A) → U4_gaaga(row2col_in_gaaga(Xs, .([], A)))
U4_gaaga(row2col_out_gaaga(B)) → row2col_out_gaaga(B)
row2col_in_gaaga([], A) → row2col_out_gaaga(A)

The set Q consists of the following terms:

row2col_in_gaaga(x0, x1)
U4_gaaga(x0)

We have to consider all (P,Q,R)-chains.

(19) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • TRANSPOSE_AUX_IN_GGA(.(R, Rs), X1) → U2_GGA(Rs, row2col_in_gaaga(R, []))
    The graph contains the following edges 1 > 1

  • U2_GGA(Rs, row2col_out_gaaga(Accm)) → TRANSPOSE_AUX_IN_GGA(Rs, Accm)
    The graph contains the following edges 1 >= 1, 2 > 2

(20) TRUE

(21) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
transpose_in: (b,f)
transpose_aux_in: (b,b,f)
row2col_in: (b,f,f,b,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

transpose_in_ga(A, B) → U1_ga(A, B, transpose_aux_in_gga(A, [], B))
transpose_aux_in_gga(.(R, Rs), X1, .(C, Cs)) → U2_gga(R, Rs, X1, C, Cs, row2col_in_gaaga(R, .(C, Cs), Cols1, [], Accm))
row2col_in_gaaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → U4_gaaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_in_gaaga(Xs, Cols, Cols1, .([], A), B))
row2col_in_gaaga([], [], [], A, A) → row2col_out_gaaga([], [], [], A, A)
U4_gaaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_out_gaaga(Xs, Cols, Cols1, .([], A), B)) → row2col_out_gaaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B)
U2_gga(R, Rs, X1, C, Cs, row2col_out_gaaga(R, .(C, Cs), Cols1, [], Accm)) → U3_gga(R, Rs, X1, C, Cs, transpose_aux_in_gga(Rs, Accm, Cols1))
transpose_aux_in_gga([], X, X) → transpose_aux_out_gga([], X, X)
U3_gga(R, Rs, X1, C, Cs, transpose_aux_out_gga(Rs, Accm, Cols1)) → transpose_aux_out_gga(.(R, Rs), X1, .(C, Cs))
U1_ga(A, B, transpose_aux_out_gga(A, [], B)) → transpose_out_ga(A, B)

The argument filtering Pi contains the following mapping:
transpose_in_ga(x1, x2)  =  transpose_in_ga(x1)
U1_ga(x1, x2, x3)  =  U1_ga(x1, x3)
transpose_aux_in_gga(x1, x2, x3)  =  transpose_aux_in_gga(x1, x2)
.(x1, x2)  =  .(x1, x2)
U2_gga(x1, x2, x3, x4, x5, x6)  =  U2_gga(x1, x2, x3, x6)
row2col_in_gaaga(x1, x2, x3, x4, x5)  =  row2col_in_gaaga(x1, x4)
U4_gaaga(x1, x2, x3, x4, x5, x6, x7, x8)  =  U4_gaaga(x1, x2, x6, x8)
[]  =  []
row2col_out_gaaga(x1, x2, x3, x4, x5)  =  row2col_out_gaaga(x1, x4, x5)
U3_gga(x1, x2, x3, x4, x5, x6)  =  U3_gga(x1, x2, x3, x6)
transpose_aux_out_gga(x1, x2, x3)  =  transpose_aux_out_gga(x1, x2)
transpose_out_ga(x1, x2)  =  transpose_out_ga(x1)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(22) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

transpose_in_ga(A, B) → U1_ga(A, B, transpose_aux_in_gga(A, [], B))
transpose_aux_in_gga(.(R, Rs), X1, .(C, Cs)) → U2_gga(R, Rs, X1, C, Cs, row2col_in_gaaga(R, .(C, Cs), Cols1, [], Accm))
row2col_in_gaaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → U4_gaaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_in_gaaga(Xs, Cols, Cols1, .([], A), B))
row2col_in_gaaga([], [], [], A, A) → row2col_out_gaaga([], [], [], A, A)
U4_gaaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_out_gaaga(Xs, Cols, Cols1, .([], A), B)) → row2col_out_gaaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B)
U2_gga(R, Rs, X1, C, Cs, row2col_out_gaaga(R, .(C, Cs), Cols1, [], Accm)) → U3_gga(R, Rs, X1, C, Cs, transpose_aux_in_gga(Rs, Accm, Cols1))
transpose_aux_in_gga([], X, X) → transpose_aux_out_gga([], X, X)
U3_gga(R, Rs, X1, C, Cs, transpose_aux_out_gga(Rs, Accm, Cols1)) → transpose_aux_out_gga(.(R, Rs), X1, .(C, Cs))
U1_ga(A, B, transpose_aux_out_gga(A, [], B)) → transpose_out_ga(A, B)

The argument filtering Pi contains the following mapping:
transpose_in_ga(x1, x2)  =  transpose_in_ga(x1)
U1_ga(x1, x2, x3)  =  U1_ga(x1, x3)
transpose_aux_in_gga(x1, x2, x3)  =  transpose_aux_in_gga(x1, x2)
.(x1, x2)  =  .(x1, x2)
U2_gga(x1, x2, x3, x4, x5, x6)  =  U2_gga(x1, x2, x3, x6)
row2col_in_gaaga(x1, x2, x3, x4, x5)  =  row2col_in_gaaga(x1, x4)
U4_gaaga(x1, x2, x3, x4, x5, x6, x7, x8)  =  U4_gaaga(x1, x2, x6, x8)
[]  =  []
row2col_out_gaaga(x1, x2, x3, x4, x5)  =  row2col_out_gaaga(x1, x4, x5)
U3_gga(x1, x2, x3, x4, x5, x6)  =  U3_gga(x1, x2, x3, x6)
transpose_aux_out_gga(x1, x2, x3)  =  transpose_aux_out_gga(x1, x2)
transpose_out_ga(x1, x2)  =  transpose_out_ga(x1)

(23) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

TRANSPOSE_IN_GA(A, B) → U1_GA(A, B, transpose_aux_in_gga(A, [], B))
TRANSPOSE_IN_GA(A, B) → TRANSPOSE_AUX_IN_GGA(A, [], B)
TRANSPOSE_AUX_IN_GGA(.(R, Rs), X1, .(C, Cs)) → U2_GGA(R, Rs, X1, C, Cs, row2col_in_gaaga(R, .(C, Cs), Cols1, [], Accm))
TRANSPOSE_AUX_IN_GGA(.(R, Rs), X1, .(C, Cs)) → ROW2COL_IN_GAAGA(R, .(C, Cs), Cols1, [], Accm)
ROW2COL_IN_GAAGA(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → U4_GAAGA(X, Xs, Ys, Cols, Cols1, A, B, row2col_in_gaaga(Xs, Cols, Cols1, .([], A), B))
ROW2COL_IN_GAAGA(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → ROW2COL_IN_GAAGA(Xs, Cols, Cols1, .([], A), B)
U2_GGA(R, Rs, X1, C, Cs, row2col_out_gaaga(R, .(C, Cs), Cols1, [], Accm)) → U3_GGA(R, Rs, X1, C, Cs, transpose_aux_in_gga(Rs, Accm, Cols1))
U2_GGA(R, Rs, X1, C, Cs, row2col_out_gaaga(R, .(C, Cs), Cols1, [], Accm)) → TRANSPOSE_AUX_IN_GGA(Rs, Accm, Cols1)

The TRS R consists of the following rules:

transpose_in_ga(A, B) → U1_ga(A, B, transpose_aux_in_gga(A, [], B))
transpose_aux_in_gga(.(R, Rs), X1, .(C, Cs)) → U2_gga(R, Rs, X1, C, Cs, row2col_in_gaaga(R, .(C, Cs), Cols1, [], Accm))
row2col_in_gaaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → U4_gaaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_in_gaaga(Xs, Cols, Cols1, .([], A), B))
row2col_in_gaaga([], [], [], A, A) → row2col_out_gaaga([], [], [], A, A)
U4_gaaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_out_gaaga(Xs, Cols, Cols1, .([], A), B)) → row2col_out_gaaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B)
U2_gga(R, Rs, X1, C, Cs, row2col_out_gaaga(R, .(C, Cs), Cols1, [], Accm)) → U3_gga(R, Rs, X1, C, Cs, transpose_aux_in_gga(Rs, Accm, Cols1))
transpose_aux_in_gga([], X, X) → transpose_aux_out_gga([], X, X)
U3_gga(R, Rs, X1, C, Cs, transpose_aux_out_gga(Rs, Accm, Cols1)) → transpose_aux_out_gga(.(R, Rs), X1, .(C, Cs))
U1_ga(A, B, transpose_aux_out_gga(A, [], B)) → transpose_out_ga(A, B)

The argument filtering Pi contains the following mapping:
transpose_in_ga(x1, x2)  =  transpose_in_ga(x1)
U1_ga(x1, x2, x3)  =  U1_ga(x1, x3)
transpose_aux_in_gga(x1, x2, x3)  =  transpose_aux_in_gga(x1, x2)
.(x1, x2)  =  .(x1, x2)
U2_gga(x1, x2, x3, x4, x5, x6)  =  U2_gga(x1, x2, x3, x6)
row2col_in_gaaga(x1, x2, x3, x4, x5)  =  row2col_in_gaaga(x1, x4)
U4_gaaga(x1, x2, x3, x4, x5, x6, x7, x8)  =  U4_gaaga(x1, x2, x6, x8)
[]  =  []
row2col_out_gaaga(x1, x2, x3, x4, x5)  =  row2col_out_gaaga(x1, x4, x5)
U3_gga(x1, x2, x3, x4, x5, x6)  =  U3_gga(x1, x2, x3, x6)
transpose_aux_out_gga(x1, x2, x3)  =  transpose_aux_out_gga(x1, x2)
transpose_out_ga(x1, x2)  =  transpose_out_ga(x1)
TRANSPOSE_IN_GA(x1, x2)  =  TRANSPOSE_IN_GA(x1)
U1_GA(x1, x2, x3)  =  U1_GA(x1, x3)
TRANSPOSE_AUX_IN_GGA(x1, x2, x3)  =  TRANSPOSE_AUX_IN_GGA(x1, x2)
U2_GGA(x1, x2, x3, x4, x5, x6)  =  U2_GGA(x1, x2, x3, x6)
ROW2COL_IN_GAAGA(x1, x2, x3, x4, x5)  =  ROW2COL_IN_GAAGA(x1, x4)
U4_GAAGA(x1, x2, x3, x4, x5, x6, x7, x8)  =  U4_GAAGA(x1, x2, x6, x8)
U3_GGA(x1, x2, x3, x4, x5, x6)  =  U3_GGA(x1, x2, x3, x6)

We have to consider all (P,R,Pi)-chains

(24) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

TRANSPOSE_IN_GA(A, B) → U1_GA(A, B, transpose_aux_in_gga(A, [], B))
TRANSPOSE_IN_GA(A, B) → TRANSPOSE_AUX_IN_GGA(A, [], B)
TRANSPOSE_AUX_IN_GGA(.(R, Rs), X1, .(C, Cs)) → U2_GGA(R, Rs, X1, C, Cs, row2col_in_gaaga(R, .(C, Cs), Cols1, [], Accm))
TRANSPOSE_AUX_IN_GGA(.(R, Rs), X1, .(C, Cs)) → ROW2COL_IN_GAAGA(R, .(C, Cs), Cols1, [], Accm)
ROW2COL_IN_GAAGA(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → U4_GAAGA(X, Xs, Ys, Cols, Cols1, A, B, row2col_in_gaaga(Xs, Cols, Cols1, .([], A), B))
ROW2COL_IN_GAAGA(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → ROW2COL_IN_GAAGA(Xs, Cols, Cols1, .([], A), B)
U2_GGA(R, Rs, X1, C, Cs, row2col_out_gaaga(R, .(C, Cs), Cols1, [], Accm)) → U3_GGA(R, Rs, X1, C, Cs, transpose_aux_in_gga(Rs, Accm, Cols1))
U2_GGA(R, Rs, X1, C, Cs, row2col_out_gaaga(R, .(C, Cs), Cols1, [], Accm)) → TRANSPOSE_AUX_IN_GGA(Rs, Accm, Cols1)

The TRS R consists of the following rules:

transpose_in_ga(A, B) → U1_ga(A, B, transpose_aux_in_gga(A, [], B))
transpose_aux_in_gga(.(R, Rs), X1, .(C, Cs)) → U2_gga(R, Rs, X1, C, Cs, row2col_in_gaaga(R, .(C, Cs), Cols1, [], Accm))
row2col_in_gaaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → U4_gaaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_in_gaaga(Xs, Cols, Cols1, .([], A), B))
row2col_in_gaaga([], [], [], A, A) → row2col_out_gaaga([], [], [], A, A)
U4_gaaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_out_gaaga(Xs, Cols, Cols1, .([], A), B)) → row2col_out_gaaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B)
U2_gga(R, Rs, X1, C, Cs, row2col_out_gaaga(R, .(C, Cs), Cols1, [], Accm)) → U3_gga(R, Rs, X1, C, Cs, transpose_aux_in_gga(Rs, Accm, Cols1))
transpose_aux_in_gga([], X, X) → transpose_aux_out_gga([], X, X)
U3_gga(R, Rs, X1, C, Cs, transpose_aux_out_gga(Rs, Accm, Cols1)) → transpose_aux_out_gga(.(R, Rs), X1, .(C, Cs))
U1_ga(A, B, transpose_aux_out_gga(A, [], B)) → transpose_out_ga(A, B)

The argument filtering Pi contains the following mapping:
transpose_in_ga(x1, x2)  =  transpose_in_ga(x1)
U1_ga(x1, x2, x3)  =  U1_ga(x1, x3)
transpose_aux_in_gga(x1, x2, x3)  =  transpose_aux_in_gga(x1, x2)
.(x1, x2)  =  .(x1, x2)
U2_gga(x1, x2, x3, x4, x5, x6)  =  U2_gga(x1, x2, x3, x6)
row2col_in_gaaga(x1, x2, x3, x4, x5)  =  row2col_in_gaaga(x1, x4)
U4_gaaga(x1, x2, x3, x4, x5, x6, x7, x8)  =  U4_gaaga(x1, x2, x6, x8)
[]  =  []
row2col_out_gaaga(x1, x2, x3, x4, x5)  =  row2col_out_gaaga(x1, x4, x5)
U3_gga(x1, x2, x3, x4, x5, x6)  =  U3_gga(x1, x2, x3, x6)
transpose_aux_out_gga(x1, x2, x3)  =  transpose_aux_out_gga(x1, x2)
transpose_out_ga(x1, x2)  =  transpose_out_ga(x1)
TRANSPOSE_IN_GA(x1, x2)  =  TRANSPOSE_IN_GA(x1)
U1_GA(x1, x2, x3)  =  U1_GA(x1, x3)
TRANSPOSE_AUX_IN_GGA(x1, x2, x3)  =  TRANSPOSE_AUX_IN_GGA(x1, x2)
U2_GGA(x1, x2, x3, x4, x5, x6)  =  U2_GGA(x1, x2, x3, x6)
ROW2COL_IN_GAAGA(x1, x2, x3, x4, x5)  =  ROW2COL_IN_GAAGA(x1, x4)
U4_GAAGA(x1, x2, x3, x4, x5, x6, x7, x8)  =  U4_GAAGA(x1, x2, x6, x8)
U3_GGA(x1, x2, x3, x4, x5, x6)  =  U3_GGA(x1, x2, x3, x6)

We have to consider all (P,R,Pi)-chains

(25) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 5 less nodes.

(26) Complex Obligation (AND)

(27) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

ROW2COL_IN_GAAGA(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → ROW2COL_IN_GAAGA(Xs, Cols, Cols1, .([], A), B)

The TRS R consists of the following rules:

transpose_in_ga(A, B) → U1_ga(A, B, transpose_aux_in_gga(A, [], B))
transpose_aux_in_gga(.(R, Rs), X1, .(C, Cs)) → U2_gga(R, Rs, X1, C, Cs, row2col_in_gaaga(R, .(C, Cs), Cols1, [], Accm))
row2col_in_gaaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → U4_gaaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_in_gaaga(Xs, Cols, Cols1, .([], A), B))
row2col_in_gaaga([], [], [], A, A) → row2col_out_gaaga([], [], [], A, A)
U4_gaaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_out_gaaga(Xs, Cols, Cols1, .([], A), B)) → row2col_out_gaaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B)
U2_gga(R, Rs, X1, C, Cs, row2col_out_gaaga(R, .(C, Cs), Cols1, [], Accm)) → U3_gga(R, Rs, X1, C, Cs, transpose_aux_in_gga(Rs, Accm, Cols1))
transpose_aux_in_gga([], X, X) → transpose_aux_out_gga([], X, X)
U3_gga(R, Rs, X1, C, Cs, transpose_aux_out_gga(Rs, Accm, Cols1)) → transpose_aux_out_gga(.(R, Rs), X1, .(C, Cs))
U1_ga(A, B, transpose_aux_out_gga(A, [], B)) → transpose_out_ga(A, B)

The argument filtering Pi contains the following mapping:
transpose_in_ga(x1, x2)  =  transpose_in_ga(x1)
U1_ga(x1, x2, x3)  =  U1_ga(x1, x3)
transpose_aux_in_gga(x1, x2, x3)  =  transpose_aux_in_gga(x1, x2)
.(x1, x2)  =  .(x1, x2)
U2_gga(x1, x2, x3, x4, x5, x6)  =  U2_gga(x1, x2, x3, x6)
row2col_in_gaaga(x1, x2, x3, x4, x5)  =  row2col_in_gaaga(x1, x4)
U4_gaaga(x1, x2, x3, x4, x5, x6, x7, x8)  =  U4_gaaga(x1, x2, x6, x8)
[]  =  []
row2col_out_gaaga(x1, x2, x3, x4, x5)  =  row2col_out_gaaga(x1, x4, x5)
U3_gga(x1, x2, x3, x4, x5, x6)  =  U3_gga(x1, x2, x3, x6)
transpose_aux_out_gga(x1, x2, x3)  =  transpose_aux_out_gga(x1, x2)
transpose_out_ga(x1, x2)  =  transpose_out_ga(x1)
ROW2COL_IN_GAAGA(x1, x2, x3, x4, x5)  =  ROW2COL_IN_GAAGA(x1, x4)

We have to consider all (P,R,Pi)-chains

(28) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(29) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

ROW2COL_IN_GAAGA(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → ROW2COL_IN_GAAGA(Xs, Cols, Cols1, .([], A), B)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
[]  =  []
ROW2COL_IN_GAAGA(x1, x2, x3, x4, x5)  =  ROW2COL_IN_GAAGA(x1, x4)

We have to consider all (P,R,Pi)-chains

(30) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(31) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ROW2COL_IN_GAAGA(.(X, Xs), A) → ROW2COL_IN_GAAGA(Xs, .([], A))

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(32) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • ROW2COL_IN_GAAGA(.(X, Xs), A) → ROW2COL_IN_GAAGA(Xs, .([], A))
    The graph contains the following edges 1 > 1

(33) TRUE

(34) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

U2_GGA(R, Rs, X1, C, Cs, row2col_out_gaaga(R, .(C, Cs), Cols1, [], Accm)) → TRANSPOSE_AUX_IN_GGA(Rs, Accm, Cols1)
TRANSPOSE_AUX_IN_GGA(.(R, Rs), X1, .(C, Cs)) → U2_GGA(R, Rs, X1, C, Cs, row2col_in_gaaga(R, .(C, Cs), Cols1, [], Accm))

The TRS R consists of the following rules:

transpose_in_ga(A, B) → U1_ga(A, B, transpose_aux_in_gga(A, [], B))
transpose_aux_in_gga(.(R, Rs), X1, .(C, Cs)) → U2_gga(R, Rs, X1, C, Cs, row2col_in_gaaga(R, .(C, Cs), Cols1, [], Accm))
row2col_in_gaaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → U4_gaaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_in_gaaga(Xs, Cols, Cols1, .([], A), B))
row2col_in_gaaga([], [], [], A, A) → row2col_out_gaaga([], [], [], A, A)
U4_gaaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_out_gaaga(Xs, Cols, Cols1, .([], A), B)) → row2col_out_gaaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B)
U2_gga(R, Rs, X1, C, Cs, row2col_out_gaaga(R, .(C, Cs), Cols1, [], Accm)) → U3_gga(R, Rs, X1, C, Cs, transpose_aux_in_gga(Rs, Accm, Cols1))
transpose_aux_in_gga([], X, X) → transpose_aux_out_gga([], X, X)
U3_gga(R, Rs, X1, C, Cs, transpose_aux_out_gga(Rs, Accm, Cols1)) → transpose_aux_out_gga(.(R, Rs), X1, .(C, Cs))
U1_ga(A, B, transpose_aux_out_gga(A, [], B)) → transpose_out_ga(A, B)

The argument filtering Pi contains the following mapping:
transpose_in_ga(x1, x2)  =  transpose_in_ga(x1)
U1_ga(x1, x2, x3)  =  U1_ga(x1, x3)
transpose_aux_in_gga(x1, x2, x3)  =  transpose_aux_in_gga(x1, x2)
.(x1, x2)  =  .(x1, x2)
U2_gga(x1, x2, x3, x4, x5, x6)  =  U2_gga(x1, x2, x3, x6)
row2col_in_gaaga(x1, x2, x3, x4, x5)  =  row2col_in_gaaga(x1, x4)
U4_gaaga(x1, x2, x3, x4, x5, x6, x7, x8)  =  U4_gaaga(x1, x2, x6, x8)
[]  =  []
row2col_out_gaaga(x1, x2, x3, x4, x5)  =  row2col_out_gaaga(x1, x4, x5)
U3_gga(x1, x2, x3, x4, x5, x6)  =  U3_gga(x1, x2, x3, x6)
transpose_aux_out_gga(x1, x2, x3)  =  transpose_aux_out_gga(x1, x2)
transpose_out_ga(x1, x2)  =  transpose_out_ga(x1)
TRANSPOSE_AUX_IN_GGA(x1, x2, x3)  =  TRANSPOSE_AUX_IN_GGA(x1, x2)
U2_GGA(x1, x2, x3, x4, x5, x6)  =  U2_GGA(x1, x2, x3, x6)

We have to consider all (P,R,Pi)-chains

(35) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(36) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

U2_GGA(R, Rs, X1, C, Cs, row2col_out_gaaga(R, .(C, Cs), Cols1, [], Accm)) → TRANSPOSE_AUX_IN_GGA(Rs, Accm, Cols1)
TRANSPOSE_AUX_IN_GGA(.(R, Rs), X1, .(C, Cs)) → U2_GGA(R, Rs, X1, C, Cs, row2col_in_gaaga(R, .(C, Cs), Cols1, [], Accm))

The TRS R consists of the following rules:

row2col_in_gaaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B) → U4_gaaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_in_gaaga(Xs, Cols, Cols1, .([], A), B))
U4_gaaga(X, Xs, Ys, Cols, Cols1, A, B, row2col_out_gaaga(Xs, Cols, Cols1, .([], A), B)) → row2col_out_gaaga(.(X, Xs), .(.(X, Ys), Cols), .(Ys, Cols1), A, B)
row2col_in_gaaga([], [], [], A, A) → row2col_out_gaaga([], [], [], A, A)

The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
row2col_in_gaaga(x1, x2, x3, x4, x5)  =  row2col_in_gaaga(x1, x4)
U4_gaaga(x1, x2, x3, x4, x5, x6, x7, x8)  =  U4_gaaga(x1, x2, x6, x8)
[]  =  []
row2col_out_gaaga(x1, x2, x3, x4, x5)  =  row2col_out_gaaga(x1, x4, x5)
TRANSPOSE_AUX_IN_GGA(x1, x2, x3)  =  TRANSPOSE_AUX_IN_GGA(x1, x2)
U2_GGA(x1, x2, x3, x4, x5, x6)  =  U2_GGA(x1, x2, x3, x6)

We have to consider all (P,R,Pi)-chains