(0) Obligation:

Clauses:

gcd(X, Y, D) :- ','(le(X, Y), gcd_le(X, Y, D)).
gcd(X, Y, D) :- ','(gt(X, Y), gcd_le(Y, X, D)).
gcd_le(0, Y, Y).
gcd_le(s(X), Y, D) :- ','(add(s(X), Z, Y), gcd(s(X), Z, D)).
gt(s(X), s(Y)) :- gt(X, Y).
gt(s(X), 0).
le(s(X), s(Y)) :- le(X, Y).
le(0, s(Y)).
le(0, 0).
add(s(X), Y, s(Z)) :- add(X, Y, Z).
add(0, X, X).

Queries:

gcd(g,g,a).

(1) PrologToDTProblemTransformerProof (SOUND transformation)

Built DT problem from termination graph.

(2) Obligation:

Triples:

le9(s(T33), s(T34)) :- le9(T33, T34).
add32(s(T87), X124, s(T88)) :- add32(T87, X124, T88).
gt66(s(T134), s(T135)) :- gt66(T134, T135).
gcd1(s(T19), s(T20), T10) :- le9(T19, T20).
gcd1(s(T75), s(T76), T57) :- ','(lec9(T75, T76), add32(T75, X100, T76)).
gcd1(s(T54), s(T55), T57) :- ','(lec9(T54, T55), ','(addc27(T54, T60, T55), gcd1(s(T54), T60, T57))).
gcd1(T118, T119, T121) :- gt66(T118, T119).
gcd1(T155, s(T154), T157) :- ','(gtc66(T155, s(T154)), add32(s(T154), X222, T155)).
gcd1(T155, s(T154), T157) :- ','(gtc66(T155, s(T154)), ','(addc32(s(T154), T160, T155), gcd1(s(T154), T160, T157))).

Clauses:

lec9(s(T33), s(T34)) :- lec9(T33, T34).
lec9(0, s(T41)).
lec9(0, 0).
gcdc1(s(T54), s(T55), T57) :- ','(lec9(T54, T55), ','(addc27(T54, T60, T55), gcdc1(s(T54), T60, T57))).
gcdc1(0, s(T108), s(T108)).
gcdc1(0, 0, 0).
gcdc1(T147, 0, T147) :- gtc66(T147, 0).
gcdc1(T155, s(T154), T157) :- ','(gtc66(T155, s(T154)), ','(addc32(s(T154), T160, T155), gcdc1(s(T154), T160, T157))).
addc32(s(T87), X124, s(T88)) :- addc32(T87, X124, T88).
addc32(0, T93, T93).
gtc66(s(T134), s(T135)) :- gtc66(T134, T135).
gtc66(s(T140), 0).
addc27(T75, X100, T76) :- addc32(T75, X100, T76).

Afs:

gcd1(x1, x2, x3)  =  gcd1(x1, x2)

(3) TriplesToPiDPProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
gcd1_in: (b,b,f)
le9_in: (b,b)
lec9_in: (b,b)
add32_in: (b,f,b)
addc27_in: (b,f,b)
addc32_in: (b,f,b)
gt66_in: (b,b)
gtc66_in: (b,b)
Transforming TRIPLES into the following Term Rewriting System:
Pi DP problem:
The TRS P consists of the following rules:

GCD1_IN_GGA(s(T19), s(T20), T10) → U4_GGA(T19, T20, T10, le9_in_gg(T19, T20))
GCD1_IN_GGA(s(T19), s(T20), T10) → LE9_IN_GG(T19, T20)
LE9_IN_GG(s(T33), s(T34)) → U1_GG(T33, T34, le9_in_gg(T33, T34))
LE9_IN_GG(s(T33), s(T34)) → LE9_IN_GG(T33, T34)
GCD1_IN_GGA(s(T75), s(T76), T57) → U5_GGA(T75, T76, T57, lec9_in_gg(T75, T76))
U5_GGA(T75, T76, T57, lec9_out_gg(T75, T76)) → U6_GGA(T75, T76, T57, add32_in_gag(T75, X100, T76))
U5_GGA(T75, T76, T57, lec9_out_gg(T75, T76)) → ADD32_IN_GAG(T75, X100, T76)
ADD32_IN_GAG(s(T87), X124, s(T88)) → U2_GAG(T87, X124, T88, add32_in_gag(T87, X124, T88))
ADD32_IN_GAG(s(T87), X124, s(T88)) → ADD32_IN_GAG(T87, X124, T88)
GCD1_IN_GGA(s(T54), s(T55), T57) → U7_GGA(T54, T55, T57, lec9_in_gg(T54, T55))
U7_GGA(T54, T55, T57, lec9_out_gg(T54, T55)) → U8_GGA(T54, T55, T57, addc27_in_gag(T54, T60, T55))
U8_GGA(T54, T55, T57, addc27_out_gag(T54, T60, T55)) → U9_GGA(T54, T55, T57, gcd1_in_gga(s(T54), T60, T57))
U8_GGA(T54, T55, T57, addc27_out_gag(T54, T60, T55)) → GCD1_IN_GGA(s(T54), T60, T57)
GCD1_IN_GGA(T118, T119, T121) → U10_GGA(T118, T119, T121, gt66_in_gg(T118, T119))
GCD1_IN_GGA(T118, T119, T121) → GT66_IN_GG(T118, T119)
GT66_IN_GG(s(T134), s(T135)) → U3_GG(T134, T135, gt66_in_gg(T134, T135))
GT66_IN_GG(s(T134), s(T135)) → GT66_IN_GG(T134, T135)
GCD1_IN_GGA(T155, s(T154), T157) → U11_GGA(T155, T154, T157, gtc66_in_gg(T155, s(T154)))
U11_GGA(T155, T154, T157, gtc66_out_gg(T155, s(T154))) → U12_GGA(T155, T154, T157, add32_in_gag(s(T154), X222, T155))
U11_GGA(T155, T154, T157, gtc66_out_gg(T155, s(T154))) → ADD32_IN_GAG(s(T154), X222, T155)
U11_GGA(T155, T154, T157, gtc66_out_gg(T155, s(T154))) → U13_GGA(T155, T154, T157, addc32_in_gag(s(T154), T160, T155))
U13_GGA(T155, T154, T157, addc32_out_gag(s(T154), T160, T155)) → U14_GGA(T155, T154, T157, gcd1_in_gga(s(T154), T160, T157))
U13_GGA(T155, T154, T157, addc32_out_gag(s(T154), T160, T155)) → GCD1_IN_GGA(s(T154), T160, T157)

The TRS R consists of the following rules:

lec9_in_gg(s(T33), s(T34)) → U16_gg(T33, T34, lec9_in_gg(T33, T34))
lec9_in_gg(0, s(T41)) → lec9_out_gg(0, s(T41))
lec9_in_gg(0, 0) → lec9_out_gg(0, 0)
U16_gg(T33, T34, lec9_out_gg(T33, T34)) → lec9_out_gg(s(T33), s(T34))
addc27_in_gag(T75, X100, T76) → U26_gag(T75, X100, T76, addc32_in_gag(T75, X100, T76))
addc32_in_gag(s(T87), X124, s(T88)) → U24_gag(T87, X124, T88, addc32_in_gag(T87, X124, T88))
addc32_in_gag(0, T93, T93) → addc32_out_gag(0, T93, T93)
U24_gag(T87, X124, T88, addc32_out_gag(T87, X124, T88)) → addc32_out_gag(s(T87), X124, s(T88))
U26_gag(T75, X100, T76, addc32_out_gag(T75, X100, T76)) → addc27_out_gag(T75, X100, T76)
gtc66_in_gg(s(T134), s(T135)) → U25_gg(T134, T135, gtc66_in_gg(T134, T135))
gtc66_in_gg(s(T140), 0) → gtc66_out_gg(s(T140), 0)
U25_gg(T134, T135, gtc66_out_gg(T134, T135)) → gtc66_out_gg(s(T134), s(T135))

The argument filtering Pi contains the following mapping:
gcd1_in_gga(x1, x2, x3)  =  gcd1_in_gga(x1, x2)
s(x1)  =  s(x1)
le9_in_gg(x1, x2)  =  le9_in_gg(x1, x2)
lec9_in_gg(x1, x2)  =  lec9_in_gg(x1, x2)
U16_gg(x1, x2, x3)  =  U16_gg(x1, x2, x3)
0  =  0
lec9_out_gg(x1, x2)  =  lec9_out_gg(x1, x2)
add32_in_gag(x1, x2, x3)  =  add32_in_gag(x1, x3)
addc27_in_gag(x1, x2, x3)  =  addc27_in_gag(x1, x3)
U26_gag(x1, x2, x3, x4)  =  U26_gag(x1, x3, x4)
addc32_in_gag(x1, x2, x3)  =  addc32_in_gag(x1, x3)
U24_gag(x1, x2, x3, x4)  =  U24_gag(x1, x3, x4)
addc32_out_gag(x1, x2, x3)  =  addc32_out_gag(x1, x2, x3)
addc27_out_gag(x1, x2, x3)  =  addc27_out_gag(x1, x2, x3)
gt66_in_gg(x1, x2)  =  gt66_in_gg(x1, x2)
gtc66_in_gg(x1, x2)  =  gtc66_in_gg(x1, x2)
U25_gg(x1, x2, x3)  =  U25_gg(x1, x2, x3)
gtc66_out_gg(x1, x2)  =  gtc66_out_gg(x1, x2)
GCD1_IN_GGA(x1, x2, x3)  =  GCD1_IN_GGA(x1, x2)
U4_GGA(x1, x2, x3, x4)  =  U4_GGA(x1, x2, x4)
LE9_IN_GG(x1, x2)  =  LE9_IN_GG(x1, x2)
U1_GG(x1, x2, x3)  =  U1_GG(x1, x2, x3)
U5_GGA(x1, x2, x3, x4)  =  U5_GGA(x1, x2, x4)
U6_GGA(x1, x2, x3, x4)  =  U6_GGA(x1, x2, x4)
ADD32_IN_GAG(x1, x2, x3)  =  ADD32_IN_GAG(x1, x3)
U2_GAG(x1, x2, x3, x4)  =  U2_GAG(x1, x3, x4)
U7_GGA(x1, x2, x3, x4)  =  U7_GGA(x1, x2, x4)
U8_GGA(x1, x2, x3, x4)  =  U8_GGA(x1, x2, x4)
U9_GGA(x1, x2, x3, x4)  =  U9_GGA(x1, x2, x4)
U10_GGA(x1, x2, x3, x4)  =  U10_GGA(x1, x2, x4)
GT66_IN_GG(x1, x2)  =  GT66_IN_GG(x1, x2)
U3_GG(x1, x2, x3)  =  U3_GG(x1, x2, x3)
U11_GGA(x1, x2, x3, x4)  =  U11_GGA(x1, x2, x4)
U12_GGA(x1, x2, x3, x4)  =  U12_GGA(x1, x2, x4)
U13_GGA(x1, x2, x3, x4)  =  U13_GGA(x1, x2, x4)
U14_GGA(x1, x2, x3, x4)  =  U14_GGA(x1, x2, x4)

We have to consider all (P,R,Pi)-chains

Infinitary Constructor Rewriting Termination of PiDP implies Termination of TRIPLES

(4) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

GCD1_IN_GGA(s(T19), s(T20), T10) → U4_GGA(T19, T20, T10, le9_in_gg(T19, T20))
GCD1_IN_GGA(s(T19), s(T20), T10) → LE9_IN_GG(T19, T20)
LE9_IN_GG(s(T33), s(T34)) → U1_GG(T33, T34, le9_in_gg(T33, T34))
LE9_IN_GG(s(T33), s(T34)) → LE9_IN_GG(T33, T34)
GCD1_IN_GGA(s(T75), s(T76), T57) → U5_GGA(T75, T76, T57, lec9_in_gg(T75, T76))
U5_GGA(T75, T76, T57, lec9_out_gg(T75, T76)) → U6_GGA(T75, T76, T57, add32_in_gag(T75, X100, T76))
U5_GGA(T75, T76, T57, lec9_out_gg(T75, T76)) → ADD32_IN_GAG(T75, X100, T76)
ADD32_IN_GAG(s(T87), X124, s(T88)) → U2_GAG(T87, X124, T88, add32_in_gag(T87, X124, T88))
ADD32_IN_GAG(s(T87), X124, s(T88)) → ADD32_IN_GAG(T87, X124, T88)
GCD1_IN_GGA(s(T54), s(T55), T57) → U7_GGA(T54, T55, T57, lec9_in_gg(T54, T55))
U7_GGA(T54, T55, T57, lec9_out_gg(T54, T55)) → U8_GGA(T54, T55, T57, addc27_in_gag(T54, T60, T55))
U8_GGA(T54, T55, T57, addc27_out_gag(T54, T60, T55)) → U9_GGA(T54, T55, T57, gcd1_in_gga(s(T54), T60, T57))
U8_GGA(T54, T55, T57, addc27_out_gag(T54, T60, T55)) → GCD1_IN_GGA(s(T54), T60, T57)
GCD1_IN_GGA(T118, T119, T121) → U10_GGA(T118, T119, T121, gt66_in_gg(T118, T119))
GCD1_IN_GGA(T118, T119, T121) → GT66_IN_GG(T118, T119)
GT66_IN_GG(s(T134), s(T135)) → U3_GG(T134, T135, gt66_in_gg(T134, T135))
GT66_IN_GG(s(T134), s(T135)) → GT66_IN_GG(T134, T135)
GCD1_IN_GGA(T155, s(T154), T157) → U11_GGA(T155, T154, T157, gtc66_in_gg(T155, s(T154)))
U11_GGA(T155, T154, T157, gtc66_out_gg(T155, s(T154))) → U12_GGA(T155, T154, T157, add32_in_gag(s(T154), X222, T155))
U11_GGA(T155, T154, T157, gtc66_out_gg(T155, s(T154))) → ADD32_IN_GAG(s(T154), X222, T155)
U11_GGA(T155, T154, T157, gtc66_out_gg(T155, s(T154))) → U13_GGA(T155, T154, T157, addc32_in_gag(s(T154), T160, T155))
U13_GGA(T155, T154, T157, addc32_out_gag(s(T154), T160, T155)) → U14_GGA(T155, T154, T157, gcd1_in_gga(s(T154), T160, T157))
U13_GGA(T155, T154, T157, addc32_out_gag(s(T154), T160, T155)) → GCD1_IN_GGA(s(T154), T160, T157)

The TRS R consists of the following rules:

lec9_in_gg(s(T33), s(T34)) → U16_gg(T33, T34, lec9_in_gg(T33, T34))
lec9_in_gg(0, s(T41)) → lec9_out_gg(0, s(T41))
lec9_in_gg(0, 0) → lec9_out_gg(0, 0)
U16_gg(T33, T34, lec9_out_gg(T33, T34)) → lec9_out_gg(s(T33), s(T34))
addc27_in_gag(T75, X100, T76) → U26_gag(T75, X100, T76, addc32_in_gag(T75, X100, T76))
addc32_in_gag(s(T87), X124, s(T88)) → U24_gag(T87, X124, T88, addc32_in_gag(T87, X124, T88))
addc32_in_gag(0, T93, T93) → addc32_out_gag(0, T93, T93)
U24_gag(T87, X124, T88, addc32_out_gag(T87, X124, T88)) → addc32_out_gag(s(T87), X124, s(T88))
U26_gag(T75, X100, T76, addc32_out_gag(T75, X100, T76)) → addc27_out_gag(T75, X100, T76)
gtc66_in_gg(s(T134), s(T135)) → U25_gg(T134, T135, gtc66_in_gg(T134, T135))
gtc66_in_gg(s(T140), 0) → gtc66_out_gg(s(T140), 0)
U25_gg(T134, T135, gtc66_out_gg(T134, T135)) → gtc66_out_gg(s(T134), s(T135))

The argument filtering Pi contains the following mapping:
gcd1_in_gga(x1, x2, x3)  =  gcd1_in_gga(x1, x2)
s(x1)  =  s(x1)
le9_in_gg(x1, x2)  =  le9_in_gg(x1, x2)
lec9_in_gg(x1, x2)  =  lec9_in_gg(x1, x2)
U16_gg(x1, x2, x3)  =  U16_gg(x1, x2, x3)
0  =  0
lec9_out_gg(x1, x2)  =  lec9_out_gg(x1, x2)
add32_in_gag(x1, x2, x3)  =  add32_in_gag(x1, x3)
addc27_in_gag(x1, x2, x3)  =  addc27_in_gag(x1, x3)
U26_gag(x1, x2, x3, x4)  =  U26_gag(x1, x3, x4)
addc32_in_gag(x1, x2, x3)  =  addc32_in_gag(x1, x3)
U24_gag(x1, x2, x3, x4)  =  U24_gag(x1, x3, x4)
addc32_out_gag(x1, x2, x3)  =  addc32_out_gag(x1, x2, x3)
addc27_out_gag(x1, x2, x3)  =  addc27_out_gag(x1, x2, x3)
gt66_in_gg(x1, x2)  =  gt66_in_gg(x1, x2)
gtc66_in_gg(x1, x2)  =  gtc66_in_gg(x1, x2)
U25_gg(x1, x2, x3)  =  U25_gg(x1, x2, x3)
gtc66_out_gg(x1, x2)  =  gtc66_out_gg(x1, x2)
GCD1_IN_GGA(x1, x2, x3)  =  GCD1_IN_GGA(x1, x2)
U4_GGA(x1, x2, x3, x4)  =  U4_GGA(x1, x2, x4)
LE9_IN_GG(x1, x2)  =  LE9_IN_GG(x1, x2)
U1_GG(x1, x2, x3)  =  U1_GG(x1, x2, x3)
U5_GGA(x1, x2, x3, x4)  =  U5_GGA(x1, x2, x4)
U6_GGA(x1, x2, x3, x4)  =  U6_GGA(x1, x2, x4)
ADD32_IN_GAG(x1, x2, x3)  =  ADD32_IN_GAG(x1, x3)
U2_GAG(x1, x2, x3, x4)  =  U2_GAG(x1, x3, x4)
U7_GGA(x1, x2, x3, x4)  =  U7_GGA(x1, x2, x4)
U8_GGA(x1, x2, x3, x4)  =  U8_GGA(x1, x2, x4)
U9_GGA(x1, x2, x3, x4)  =  U9_GGA(x1, x2, x4)
U10_GGA(x1, x2, x3, x4)  =  U10_GGA(x1, x2, x4)
GT66_IN_GG(x1, x2)  =  GT66_IN_GG(x1, x2)
U3_GG(x1, x2, x3)  =  U3_GG(x1, x2, x3)
U11_GGA(x1, x2, x3, x4)  =  U11_GGA(x1, x2, x4)
U12_GGA(x1, x2, x3, x4)  =  U12_GGA(x1, x2, x4)
U13_GGA(x1, x2, x3, x4)  =  U13_GGA(x1, x2, x4)
U14_GGA(x1, x2, x3, x4)  =  U14_GGA(x1, x2, x4)

We have to consider all (P,R,Pi)-chains

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 4 SCCs with 14 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

GT66_IN_GG(s(T134), s(T135)) → GT66_IN_GG(T134, T135)

The TRS R consists of the following rules:

lec9_in_gg(s(T33), s(T34)) → U16_gg(T33, T34, lec9_in_gg(T33, T34))
lec9_in_gg(0, s(T41)) → lec9_out_gg(0, s(T41))
lec9_in_gg(0, 0) → lec9_out_gg(0, 0)
U16_gg(T33, T34, lec9_out_gg(T33, T34)) → lec9_out_gg(s(T33), s(T34))
addc27_in_gag(T75, X100, T76) → U26_gag(T75, X100, T76, addc32_in_gag(T75, X100, T76))
addc32_in_gag(s(T87), X124, s(T88)) → U24_gag(T87, X124, T88, addc32_in_gag(T87, X124, T88))
addc32_in_gag(0, T93, T93) → addc32_out_gag(0, T93, T93)
U24_gag(T87, X124, T88, addc32_out_gag(T87, X124, T88)) → addc32_out_gag(s(T87), X124, s(T88))
U26_gag(T75, X100, T76, addc32_out_gag(T75, X100, T76)) → addc27_out_gag(T75, X100, T76)
gtc66_in_gg(s(T134), s(T135)) → U25_gg(T134, T135, gtc66_in_gg(T134, T135))
gtc66_in_gg(s(T140), 0) → gtc66_out_gg(s(T140), 0)
U25_gg(T134, T135, gtc66_out_gg(T134, T135)) → gtc66_out_gg(s(T134), s(T135))

The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
lec9_in_gg(x1, x2)  =  lec9_in_gg(x1, x2)
U16_gg(x1, x2, x3)  =  U16_gg(x1, x2, x3)
0  =  0
lec9_out_gg(x1, x2)  =  lec9_out_gg(x1, x2)
addc27_in_gag(x1, x2, x3)  =  addc27_in_gag(x1, x3)
U26_gag(x1, x2, x3, x4)  =  U26_gag(x1, x3, x4)
addc32_in_gag(x1, x2, x3)  =  addc32_in_gag(x1, x3)
U24_gag(x1, x2, x3, x4)  =  U24_gag(x1, x3, x4)
addc32_out_gag(x1, x2, x3)  =  addc32_out_gag(x1, x2, x3)
addc27_out_gag(x1, x2, x3)  =  addc27_out_gag(x1, x2, x3)
gtc66_in_gg(x1, x2)  =  gtc66_in_gg(x1, x2)
U25_gg(x1, x2, x3)  =  U25_gg(x1, x2, x3)
gtc66_out_gg(x1, x2)  =  gtc66_out_gg(x1, x2)
GT66_IN_GG(x1, x2)  =  GT66_IN_GG(x1, x2)

We have to consider all (P,R,Pi)-chains

(8) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

GT66_IN_GG(s(T134), s(T135)) → GT66_IN_GG(T134, T135)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains

(10) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

GT66_IN_GG(s(T134), s(T135)) → GT66_IN_GG(T134, T135)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(12) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • GT66_IN_GG(s(T134), s(T135)) → GT66_IN_GG(T134, T135)
    The graph contains the following edges 1 > 1, 2 > 2

(13) YES

(14) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

ADD32_IN_GAG(s(T87), X124, s(T88)) → ADD32_IN_GAG(T87, X124, T88)

The TRS R consists of the following rules:

lec9_in_gg(s(T33), s(T34)) → U16_gg(T33, T34, lec9_in_gg(T33, T34))
lec9_in_gg(0, s(T41)) → lec9_out_gg(0, s(T41))
lec9_in_gg(0, 0) → lec9_out_gg(0, 0)
U16_gg(T33, T34, lec9_out_gg(T33, T34)) → lec9_out_gg(s(T33), s(T34))
addc27_in_gag(T75, X100, T76) → U26_gag(T75, X100, T76, addc32_in_gag(T75, X100, T76))
addc32_in_gag(s(T87), X124, s(T88)) → U24_gag(T87, X124, T88, addc32_in_gag(T87, X124, T88))
addc32_in_gag(0, T93, T93) → addc32_out_gag(0, T93, T93)
U24_gag(T87, X124, T88, addc32_out_gag(T87, X124, T88)) → addc32_out_gag(s(T87), X124, s(T88))
U26_gag(T75, X100, T76, addc32_out_gag(T75, X100, T76)) → addc27_out_gag(T75, X100, T76)
gtc66_in_gg(s(T134), s(T135)) → U25_gg(T134, T135, gtc66_in_gg(T134, T135))
gtc66_in_gg(s(T140), 0) → gtc66_out_gg(s(T140), 0)
U25_gg(T134, T135, gtc66_out_gg(T134, T135)) → gtc66_out_gg(s(T134), s(T135))

The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
lec9_in_gg(x1, x2)  =  lec9_in_gg(x1, x2)
U16_gg(x1, x2, x3)  =  U16_gg(x1, x2, x3)
0  =  0
lec9_out_gg(x1, x2)  =  lec9_out_gg(x1, x2)
addc27_in_gag(x1, x2, x3)  =  addc27_in_gag(x1, x3)
U26_gag(x1, x2, x3, x4)  =  U26_gag(x1, x3, x4)
addc32_in_gag(x1, x2, x3)  =  addc32_in_gag(x1, x3)
U24_gag(x1, x2, x3, x4)  =  U24_gag(x1, x3, x4)
addc32_out_gag(x1, x2, x3)  =  addc32_out_gag(x1, x2, x3)
addc27_out_gag(x1, x2, x3)  =  addc27_out_gag(x1, x2, x3)
gtc66_in_gg(x1, x2)  =  gtc66_in_gg(x1, x2)
U25_gg(x1, x2, x3)  =  U25_gg(x1, x2, x3)
gtc66_out_gg(x1, x2)  =  gtc66_out_gg(x1, x2)
ADD32_IN_GAG(x1, x2, x3)  =  ADD32_IN_GAG(x1, x3)

We have to consider all (P,R,Pi)-chains

(15) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

ADD32_IN_GAG(s(T87), X124, s(T88)) → ADD32_IN_GAG(T87, X124, T88)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
ADD32_IN_GAG(x1, x2, x3)  =  ADD32_IN_GAG(x1, x3)

We have to consider all (P,R,Pi)-chains

(17) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ADD32_IN_GAG(s(T87), s(T88)) → ADD32_IN_GAG(T87, T88)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(19) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • ADD32_IN_GAG(s(T87), s(T88)) → ADD32_IN_GAG(T87, T88)
    The graph contains the following edges 1 > 1, 2 > 2

(20) YES

(21) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LE9_IN_GG(s(T33), s(T34)) → LE9_IN_GG(T33, T34)

The TRS R consists of the following rules:

lec9_in_gg(s(T33), s(T34)) → U16_gg(T33, T34, lec9_in_gg(T33, T34))
lec9_in_gg(0, s(T41)) → lec9_out_gg(0, s(T41))
lec9_in_gg(0, 0) → lec9_out_gg(0, 0)
U16_gg(T33, T34, lec9_out_gg(T33, T34)) → lec9_out_gg(s(T33), s(T34))
addc27_in_gag(T75, X100, T76) → U26_gag(T75, X100, T76, addc32_in_gag(T75, X100, T76))
addc32_in_gag(s(T87), X124, s(T88)) → U24_gag(T87, X124, T88, addc32_in_gag(T87, X124, T88))
addc32_in_gag(0, T93, T93) → addc32_out_gag(0, T93, T93)
U24_gag(T87, X124, T88, addc32_out_gag(T87, X124, T88)) → addc32_out_gag(s(T87), X124, s(T88))
U26_gag(T75, X100, T76, addc32_out_gag(T75, X100, T76)) → addc27_out_gag(T75, X100, T76)
gtc66_in_gg(s(T134), s(T135)) → U25_gg(T134, T135, gtc66_in_gg(T134, T135))
gtc66_in_gg(s(T140), 0) → gtc66_out_gg(s(T140), 0)
U25_gg(T134, T135, gtc66_out_gg(T134, T135)) → gtc66_out_gg(s(T134), s(T135))

The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
lec9_in_gg(x1, x2)  =  lec9_in_gg(x1, x2)
U16_gg(x1, x2, x3)  =  U16_gg(x1, x2, x3)
0  =  0
lec9_out_gg(x1, x2)  =  lec9_out_gg(x1, x2)
addc27_in_gag(x1, x2, x3)  =  addc27_in_gag(x1, x3)
U26_gag(x1, x2, x3, x4)  =  U26_gag(x1, x3, x4)
addc32_in_gag(x1, x2, x3)  =  addc32_in_gag(x1, x3)
U24_gag(x1, x2, x3, x4)  =  U24_gag(x1, x3, x4)
addc32_out_gag(x1, x2, x3)  =  addc32_out_gag(x1, x2, x3)
addc27_out_gag(x1, x2, x3)  =  addc27_out_gag(x1, x2, x3)
gtc66_in_gg(x1, x2)  =  gtc66_in_gg(x1, x2)
U25_gg(x1, x2, x3)  =  U25_gg(x1, x2, x3)
gtc66_out_gg(x1, x2)  =  gtc66_out_gg(x1, x2)
LE9_IN_GG(x1, x2)  =  LE9_IN_GG(x1, x2)

We have to consider all (P,R,Pi)-chains

(22) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(23) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LE9_IN_GG(s(T33), s(T34)) → LE9_IN_GG(T33, T34)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains

(24) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LE9_IN_GG(s(T33), s(T34)) → LE9_IN_GG(T33, T34)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(26) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LE9_IN_GG(s(T33), s(T34)) → LE9_IN_GG(T33, T34)
    The graph contains the following edges 1 > 1, 2 > 2

(27) YES

(28) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

GCD1_IN_GGA(s(T54), s(T55), T57) → U7_GGA(T54, T55, T57, lec9_in_gg(T54, T55))
U7_GGA(T54, T55, T57, lec9_out_gg(T54, T55)) → U8_GGA(T54, T55, T57, addc27_in_gag(T54, T60, T55))
U8_GGA(T54, T55, T57, addc27_out_gag(T54, T60, T55)) → GCD1_IN_GGA(s(T54), T60, T57)
GCD1_IN_GGA(T155, s(T154), T157) → U11_GGA(T155, T154, T157, gtc66_in_gg(T155, s(T154)))
U11_GGA(T155, T154, T157, gtc66_out_gg(T155, s(T154))) → U13_GGA(T155, T154, T157, addc32_in_gag(s(T154), T160, T155))
U13_GGA(T155, T154, T157, addc32_out_gag(s(T154), T160, T155)) → GCD1_IN_GGA(s(T154), T160, T157)

The TRS R consists of the following rules:

lec9_in_gg(s(T33), s(T34)) → U16_gg(T33, T34, lec9_in_gg(T33, T34))
lec9_in_gg(0, s(T41)) → lec9_out_gg(0, s(T41))
lec9_in_gg(0, 0) → lec9_out_gg(0, 0)
U16_gg(T33, T34, lec9_out_gg(T33, T34)) → lec9_out_gg(s(T33), s(T34))
addc27_in_gag(T75, X100, T76) → U26_gag(T75, X100, T76, addc32_in_gag(T75, X100, T76))
addc32_in_gag(s(T87), X124, s(T88)) → U24_gag(T87, X124, T88, addc32_in_gag(T87, X124, T88))
addc32_in_gag(0, T93, T93) → addc32_out_gag(0, T93, T93)
U24_gag(T87, X124, T88, addc32_out_gag(T87, X124, T88)) → addc32_out_gag(s(T87), X124, s(T88))
U26_gag(T75, X100, T76, addc32_out_gag(T75, X100, T76)) → addc27_out_gag(T75, X100, T76)
gtc66_in_gg(s(T134), s(T135)) → U25_gg(T134, T135, gtc66_in_gg(T134, T135))
gtc66_in_gg(s(T140), 0) → gtc66_out_gg(s(T140), 0)
U25_gg(T134, T135, gtc66_out_gg(T134, T135)) → gtc66_out_gg(s(T134), s(T135))

The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
lec9_in_gg(x1, x2)  =  lec9_in_gg(x1, x2)
U16_gg(x1, x2, x3)  =  U16_gg(x1, x2, x3)
0  =  0
lec9_out_gg(x1, x2)  =  lec9_out_gg(x1, x2)
addc27_in_gag(x1, x2, x3)  =  addc27_in_gag(x1, x3)
U26_gag(x1, x2, x3, x4)  =  U26_gag(x1, x3, x4)
addc32_in_gag(x1, x2, x3)  =  addc32_in_gag(x1, x3)
U24_gag(x1, x2, x3, x4)  =  U24_gag(x1, x3, x4)
addc32_out_gag(x1, x2, x3)  =  addc32_out_gag(x1, x2, x3)
addc27_out_gag(x1, x2, x3)  =  addc27_out_gag(x1, x2, x3)
gtc66_in_gg(x1, x2)  =  gtc66_in_gg(x1, x2)
U25_gg(x1, x2, x3)  =  U25_gg(x1, x2, x3)
gtc66_out_gg(x1, x2)  =  gtc66_out_gg(x1, x2)
GCD1_IN_GGA(x1, x2, x3)  =  GCD1_IN_GGA(x1, x2)
U7_GGA(x1, x2, x3, x4)  =  U7_GGA(x1, x2, x4)
U8_GGA(x1, x2, x3, x4)  =  U8_GGA(x1, x2, x4)
U11_GGA(x1, x2, x3, x4)  =  U11_GGA(x1, x2, x4)
U13_GGA(x1, x2, x3, x4)  =  U13_GGA(x1, x2, x4)

We have to consider all (P,R,Pi)-chains

(29) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(30) Obligation:

Q DP problem:
The TRS P consists of the following rules:

GCD1_IN_GGA(s(T54), s(T55)) → U7_GGA(T54, T55, lec9_in_gg(T54, T55))
U7_GGA(T54, T55, lec9_out_gg(T54, T55)) → U8_GGA(T54, T55, addc27_in_gag(T54, T55))
U8_GGA(T54, T55, addc27_out_gag(T54, T60, T55)) → GCD1_IN_GGA(s(T54), T60)
GCD1_IN_GGA(T155, s(T154)) → U11_GGA(T155, T154, gtc66_in_gg(T155, s(T154)))
U11_GGA(T155, T154, gtc66_out_gg(T155, s(T154))) → U13_GGA(T155, T154, addc32_in_gag(s(T154), T155))
U13_GGA(T155, T154, addc32_out_gag(s(T154), T160, T155)) → GCD1_IN_GGA(s(T154), T160)

The TRS R consists of the following rules:

lec9_in_gg(s(T33), s(T34)) → U16_gg(T33, T34, lec9_in_gg(T33, T34))
lec9_in_gg(0, s(T41)) → lec9_out_gg(0, s(T41))
lec9_in_gg(0, 0) → lec9_out_gg(0, 0)
U16_gg(T33, T34, lec9_out_gg(T33, T34)) → lec9_out_gg(s(T33), s(T34))
addc27_in_gag(T75, T76) → U26_gag(T75, T76, addc32_in_gag(T75, T76))
addc32_in_gag(s(T87), s(T88)) → U24_gag(T87, T88, addc32_in_gag(T87, T88))
addc32_in_gag(0, T93) → addc32_out_gag(0, T93, T93)
U24_gag(T87, T88, addc32_out_gag(T87, X124, T88)) → addc32_out_gag(s(T87), X124, s(T88))
U26_gag(T75, T76, addc32_out_gag(T75, X100, T76)) → addc27_out_gag(T75, X100, T76)
gtc66_in_gg(s(T134), s(T135)) → U25_gg(T134, T135, gtc66_in_gg(T134, T135))
gtc66_in_gg(s(T140), 0) → gtc66_out_gg(s(T140), 0)
U25_gg(T134, T135, gtc66_out_gg(T134, T135)) → gtc66_out_gg(s(T134), s(T135))

The set Q consists of the following terms:

lec9_in_gg(x0, x1)
U16_gg(x0, x1, x2)
addc27_in_gag(x0, x1)
addc32_in_gag(x0, x1)
U24_gag(x0, x1, x2)
U26_gag(x0, x1, x2)
gtc66_in_gg(x0, x1)
U25_gg(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(31) Rewriting (EQUIVALENT transformation)

By rewriting [LPAR04] the rule U7_GGA(T54, T55, lec9_out_gg(T54, T55)) → U8_GGA(T54, T55, addc27_in_gag(T54, T55)) at position [2] we obtained the following new rules [LPAR04]:

U7_GGA(T54, T55, lec9_out_gg(T54, T55)) → U8_GGA(T54, T55, U26_gag(T54, T55, addc32_in_gag(T54, T55)))

(32) Obligation:

Q DP problem:
The TRS P consists of the following rules:

GCD1_IN_GGA(s(T54), s(T55)) → U7_GGA(T54, T55, lec9_in_gg(T54, T55))
U8_GGA(T54, T55, addc27_out_gag(T54, T60, T55)) → GCD1_IN_GGA(s(T54), T60)
GCD1_IN_GGA(T155, s(T154)) → U11_GGA(T155, T154, gtc66_in_gg(T155, s(T154)))
U11_GGA(T155, T154, gtc66_out_gg(T155, s(T154))) → U13_GGA(T155, T154, addc32_in_gag(s(T154), T155))
U13_GGA(T155, T154, addc32_out_gag(s(T154), T160, T155)) → GCD1_IN_GGA(s(T154), T160)
U7_GGA(T54, T55, lec9_out_gg(T54, T55)) → U8_GGA(T54, T55, U26_gag(T54, T55, addc32_in_gag(T54, T55)))

The TRS R consists of the following rules:

lec9_in_gg(s(T33), s(T34)) → U16_gg(T33, T34, lec9_in_gg(T33, T34))
lec9_in_gg(0, s(T41)) → lec9_out_gg(0, s(T41))
lec9_in_gg(0, 0) → lec9_out_gg(0, 0)
U16_gg(T33, T34, lec9_out_gg(T33, T34)) → lec9_out_gg(s(T33), s(T34))
addc27_in_gag(T75, T76) → U26_gag(T75, T76, addc32_in_gag(T75, T76))
addc32_in_gag(s(T87), s(T88)) → U24_gag(T87, T88, addc32_in_gag(T87, T88))
addc32_in_gag(0, T93) → addc32_out_gag(0, T93, T93)
U24_gag(T87, T88, addc32_out_gag(T87, X124, T88)) → addc32_out_gag(s(T87), X124, s(T88))
U26_gag(T75, T76, addc32_out_gag(T75, X100, T76)) → addc27_out_gag(T75, X100, T76)
gtc66_in_gg(s(T134), s(T135)) → U25_gg(T134, T135, gtc66_in_gg(T134, T135))
gtc66_in_gg(s(T140), 0) → gtc66_out_gg(s(T140), 0)
U25_gg(T134, T135, gtc66_out_gg(T134, T135)) → gtc66_out_gg(s(T134), s(T135))

The set Q consists of the following terms:

lec9_in_gg(x0, x1)
U16_gg(x0, x1, x2)
addc27_in_gag(x0, x1)
addc32_in_gag(x0, x1)
U24_gag(x0, x1, x2)
U26_gag(x0, x1, x2)
gtc66_in_gg(x0, x1)
U25_gg(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(33) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(34) Obligation:

Q DP problem:
The TRS P consists of the following rules:

GCD1_IN_GGA(s(T54), s(T55)) → U7_GGA(T54, T55, lec9_in_gg(T54, T55))
U8_GGA(T54, T55, addc27_out_gag(T54, T60, T55)) → GCD1_IN_GGA(s(T54), T60)
GCD1_IN_GGA(T155, s(T154)) → U11_GGA(T155, T154, gtc66_in_gg(T155, s(T154)))
U11_GGA(T155, T154, gtc66_out_gg(T155, s(T154))) → U13_GGA(T155, T154, addc32_in_gag(s(T154), T155))
U13_GGA(T155, T154, addc32_out_gag(s(T154), T160, T155)) → GCD1_IN_GGA(s(T154), T160)
U7_GGA(T54, T55, lec9_out_gg(T54, T55)) → U8_GGA(T54, T55, U26_gag(T54, T55, addc32_in_gag(T54, T55)))

The TRS R consists of the following rules:

addc32_in_gag(s(T87), s(T88)) → U24_gag(T87, T88, addc32_in_gag(T87, T88))
addc32_in_gag(0, T93) → addc32_out_gag(0, T93, T93)
U26_gag(T75, T76, addc32_out_gag(T75, X100, T76)) → addc27_out_gag(T75, X100, T76)
U24_gag(T87, T88, addc32_out_gag(T87, X124, T88)) → addc32_out_gag(s(T87), X124, s(T88))
gtc66_in_gg(s(T134), s(T135)) → U25_gg(T134, T135, gtc66_in_gg(T134, T135))
gtc66_in_gg(s(T140), 0) → gtc66_out_gg(s(T140), 0)
U25_gg(T134, T135, gtc66_out_gg(T134, T135)) → gtc66_out_gg(s(T134), s(T135))
lec9_in_gg(s(T33), s(T34)) → U16_gg(T33, T34, lec9_in_gg(T33, T34))
lec9_in_gg(0, s(T41)) → lec9_out_gg(0, s(T41))
lec9_in_gg(0, 0) → lec9_out_gg(0, 0)
U16_gg(T33, T34, lec9_out_gg(T33, T34)) → lec9_out_gg(s(T33), s(T34))

The set Q consists of the following terms:

lec9_in_gg(x0, x1)
U16_gg(x0, x1, x2)
addc27_in_gag(x0, x1)
addc32_in_gag(x0, x1)
U24_gag(x0, x1, x2)
U26_gag(x0, x1, x2)
gtc66_in_gg(x0, x1)
U25_gg(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(35) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

addc27_in_gag(x0, x1)

(36) Obligation:

Q DP problem:
The TRS P consists of the following rules:

GCD1_IN_GGA(s(T54), s(T55)) → U7_GGA(T54, T55, lec9_in_gg(T54, T55))
U8_GGA(T54, T55, addc27_out_gag(T54, T60, T55)) → GCD1_IN_GGA(s(T54), T60)
GCD1_IN_GGA(T155, s(T154)) → U11_GGA(T155, T154, gtc66_in_gg(T155, s(T154)))
U11_GGA(T155, T154, gtc66_out_gg(T155, s(T154))) → U13_GGA(T155, T154, addc32_in_gag(s(T154), T155))
U13_GGA(T155, T154, addc32_out_gag(s(T154), T160, T155)) → GCD1_IN_GGA(s(T154), T160)
U7_GGA(T54, T55, lec9_out_gg(T54, T55)) → U8_GGA(T54, T55, U26_gag(T54, T55, addc32_in_gag(T54, T55)))

The TRS R consists of the following rules:

addc32_in_gag(s(T87), s(T88)) → U24_gag(T87, T88, addc32_in_gag(T87, T88))
addc32_in_gag(0, T93) → addc32_out_gag(0, T93, T93)
U26_gag(T75, T76, addc32_out_gag(T75, X100, T76)) → addc27_out_gag(T75, X100, T76)
U24_gag(T87, T88, addc32_out_gag(T87, X124, T88)) → addc32_out_gag(s(T87), X124, s(T88))
gtc66_in_gg(s(T134), s(T135)) → U25_gg(T134, T135, gtc66_in_gg(T134, T135))
gtc66_in_gg(s(T140), 0) → gtc66_out_gg(s(T140), 0)
U25_gg(T134, T135, gtc66_out_gg(T134, T135)) → gtc66_out_gg(s(T134), s(T135))
lec9_in_gg(s(T33), s(T34)) → U16_gg(T33, T34, lec9_in_gg(T33, T34))
lec9_in_gg(0, s(T41)) → lec9_out_gg(0, s(T41))
lec9_in_gg(0, 0) → lec9_out_gg(0, 0)
U16_gg(T33, T34, lec9_out_gg(T33, T34)) → lec9_out_gg(s(T33), s(T34))

The set Q consists of the following terms:

lec9_in_gg(x0, x1)
U16_gg(x0, x1, x2)
addc32_in_gag(x0, x1)
U24_gag(x0, x1, x2)
U26_gag(x0, x1, x2)
gtc66_in_gg(x0, x1)
U25_gg(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(37) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U11_GGA(T155, T154, gtc66_out_gg(T155, s(T154))) → U13_GGA(T155, T154, addc32_in_gag(s(T154), T155))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(GCD1_IN_GGA(x1, x2)) = x1   
POL(U11_GGA(x1, x2, x3)) = x3   
POL(U13_GGA(x1, x2, x3)) = 1 + x2   
POL(U16_gg(x1, x2, x3)) = 0   
POL(U24_gag(x1, x2, x3)) = 0   
POL(U25_gg(x1, x2, x3)) = 1 + x3   
POL(U26_gag(x1, x2, x3)) = 0   
POL(U7_GGA(x1, x2, x3)) = 1 + x1   
POL(U8_GGA(x1, x2, x3)) = 1 + x1   
POL(addc27_out_gag(x1, x2, x3)) = 0   
POL(addc32_in_gag(x1, x2)) = 0   
POL(addc32_out_gag(x1, x2, x3)) = 0   
POL(gtc66_in_gg(x1, x2)) = x1   
POL(gtc66_out_gg(x1, x2)) = 1 + x2   
POL(lec9_in_gg(x1, x2)) = 0   
POL(lec9_out_gg(x1, x2)) = 0   
POL(s(x1)) = 1 + x1   

The following usable rules [FROCOS05] were oriented:

gtc66_in_gg(s(T134), s(T135)) → U25_gg(T134, T135, gtc66_in_gg(T134, T135))
gtc66_in_gg(s(T140), 0) → gtc66_out_gg(s(T140), 0)
U25_gg(T134, T135, gtc66_out_gg(T134, T135)) → gtc66_out_gg(s(T134), s(T135))

(38) Obligation:

Q DP problem:
The TRS P consists of the following rules:

GCD1_IN_GGA(s(T54), s(T55)) → U7_GGA(T54, T55, lec9_in_gg(T54, T55))
U8_GGA(T54, T55, addc27_out_gag(T54, T60, T55)) → GCD1_IN_GGA(s(T54), T60)
GCD1_IN_GGA(T155, s(T154)) → U11_GGA(T155, T154, gtc66_in_gg(T155, s(T154)))
U13_GGA(T155, T154, addc32_out_gag(s(T154), T160, T155)) → GCD1_IN_GGA(s(T154), T160)
U7_GGA(T54, T55, lec9_out_gg(T54, T55)) → U8_GGA(T54, T55, U26_gag(T54, T55, addc32_in_gag(T54, T55)))

The TRS R consists of the following rules:

addc32_in_gag(s(T87), s(T88)) → U24_gag(T87, T88, addc32_in_gag(T87, T88))
addc32_in_gag(0, T93) → addc32_out_gag(0, T93, T93)
U26_gag(T75, T76, addc32_out_gag(T75, X100, T76)) → addc27_out_gag(T75, X100, T76)
U24_gag(T87, T88, addc32_out_gag(T87, X124, T88)) → addc32_out_gag(s(T87), X124, s(T88))
gtc66_in_gg(s(T134), s(T135)) → U25_gg(T134, T135, gtc66_in_gg(T134, T135))
gtc66_in_gg(s(T140), 0) → gtc66_out_gg(s(T140), 0)
U25_gg(T134, T135, gtc66_out_gg(T134, T135)) → gtc66_out_gg(s(T134), s(T135))
lec9_in_gg(s(T33), s(T34)) → U16_gg(T33, T34, lec9_in_gg(T33, T34))
lec9_in_gg(0, s(T41)) → lec9_out_gg(0, s(T41))
lec9_in_gg(0, 0) → lec9_out_gg(0, 0)
U16_gg(T33, T34, lec9_out_gg(T33, T34)) → lec9_out_gg(s(T33), s(T34))

The set Q consists of the following terms:

lec9_in_gg(x0, x1)
U16_gg(x0, x1, x2)
addc32_in_gag(x0, x1)
U24_gag(x0, x1, x2)
U26_gag(x0, x1, x2)
gtc66_in_gg(x0, x1)
U25_gg(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(39) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.

(40) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U7_GGA(T54, T55, lec9_out_gg(T54, T55)) → U8_GGA(T54, T55, U26_gag(T54, T55, addc32_in_gag(T54, T55)))
U8_GGA(T54, T55, addc27_out_gag(T54, T60, T55)) → GCD1_IN_GGA(s(T54), T60)
GCD1_IN_GGA(s(T54), s(T55)) → U7_GGA(T54, T55, lec9_in_gg(T54, T55))

The TRS R consists of the following rules:

addc32_in_gag(s(T87), s(T88)) → U24_gag(T87, T88, addc32_in_gag(T87, T88))
addc32_in_gag(0, T93) → addc32_out_gag(0, T93, T93)
U26_gag(T75, T76, addc32_out_gag(T75, X100, T76)) → addc27_out_gag(T75, X100, T76)
U24_gag(T87, T88, addc32_out_gag(T87, X124, T88)) → addc32_out_gag(s(T87), X124, s(T88))
gtc66_in_gg(s(T134), s(T135)) → U25_gg(T134, T135, gtc66_in_gg(T134, T135))
gtc66_in_gg(s(T140), 0) → gtc66_out_gg(s(T140), 0)
U25_gg(T134, T135, gtc66_out_gg(T134, T135)) → gtc66_out_gg(s(T134), s(T135))
lec9_in_gg(s(T33), s(T34)) → U16_gg(T33, T34, lec9_in_gg(T33, T34))
lec9_in_gg(0, s(T41)) → lec9_out_gg(0, s(T41))
lec9_in_gg(0, 0) → lec9_out_gg(0, 0)
U16_gg(T33, T34, lec9_out_gg(T33, T34)) → lec9_out_gg(s(T33), s(T34))

The set Q consists of the following terms:

lec9_in_gg(x0, x1)
U16_gg(x0, x1, x2)
addc32_in_gag(x0, x1)
U24_gag(x0, x1, x2)
U26_gag(x0, x1, x2)
gtc66_in_gg(x0, x1)
U25_gg(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(41) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(42) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U7_GGA(T54, T55, lec9_out_gg(T54, T55)) → U8_GGA(T54, T55, U26_gag(T54, T55, addc32_in_gag(T54, T55)))
U8_GGA(T54, T55, addc27_out_gag(T54, T60, T55)) → GCD1_IN_GGA(s(T54), T60)
GCD1_IN_GGA(s(T54), s(T55)) → U7_GGA(T54, T55, lec9_in_gg(T54, T55))

The TRS R consists of the following rules:

lec9_in_gg(s(T33), s(T34)) → U16_gg(T33, T34, lec9_in_gg(T33, T34))
lec9_in_gg(0, s(T41)) → lec9_out_gg(0, s(T41))
lec9_in_gg(0, 0) → lec9_out_gg(0, 0)
U16_gg(T33, T34, lec9_out_gg(T33, T34)) → lec9_out_gg(s(T33), s(T34))
addc32_in_gag(s(T87), s(T88)) → U24_gag(T87, T88, addc32_in_gag(T87, T88))
addc32_in_gag(0, T93) → addc32_out_gag(0, T93, T93)
U26_gag(T75, T76, addc32_out_gag(T75, X100, T76)) → addc27_out_gag(T75, X100, T76)
U24_gag(T87, T88, addc32_out_gag(T87, X124, T88)) → addc32_out_gag(s(T87), X124, s(T88))

The set Q consists of the following terms:

lec9_in_gg(x0, x1)
U16_gg(x0, x1, x2)
addc32_in_gag(x0, x1)
U24_gag(x0, x1, x2)
U26_gag(x0, x1, x2)
gtc66_in_gg(x0, x1)
U25_gg(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(43) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

gtc66_in_gg(x0, x1)
U25_gg(x0, x1, x2)

(44) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U7_GGA(T54, T55, lec9_out_gg(T54, T55)) → U8_GGA(T54, T55, U26_gag(T54, T55, addc32_in_gag(T54, T55)))
U8_GGA(T54, T55, addc27_out_gag(T54, T60, T55)) → GCD1_IN_GGA(s(T54), T60)
GCD1_IN_GGA(s(T54), s(T55)) → U7_GGA(T54, T55, lec9_in_gg(T54, T55))

The TRS R consists of the following rules:

lec9_in_gg(s(T33), s(T34)) → U16_gg(T33, T34, lec9_in_gg(T33, T34))
lec9_in_gg(0, s(T41)) → lec9_out_gg(0, s(T41))
lec9_in_gg(0, 0) → lec9_out_gg(0, 0)
U16_gg(T33, T34, lec9_out_gg(T33, T34)) → lec9_out_gg(s(T33), s(T34))
addc32_in_gag(s(T87), s(T88)) → U24_gag(T87, T88, addc32_in_gag(T87, T88))
addc32_in_gag(0, T93) → addc32_out_gag(0, T93, T93)
U26_gag(T75, T76, addc32_out_gag(T75, X100, T76)) → addc27_out_gag(T75, X100, T76)
U24_gag(T87, T88, addc32_out_gag(T87, X124, T88)) → addc32_out_gag(s(T87), X124, s(T88))

The set Q consists of the following terms:

lec9_in_gg(x0, x1)
U16_gg(x0, x1, x2)
addc32_in_gag(x0, x1)
U24_gag(x0, x1, x2)
U26_gag(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(45) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


GCD1_IN_GGA(s(T54), s(T55)) → U7_GGA(T54, T55, lec9_in_gg(T54, T55))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(GCD1_IN_GGA(x1, x2)) = x2   
POL(U16_gg(x1, x2, x3)) = 0   
POL(U24_gag(x1, x2, x3)) = x3   
POL(U26_gag(x1, x2, x3)) = x3   
POL(U7_GGA(x1, x2, x3)) = x2   
POL(U8_GGA(x1, x2, x3)) = x3   
POL(addc27_out_gag(x1, x2, x3)) = x2   
POL(addc32_in_gag(x1, x2)) = x2   
POL(addc32_out_gag(x1, x2, x3)) = x2   
POL(lec9_in_gg(x1, x2)) = 0   
POL(lec9_out_gg(x1, x2)) = 0   
POL(s(x1)) = 1 + x1   

The following usable rules [FROCOS05] were oriented:

addc32_in_gag(s(T87), s(T88)) → U24_gag(T87, T88, addc32_in_gag(T87, T88))
addc32_in_gag(0, T93) → addc32_out_gag(0, T93, T93)
U26_gag(T75, T76, addc32_out_gag(T75, X100, T76)) → addc27_out_gag(T75, X100, T76)
U24_gag(T87, T88, addc32_out_gag(T87, X124, T88)) → addc32_out_gag(s(T87), X124, s(T88))

(46) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U7_GGA(T54, T55, lec9_out_gg(T54, T55)) → U8_GGA(T54, T55, U26_gag(T54, T55, addc32_in_gag(T54, T55)))
U8_GGA(T54, T55, addc27_out_gag(T54, T60, T55)) → GCD1_IN_GGA(s(T54), T60)

The TRS R consists of the following rules:

lec9_in_gg(s(T33), s(T34)) → U16_gg(T33, T34, lec9_in_gg(T33, T34))
lec9_in_gg(0, s(T41)) → lec9_out_gg(0, s(T41))
lec9_in_gg(0, 0) → lec9_out_gg(0, 0)
U16_gg(T33, T34, lec9_out_gg(T33, T34)) → lec9_out_gg(s(T33), s(T34))
addc32_in_gag(s(T87), s(T88)) → U24_gag(T87, T88, addc32_in_gag(T87, T88))
addc32_in_gag(0, T93) → addc32_out_gag(0, T93, T93)
U26_gag(T75, T76, addc32_out_gag(T75, X100, T76)) → addc27_out_gag(T75, X100, T76)
U24_gag(T87, T88, addc32_out_gag(T87, X124, T88)) → addc32_out_gag(s(T87), X124, s(T88))

The set Q consists of the following terms:

lec9_in_gg(x0, x1)
U16_gg(x0, x1, x2)
addc32_in_gag(x0, x1)
U24_gag(x0, x1, x2)
U26_gag(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(47) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(48) TRUE