(0) Obligation:

Clauses:

f(RES, [], RES).
f([], .(Head, Tail), RES) :- f(.(Head, Tail), Tail, RES).
f(.(Head, Tail), Y, RES) :- f(Y, Tail, RES).

Queries:

f(g,g,a).

(1) PrologToPrologProblemTransformerProof (SOUND transformation)

Built Prolog problem from termination graph.

(2) Obligation:

Clauses:

f1(T5, [], T5).
f1(.(T9, []), [], []).
f1(.(T9, .(T25, T26)), [], T28) :- f1(.(T25, T26), T26, T28).
f1([], .(T48, []), .(T48, [])).
f1([], .(T68, []), []).
f1([], .(T68, .(T85, T86)), T88) :- f1(.(T85, T86), T86, T88).
f1(.(T97, []), T106, T106).
f1(.(T97, .(T119, T120)), [], T122) :- f1(.(T119, T120), T120, T122).
f1(.(T97, T137), .(T135, T136), T139) :- f1(T137, T136, T139).

Queries:

f1(g,g,a).

(3) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
f1_in: (b,b,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

f1_in_gga(T5, [], T5) → f1_out_gga(T5, [], T5)
f1_in_gga(.(T9, []), [], []) → f1_out_gga(.(T9, []), [], [])
f1_in_gga(.(T9, .(T25, T26)), [], T28) → U1_gga(T9, T25, T26, T28, f1_in_gga(.(T25, T26), T26, T28))
f1_in_gga([], .(T48, []), .(T48, [])) → f1_out_gga([], .(T48, []), .(T48, []))
f1_in_gga([], .(T68, []), []) → f1_out_gga([], .(T68, []), [])
f1_in_gga([], .(T68, .(T85, T86)), T88) → U2_gga(T68, T85, T86, T88, f1_in_gga(.(T85, T86), T86, T88))
f1_in_gga(.(T97, []), T106, T106) → f1_out_gga(.(T97, []), T106, T106)
f1_in_gga(.(T97, .(T119, T120)), [], T122) → U3_gga(T97, T119, T120, T122, f1_in_gga(.(T119, T120), T120, T122))
f1_in_gga(.(T97, T137), .(T135, T136), T139) → U4_gga(T97, T137, T135, T136, T139, f1_in_gga(T137, T136, T139))
U4_gga(T97, T137, T135, T136, T139, f1_out_gga(T137, T136, T139)) → f1_out_gga(.(T97, T137), .(T135, T136), T139)
U3_gga(T97, T119, T120, T122, f1_out_gga(.(T119, T120), T120, T122)) → f1_out_gga(.(T97, .(T119, T120)), [], T122)
U2_gga(T68, T85, T86, T88, f1_out_gga(.(T85, T86), T86, T88)) → f1_out_gga([], .(T68, .(T85, T86)), T88)
U1_gga(T9, T25, T26, T28, f1_out_gga(.(T25, T26), T26, T28)) → f1_out_gga(.(T9, .(T25, T26)), [], T28)

The argument filtering Pi contains the following mapping:
f1_in_gga(x1, x2, x3)  =  f1_in_gga(x1, x2)
[]  =  []
f1_out_gga(x1, x2, x3)  =  f1_out_gga(x3)
.(x1, x2)  =  .(x1, x2)
U1_gga(x1, x2, x3, x4, x5)  =  U1_gga(x5)
U2_gga(x1, x2, x3, x4, x5)  =  U2_gga(x5)
U3_gga(x1, x2, x3, x4, x5)  =  U3_gga(x5)
U4_gga(x1, x2, x3, x4, x5, x6)  =  U4_gga(x6)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(4) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

f1_in_gga(T5, [], T5) → f1_out_gga(T5, [], T5)
f1_in_gga(.(T9, []), [], []) → f1_out_gga(.(T9, []), [], [])
f1_in_gga(.(T9, .(T25, T26)), [], T28) → U1_gga(T9, T25, T26, T28, f1_in_gga(.(T25, T26), T26, T28))
f1_in_gga([], .(T48, []), .(T48, [])) → f1_out_gga([], .(T48, []), .(T48, []))
f1_in_gga([], .(T68, []), []) → f1_out_gga([], .(T68, []), [])
f1_in_gga([], .(T68, .(T85, T86)), T88) → U2_gga(T68, T85, T86, T88, f1_in_gga(.(T85, T86), T86, T88))
f1_in_gga(.(T97, []), T106, T106) → f1_out_gga(.(T97, []), T106, T106)
f1_in_gga(.(T97, .(T119, T120)), [], T122) → U3_gga(T97, T119, T120, T122, f1_in_gga(.(T119, T120), T120, T122))
f1_in_gga(.(T97, T137), .(T135, T136), T139) → U4_gga(T97, T137, T135, T136, T139, f1_in_gga(T137, T136, T139))
U4_gga(T97, T137, T135, T136, T139, f1_out_gga(T137, T136, T139)) → f1_out_gga(.(T97, T137), .(T135, T136), T139)
U3_gga(T97, T119, T120, T122, f1_out_gga(.(T119, T120), T120, T122)) → f1_out_gga(.(T97, .(T119, T120)), [], T122)
U2_gga(T68, T85, T86, T88, f1_out_gga(.(T85, T86), T86, T88)) → f1_out_gga([], .(T68, .(T85, T86)), T88)
U1_gga(T9, T25, T26, T28, f1_out_gga(.(T25, T26), T26, T28)) → f1_out_gga(.(T9, .(T25, T26)), [], T28)

The argument filtering Pi contains the following mapping:
f1_in_gga(x1, x2, x3)  =  f1_in_gga(x1, x2)
[]  =  []
f1_out_gga(x1, x2, x3)  =  f1_out_gga(x3)
.(x1, x2)  =  .(x1, x2)
U1_gga(x1, x2, x3, x4, x5)  =  U1_gga(x5)
U2_gga(x1, x2, x3, x4, x5)  =  U2_gga(x5)
U3_gga(x1, x2, x3, x4, x5)  =  U3_gga(x5)
U4_gga(x1, x2, x3, x4, x5, x6)  =  U4_gga(x6)

(5) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

F1_IN_GGA(.(T9, .(T25, T26)), [], T28) → U1_GGA(T9, T25, T26, T28, f1_in_gga(.(T25, T26), T26, T28))
F1_IN_GGA(.(T9, .(T25, T26)), [], T28) → F1_IN_GGA(.(T25, T26), T26, T28)
F1_IN_GGA([], .(T68, .(T85, T86)), T88) → U2_GGA(T68, T85, T86, T88, f1_in_gga(.(T85, T86), T86, T88))
F1_IN_GGA([], .(T68, .(T85, T86)), T88) → F1_IN_GGA(.(T85, T86), T86, T88)
F1_IN_GGA(.(T97, .(T119, T120)), [], T122) → U3_GGA(T97, T119, T120, T122, f1_in_gga(.(T119, T120), T120, T122))
F1_IN_GGA(.(T97, T137), .(T135, T136), T139) → U4_GGA(T97, T137, T135, T136, T139, f1_in_gga(T137, T136, T139))
F1_IN_GGA(.(T97, T137), .(T135, T136), T139) → F1_IN_GGA(T137, T136, T139)

The TRS R consists of the following rules:

f1_in_gga(T5, [], T5) → f1_out_gga(T5, [], T5)
f1_in_gga(.(T9, []), [], []) → f1_out_gga(.(T9, []), [], [])
f1_in_gga(.(T9, .(T25, T26)), [], T28) → U1_gga(T9, T25, T26, T28, f1_in_gga(.(T25, T26), T26, T28))
f1_in_gga([], .(T48, []), .(T48, [])) → f1_out_gga([], .(T48, []), .(T48, []))
f1_in_gga([], .(T68, []), []) → f1_out_gga([], .(T68, []), [])
f1_in_gga([], .(T68, .(T85, T86)), T88) → U2_gga(T68, T85, T86, T88, f1_in_gga(.(T85, T86), T86, T88))
f1_in_gga(.(T97, []), T106, T106) → f1_out_gga(.(T97, []), T106, T106)
f1_in_gga(.(T97, .(T119, T120)), [], T122) → U3_gga(T97, T119, T120, T122, f1_in_gga(.(T119, T120), T120, T122))
f1_in_gga(.(T97, T137), .(T135, T136), T139) → U4_gga(T97, T137, T135, T136, T139, f1_in_gga(T137, T136, T139))
U4_gga(T97, T137, T135, T136, T139, f1_out_gga(T137, T136, T139)) → f1_out_gga(.(T97, T137), .(T135, T136), T139)
U3_gga(T97, T119, T120, T122, f1_out_gga(.(T119, T120), T120, T122)) → f1_out_gga(.(T97, .(T119, T120)), [], T122)
U2_gga(T68, T85, T86, T88, f1_out_gga(.(T85, T86), T86, T88)) → f1_out_gga([], .(T68, .(T85, T86)), T88)
U1_gga(T9, T25, T26, T28, f1_out_gga(.(T25, T26), T26, T28)) → f1_out_gga(.(T9, .(T25, T26)), [], T28)

The argument filtering Pi contains the following mapping:
f1_in_gga(x1, x2, x3)  =  f1_in_gga(x1, x2)
[]  =  []
f1_out_gga(x1, x2, x3)  =  f1_out_gga(x3)
.(x1, x2)  =  .(x1, x2)
U1_gga(x1, x2, x3, x4, x5)  =  U1_gga(x5)
U2_gga(x1, x2, x3, x4, x5)  =  U2_gga(x5)
U3_gga(x1, x2, x3, x4, x5)  =  U3_gga(x5)
U4_gga(x1, x2, x3, x4, x5, x6)  =  U4_gga(x6)
F1_IN_GGA(x1, x2, x3)  =  F1_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4, x5)  =  U1_GGA(x5)
U2_GGA(x1, x2, x3, x4, x5)  =  U2_GGA(x5)
U3_GGA(x1, x2, x3, x4, x5)  =  U3_GGA(x5)
U4_GGA(x1, x2, x3, x4, x5, x6)  =  U4_GGA(x6)

We have to consider all (P,R,Pi)-chains

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

F1_IN_GGA(.(T9, .(T25, T26)), [], T28) → U1_GGA(T9, T25, T26, T28, f1_in_gga(.(T25, T26), T26, T28))
F1_IN_GGA(.(T9, .(T25, T26)), [], T28) → F1_IN_GGA(.(T25, T26), T26, T28)
F1_IN_GGA([], .(T68, .(T85, T86)), T88) → U2_GGA(T68, T85, T86, T88, f1_in_gga(.(T85, T86), T86, T88))
F1_IN_GGA([], .(T68, .(T85, T86)), T88) → F1_IN_GGA(.(T85, T86), T86, T88)
F1_IN_GGA(.(T97, .(T119, T120)), [], T122) → U3_GGA(T97, T119, T120, T122, f1_in_gga(.(T119, T120), T120, T122))
F1_IN_GGA(.(T97, T137), .(T135, T136), T139) → U4_GGA(T97, T137, T135, T136, T139, f1_in_gga(T137, T136, T139))
F1_IN_GGA(.(T97, T137), .(T135, T136), T139) → F1_IN_GGA(T137, T136, T139)

The TRS R consists of the following rules:

f1_in_gga(T5, [], T5) → f1_out_gga(T5, [], T5)
f1_in_gga(.(T9, []), [], []) → f1_out_gga(.(T9, []), [], [])
f1_in_gga(.(T9, .(T25, T26)), [], T28) → U1_gga(T9, T25, T26, T28, f1_in_gga(.(T25, T26), T26, T28))
f1_in_gga([], .(T48, []), .(T48, [])) → f1_out_gga([], .(T48, []), .(T48, []))
f1_in_gga([], .(T68, []), []) → f1_out_gga([], .(T68, []), [])
f1_in_gga([], .(T68, .(T85, T86)), T88) → U2_gga(T68, T85, T86, T88, f1_in_gga(.(T85, T86), T86, T88))
f1_in_gga(.(T97, []), T106, T106) → f1_out_gga(.(T97, []), T106, T106)
f1_in_gga(.(T97, .(T119, T120)), [], T122) → U3_gga(T97, T119, T120, T122, f1_in_gga(.(T119, T120), T120, T122))
f1_in_gga(.(T97, T137), .(T135, T136), T139) → U4_gga(T97, T137, T135, T136, T139, f1_in_gga(T137, T136, T139))
U4_gga(T97, T137, T135, T136, T139, f1_out_gga(T137, T136, T139)) → f1_out_gga(.(T97, T137), .(T135, T136), T139)
U3_gga(T97, T119, T120, T122, f1_out_gga(.(T119, T120), T120, T122)) → f1_out_gga(.(T97, .(T119, T120)), [], T122)
U2_gga(T68, T85, T86, T88, f1_out_gga(.(T85, T86), T86, T88)) → f1_out_gga([], .(T68, .(T85, T86)), T88)
U1_gga(T9, T25, T26, T28, f1_out_gga(.(T25, T26), T26, T28)) → f1_out_gga(.(T9, .(T25, T26)), [], T28)

The argument filtering Pi contains the following mapping:
f1_in_gga(x1, x2, x3)  =  f1_in_gga(x1, x2)
[]  =  []
f1_out_gga(x1, x2, x3)  =  f1_out_gga(x3)
.(x1, x2)  =  .(x1, x2)
U1_gga(x1, x2, x3, x4, x5)  =  U1_gga(x5)
U2_gga(x1, x2, x3, x4, x5)  =  U2_gga(x5)
U3_gga(x1, x2, x3, x4, x5)  =  U3_gga(x5)
U4_gga(x1, x2, x3, x4, x5, x6)  =  U4_gga(x6)
F1_IN_GGA(x1, x2, x3)  =  F1_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4, x5)  =  U1_GGA(x5)
U2_GGA(x1, x2, x3, x4, x5)  =  U2_GGA(x5)
U3_GGA(x1, x2, x3, x4, x5)  =  U3_GGA(x5)
U4_GGA(x1, x2, x3, x4, x5, x6)  =  U4_GGA(x6)

We have to consider all (P,R,Pi)-chains

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 4 less nodes.

(8) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

F1_IN_GGA(.(T97, T137), .(T135, T136), T139) → F1_IN_GGA(T137, T136, T139)
F1_IN_GGA(.(T9, .(T25, T26)), [], T28) → F1_IN_GGA(.(T25, T26), T26, T28)
F1_IN_GGA([], .(T68, .(T85, T86)), T88) → F1_IN_GGA(.(T85, T86), T86, T88)

The TRS R consists of the following rules:

f1_in_gga(T5, [], T5) → f1_out_gga(T5, [], T5)
f1_in_gga(.(T9, []), [], []) → f1_out_gga(.(T9, []), [], [])
f1_in_gga(.(T9, .(T25, T26)), [], T28) → U1_gga(T9, T25, T26, T28, f1_in_gga(.(T25, T26), T26, T28))
f1_in_gga([], .(T48, []), .(T48, [])) → f1_out_gga([], .(T48, []), .(T48, []))
f1_in_gga([], .(T68, []), []) → f1_out_gga([], .(T68, []), [])
f1_in_gga([], .(T68, .(T85, T86)), T88) → U2_gga(T68, T85, T86, T88, f1_in_gga(.(T85, T86), T86, T88))
f1_in_gga(.(T97, []), T106, T106) → f1_out_gga(.(T97, []), T106, T106)
f1_in_gga(.(T97, .(T119, T120)), [], T122) → U3_gga(T97, T119, T120, T122, f1_in_gga(.(T119, T120), T120, T122))
f1_in_gga(.(T97, T137), .(T135, T136), T139) → U4_gga(T97, T137, T135, T136, T139, f1_in_gga(T137, T136, T139))
U4_gga(T97, T137, T135, T136, T139, f1_out_gga(T137, T136, T139)) → f1_out_gga(.(T97, T137), .(T135, T136), T139)
U3_gga(T97, T119, T120, T122, f1_out_gga(.(T119, T120), T120, T122)) → f1_out_gga(.(T97, .(T119, T120)), [], T122)
U2_gga(T68, T85, T86, T88, f1_out_gga(.(T85, T86), T86, T88)) → f1_out_gga([], .(T68, .(T85, T86)), T88)
U1_gga(T9, T25, T26, T28, f1_out_gga(.(T25, T26), T26, T28)) → f1_out_gga(.(T9, .(T25, T26)), [], T28)

The argument filtering Pi contains the following mapping:
f1_in_gga(x1, x2, x3)  =  f1_in_gga(x1, x2)
[]  =  []
f1_out_gga(x1, x2, x3)  =  f1_out_gga(x3)
.(x1, x2)  =  .(x1, x2)
U1_gga(x1, x2, x3, x4, x5)  =  U1_gga(x5)
U2_gga(x1, x2, x3, x4, x5)  =  U2_gga(x5)
U3_gga(x1, x2, x3, x4, x5)  =  U3_gga(x5)
U4_gga(x1, x2, x3, x4, x5, x6)  =  U4_gga(x6)
F1_IN_GGA(x1, x2, x3)  =  F1_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(9) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(10) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

F1_IN_GGA(.(T97, T137), .(T135, T136), T139) → F1_IN_GGA(T137, T136, T139)
F1_IN_GGA(.(T9, .(T25, T26)), [], T28) → F1_IN_GGA(.(T25, T26), T26, T28)
F1_IN_GGA([], .(T68, .(T85, T86)), T88) → F1_IN_GGA(.(T85, T86), T86, T88)

R is empty.
The argument filtering Pi contains the following mapping:
[]  =  []
.(x1, x2)  =  .(x1, x2)
F1_IN_GGA(x1, x2, x3)  =  F1_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(11) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F1_IN_GGA(.(T97, T137), .(T135, T136)) → F1_IN_GGA(T137, T136)
F1_IN_GGA(.(T9, .(T25, T26)), []) → F1_IN_GGA(.(T25, T26), T26)
F1_IN_GGA([], .(T68, .(T85, T86))) → F1_IN_GGA(.(T85, T86), T86)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(13) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • F1_IN_GGA(.(T97, T137), .(T135, T136)) → F1_IN_GGA(T137, T136)
    The graph contains the following edges 1 > 1, 2 > 2

  • F1_IN_GGA(.(T9, .(T25, T26)), []) → F1_IN_GGA(.(T25, T26), T26)
    The graph contains the following edges 1 > 1, 1 > 2

  • F1_IN_GGA([], .(T68, .(T85, T86))) → F1_IN_GGA(.(T85, T86), T86)
    The graph contains the following edges 2 > 1, 2 > 2

(14) YES