(0) Obligation:
Clauses:
f(A, [], RES) :- g(A, [], RES).
f(.(A, As), .(B, Bs), RES) :- f(.(B, .(A, As)), Bs, RES).
g([], RES, RES).
g(.(C, Cs), D, RES) :- g(Cs, .(C, D), RES).
Queries:
f(g,g,a).
(1) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
f_in: (b,b,f)
g_in: (b,b,f)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
f_in_gga(A, [], RES) → U1_gga(A, RES, g_in_gga(A, [], RES))
g_in_gga([], RES, RES) → g_out_gga([], RES, RES)
g_in_gga(.(C, Cs), D, RES) → U3_gga(C, Cs, D, RES, g_in_gga(Cs, .(C, D), RES))
U3_gga(C, Cs, D, RES, g_out_gga(Cs, .(C, D), RES)) → g_out_gga(.(C, Cs), D, RES)
U1_gga(A, RES, g_out_gga(A, [], RES)) → f_out_gga(A, [], RES)
f_in_gga(.(A, As), .(B, Bs), RES) → U2_gga(A, As, B, Bs, RES, f_in_gga(.(B, .(A, As)), Bs, RES))
U2_gga(A, As, B, Bs, RES, f_out_gga(.(B, .(A, As)), Bs, RES)) → f_out_gga(.(A, As), .(B, Bs), RES)
The argument filtering Pi contains the following mapping:
f_in_gga(
x1,
x2,
x3) =
f_in_gga(
x1,
x2)
[] =
[]
U1_gga(
x1,
x2,
x3) =
U1_gga(
x3)
g_in_gga(
x1,
x2,
x3) =
g_in_gga(
x1,
x2)
g_out_gga(
x1,
x2,
x3) =
g_out_gga(
x3)
.(
x1,
x2) =
.(
x1,
x2)
U3_gga(
x1,
x2,
x3,
x4,
x5) =
U3_gga(
x5)
f_out_gga(
x1,
x2,
x3) =
f_out_gga(
x3)
U2_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U2_gga(
x6)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(2) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
f_in_gga(A, [], RES) → U1_gga(A, RES, g_in_gga(A, [], RES))
g_in_gga([], RES, RES) → g_out_gga([], RES, RES)
g_in_gga(.(C, Cs), D, RES) → U3_gga(C, Cs, D, RES, g_in_gga(Cs, .(C, D), RES))
U3_gga(C, Cs, D, RES, g_out_gga(Cs, .(C, D), RES)) → g_out_gga(.(C, Cs), D, RES)
U1_gga(A, RES, g_out_gga(A, [], RES)) → f_out_gga(A, [], RES)
f_in_gga(.(A, As), .(B, Bs), RES) → U2_gga(A, As, B, Bs, RES, f_in_gga(.(B, .(A, As)), Bs, RES))
U2_gga(A, As, B, Bs, RES, f_out_gga(.(B, .(A, As)), Bs, RES)) → f_out_gga(.(A, As), .(B, Bs), RES)
The argument filtering Pi contains the following mapping:
f_in_gga(
x1,
x2,
x3) =
f_in_gga(
x1,
x2)
[] =
[]
U1_gga(
x1,
x2,
x3) =
U1_gga(
x3)
g_in_gga(
x1,
x2,
x3) =
g_in_gga(
x1,
x2)
g_out_gga(
x1,
x2,
x3) =
g_out_gga(
x3)
.(
x1,
x2) =
.(
x1,
x2)
U3_gga(
x1,
x2,
x3,
x4,
x5) =
U3_gga(
x5)
f_out_gga(
x1,
x2,
x3) =
f_out_gga(
x3)
U2_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U2_gga(
x6)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
F_IN_GGA(A, [], RES) → U1_GGA(A, RES, g_in_gga(A, [], RES))
F_IN_GGA(A, [], RES) → G_IN_GGA(A, [], RES)
G_IN_GGA(.(C, Cs), D, RES) → U3_GGA(C, Cs, D, RES, g_in_gga(Cs, .(C, D), RES))
G_IN_GGA(.(C, Cs), D, RES) → G_IN_GGA(Cs, .(C, D), RES)
F_IN_GGA(.(A, As), .(B, Bs), RES) → U2_GGA(A, As, B, Bs, RES, f_in_gga(.(B, .(A, As)), Bs, RES))
F_IN_GGA(.(A, As), .(B, Bs), RES) → F_IN_GGA(.(B, .(A, As)), Bs, RES)
The TRS R consists of the following rules:
f_in_gga(A, [], RES) → U1_gga(A, RES, g_in_gga(A, [], RES))
g_in_gga([], RES, RES) → g_out_gga([], RES, RES)
g_in_gga(.(C, Cs), D, RES) → U3_gga(C, Cs, D, RES, g_in_gga(Cs, .(C, D), RES))
U3_gga(C, Cs, D, RES, g_out_gga(Cs, .(C, D), RES)) → g_out_gga(.(C, Cs), D, RES)
U1_gga(A, RES, g_out_gga(A, [], RES)) → f_out_gga(A, [], RES)
f_in_gga(.(A, As), .(B, Bs), RES) → U2_gga(A, As, B, Bs, RES, f_in_gga(.(B, .(A, As)), Bs, RES))
U2_gga(A, As, B, Bs, RES, f_out_gga(.(B, .(A, As)), Bs, RES)) → f_out_gga(.(A, As), .(B, Bs), RES)
The argument filtering Pi contains the following mapping:
f_in_gga(
x1,
x2,
x3) =
f_in_gga(
x1,
x2)
[] =
[]
U1_gga(
x1,
x2,
x3) =
U1_gga(
x3)
g_in_gga(
x1,
x2,
x3) =
g_in_gga(
x1,
x2)
g_out_gga(
x1,
x2,
x3) =
g_out_gga(
x3)
.(
x1,
x2) =
.(
x1,
x2)
U3_gga(
x1,
x2,
x3,
x4,
x5) =
U3_gga(
x5)
f_out_gga(
x1,
x2,
x3) =
f_out_gga(
x3)
U2_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U2_gga(
x6)
F_IN_GGA(
x1,
x2,
x3) =
F_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3) =
U1_GGA(
x3)
G_IN_GGA(
x1,
x2,
x3) =
G_IN_GGA(
x1,
x2)
U3_GGA(
x1,
x2,
x3,
x4,
x5) =
U3_GGA(
x5)
U2_GGA(
x1,
x2,
x3,
x4,
x5,
x6) =
U2_GGA(
x6)
We have to consider all (P,R,Pi)-chains
(4) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
F_IN_GGA(A, [], RES) → U1_GGA(A, RES, g_in_gga(A, [], RES))
F_IN_GGA(A, [], RES) → G_IN_GGA(A, [], RES)
G_IN_GGA(.(C, Cs), D, RES) → U3_GGA(C, Cs, D, RES, g_in_gga(Cs, .(C, D), RES))
G_IN_GGA(.(C, Cs), D, RES) → G_IN_GGA(Cs, .(C, D), RES)
F_IN_GGA(.(A, As), .(B, Bs), RES) → U2_GGA(A, As, B, Bs, RES, f_in_gga(.(B, .(A, As)), Bs, RES))
F_IN_GGA(.(A, As), .(B, Bs), RES) → F_IN_GGA(.(B, .(A, As)), Bs, RES)
The TRS R consists of the following rules:
f_in_gga(A, [], RES) → U1_gga(A, RES, g_in_gga(A, [], RES))
g_in_gga([], RES, RES) → g_out_gga([], RES, RES)
g_in_gga(.(C, Cs), D, RES) → U3_gga(C, Cs, D, RES, g_in_gga(Cs, .(C, D), RES))
U3_gga(C, Cs, D, RES, g_out_gga(Cs, .(C, D), RES)) → g_out_gga(.(C, Cs), D, RES)
U1_gga(A, RES, g_out_gga(A, [], RES)) → f_out_gga(A, [], RES)
f_in_gga(.(A, As), .(B, Bs), RES) → U2_gga(A, As, B, Bs, RES, f_in_gga(.(B, .(A, As)), Bs, RES))
U2_gga(A, As, B, Bs, RES, f_out_gga(.(B, .(A, As)), Bs, RES)) → f_out_gga(.(A, As), .(B, Bs), RES)
The argument filtering Pi contains the following mapping:
f_in_gga(
x1,
x2,
x3) =
f_in_gga(
x1,
x2)
[] =
[]
U1_gga(
x1,
x2,
x3) =
U1_gga(
x3)
g_in_gga(
x1,
x2,
x3) =
g_in_gga(
x1,
x2)
g_out_gga(
x1,
x2,
x3) =
g_out_gga(
x3)
.(
x1,
x2) =
.(
x1,
x2)
U3_gga(
x1,
x2,
x3,
x4,
x5) =
U3_gga(
x5)
f_out_gga(
x1,
x2,
x3) =
f_out_gga(
x3)
U2_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U2_gga(
x6)
F_IN_GGA(
x1,
x2,
x3) =
F_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3) =
U1_GGA(
x3)
G_IN_GGA(
x1,
x2,
x3) =
G_IN_GGA(
x1,
x2)
U3_GGA(
x1,
x2,
x3,
x4,
x5) =
U3_GGA(
x5)
U2_GGA(
x1,
x2,
x3,
x4,
x5,
x6) =
U2_GGA(
x6)
We have to consider all (P,R,Pi)-chains
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 4 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
G_IN_GGA(.(C, Cs), D, RES) → G_IN_GGA(Cs, .(C, D), RES)
The TRS R consists of the following rules:
f_in_gga(A, [], RES) → U1_gga(A, RES, g_in_gga(A, [], RES))
g_in_gga([], RES, RES) → g_out_gga([], RES, RES)
g_in_gga(.(C, Cs), D, RES) → U3_gga(C, Cs, D, RES, g_in_gga(Cs, .(C, D), RES))
U3_gga(C, Cs, D, RES, g_out_gga(Cs, .(C, D), RES)) → g_out_gga(.(C, Cs), D, RES)
U1_gga(A, RES, g_out_gga(A, [], RES)) → f_out_gga(A, [], RES)
f_in_gga(.(A, As), .(B, Bs), RES) → U2_gga(A, As, B, Bs, RES, f_in_gga(.(B, .(A, As)), Bs, RES))
U2_gga(A, As, B, Bs, RES, f_out_gga(.(B, .(A, As)), Bs, RES)) → f_out_gga(.(A, As), .(B, Bs), RES)
The argument filtering Pi contains the following mapping:
f_in_gga(
x1,
x2,
x3) =
f_in_gga(
x1,
x2)
[] =
[]
U1_gga(
x1,
x2,
x3) =
U1_gga(
x3)
g_in_gga(
x1,
x2,
x3) =
g_in_gga(
x1,
x2)
g_out_gga(
x1,
x2,
x3) =
g_out_gga(
x3)
.(
x1,
x2) =
.(
x1,
x2)
U3_gga(
x1,
x2,
x3,
x4,
x5) =
U3_gga(
x5)
f_out_gga(
x1,
x2,
x3) =
f_out_gga(
x3)
U2_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U2_gga(
x6)
G_IN_GGA(
x1,
x2,
x3) =
G_IN_GGA(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(8) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(9) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
G_IN_GGA(.(C, Cs), D, RES) → G_IN_GGA(Cs, .(C, D), RES)
R is empty.
The argument filtering Pi contains the following mapping:
.(
x1,
x2) =
.(
x1,
x2)
G_IN_GGA(
x1,
x2,
x3) =
G_IN_GGA(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(10) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
G_IN_GGA(.(C, Cs), D) → G_IN_GGA(Cs, .(C, D))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(12) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- G_IN_GGA(.(C, Cs), D) → G_IN_GGA(Cs, .(C, D))
The graph contains the following edges 1 > 1
(13) TRUE
(14) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
F_IN_GGA(.(A, As), .(B, Bs), RES) → F_IN_GGA(.(B, .(A, As)), Bs, RES)
The TRS R consists of the following rules:
f_in_gga(A, [], RES) → U1_gga(A, RES, g_in_gga(A, [], RES))
g_in_gga([], RES, RES) → g_out_gga([], RES, RES)
g_in_gga(.(C, Cs), D, RES) → U3_gga(C, Cs, D, RES, g_in_gga(Cs, .(C, D), RES))
U3_gga(C, Cs, D, RES, g_out_gga(Cs, .(C, D), RES)) → g_out_gga(.(C, Cs), D, RES)
U1_gga(A, RES, g_out_gga(A, [], RES)) → f_out_gga(A, [], RES)
f_in_gga(.(A, As), .(B, Bs), RES) → U2_gga(A, As, B, Bs, RES, f_in_gga(.(B, .(A, As)), Bs, RES))
U2_gga(A, As, B, Bs, RES, f_out_gga(.(B, .(A, As)), Bs, RES)) → f_out_gga(.(A, As), .(B, Bs), RES)
The argument filtering Pi contains the following mapping:
f_in_gga(
x1,
x2,
x3) =
f_in_gga(
x1,
x2)
[] =
[]
U1_gga(
x1,
x2,
x3) =
U1_gga(
x3)
g_in_gga(
x1,
x2,
x3) =
g_in_gga(
x1,
x2)
g_out_gga(
x1,
x2,
x3) =
g_out_gga(
x3)
.(
x1,
x2) =
.(
x1,
x2)
U3_gga(
x1,
x2,
x3,
x4,
x5) =
U3_gga(
x5)
f_out_gga(
x1,
x2,
x3) =
f_out_gga(
x3)
U2_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U2_gga(
x6)
F_IN_GGA(
x1,
x2,
x3) =
F_IN_GGA(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(15) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(16) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
F_IN_GGA(.(A, As), .(B, Bs), RES) → F_IN_GGA(.(B, .(A, As)), Bs, RES)
R is empty.
The argument filtering Pi contains the following mapping:
.(
x1,
x2) =
.(
x1,
x2)
F_IN_GGA(
x1,
x2,
x3) =
F_IN_GGA(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(17) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F_IN_GGA(.(A, As), .(B, Bs)) → F_IN_GGA(.(B, .(A, As)), Bs)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(19) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- F_IN_GGA(.(A, As), .(B, Bs)) → F_IN_GGA(.(B, .(A, As)), Bs)
The graph contains the following edges 2 > 2
(20) TRUE
(21) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
f_in: (b,b,f)
g_in: (b,b,f)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
f_in_gga(A, [], RES) → U1_gga(A, RES, g_in_gga(A, [], RES))
g_in_gga([], RES, RES) → g_out_gga([], RES, RES)
g_in_gga(.(C, Cs), D, RES) → U3_gga(C, Cs, D, RES, g_in_gga(Cs, .(C, D), RES))
U3_gga(C, Cs, D, RES, g_out_gga(Cs, .(C, D), RES)) → g_out_gga(.(C, Cs), D, RES)
U1_gga(A, RES, g_out_gga(A, [], RES)) → f_out_gga(A, [], RES)
f_in_gga(.(A, As), .(B, Bs), RES) → U2_gga(A, As, B, Bs, RES, f_in_gga(.(B, .(A, As)), Bs, RES))
U2_gga(A, As, B, Bs, RES, f_out_gga(.(B, .(A, As)), Bs, RES)) → f_out_gga(.(A, As), .(B, Bs), RES)
The argument filtering Pi contains the following mapping:
f_in_gga(
x1,
x2,
x3) =
f_in_gga(
x1,
x2)
[] =
[]
U1_gga(
x1,
x2,
x3) =
U1_gga(
x1,
x3)
g_in_gga(
x1,
x2,
x3) =
g_in_gga(
x1,
x2)
g_out_gga(
x1,
x2,
x3) =
g_out_gga(
x1,
x2,
x3)
.(
x1,
x2) =
.(
x1,
x2)
U3_gga(
x1,
x2,
x3,
x4,
x5) =
U3_gga(
x1,
x2,
x3,
x5)
f_out_gga(
x1,
x2,
x3) =
f_out_gga(
x1,
x2,
x3)
U2_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U2_gga(
x1,
x2,
x3,
x4,
x6)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(22) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
f_in_gga(A, [], RES) → U1_gga(A, RES, g_in_gga(A, [], RES))
g_in_gga([], RES, RES) → g_out_gga([], RES, RES)
g_in_gga(.(C, Cs), D, RES) → U3_gga(C, Cs, D, RES, g_in_gga(Cs, .(C, D), RES))
U3_gga(C, Cs, D, RES, g_out_gga(Cs, .(C, D), RES)) → g_out_gga(.(C, Cs), D, RES)
U1_gga(A, RES, g_out_gga(A, [], RES)) → f_out_gga(A, [], RES)
f_in_gga(.(A, As), .(B, Bs), RES) → U2_gga(A, As, B, Bs, RES, f_in_gga(.(B, .(A, As)), Bs, RES))
U2_gga(A, As, B, Bs, RES, f_out_gga(.(B, .(A, As)), Bs, RES)) → f_out_gga(.(A, As), .(B, Bs), RES)
The argument filtering Pi contains the following mapping:
f_in_gga(
x1,
x2,
x3) =
f_in_gga(
x1,
x2)
[] =
[]
U1_gga(
x1,
x2,
x3) =
U1_gga(
x1,
x3)
g_in_gga(
x1,
x2,
x3) =
g_in_gga(
x1,
x2)
g_out_gga(
x1,
x2,
x3) =
g_out_gga(
x1,
x2,
x3)
.(
x1,
x2) =
.(
x1,
x2)
U3_gga(
x1,
x2,
x3,
x4,
x5) =
U3_gga(
x1,
x2,
x3,
x5)
f_out_gga(
x1,
x2,
x3) =
f_out_gga(
x1,
x2,
x3)
U2_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U2_gga(
x1,
x2,
x3,
x4,
x6)
(23) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
F_IN_GGA(A, [], RES) → U1_GGA(A, RES, g_in_gga(A, [], RES))
F_IN_GGA(A, [], RES) → G_IN_GGA(A, [], RES)
G_IN_GGA(.(C, Cs), D, RES) → U3_GGA(C, Cs, D, RES, g_in_gga(Cs, .(C, D), RES))
G_IN_GGA(.(C, Cs), D, RES) → G_IN_GGA(Cs, .(C, D), RES)
F_IN_GGA(.(A, As), .(B, Bs), RES) → U2_GGA(A, As, B, Bs, RES, f_in_gga(.(B, .(A, As)), Bs, RES))
F_IN_GGA(.(A, As), .(B, Bs), RES) → F_IN_GGA(.(B, .(A, As)), Bs, RES)
The TRS R consists of the following rules:
f_in_gga(A, [], RES) → U1_gga(A, RES, g_in_gga(A, [], RES))
g_in_gga([], RES, RES) → g_out_gga([], RES, RES)
g_in_gga(.(C, Cs), D, RES) → U3_gga(C, Cs, D, RES, g_in_gga(Cs, .(C, D), RES))
U3_gga(C, Cs, D, RES, g_out_gga(Cs, .(C, D), RES)) → g_out_gga(.(C, Cs), D, RES)
U1_gga(A, RES, g_out_gga(A, [], RES)) → f_out_gga(A, [], RES)
f_in_gga(.(A, As), .(B, Bs), RES) → U2_gga(A, As, B, Bs, RES, f_in_gga(.(B, .(A, As)), Bs, RES))
U2_gga(A, As, B, Bs, RES, f_out_gga(.(B, .(A, As)), Bs, RES)) → f_out_gga(.(A, As), .(B, Bs), RES)
The argument filtering Pi contains the following mapping:
f_in_gga(
x1,
x2,
x3) =
f_in_gga(
x1,
x2)
[] =
[]
U1_gga(
x1,
x2,
x3) =
U1_gga(
x1,
x3)
g_in_gga(
x1,
x2,
x3) =
g_in_gga(
x1,
x2)
g_out_gga(
x1,
x2,
x3) =
g_out_gga(
x1,
x2,
x3)
.(
x1,
x2) =
.(
x1,
x2)
U3_gga(
x1,
x2,
x3,
x4,
x5) =
U3_gga(
x1,
x2,
x3,
x5)
f_out_gga(
x1,
x2,
x3) =
f_out_gga(
x1,
x2,
x3)
U2_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U2_gga(
x1,
x2,
x3,
x4,
x6)
F_IN_GGA(
x1,
x2,
x3) =
F_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3) =
U1_GGA(
x1,
x3)
G_IN_GGA(
x1,
x2,
x3) =
G_IN_GGA(
x1,
x2)
U3_GGA(
x1,
x2,
x3,
x4,
x5) =
U3_GGA(
x1,
x2,
x3,
x5)
U2_GGA(
x1,
x2,
x3,
x4,
x5,
x6) =
U2_GGA(
x1,
x2,
x3,
x4,
x6)
We have to consider all (P,R,Pi)-chains
(24) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
F_IN_GGA(A, [], RES) → U1_GGA(A, RES, g_in_gga(A, [], RES))
F_IN_GGA(A, [], RES) → G_IN_GGA(A, [], RES)
G_IN_GGA(.(C, Cs), D, RES) → U3_GGA(C, Cs, D, RES, g_in_gga(Cs, .(C, D), RES))
G_IN_GGA(.(C, Cs), D, RES) → G_IN_GGA(Cs, .(C, D), RES)
F_IN_GGA(.(A, As), .(B, Bs), RES) → U2_GGA(A, As, B, Bs, RES, f_in_gga(.(B, .(A, As)), Bs, RES))
F_IN_GGA(.(A, As), .(B, Bs), RES) → F_IN_GGA(.(B, .(A, As)), Bs, RES)
The TRS R consists of the following rules:
f_in_gga(A, [], RES) → U1_gga(A, RES, g_in_gga(A, [], RES))
g_in_gga([], RES, RES) → g_out_gga([], RES, RES)
g_in_gga(.(C, Cs), D, RES) → U3_gga(C, Cs, D, RES, g_in_gga(Cs, .(C, D), RES))
U3_gga(C, Cs, D, RES, g_out_gga(Cs, .(C, D), RES)) → g_out_gga(.(C, Cs), D, RES)
U1_gga(A, RES, g_out_gga(A, [], RES)) → f_out_gga(A, [], RES)
f_in_gga(.(A, As), .(B, Bs), RES) → U2_gga(A, As, B, Bs, RES, f_in_gga(.(B, .(A, As)), Bs, RES))
U2_gga(A, As, B, Bs, RES, f_out_gga(.(B, .(A, As)), Bs, RES)) → f_out_gga(.(A, As), .(B, Bs), RES)
The argument filtering Pi contains the following mapping:
f_in_gga(
x1,
x2,
x3) =
f_in_gga(
x1,
x2)
[] =
[]
U1_gga(
x1,
x2,
x3) =
U1_gga(
x1,
x3)
g_in_gga(
x1,
x2,
x3) =
g_in_gga(
x1,
x2)
g_out_gga(
x1,
x2,
x3) =
g_out_gga(
x1,
x2,
x3)
.(
x1,
x2) =
.(
x1,
x2)
U3_gga(
x1,
x2,
x3,
x4,
x5) =
U3_gga(
x1,
x2,
x3,
x5)
f_out_gga(
x1,
x2,
x3) =
f_out_gga(
x1,
x2,
x3)
U2_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U2_gga(
x1,
x2,
x3,
x4,
x6)
F_IN_GGA(
x1,
x2,
x3) =
F_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3) =
U1_GGA(
x1,
x3)
G_IN_GGA(
x1,
x2,
x3) =
G_IN_GGA(
x1,
x2)
U3_GGA(
x1,
x2,
x3,
x4,
x5) =
U3_GGA(
x1,
x2,
x3,
x5)
U2_GGA(
x1,
x2,
x3,
x4,
x5,
x6) =
U2_GGA(
x1,
x2,
x3,
x4,
x6)
We have to consider all (P,R,Pi)-chains
(25) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 4 less nodes.
(26) Complex Obligation (AND)
(27) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
G_IN_GGA(.(C, Cs), D, RES) → G_IN_GGA(Cs, .(C, D), RES)
The TRS R consists of the following rules:
f_in_gga(A, [], RES) → U1_gga(A, RES, g_in_gga(A, [], RES))
g_in_gga([], RES, RES) → g_out_gga([], RES, RES)
g_in_gga(.(C, Cs), D, RES) → U3_gga(C, Cs, D, RES, g_in_gga(Cs, .(C, D), RES))
U3_gga(C, Cs, D, RES, g_out_gga(Cs, .(C, D), RES)) → g_out_gga(.(C, Cs), D, RES)
U1_gga(A, RES, g_out_gga(A, [], RES)) → f_out_gga(A, [], RES)
f_in_gga(.(A, As), .(B, Bs), RES) → U2_gga(A, As, B, Bs, RES, f_in_gga(.(B, .(A, As)), Bs, RES))
U2_gga(A, As, B, Bs, RES, f_out_gga(.(B, .(A, As)), Bs, RES)) → f_out_gga(.(A, As), .(B, Bs), RES)
The argument filtering Pi contains the following mapping:
f_in_gga(
x1,
x2,
x3) =
f_in_gga(
x1,
x2)
[] =
[]
U1_gga(
x1,
x2,
x3) =
U1_gga(
x1,
x3)
g_in_gga(
x1,
x2,
x3) =
g_in_gga(
x1,
x2)
g_out_gga(
x1,
x2,
x3) =
g_out_gga(
x1,
x2,
x3)
.(
x1,
x2) =
.(
x1,
x2)
U3_gga(
x1,
x2,
x3,
x4,
x5) =
U3_gga(
x1,
x2,
x3,
x5)
f_out_gga(
x1,
x2,
x3) =
f_out_gga(
x1,
x2,
x3)
U2_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U2_gga(
x1,
x2,
x3,
x4,
x6)
G_IN_GGA(
x1,
x2,
x3) =
G_IN_GGA(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(28) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(29) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
G_IN_GGA(.(C, Cs), D, RES) → G_IN_GGA(Cs, .(C, D), RES)
R is empty.
The argument filtering Pi contains the following mapping:
.(
x1,
x2) =
.(
x1,
x2)
G_IN_GGA(
x1,
x2,
x3) =
G_IN_GGA(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(30) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(31) Obligation:
Q DP problem:
The TRS P consists of the following rules:
G_IN_GGA(.(C, Cs), D) → G_IN_GGA(Cs, .(C, D))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(32) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- G_IN_GGA(.(C, Cs), D) → G_IN_GGA(Cs, .(C, D))
The graph contains the following edges 1 > 1
(33) TRUE
(34) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
F_IN_GGA(.(A, As), .(B, Bs), RES) → F_IN_GGA(.(B, .(A, As)), Bs, RES)
The TRS R consists of the following rules:
f_in_gga(A, [], RES) → U1_gga(A, RES, g_in_gga(A, [], RES))
g_in_gga([], RES, RES) → g_out_gga([], RES, RES)
g_in_gga(.(C, Cs), D, RES) → U3_gga(C, Cs, D, RES, g_in_gga(Cs, .(C, D), RES))
U3_gga(C, Cs, D, RES, g_out_gga(Cs, .(C, D), RES)) → g_out_gga(.(C, Cs), D, RES)
U1_gga(A, RES, g_out_gga(A, [], RES)) → f_out_gga(A, [], RES)
f_in_gga(.(A, As), .(B, Bs), RES) → U2_gga(A, As, B, Bs, RES, f_in_gga(.(B, .(A, As)), Bs, RES))
U2_gga(A, As, B, Bs, RES, f_out_gga(.(B, .(A, As)), Bs, RES)) → f_out_gga(.(A, As), .(B, Bs), RES)
The argument filtering Pi contains the following mapping:
f_in_gga(
x1,
x2,
x3) =
f_in_gga(
x1,
x2)
[] =
[]
U1_gga(
x1,
x2,
x3) =
U1_gga(
x1,
x3)
g_in_gga(
x1,
x2,
x3) =
g_in_gga(
x1,
x2)
g_out_gga(
x1,
x2,
x3) =
g_out_gga(
x1,
x2,
x3)
.(
x1,
x2) =
.(
x1,
x2)
U3_gga(
x1,
x2,
x3,
x4,
x5) =
U3_gga(
x1,
x2,
x3,
x5)
f_out_gga(
x1,
x2,
x3) =
f_out_gga(
x1,
x2,
x3)
U2_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U2_gga(
x1,
x2,
x3,
x4,
x6)
F_IN_GGA(
x1,
x2,
x3) =
F_IN_GGA(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(35) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(36) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
F_IN_GGA(.(A, As), .(B, Bs), RES) → F_IN_GGA(.(B, .(A, As)), Bs, RES)
R is empty.
The argument filtering Pi contains the following mapping:
.(
x1,
x2) =
.(
x1,
x2)
F_IN_GGA(
x1,
x2,
x3) =
F_IN_GGA(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(37) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(38) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F_IN_GGA(.(A, As), .(B, Bs)) → F_IN_GGA(.(B, .(A, As)), Bs)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.