(0) Obligation:
Clauses:
p(M, N, s(R), RES) :- p(M, R, N, RES).
p(M, s(N), R, RES) :- p(R, N, M, RES).
p(M, X1, X2, M).
Queries:
p(g,g,g,a).
(1) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
p_in: (b,b,b,f)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
p_in_ggga(M, N, s(R), RES) → U1_ggga(M, N, R, RES, p_in_ggga(M, R, N, RES))
p_in_ggga(M, s(N), R, RES) → U2_ggga(M, N, R, RES, p_in_ggga(R, N, M, RES))
p_in_ggga(M, X1, X2, M) → p_out_ggga(M, X1, X2, M)
U2_ggga(M, N, R, RES, p_out_ggga(R, N, M, RES)) → p_out_ggga(M, s(N), R, RES)
U1_ggga(M, N, R, RES, p_out_ggga(M, R, N, RES)) → p_out_ggga(M, N, s(R), RES)
The argument filtering Pi contains the following mapping:
p_in_ggga(
x1,
x2,
x3,
x4) =
p_in_ggga(
x1,
x2,
x3)
s(
x1) =
s(
x1)
U1_ggga(
x1,
x2,
x3,
x4,
x5) =
U1_ggga(
x5)
U2_ggga(
x1,
x2,
x3,
x4,
x5) =
U2_ggga(
x5)
p_out_ggga(
x1,
x2,
x3,
x4) =
p_out_ggga(
x4)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(2) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
p_in_ggga(M, N, s(R), RES) → U1_ggga(M, N, R, RES, p_in_ggga(M, R, N, RES))
p_in_ggga(M, s(N), R, RES) → U2_ggga(M, N, R, RES, p_in_ggga(R, N, M, RES))
p_in_ggga(M, X1, X2, M) → p_out_ggga(M, X1, X2, M)
U2_ggga(M, N, R, RES, p_out_ggga(R, N, M, RES)) → p_out_ggga(M, s(N), R, RES)
U1_ggga(M, N, R, RES, p_out_ggga(M, R, N, RES)) → p_out_ggga(M, N, s(R), RES)
The argument filtering Pi contains the following mapping:
p_in_ggga(
x1,
x2,
x3,
x4) =
p_in_ggga(
x1,
x2,
x3)
s(
x1) =
s(
x1)
U1_ggga(
x1,
x2,
x3,
x4,
x5) =
U1_ggga(
x5)
U2_ggga(
x1,
x2,
x3,
x4,
x5) =
U2_ggga(
x5)
p_out_ggga(
x1,
x2,
x3,
x4) =
p_out_ggga(
x4)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_GGGA(M, N, s(R), RES) → U1_GGGA(M, N, R, RES, p_in_ggga(M, R, N, RES))
P_IN_GGGA(M, N, s(R), RES) → P_IN_GGGA(M, R, N, RES)
P_IN_GGGA(M, s(N), R, RES) → U2_GGGA(M, N, R, RES, p_in_ggga(R, N, M, RES))
P_IN_GGGA(M, s(N), R, RES) → P_IN_GGGA(R, N, M, RES)
The TRS R consists of the following rules:
p_in_ggga(M, N, s(R), RES) → U1_ggga(M, N, R, RES, p_in_ggga(M, R, N, RES))
p_in_ggga(M, s(N), R, RES) → U2_ggga(M, N, R, RES, p_in_ggga(R, N, M, RES))
p_in_ggga(M, X1, X2, M) → p_out_ggga(M, X1, X2, M)
U2_ggga(M, N, R, RES, p_out_ggga(R, N, M, RES)) → p_out_ggga(M, s(N), R, RES)
U1_ggga(M, N, R, RES, p_out_ggga(M, R, N, RES)) → p_out_ggga(M, N, s(R), RES)
The argument filtering Pi contains the following mapping:
p_in_ggga(
x1,
x2,
x3,
x4) =
p_in_ggga(
x1,
x2,
x3)
s(
x1) =
s(
x1)
U1_ggga(
x1,
x2,
x3,
x4,
x5) =
U1_ggga(
x5)
U2_ggga(
x1,
x2,
x3,
x4,
x5) =
U2_ggga(
x5)
p_out_ggga(
x1,
x2,
x3,
x4) =
p_out_ggga(
x4)
P_IN_GGGA(
x1,
x2,
x3,
x4) =
P_IN_GGGA(
x1,
x2,
x3)
U1_GGGA(
x1,
x2,
x3,
x4,
x5) =
U1_GGGA(
x5)
U2_GGGA(
x1,
x2,
x3,
x4,
x5) =
U2_GGGA(
x5)
We have to consider all (P,R,Pi)-chains
(4) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_GGGA(M, N, s(R), RES) → U1_GGGA(M, N, R, RES, p_in_ggga(M, R, N, RES))
P_IN_GGGA(M, N, s(R), RES) → P_IN_GGGA(M, R, N, RES)
P_IN_GGGA(M, s(N), R, RES) → U2_GGGA(M, N, R, RES, p_in_ggga(R, N, M, RES))
P_IN_GGGA(M, s(N), R, RES) → P_IN_GGGA(R, N, M, RES)
The TRS R consists of the following rules:
p_in_ggga(M, N, s(R), RES) → U1_ggga(M, N, R, RES, p_in_ggga(M, R, N, RES))
p_in_ggga(M, s(N), R, RES) → U2_ggga(M, N, R, RES, p_in_ggga(R, N, M, RES))
p_in_ggga(M, X1, X2, M) → p_out_ggga(M, X1, X2, M)
U2_ggga(M, N, R, RES, p_out_ggga(R, N, M, RES)) → p_out_ggga(M, s(N), R, RES)
U1_ggga(M, N, R, RES, p_out_ggga(M, R, N, RES)) → p_out_ggga(M, N, s(R), RES)
The argument filtering Pi contains the following mapping:
p_in_ggga(
x1,
x2,
x3,
x4) =
p_in_ggga(
x1,
x2,
x3)
s(
x1) =
s(
x1)
U1_ggga(
x1,
x2,
x3,
x4,
x5) =
U1_ggga(
x5)
U2_ggga(
x1,
x2,
x3,
x4,
x5) =
U2_ggga(
x5)
p_out_ggga(
x1,
x2,
x3,
x4) =
p_out_ggga(
x4)
P_IN_GGGA(
x1,
x2,
x3,
x4) =
P_IN_GGGA(
x1,
x2,
x3)
U1_GGGA(
x1,
x2,
x3,
x4,
x5) =
U1_GGGA(
x5)
U2_GGGA(
x1,
x2,
x3,
x4,
x5) =
U2_GGGA(
x5)
We have to consider all (P,R,Pi)-chains
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 2 less nodes.
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_GGGA(M, s(N), R, RES) → P_IN_GGGA(R, N, M, RES)
P_IN_GGGA(M, N, s(R), RES) → P_IN_GGGA(M, R, N, RES)
The TRS R consists of the following rules:
p_in_ggga(M, N, s(R), RES) → U1_ggga(M, N, R, RES, p_in_ggga(M, R, N, RES))
p_in_ggga(M, s(N), R, RES) → U2_ggga(M, N, R, RES, p_in_ggga(R, N, M, RES))
p_in_ggga(M, X1, X2, M) → p_out_ggga(M, X1, X2, M)
U2_ggga(M, N, R, RES, p_out_ggga(R, N, M, RES)) → p_out_ggga(M, s(N), R, RES)
U1_ggga(M, N, R, RES, p_out_ggga(M, R, N, RES)) → p_out_ggga(M, N, s(R), RES)
The argument filtering Pi contains the following mapping:
p_in_ggga(
x1,
x2,
x3,
x4) =
p_in_ggga(
x1,
x2,
x3)
s(
x1) =
s(
x1)
U1_ggga(
x1,
x2,
x3,
x4,
x5) =
U1_ggga(
x5)
U2_ggga(
x1,
x2,
x3,
x4,
x5) =
U2_ggga(
x5)
p_out_ggga(
x1,
x2,
x3,
x4) =
p_out_ggga(
x4)
P_IN_GGGA(
x1,
x2,
x3,
x4) =
P_IN_GGGA(
x1,
x2,
x3)
We have to consider all (P,R,Pi)-chains
(7) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(8) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_GGGA(M, s(N), R, RES) → P_IN_GGGA(R, N, M, RES)
P_IN_GGGA(M, N, s(R), RES) → P_IN_GGGA(M, R, N, RES)
R is empty.
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
P_IN_GGGA(
x1,
x2,
x3,
x4) =
P_IN_GGGA(
x1,
x2,
x3)
We have to consider all (P,R,Pi)-chains
(9) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
P_IN_GGGA(M, s(N), R) → P_IN_GGGA(R, N, M)
P_IN_GGGA(M, N, s(R)) → P_IN_GGGA(M, R, N)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(11) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- P_IN_GGGA(M, s(N), R) → P_IN_GGGA(R, N, M)
The graph contains the following edges 3 >= 1, 2 > 2, 1 >= 3
- P_IN_GGGA(M, N, s(R)) → P_IN_GGGA(M, R, N)
The graph contains the following edges 1 >= 1, 3 > 2, 2 >= 3
(12) TRUE
(13) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
p_in: (b,b,b,f)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
p_in_ggga(M, N, s(R), RES) → U1_ggga(M, N, R, RES, p_in_ggga(M, R, N, RES))
p_in_ggga(M, s(N), R, RES) → U2_ggga(M, N, R, RES, p_in_ggga(R, N, M, RES))
p_in_ggga(M, X1, X2, M) → p_out_ggga(M, X1, X2, M)
U2_ggga(M, N, R, RES, p_out_ggga(R, N, M, RES)) → p_out_ggga(M, s(N), R, RES)
U1_ggga(M, N, R, RES, p_out_ggga(M, R, N, RES)) → p_out_ggga(M, N, s(R), RES)
The argument filtering Pi contains the following mapping:
p_in_ggga(
x1,
x2,
x3,
x4) =
p_in_ggga(
x1,
x2,
x3)
s(
x1) =
s(
x1)
U1_ggga(
x1,
x2,
x3,
x4,
x5) =
U1_ggga(
x1,
x2,
x3,
x5)
U2_ggga(
x1,
x2,
x3,
x4,
x5) =
U2_ggga(
x1,
x2,
x3,
x5)
p_out_ggga(
x1,
x2,
x3,
x4) =
p_out_ggga(
x1,
x2,
x3,
x4)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(14) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
p_in_ggga(M, N, s(R), RES) → U1_ggga(M, N, R, RES, p_in_ggga(M, R, N, RES))
p_in_ggga(M, s(N), R, RES) → U2_ggga(M, N, R, RES, p_in_ggga(R, N, M, RES))
p_in_ggga(M, X1, X2, M) → p_out_ggga(M, X1, X2, M)
U2_ggga(M, N, R, RES, p_out_ggga(R, N, M, RES)) → p_out_ggga(M, s(N), R, RES)
U1_ggga(M, N, R, RES, p_out_ggga(M, R, N, RES)) → p_out_ggga(M, N, s(R), RES)
The argument filtering Pi contains the following mapping:
p_in_ggga(
x1,
x2,
x3,
x4) =
p_in_ggga(
x1,
x2,
x3)
s(
x1) =
s(
x1)
U1_ggga(
x1,
x2,
x3,
x4,
x5) =
U1_ggga(
x1,
x2,
x3,
x5)
U2_ggga(
x1,
x2,
x3,
x4,
x5) =
U2_ggga(
x1,
x2,
x3,
x5)
p_out_ggga(
x1,
x2,
x3,
x4) =
p_out_ggga(
x1,
x2,
x3,
x4)
(15) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_GGGA(M, N, s(R), RES) → U1_GGGA(M, N, R, RES, p_in_ggga(M, R, N, RES))
P_IN_GGGA(M, N, s(R), RES) → P_IN_GGGA(M, R, N, RES)
P_IN_GGGA(M, s(N), R, RES) → U2_GGGA(M, N, R, RES, p_in_ggga(R, N, M, RES))
P_IN_GGGA(M, s(N), R, RES) → P_IN_GGGA(R, N, M, RES)
The TRS R consists of the following rules:
p_in_ggga(M, N, s(R), RES) → U1_ggga(M, N, R, RES, p_in_ggga(M, R, N, RES))
p_in_ggga(M, s(N), R, RES) → U2_ggga(M, N, R, RES, p_in_ggga(R, N, M, RES))
p_in_ggga(M, X1, X2, M) → p_out_ggga(M, X1, X2, M)
U2_ggga(M, N, R, RES, p_out_ggga(R, N, M, RES)) → p_out_ggga(M, s(N), R, RES)
U1_ggga(M, N, R, RES, p_out_ggga(M, R, N, RES)) → p_out_ggga(M, N, s(R), RES)
The argument filtering Pi contains the following mapping:
p_in_ggga(
x1,
x2,
x3,
x4) =
p_in_ggga(
x1,
x2,
x3)
s(
x1) =
s(
x1)
U1_ggga(
x1,
x2,
x3,
x4,
x5) =
U1_ggga(
x1,
x2,
x3,
x5)
U2_ggga(
x1,
x2,
x3,
x4,
x5) =
U2_ggga(
x1,
x2,
x3,
x5)
p_out_ggga(
x1,
x2,
x3,
x4) =
p_out_ggga(
x1,
x2,
x3,
x4)
P_IN_GGGA(
x1,
x2,
x3,
x4) =
P_IN_GGGA(
x1,
x2,
x3)
U1_GGGA(
x1,
x2,
x3,
x4,
x5) =
U1_GGGA(
x1,
x2,
x3,
x5)
U2_GGGA(
x1,
x2,
x3,
x4,
x5) =
U2_GGGA(
x1,
x2,
x3,
x5)
We have to consider all (P,R,Pi)-chains
(16) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_GGGA(M, N, s(R), RES) → U1_GGGA(M, N, R, RES, p_in_ggga(M, R, N, RES))
P_IN_GGGA(M, N, s(R), RES) → P_IN_GGGA(M, R, N, RES)
P_IN_GGGA(M, s(N), R, RES) → U2_GGGA(M, N, R, RES, p_in_ggga(R, N, M, RES))
P_IN_GGGA(M, s(N), R, RES) → P_IN_GGGA(R, N, M, RES)
The TRS R consists of the following rules:
p_in_ggga(M, N, s(R), RES) → U1_ggga(M, N, R, RES, p_in_ggga(M, R, N, RES))
p_in_ggga(M, s(N), R, RES) → U2_ggga(M, N, R, RES, p_in_ggga(R, N, M, RES))
p_in_ggga(M, X1, X2, M) → p_out_ggga(M, X1, X2, M)
U2_ggga(M, N, R, RES, p_out_ggga(R, N, M, RES)) → p_out_ggga(M, s(N), R, RES)
U1_ggga(M, N, R, RES, p_out_ggga(M, R, N, RES)) → p_out_ggga(M, N, s(R), RES)
The argument filtering Pi contains the following mapping:
p_in_ggga(
x1,
x2,
x3,
x4) =
p_in_ggga(
x1,
x2,
x3)
s(
x1) =
s(
x1)
U1_ggga(
x1,
x2,
x3,
x4,
x5) =
U1_ggga(
x1,
x2,
x3,
x5)
U2_ggga(
x1,
x2,
x3,
x4,
x5) =
U2_ggga(
x1,
x2,
x3,
x5)
p_out_ggga(
x1,
x2,
x3,
x4) =
p_out_ggga(
x1,
x2,
x3,
x4)
P_IN_GGGA(
x1,
x2,
x3,
x4) =
P_IN_GGGA(
x1,
x2,
x3)
U1_GGGA(
x1,
x2,
x3,
x4,
x5) =
U1_GGGA(
x1,
x2,
x3,
x5)
U2_GGGA(
x1,
x2,
x3,
x4,
x5) =
U2_GGGA(
x1,
x2,
x3,
x5)
We have to consider all (P,R,Pi)-chains
(17) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 2 less nodes.
(18) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_GGGA(M, s(N), R, RES) → P_IN_GGGA(R, N, M, RES)
P_IN_GGGA(M, N, s(R), RES) → P_IN_GGGA(M, R, N, RES)
The TRS R consists of the following rules:
p_in_ggga(M, N, s(R), RES) → U1_ggga(M, N, R, RES, p_in_ggga(M, R, N, RES))
p_in_ggga(M, s(N), R, RES) → U2_ggga(M, N, R, RES, p_in_ggga(R, N, M, RES))
p_in_ggga(M, X1, X2, M) → p_out_ggga(M, X1, X2, M)
U2_ggga(M, N, R, RES, p_out_ggga(R, N, M, RES)) → p_out_ggga(M, s(N), R, RES)
U1_ggga(M, N, R, RES, p_out_ggga(M, R, N, RES)) → p_out_ggga(M, N, s(R), RES)
The argument filtering Pi contains the following mapping:
p_in_ggga(
x1,
x2,
x3,
x4) =
p_in_ggga(
x1,
x2,
x3)
s(
x1) =
s(
x1)
U1_ggga(
x1,
x2,
x3,
x4,
x5) =
U1_ggga(
x1,
x2,
x3,
x5)
U2_ggga(
x1,
x2,
x3,
x4,
x5) =
U2_ggga(
x1,
x2,
x3,
x5)
p_out_ggga(
x1,
x2,
x3,
x4) =
p_out_ggga(
x1,
x2,
x3,
x4)
P_IN_GGGA(
x1,
x2,
x3,
x4) =
P_IN_GGGA(
x1,
x2,
x3)
We have to consider all (P,R,Pi)-chains
(19) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(20) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_GGGA(M, s(N), R, RES) → P_IN_GGGA(R, N, M, RES)
P_IN_GGGA(M, N, s(R), RES) → P_IN_GGGA(M, R, N, RES)
R is empty.
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
P_IN_GGGA(
x1,
x2,
x3,
x4) =
P_IN_GGGA(
x1,
x2,
x3)
We have to consider all (P,R,Pi)-chains
(21) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(22) Obligation:
Q DP problem:
The TRS P consists of the following rules:
P_IN_GGGA(M, s(N), R) → P_IN_GGGA(R, N, M)
P_IN_GGGA(M, N, s(R)) → P_IN_GGGA(M, R, N)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.