(0) Obligation:
Clauses:
gcd(X, Y, D) :- ','(le(X, Y), gcd_le(X, Y, D)).
gcd(X, Y, D) :- ','(gt(X, Y), gcd_le(Y, X, D)).
gcd_le(0, Y, Y).
gcd_le(s(X), Y, D) :- ','(add(s(X), Z, Y), gcd(s(X), Z, D)).
gt(s(X), s(Y)) :- gt(X, Y).
gt(s(X), 0).
le(s(X), s(Y)) :- le(X, Y).
le(0, s(Y)).
le(0, 0).
add(s(X), Y, s(Z)) :- add(X, Y, Z).
add(0, X, X).
Queries:
gcd(g,g,a).
(1) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
gcd_in: (b,b,f)
le_in: (b,b)
gcd_le_in: (b,b,f)
add_in: (b,f,b)
gt_in: (b,b)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
gcd_in_gga(X, Y, D) → U1_gga(X, Y, D, le_in_gg(X, Y))
le_in_gg(s(X), s(Y)) → U8_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg(0, s(Y))
le_in_gg(0, 0) → le_out_gg(0, 0)
U8_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U1_gga(X, Y, D, le_out_gg(X, Y)) → U2_gga(X, Y, D, gcd_le_in_gga(X, Y, D))
gcd_le_in_gga(0, Y, Y) → gcd_le_out_gga(0, Y, Y)
gcd_le_in_gga(s(X), Y, D) → U5_gga(X, Y, D, add_in_gag(s(X), Z, Y))
add_in_gag(s(X), Y, s(Z)) → U9_gag(X, Y, Z, add_in_gag(X, Y, Z))
add_in_gag(0, X, X) → add_out_gag(0, X, X)
U9_gag(X, Y, Z, add_out_gag(X, Y, Z)) → add_out_gag(s(X), Y, s(Z))
U5_gga(X, Y, D, add_out_gag(s(X), Z, Y)) → U6_gga(X, Y, D, gcd_in_gga(s(X), Z, D))
gcd_in_gga(X, Y, D) → U3_gga(X, Y, D, gt_in_gg(X, Y))
gt_in_gg(s(X), s(Y)) → U7_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg(s(X), 0)
U7_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))
U3_gga(X, Y, D, gt_out_gg(X, Y)) → U4_gga(X, Y, D, gcd_le_in_gga(Y, X, D))
U4_gga(X, Y, D, gcd_le_out_gga(Y, X, D)) → gcd_out_gga(X, Y, D)
U6_gga(X, Y, D, gcd_out_gga(s(X), Z, D)) → gcd_le_out_gga(s(X), Y, D)
U2_gga(X, Y, D, gcd_le_out_gga(X, Y, D)) → gcd_out_gga(X, Y, D)
The argument filtering Pi contains the following mapping:
gcd_in_gga(
x1,
x2,
x3) =
gcd_in_gga(
x1,
x2)
U1_gga(
x1,
x2,
x3,
x4) =
U1_gga(
x1,
x2,
x4)
le_in_gg(
x1,
x2) =
le_in_gg(
x1,
x2)
s(
x1) =
s(
x1)
U8_gg(
x1,
x2,
x3) =
U8_gg(
x3)
0 =
0
le_out_gg(
x1,
x2) =
le_out_gg
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x4)
gcd_le_in_gga(
x1,
x2,
x3) =
gcd_le_in_gga(
x1,
x2)
gcd_le_out_gga(
x1,
x2,
x3) =
gcd_le_out_gga(
x3)
U5_gga(
x1,
x2,
x3,
x4) =
U5_gga(
x1,
x4)
add_in_gag(
x1,
x2,
x3) =
add_in_gag(
x1,
x3)
U9_gag(
x1,
x2,
x3,
x4) =
U9_gag(
x4)
add_out_gag(
x1,
x2,
x3) =
add_out_gag(
x2)
U6_gga(
x1,
x2,
x3,
x4) =
U6_gga(
x4)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x1,
x2,
x4)
gt_in_gg(
x1,
x2) =
gt_in_gg(
x1,
x2)
U7_gg(
x1,
x2,
x3) =
U7_gg(
x3)
gt_out_gg(
x1,
x2) =
gt_out_gg
U4_gga(
x1,
x2,
x3,
x4) =
U4_gga(
x4)
gcd_out_gga(
x1,
x2,
x3) =
gcd_out_gga(
x3)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(2) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
gcd_in_gga(X, Y, D) → U1_gga(X, Y, D, le_in_gg(X, Y))
le_in_gg(s(X), s(Y)) → U8_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg(0, s(Y))
le_in_gg(0, 0) → le_out_gg(0, 0)
U8_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U1_gga(X, Y, D, le_out_gg(X, Y)) → U2_gga(X, Y, D, gcd_le_in_gga(X, Y, D))
gcd_le_in_gga(0, Y, Y) → gcd_le_out_gga(0, Y, Y)
gcd_le_in_gga(s(X), Y, D) → U5_gga(X, Y, D, add_in_gag(s(X), Z, Y))
add_in_gag(s(X), Y, s(Z)) → U9_gag(X, Y, Z, add_in_gag(X, Y, Z))
add_in_gag(0, X, X) → add_out_gag(0, X, X)
U9_gag(X, Y, Z, add_out_gag(X, Y, Z)) → add_out_gag(s(X), Y, s(Z))
U5_gga(X, Y, D, add_out_gag(s(X), Z, Y)) → U6_gga(X, Y, D, gcd_in_gga(s(X), Z, D))
gcd_in_gga(X, Y, D) → U3_gga(X, Y, D, gt_in_gg(X, Y))
gt_in_gg(s(X), s(Y)) → U7_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg(s(X), 0)
U7_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))
U3_gga(X, Y, D, gt_out_gg(X, Y)) → U4_gga(X, Y, D, gcd_le_in_gga(Y, X, D))
U4_gga(X, Y, D, gcd_le_out_gga(Y, X, D)) → gcd_out_gga(X, Y, D)
U6_gga(X, Y, D, gcd_out_gga(s(X), Z, D)) → gcd_le_out_gga(s(X), Y, D)
U2_gga(X, Y, D, gcd_le_out_gga(X, Y, D)) → gcd_out_gga(X, Y, D)
The argument filtering Pi contains the following mapping:
gcd_in_gga(
x1,
x2,
x3) =
gcd_in_gga(
x1,
x2)
U1_gga(
x1,
x2,
x3,
x4) =
U1_gga(
x1,
x2,
x4)
le_in_gg(
x1,
x2) =
le_in_gg(
x1,
x2)
s(
x1) =
s(
x1)
U8_gg(
x1,
x2,
x3) =
U8_gg(
x3)
0 =
0
le_out_gg(
x1,
x2) =
le_out_gg
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x4)
gcd_le_in_gga(
x1,
x2,
x3) =
gcd_le_in_gga(
x1,
x2)
gcd_le_out_gga(
x1,
x2,
x3) =
gcd_le_out_gga(
x3)
U5_gga(
x1,
x2,
x3,
x4) =
U5_gga(
x1,
x4)
add_in_gag(
x1,
x2,
x3) =
add_in_gag(
x1,
x3)
U9_gag(
x1,
x2,
x3,
x4) =
U9_gag(
x4)
add_out_gag(
x1,
x2,
x3) =
add_out_gag(
x2)
U6_gga(
x1,
x2,
x3,
x4) =
U6_gga(
x4)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x1,
x2,
x4)
gt_in_gg(
x1,
x2) =
gt_in_gg(
x1,
x2)
U7_gg(
x1,
x2,
x3) =
U7_gg(
x3)
gt_out_gg(
x1,
x2) =
gt_out_gg
U4_gga(
x1,
x2,
x3,
x4) =
U4_gga(
x4)
gcd_out_gga(
x1,
x2,
x3) =
gcd_out_gga(
x3)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
GCD_IN_GGA(X, Y, D) → U1_GGA(X, Y, D, le_in_gg(X, Y))
GCD_IN_GGA(X, Y, D) → LE_IN_GG(X, Y)
LE_IN_GG(s(X), s(Y)) → U8_GG(X, Y, le_in_gg(X, Y))
LE_IN_GG(s(X), s(Y)) → LE_IN_GG(X, Y)
U1_GGA(X, Y, D, le_out_gg(X, Y)) → U2_GGA(X, Y, D, gcd_le_in_gga(X, Y, D))
U1_GGA(X, Y, D, le_out_gg(X, Y)) → GCD_LE_IN_GGA(X, Y, D)
GCD_LE_IN_GGA(s(X), Y, D) → U5_GGA(X, Y, D, add_in_gag(s(X), Z, Y))
GCD_LE_IN_GGA(s(X), Y, D) → ADD_IN_GAG(s(X), Z, Y)
ADD_IN_GAG(s(X), Y, s(Z)) → U9_GAG(X, Y, Z, add_in_gag(X, Y, Z))
ADD_IN_GAG(s(X), Y, s(Z)) → ADD_IN_GAG(X, Y, Z)
U5_GGA(X, Y, D, add_out_gag(s(X), Z, Y)) → U6_GGA(X, Y, D, gcd_in_gga(s(X), Z, D))
U5_GGA(X, Y, D, add_out_gag(s(X), Z, Y)) → GCD_IN_GGA(s(X), Z, D)
GCD_IN_GGA(X, Y, D) → U3_GGA(X, Y, D, gt_in_gg(X, Y))
GCD_IN_GGA(X, Y, D) → GT_IN_GG(X, Y)
GT_IN_GG(s(X), s(Y)) → U7_GG(X, Y, gt_in_gg(X, Y))
GT_IN_GG(s(X), s(Y)) → GT_IN_GG(X, Y)
U3_GGA(X, Y, D, gt_out_gg(X, Y)) → U4_GGA(X, Y, D, gcd_le_in_gga(Y, X, D))
U3_GGA(X, Y, D, gt_out_gg(X, Y)) → GCD_LE_IN_GGA(Y, X, D)
The TRS R consists of the following rules:
gcd_in_gga(X, Y, D) → U1_gga(X, Y, D, le_in_gg(X, Y))
le_in_gg(s(X), s(Y)) → U8_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg(0, s(Y))
le_in_gg(0, 0) → le_out_gg(0, 0)
U8_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U1_gga(X, Y, D, le_out_gg(X, Y)) → U2_gga(X, Y, D, gcd_le_in_gga(X, Y, D))
gcd_le_in_gga(0, Y, Y) → gcd_le_out_gga(0, Y, Y)
gcd_le_in_gga(s(X), Y, D) → U5_gga(X, Y, D, add_in_gag(s(X), Z, Y))
add_in_gag(s(X), Y, s(Z)) → U9_gag(X, Y, Z, add_in_gag(X, Y, Z))
add_in_gag(0, X, X) → add_out_gag(0, X, X)
U9_gag(X, Y, Z, add_out_gag(X, Y, Z)) → add_out_gag(s(X), Y, s(Z))
U5_gga(X, Y, D, add_out_gag(s(X), Z, Y)) → U6_gga(X, Y, D, gcd_in_gga(s(X), Z, D))
gcd_in_gga(X, Y, D) → U3_gga(X, Y, D, gt_in_gg(X, Y))
gt_in_gg(s(X), s(Y)) → U7_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg(s(X), 0)
U7_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))
U3_gga(X, Y, D, gt_out_gg(X, Y)) → U4_gga(X, Y, D, gcd_le_in_gga(Y, X, D))
U4_gga(X, Y, D, gcd_le_out_gga(Y, X, D)) → gcd_out_gga(X, Y, D)
U6_gga(X, Y, D, gcd_out_gga(s(X), Z, D)) → gcd_le_out_gga(s(X), Y, D)
U2_gga(X, Y, D, gcd_le_out_gga(X, Y, D)) → gcd_out_gga(X, Y, D)
The argument filtering Pi contains the following mapping:
gcd_in_gga(
x1,
x2,
x3) =
gcd_in_gga(
x1,
x2)
U1_gga(
x1,
x2,
x3,
x4) =
U1_gga(
x1,
x2,
x4)
le_in_gg(
x1,
x2) =
le_in_gg(
x1,
x2)
s(
x1) =
s(
x1)
U8_gg(
x1,
x2,
x3) =
U8_gg(
x3)
0 =
0
le_out_gg(
x1,
x2) =
le_out_gg
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x4)
gcd_le_in_gga(
x1,
x2,
x3) =
gcd_le_in_gga(
x1,
x2)
gcd_le_out_gga(
x1,
x2,
x3) =
gcd_le_out_gga(
x3)
U5_gga(
x1,
x2,
x3,
x4) =
U5_gga(
x1,
x4)
add_in_gag(
x1,
x2,
x3) =
add_in_gag(
x1,
x3)
U9_gag(
x1,
x2,
x3,
x4) =
U9_gag(
x4)
add_out_gag(
x1,
x2,
x3) =
add_out_gag(
x2)
U6_gga(
x1,
x2,
x3,
x4) =
U6_gga(
x4)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x1,
x2,
x4)
gt_in_gg(
x1,
x2) =
gt_in_gg(
x1,
x2)
U7_gg(
x1,
x2,
x3) =
U7_gg(
x3)
gt_out_gg(
x1,
x2) =
gt_out_gg
U4_gga(
x1,
x2,
x3,
x4) =
U4_gga(
x4)
gcd_out_gga(
x1,
x2,
x3) =
gcd_out_gga(
x3)
GCD_IN_GGA(
x1,
x2,
x3) =
GCD_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3,
x4) =
U1_GGA(
x1,
x2,
x4)
LE_IN_GG(
x1,
x2) =
LE_IN_GG(
x1,
x2)
U8_GG(
x1,
x2,
x3) =
U8_GG(
x3)
U2_GGA(
x1,
x2,
x3,
x4) =
U2_GGA(
x4)
GCD_LE_IN_GGA(
x1,
x2,
x3) =
GCD_LE_IN_GGA(
x1,
x2)
U5_GGA(
x1,
x2,
x3,
x4) =
U5_GGA(
x1,
x4)
ADD_IN_GAG(
x1,
x2,
x3) =
ADD_IN_GAG(
x1,
x3)
U9_GAG(
x1,
x2,
x3,
x4) =
U9_GAG(
x4)
U6_GGA(
x1,
x2,
x3,
x4) =
U6_GGA(
x4)
U3_GGA(
x1,
x2,
x3,
x4) =
U3_GGA(
x1,
x2,
x4)
GT_IN_GG(
x1,
x2) =
GT_IN_GG(
x1,
x2)
U7_GG(
x1,
x2,
x3) =
U7_GG(
x3)
U4_GGA(
x1,
x2,
x3,
x4) =
U4_GGA(
x4)
We have to consider all (P,R,Pi)-chains
(4) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
GCD_IN_GGA(X, Y, D) → U1_GGA(X, Y, D, le_in_gg(X, Y))
GCD_IN_GGA(X, Y, D) → LE_IN_GG(X, Y)
LE_IN_GG(s(X), s(Y)) → U8_GG(X, Y, le_in_gg(X, Y))
LE_IN_GG(s(X), s(Y)) → LE_IN_GG(X, Y)
U1_GGA(X, Y, D, le_out_gg(X, Y)) → U2_GGA(X, Y, D, gcd_le_in_gga(X, Y, D))
U1_GGA(X, Y, D, le_out_gg(X, Y)) → GCD_LE_IN_GGA(X, Y, D)
GCD_LE_IN_GGA(s(X), Y, D) → U5_GGA(X, Y, D, add_in_gag(s(X), Z, Y))
GCD_LE_IN_GGA(s(X), Y, D) → ADD_IN_GAG(s(X), Z, Y)
ADD_IN_GAG(s(X), Y, s(Z)) → U9_GAG(X, Y, Z, add_in_gag(X, Y, Z))
ADD_IN_GAG(s(X), Y, s(Z)) → ADD_IN_GAG(X, Y, Z)
U5_GGA(X, Y, D, add_out_gag(s(X), Z, Y)) → U6_GGA(X, Y, D, gcd_in_gga(s(X), Z, D))
U5_GGA(X, Y, D, add_out_gag(s(X), Z, Y)) → GCD_IN_GGA(s(X), Z, D)
GCD_IN_GGA(X, Y, D) → U3_GGA(X, Y, D, gt_in_gg(X, Y))
GCD_IN_GGA(X, Y, D) → GT_IN_GG(X, Y)
GT_IN_GG(s(X), s(Y)) → U7_GG(X, Y, gt_in_gg(X, Y))
GT_IN_GG(s(X), s(Y)) → GT_IN_GG(X, Y)
U3_GGA(X, Y, D, gt_out_gg(X, Y)) → U4_GGA(X, Y, D, gcd_le_in_gga(Y, X, D))
U3_GGA(X, Y, D, gt_out_gg(X, Y)) → GCD_LE_IN_GGA(Y, X, D)
The TRS R consists of the following rules:
gcd_in_gga(X, Y, D) → U1_gga(X, Y, D, le_in_gg(X, Y))
le_in_gg(s(X), s(Y)) → U8_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg(0, s(Y))
le_in_gg(0, 0) → le_out_gg(0, 0)
U8_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U1_gga(X, Y, D, le_out_gg(X, Y)) → U2_gga(X, Y, D, gcd_le_in_gga(X, Y, D))
gcd_le_in_gga(0, Y, Y) → gcd_le_out_gga(0, Y, Y)
gcd_le_in_gga(s(X), Y, D) → U5_gga(X, Y, D, add_in_gag(s(X), Z, Y))
add_in_gag(s(X), Y, s(Z)) → U9_gag(X, Y, Z, add_in_gag(X, Y, Z))
add_in_gag(0, X, X) → add_out_gag(0, X, X)
U9_gag(X, Y, Z, add_out_gag(X, Y, Z)) → add_out_gag(s(X), Y, s(Z))
U5_gga(X, Y, D, add_out_gag(s(X), Z, Y)) → U6_gga(X, Y, D, gcd_in_gga(s(X), Z, D))
gcd_in_gga(X, Y, D) → U3_gga(X, Y, D, gt_in_gg(X, Y))
gt_in_gg(s(X), s(Y)) → U7_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg(s(X), 0)
U7_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))
U3_gga(X, Y, D, gt_out_gg(X, Y)) → U4_gga(X, Y, D, gcd_le_in_gga(Y, X, D))
U4_gga(X, Y, D, gcd_le_out_gga(Y, X, D)) → gcd_out_gga(X, Y, D)
U6_gga(X, Y, D, gcd_out_gga(s(X), Z, D)) → gcd_le_out_gga(s(X), Y, D)
U2_gga(X, Y, D, gcd_le_out_gga(X, Y, D)) → gcd_out_gga(X, Y, D)
The argument filtering Pi contains the following mapping:
gcd_in_gga(
x1,
x2,
x3) =
gcd_in_gga(
x1,
x2)
U1_gga(
x1,
x2,
x3,
x4) =
U1_gga(
x1,
x2,
x4)
le_in_gg(
x1,
x2) =
le_in_gg(
x1,
x2)
s(
x1) =
s(
x1)
U8_gg(
x1,
x2,
x3) =
U8_gg(
x3)
0 =
0
le_out_gg(
x1,
x2) =
le_out_gg
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x4)
gcd_le_in_gga(
x1,
x2,
x3) =
gcd_le_in_gga(
x1,
x2)
gcd_le_out_gga(
x1,
x2,
x3) =
gcd_le_out_gga(
x3)
U5_gga(
x1,
x2,
x3,
x4) =
U5_gga(
x1,
x4)
add_in_gag(
x1,
x2,
x3) =
add_in_gag(
x1,
x3)
U9_gag(
x1,
x2,
x3,
x4) =
U9_gag(
x4)
add_out_gag(
x1,
x2,
x3) =
add_out_gag(
x2)
U6_gga(
x1,
x2,
x3,
x4) =
U6_gga(
x4)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x1,
x2,
x4)
gt_in_gg(
x1,
x2) =
gt_in_gg(
x1,
x2)
U7_gg(
x1,
x2,
x3) =
U7_gg(
x3)
gt_out_gg(
x1,
x2) =
gt_out_gg
U4_gga(
x1,
x2,
x3,
x4) =
U4_gga(
x4)
gcd_out_gga(
x1,
x2,
x3) =
gcd_out_gga(
x3)
GCD_IN_GGA(
x1,
x2,
x3) =
GCD_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3,
x4) =
U1_GGA(
x1,
x2,
x4)
LE_IN_GG(
x1,
x2) =
LE_IN_GG(
x1,
x2)
U8_GG(
x1,
x2,
x3) =
U8_GG(
x3)
U2_GGA(
x1,
x2,
x3,
x4) =
U2_GGA(
x4)
GCD_LE_IN_GGA(
x1,
x2,
x3) =
GCD_LE_IN_GGA(
x1,
x2)
U5_GGA(
x1,
x2,
x3,
x4) =
U5_GGA(
x1,
x4)
ADD_IN_GAG(
x1,
x2,
x3) =
ADD_IN_GAG(
x1,
x3)
U9_GAG(
x1,
x2,
x3,
x4) =
U9_GAG(
x4)
U6_GGA(
x1,
x2,
x3,
x4) =
U6_GGA(
x4)
U3_GGA(
x1,
x2,
x3,
x4) =
U3_GGA(
x1,
x2,
x4)
GT_IN_GG(
x1,
x2) =
GT_IN_GG(
x1,
x2)
U7_GG(
x1,
x2,
x3) =
U7_GG(
x3)
U4_GGA(
x1,
x2,
x3,
x4) =
U4_GGA(
x4)
We have to consider all (P,R,Pi)-chains
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 4 SCCs with 9 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
GT_IN_GG(s(X), s(Y)) → GT_IN_GG(X, Y)
The TRS R consists of the following rules:
gcd_in_gga(X, Y, D) → U1_gga(X, Y, D, le_in_gg(X, Y))
le_in_gg(s(X), s(Y)) → U8_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg(0, s(Y))
le_in_gg(0, 0) → le_out_gg(0, 0)
U8_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U1_gga(X, Y, D, le_out_gg(X, Y)) → U2_gga(X, Y, D, gcd_le_in_gga(X, Y, D))
gcd_le_in_gga(0, Y, Y) → gcd_le_out_gga(0, Y, Y)
gcd_le_in_gga(s(X), Y, D) → U5_gga(X, Y, D, add_in_gag(s(X), Z, Y))
add_in_gag(s(X), Y, s(Z)) → U9_gag(X, Y, Z, add_in_gag(X, Y, Z))
add_in_gag(0, X, X) → add_out_gag(0, X, X)
U9_gag(X, Y, Z, add_out_gag(X, Y, Z)) → add_out_gag(s(X), Y, s(Z))
U5_gga(X, Y, D, add_out_gag(s(X), Z, Y)) → U6_gga(X, Y, D, gcd_in_gga(s(X), Z, D))
gcd_in_gga(X, Y, D) → U3_gga(X, Y, D, gt_in_gg(X, Y))
gt_in_gg(s(X), s(Y)) → U7_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg(s(X), 0)
U7_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))
U3_gga(X, Y, D, gt_out_gg(X, Y)) → U4_gga(X, Y, D, gcd_le_in_gga(Y, X, D))
U4_gga(X, Y, D, gcd_le_out_gga(Y, X, D)) → gcd_out_gga(X, Y, D)
U6_gga(X, Y, D, gcd_out_gga(s(X), Z, D)) → gcd_le_out_gga(s(X), Y, D)
U2_gga(X, Y, D, gcd_le_out_gga(X, Y, D)) → gcd_out_gga(X, Y, D)
The argument filtering Pi contains the following mapping:
gcd_in_gga(
x1,
x2,
x3) =
gcd_in_gga(
x1,
x2)
U1_gga(
x1,
x2,
x3,
x4) =
U1_gga(
x1,
x2,
x4)
le_in_gg(
x1,
x2) =
le_in_gg(
x1,
x2)
s(
x1) =
s(
x1)
U8_gg(
x1,
x2,
x3) =
U8_gg(
x3)
0 =
0
le_out_gg(
x1,
x2) =
le_out_gg
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x4)
gcd_le_in_gga(
x1,
x2,
x3) =
gcd_le_in_gga(
x1,
x2)
gcd_le_out_gga(
x1,
x2,
x3) =
gcd_le_out_gga(
x3)
U5_gga(
x1,
x2,
x3,
x4) =
U5_gga(
x1,
x4)
add_in_gag(
x1,
x2,
x3) =
add_in_gag(
x1,
x3)
U9_gag(
x1,
x2,
x3,
x4) =
U9_gag(
x4)
add_out_gag(
x1,
x2,
x3) =
add_out_gag(
x2)
U6_gga(
x1,
x2,
x3,
x4) =
U6_gga(
x4)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x1,
x2,
x4)
gt_in_gg(
x1,
x2) =
gt_in_gg(
x1,
x2)
U7_gg(
x1,
x2,
x3) =
U7_gg(
x3)
gt_out_gg(
x1,
x2) =
gt_out_gg
U4_gga(
x1,
x2,
x3,
x4) =
U4_gga(
x4)
gcd_out_gga(
x1,
x2,
x3) =
gcd_out_gga(
x3)
GT_IN_GG(
x1,
x2) =
GT_IN_GG(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(8) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(9) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
GT_IN_GG(s(X), s(Y)) → GT_IN_GG(X, Y)
R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains
(10) PiDPToQDPProof (EQUIVALENT transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
GT_IN_GG(s(X), s(Y)) → GT_IN_GG(X, Y)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(12) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- GT_IN_GG(s(X), s(Y)) → GT_IN_GG(X, Y)
The graph contains the following edges 1 > 1, 2 > 2
(13) TRUE
(14) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
ADD_IN_GAG(s(X), Y, s(Z)) → ADD_IN_GAG(X, Y, Z)
The TRS R consists of the following rules:
gcd_in_gga(X, Y, D) → U1_gga(X, Y, D, le_in_gg(X, Y))
le_in_gg(s(X), s(Y)) → U8_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg(0, s(Y))
le_in_gg(0, 0) → le_out_gg(0, 0)
U8_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U1_gga(X, Y, D, le_out_gg(X, Y)) → U2_gga(X, Y, D, gcd_le_in_gga(X, Y, D))
gcd_le_in_gga(0, Y, Y) → gcd_le_out_gga(0, Y, Y)
gcd_le_in_gga(s(X), Y, D) → U5_gga(X, Y, D, add_in_gag(s(X), Z, Y))
add_in_gag(s(X), Y, s(Z)) → U9_gag(X, Y, Z, add_in_gag(X, Y, Z))
add_in_gag(0, X, X) → add_out_gag(0, X, X)
U9_gag(X, Y, Z, add_out_gag(X, Y, Z)) → add_out_gag(s(X), Y, s(Z))
U5_gga(X, Y, D, add_out_gag(s(X), Z, Y)) → U6_gga(X, Y, D, gcd_in_gga(s(X), Z, D))
gcd_in_gga(X, Y, D) → U3_gga(X, Y, D, gt_in_gg(X, Y))
gt_in_gg(s(X), s(Y)) → U7_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg(s(X), 0)
U7_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))
U3_gga(X, Y, D, gt_out_gg(X, Y)) → U4_gga(X, Y, D, gcd_le_in_gga(Y, X, D))
U4_gga(X, Y, D, gcd_le_out_gga(Y, X, D)) → gcd_out_gga(X, Y, D)
U6_gga(X, Y, D, gcd_out_gga(s(X), Z, D)) → gcd_le_out_gga(s(X), Y, D)
U2_gga(X, Y, D, gcd_le_out_gga(X, Y, D)) → gcd_out_gga(X, Y, D)
The argument filtering Pi contains the following mapping:
gcd_in_gga(
x1,
x2,
x3) =
gcd_in_gga(
x1,
x2)
U1_gga(
x1,
x2,
x3,
x4) =
U1_gga(
x1,
x2,
x4)
le_in_gg(
x1,
x2) =
le_in_gg(
x1,
x2)
s(
x1) =
s(
x1)
U8_gg(
x1,
x2,
x3) =
U8_gg(
x3)
0 =
0
le_out_gg(
x1,
x2) =
le_out_gg
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x4)
gcd_le_in_gga(
x1,
x2,
x3) =
gcd_le_in_gga(
x1,
x2)
gcd_le_out_gga(
x1,
x2,
x3) =
gcd_le_out_gga(
x3)
U5_gga(
x1,
x2,
x3,
x4) =
U5_gga(
x1,
x4)
add_in_gag(
x1,
x2,
x3) =
add_in_gag(
x1,
x3)
U9_gag(
x1,
x2,
x3,
x4) =
U9_gag(
x4)
add_out_gag(
x1,
x2,
x3) =
add_out_gag(
x2)
U6_gga(
x1,
x2,
x3,
x4) =
U6_gga(
x4)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x1,
x2,
x4)
gt_in_gg(
x1,
x2) =
gt_in_gg(
x1,
x2)
U7_gg(
x1,
x2,
x3) =
U7_gg(
x3)
gt_out_gg(
x1,
x2) =
gt_out_gg
U4_gga(
x1,
x2,
x3,
x4) =
U4_gga(
x4)
gcd_out_gga(
x1,
x2,
x3) =
gcd_out_gga(
x3)
ADD_IN_GAG(
x1,
x2,
x3) =
ADD_IN_GAG(
x1,
x3)
We have to consider all (P,R,Pi)-chains
(15) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(16) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
ADD_IN_GAG(s(X), Y, s(Z)) → ADD_IN_GAG(X, Y, Z)
R is empty.
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
ADD_IN_GAG(
x1,
x2,
x3) =
ADD_IN_GAG(
x1,
x3)
We have to consider all (P,R,Pi)-chains
(17) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ADD_IN_GAG(s(X), s(Z)) → ADD_IN_GAG(X, Z)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(19) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- ADD_IN_GAG(s(X), s(Z)) → ADD_IN_GAG(X, Z)
The graph contains the following edges 1 > 1, 2 > 2
(20) TRUE
(21) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
LE_IN_GG(s(X), s(Y)) → LE_IN_GG(X, Y)
The TRS R consists of the following rules:
gcd_in_gga(X, Y, D) → U1_gga(X, Y, D, le_in_gg(X, Y))
le_in_gg(s(X), s(Y)) → U8_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg(0, s(Y))
le_in_gg(0, 0) → le_out_gg(0, 0)
U8_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U1_gga(X, Y, D, le_out_gg(X, Y)) → U2_gga(X, Y, D, gcd_le_in_gga(X, Y, D))
gcd_le_in_gga(0, Y, Y) → gcd_le_out_gga(0, Y, Y)
gcd_le_in_gga(s(X), Y, D) → U5_gga(X, Y, D, add_in_gag(s(X), Z, Y))
add_in_gag(s(X), Y, s(Z)) → U9_gag(X, Y, Z, add_in_gag(X, Y, Z))
add_in_gag(0, X, X) → add_out_gag(0, X, X)
U9_gag(X, Y, Z, add_out_gag(X, Y, Z)) → add_out_gag(s(X), Y, s(Z))
U5_gga(X, Y, D, add_out_gag(s(X), Z, Y)) → U6_gga(X, Y, D, gcd_in_gga(s(X), Z, D))
gcd_in_gga(X, Y, D) → U3_gga(X, Y, D, gt_in_gg(X, Y))
gt_in_gg(s(X), s(Y)) → U7_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg(s(X), 0)
U7_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))
U3_gga(X, Y, D, gt_out_gg(X, Y)) → U4_gga(X, Y, D, gcd_le_in_gga(Y, X, D))
U4_gga(X, Y, D, gcd_le_out_gga(Y, X, D)) → gcd_out_gga(X, Y, D)
U6_gga(X, Y, D, gcd_out_gga(s(X), Z, D)) → gcd_le_out_gga(s(X), Y, D)
U2_gga(X, Y, D, gcd_le_out_gga(X, Y, D)) → gcd_out_gga(X, Y, D)
The argument filtering Pi contains the following mapping:
gcd_in_gga(
x1,
x2,
x3) =
gcd_in_gga(
x1,
x2)
U1_gga(
x1,
x2,
x3,
x4) =
U1_gga(
x1,
x2,
x4)
le_in_gg(
x1,
x2) =
le_in_gg(
x1,
x2)
s(
x1) =
s(
x1)
U8_gg(
x1,
x2,
x3) =
U8_gg(
x3)
0 =
0
le_out_gg(
x1,
x2) =
le_out_gg
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x4)
gcd_le_in_gga(
x1,
x2,
x3) =
gcd_le_in_gga(
x1,
x2)
gcd_le_out_gga(
x1,
x2,
x3) =
gcd_le_out_gga(
x3)
U5_gga(
x1,
x2,
x3,
x4) =
U5_gga(
x1,
x4)
add_in_gag(
x1,
x2,
x3) =
add_in_gag(
x1,
x3)
U9_gag(
x1,
x2,
x3,
x4) =
U9_gag(
x4)
add_out_gag(
x1,
x2,
x3) =
add_out_gag(
x2)
U6_gga(
x1,
x2,
x3,
x4) =
U6_gga(
x4)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x1,
x2,
x4)
gt_in_gg(
x1,
x2) =
gt_in_gg(
x1,
x2)
U7_gg(
x1,
x2,
x3) =
U7_gg(
x3)
gt_out_gg(
x1,
x2) =
gt_out_gg
U4_gga(
x1,
x2,
x3,
x4) =
U4_gga(
x4)
gcd_out_gga(
x1,
x2,
x3) =
gcd_out_gga(
x3)
LE_IN_GG(
x1,
x2) =
LE_IN_GG(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(22) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(23) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
LE_IN_GG(s(X), s(Y)) → LE_IN_GG(X, Y)
R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains
(24) PiDPToQDPProof (EQUIVALENT transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(25) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LE_IN_GG(s(X), s(Y)) → LE_IN_GG(X, Y)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(26) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- LE_IN_GG(s(X), s(Y)) → LE_IN_GG(X, Y)
The graph contains the following edges 1 > 1, 2 > 2
(27) TRUE
(28) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
U1_GGA(X, Y, D, le_out_gg(X, Y)) → GCD_LE_IN_GGA(X, Y, D)
GCD_LE_IN_GGA(s(X), Y, D) → U5_GGA(X, Y, D, add_in_gag(s(X), Z, Y))
U5_GGA(X, Y, D, add_out_gag(s(X), Z, Y)) → GCD_IN_GGA(s(X), Z, D)
GCD_IN_GGA(X, Y, D) → U1_GGA(X, Y, D, le_in_gg(X, Y))
GCD_IN_GGA(X, Y, D) → U3_GGA(X, Y, D, gt_in_gg(X, Y))
U3_GGA(X, Y, D, gt_out_gg(X, Y)) → GCD_LE_IN_GGA(Y, X, D)
The TRS R consists of the following rules:
gcd_in_gga(X, Y, D) → U1_gga(X, Y, D, le_in_gg(X, Y))
le_in_gg(s(X), s(Y)) → U8_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg(0, s(Y))
le_in_gg(0, 0) → le_out_gg(0, 0)
U8_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U1_gga(X, Y, D, le_out_gg(X, Y)) → U2_gga(X, Y, D, gcd_le_in_gga(X, Y, D))
gcd_le_in_gga(0, Y, Y) → gcd_le_out_gga(0, Y, Y)
gcd_le_in_gga(s(X), Y, D) → U5_gga(X, Y, D, add_in_gag(s(X), Z, Y))
add_in_gag(s(X), Y, s(Z)) → U9_gag(X, Y, Z, add_in_gag(X, Y, Z))
add_in_gag(0, X, X) → add_out_gag(0, X, X)
U9_gag(X, Y, Z, add_out_gag(X, Y, Z)) → add_out_gag(s(X), Y, s(Z))
U5_gga(X, Y, D, add_out_gag(s(X), Z, Y)) → U6_gga(X, Y, D, gcd_in_gga(s(X), Z, D))
gcd_in_gga(X, Y, D) → U3_gga(X, Y, D, gt_in_gg(X, Y))
gt_in_gg(s(X), s(Y)) → U7_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg(s(X), 0)
U7_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))
U3_gga(X, Y, D, gt_out_gg(X, Y)) → U4_gga(X, Y, D, gcd_le_in_gga(Y, X, D))
U4_gga(X, Y, D, gcd_le_out_gga(Y, X, D)) → gcd_out_gga(X, Y, D)
U6_gga(X, Y, D, gcd_out_gga(s(X), Z, D)) → gcd_le_out_gga(s(X), Y, D)
U2_gga(X, Y, D, gcd_le_out_gga(X, Y, D)) → gcd_out_gga(X, Y, D)
The argument filtering Pi contains the following mapping:
gcd_in_gga(
x1,
x2,
x3) =
gcd_in_gga(
x1,
x2)
U1_gga(
x1,
x2,
x3,
x4) =
U1_gga(
x1,
x2,
x4)
le_in_gg(
x1,
x2) =
le_in_gg(
x1,
x2)
s(
x1) =
s(
x1)
U8_gg(
x1,
x2,
x3) =
U8_gg(
x3)
0 =
0
le_out_gg(
x1,
x2) =
le_out_gg
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x4)
gcd_le_in_gga(
x1,
x2,
x3) =
gcd_le_in_gga(
x1,
x2)
gcd_le_out_gga(
x1,
x2,
x3) =
gcd_le_out_gga(
x3)
U5_gga(
x1,
x2,
x3,
x4) =
U5_gga(
x1,
x4)
add_in_gag(
x1,
x2,
x3) =
add_in_gag(
x1,
x3)
U9_gag(
x1,
x2,
x3,
x4) =
U9_gag(
x4)
add_out_gag(
x1,
x2,
x3) =
add_out_gag(
x2)
U6_gga(
x1,
x2,
x3,
x4) =
U6_gga(
x4)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x1,
x2,
x4)
gt_in_gg(
x1,
x2) =
gt_in_gg(
x1,
x2)
U7_gg(
x1,
x2,
x3) =
U7_gg(
x3)
gt_out_gg(
x1,
x2) =
gt_out_gg
U4_gga(
x1,
x2,
x3,
x4) =
U4_gga(
x4)
gcd_out_gga(
x1,
x2,
x3) =
gcd_out_gga(
x3)
GCD_IN_GGA(
x1,
x2,
x3) =
GCD_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3,
x4) =
U1_GGA(
x1,
x2,
x4)
GCD_LE_IN_GGA(
x1,
x2,
x3) =
GCD_LE_IN_GGA(
x1,
x2)
U5_GGA(
x1,
x2,
x3,
x4) =
U5_GGA(
x1,
x4)
U3_GGA(
x1,
x2,
x3,
x4) =
U3_GGA(
x1,
x2,
x4)
We have to consider all (P,R,Pi)-chains
(29) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(30) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
U1_GGA(X, Y, D, le_out_gg(X, Y)) → GCD_LE_IN_GGA(X, Y, D)
GCD_LE_IN_GGA(s(X), Y, D) → U5_GGA(X, Y, D, add_in_gag(s(X), Z, Y))
U5_GGA(X, Y, D, add_out_gag(s(X), Z, Y)) → GCD_IN_GGA(s(X), Z, D)
GCD_IN_GGA(X, Y, D) → U1_GGA(X, Y, D, le_in_gg(X, Y))
GCD_IN_GGA(X, Y, D) → U3_GGA(X, Y, D, gt_in_gg(X, Y))
U3_GGA(X, Y, D, gt_out_gg(X, Y)) → GCD_LE_IN_GGA(Y, X, D)
The TRS R consists of the following rules:
add_in_gag(s(X), Y, s(Z)) → U9_gag(X, Y, Z, add_in_gag(X, Y, Z))
le_in_gg(s(X), s(Y)) → U8_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg(0, s(Y))
le_in_gg(0, 0) → le_out_gg(0, 0)
gt_in_gg(s(X), s(Y)) → U7_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg(s(X), 0)
U9_gag(X, Y, Z, add_out_gag(X, Y, Z)) → add_out_gag(s(X), Y, s(Z))
U8_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U7_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))
add_in_gag(0, X, X) → add_out_gag(0, X, X)
The argument filtering Pi contains the following mapping:
le_in_gg(
x1,
x2) =
le_in_gg(
x1,
x2)
s(
x1) =
s(
x1)
U8_gg(
x1,
x2,
x3) =
U8_gg(
x3)
0 =
0
le_out_gg(
x1,
x2) =
le_out_gg
add_in_gag(
x1,
x2,
x3) =
add_in_gag(
x1,
x3)
U9_gag(
x1,
x2,
x3,
x4) =
U9_gag(
x4)
add_out_gag(
x1,
x2,
x3) =
add_out_gag(
x2)
gt_in_gg(
x1,
x2) =
gt_in_gg(
x1,
x2)
U7_gg(
x1,
x2,
x3) =
U7_gg(
x3)
gt_out_gg(
x1,
x2) =
gt_out_gg
GCD_IN_GGA(
x1,
x2,
x3) =
GCD_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3,
x4) =
U1_GGA(
x1,
x2,
x4)
GCD_LE_IN_GGA(
x1,
x2,
x3) =
GCD_LE_IN_GGA(
x1,
x2)
U5_GGA(
x1,
x2,
x3,
x4) =
U5_GGA(
x1,
x4)
U3_GGA(
x1,
x2,
x3,
x4) =
U3_GGA(
x1,
x2,
x4)
We have to consider all (P,R,Pi)-chains
(31) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(32) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U1_GGA(X, Y, le_out_gg) → GCD_LE_IN_GGA(X, Y)
GCD_LE_IN_GGA(s(X), Y) → U5_GGA(X, add_in_gag(s(X), Y))
U5_GGA(X, add_out_gag(Z)) → GCD_IN_GGA(s(X), Z)
GCD_IN_GGA(X, Y) → U1_GGA(X, Y, le_in_gg(X, Y))
GCD_IN_GGA(X, Y) → U3_GGA(X, Y, gt_in_gg(X, Y))
U3_GGA(X, Y, gt_out_gg) → GCD_LE_IN_GGA(Y, X)
The TRS R consists of the following rules:
add_in_gag(s(X), s(Z)) → U9_gag(add_in_gag(X, Z))
le_in_gg(s(X), s(Y)) → U8_gg(le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg
le_in_gg(0, 0) → le_out_gg
gt_in_gg(s(X), s(Y)) → U7_gg(gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg
U9_gag(add_out_gag(Y)) → add_out_gag(Y)
U8_gg(le_out_gg) → le_out_gg
U7_gg(gt_out_gg) → gt_out_gg
add_in_gag(0, X) → add_out_gag(X)
The set Q consists of the following terms:
add_in_gag(x0, x1)
le_in_gg(x0, x1)
gt_in_gg(x0, x1)
U9_gag(x0)
U8_gg(x0)
U7_gg(x0)
We have to consider all (P,Q,R)-chains.
(33) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
GCD_LE_IN_GGA(s(X), Y) → U5_GGA(X, add_in_gag(s(X), Y))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO]:
POL(U1_GGA(x1, x2, x3)) = | 0 | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(GCD_LE_IN_GGA(x1, x2)) = | 0 | + | | · | x1 | + | | · | x2 |
POL(U5_GGA(x1, x2)) = | 0 | + | | · | x1 | + | | · | x2 |
POL(add_in_gag(x1, x2)) = | | + | | · | x1 | + | | · | x2 |
POL(add_out_gag(x1)) = | | + | | · | x1 |
POL(GCD_IN_GGA(x1, x2)) = | 0 | + | | · | x1 | + | | · | x2 |
POL(le_in_gg(x1, x2)) = | | + | | · | x1 | + | | · | x2 |
POL(U3_GGA(x1, x2, x3)) = | 0 | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(gt_in_gg(x1, x2)) = | | + | | · | x1 | + | | · | x2 |
The following usable rules [FROCOS05] were oriented:
add_in_gag(s(X), s(Z)) → U9_gag(add_in_gag(X, Z))
add_in_gag(0, X) → add_out_gag(X)
U9_gag(add_out_gag(Y)) → add_out_gag(Y)
(34) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U1_GGA(X, Y, le_out_gg) → GCD_LE_IN_GGA(X, Y)
U5_GGA(X, add_out_gag(Z)) → GCD_IN_GGA(s(X), Z)
GCD_IN_GGA(X, Y) → U1_GGA(X, Y, le_in_gg(X, Y))
GCD_IN_GGA(X, Y) → U3_GGA(X, Y, gt_in_gg(X, Y))
U3_GGA(X, Y, gt_out_gg) → GCD_LE_IN_GGA(Y, X)
The TRS R consists of the following rules:
add_in_gag(s(X), s(Z)) → U9_gag(add_in_gag(X, Z))
le_in_gg(s(X), s(Y)) → U8_gg(le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg
le_in_gg(0, 0) → le_out_gg
gt_in_gg(s(X), s(Y)) → U7_gg(gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg
U9_gag(add_out_gag(Y)) → add_out_gag(Y)
U8_gg(le_out_gg) → le_out_gg
U7_gg(gt_out_gg) → gt_out_gg
add_in_gag(0, X) → add_out_gag(X)
The set Q consists of the following terms:
add_in_gag(x0, x1)
le_in_gg(x0, x1)
gt_in_gg(x0, x1)
U9_gag(x0)
U8_gg(x0)
U7_gg(x0)
We have to consider all (P,Q,R)-chains.
(35) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 5 less nodes.
(36) TRUE
(37) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
gcd_in: (b,b,f)
le_in: (b,b)
gcd_le_in: (b,b,f)
add_in: (b,f,b)
gt_in: (b,b)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
gcd_in_gga(X, Y, D) → U1_gga(X, Y, D, le_in_gg(X, Y))
le_in_gg(s(X), s(Y)) → U8_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg(0, s(Y))
le_in_gg(0, 0) → le_out_gg(0, 0)
U8_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U1_gga(X, Y, D, le_out_gg(X, Y)) → U2_gga(X, Y, D, gcd_le_in_gga(X, Y, D))
gcd_le_in_gga(0, Y, Y) → gcd_le_out_gga(0, Y, Y)
gcd_le_in_gga(s(X), Y, D) → U5_gga(X, Y, D, add_in_gag(s(X), Z, Y))
add_in_gag(s(X), Y, s(Z)) → U9_gag(X, Y, Z, add_in_gag(X, Y, Z))
add_in_gag(0, X, X) → add_out_gag(0, X, X)
U9_gag(X, Y, Z, add_out_gag(X, Y, Z)) → add_out_gag(s(X), Y, s(Z))
U5_gga(X, Y, D, add_out_gag(s(X), Z, Y)) → U6_gga(X, Y, D, gcd_in_gga(s(X), Z, D))
gcd_in_gga(X, Y, D) → U3_gga(X, Y, D, gt_in_gg(X, Y))
gt_in_gg(s(X), s(Y)) → U7_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg(s(X), 0)
U7_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))
U3_gga(X, Y, D, gt_out_gg(X, Y)) → U4_gga(X, Y, D, gcd_le_in_gga(Y, X, D))
U4_gga(X, Y, D, gcd_le_out_gga(Y, X, D)) → gcd_out_gga(X, Y, D)
U6_gga(X, Y, D, gcd_out_gga(s(X), Z, D)) → gcd_le_out_gga(s(X), Y, D)
U2_gga(X, Y, D, gcd_le_out_gga(X, Y, D)) → gcd_out_gga(X, Y, D)
The argument filtering Pi contains the following mapping:
gcd_in_gga(
x1,
x2,
x3) =
gcd_in_gga(
x1,
x2)
U1_gga(
x1,
x2,
x3,
x4) =
U1_gga(
x1,
x2,
x4)
le_in_gg(
x1,
x2) =
le_in_gg(
x1,
x2)
s(
x1) =
s(
x1)
U8_gg(
x1,
x2,
x3) =
U8_gg(
x1,
x2,
x3)
0 =
0
le_out_gg(
x1,
x2) =
le_out_gg(
x1,
x2)
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x1,
x2,
x4)
gcd_le_in_gga(
x1,
x2,
x3) =
gcd_le_in_gga(
x1,
x2)
gcd_le_out_gga(
x1,
x2,
x3) =
gcd_le_out_gga(
x1,
x2,
x3)
U5_gga(
x1,
x2,
x3,
x4) =
U5_gga(
x1,
x2,
x4)
add_in_gag(
x1,
x2,
x3) =
add_in_gag(
x1,
x3)
U9_gag(
x1,
x2,
x3,
x4) =
U9_gag(
x1,
x3,
x4)
add_out_gag(
x1,
x2,
x3) =
add_out_gag(
x1,
x2,
x3)
U6_gga(
x1,
x2,
x3,
x4) =
U6_gga(
x1,
x2,
x4)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x1,
x2,
x4)
gt_in_gg(
x1,
x2) =
gt_in_gg(
x1,
x2)
U7_gg(
x1,
x2,
x3) =
U7_gg(
x1,
x2,
x3)
gt_out_gg(
x1,
x2) =
gt_out_gg(
x1,
x2)
U4_gga(
x1,
x2,
x3,
x4) =
U4_gga(
x1,
x2,
x4)
gcd_out_gga(
x1,
x2,
x3) =
gcd_out_gga(
x1,
x2,
x3)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(38) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
gcd_in_gga(X, Y, D) → U1_gga(X, Y, D, le_in_gg(X, Y))
le_in_gg(s(X), s(Y)) → U8_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg(0, s(Y))
le_in_gg(0, 0) → le_out_gg(0, 0)
U8_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U1_gga(X, Y, D, le_out_gg(X, Y)) → U2_gga(X, Y, D, gcd_le_in_gga(X, Y, D))
gcd_le_in_gga(0, Y, Y) → gcd_le_out_gga(0, Y, Y)
gcd_le_in_gga(s(X), Y, D) → U5_gga(X, Y, D, add_in_gag(s(X), Z, Y))
add_in_gag(s(X), Y, s(Z)) → U9_gag(X, Y, Z, add_in_gag(X, Y, Z))
add_in_gag(0, X, X) → add_out_gag(0, X, X)
U9_gag(X, Y, Z, add_out_gag(X, Y, Z)) → add_out_gag(s(X), Y, s(Z))
U5_gga(X, Y, D, add_out_gag(s(X), Z, Y)) → U6_gga(X, Y, D, gcd_in_gga(s(X), Z, D))
gcd_in_gga(X, Y, D) → U3_gga(X, Y, D, gt_in_gg(X, Y))
gt_in_gg(s(X), s(Y)) → U7_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg(s(X), 0)
U7_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))
U3_gga(X, Y, D, gt_out_gg(X, Y)) → U4_gga(X, Y, D, gcd_le_in_gga(Y, X, D))
U4_gga(X, Y, D, gcd_le_out_gga(Y, X, D)) → gcd_out_gga(X, Y, D)
U6_gga(X, Y, D, gcd_out_gga(s(X), Z, D)) → gcd_le_out_gga(s(X), Y, D)
U2_gga(X, Y, D, gcd_le_out_gga(X, Y, D)) → gcd_out_gga(X, Y, D)
The argument filtering Pi contains the following mapping:
gcd_in_gga(
x1,
x2,
x3) =
gcd_in_gga(
x1,
x2)
U1_gga(
x1,
x2,
x3,
x4) =
U1_gga(
x1,
x2,
x4)
le_in_gg(
x1,
x2) =
le_in_gg(
x1,
x2)
s(
x1) =
s(
x1)
U8_gg(
x1,
x2,
x3) =
U8_gg(
x1,
x2,
x3)
0 =
0
le_out_gg(
x1,
x2) =
le_out_gg(
x1,
x2)
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x1,
x2,
x4)
gcd_le_in_gga(
x1,
x2,
x3) =
gcd_le_in_gga(
x1,
x2)
gcd_le_out_gga(
x1,
x2,
x3) =
gcd_le_out_gga(
x1,
x2,
x3)
U5_gga(
x1,
x2,
x3,
x4) =
U5_gga(
x1,
x2,
x4)
add_in_gag(
x1,
x2,
x3) =
add_in_gag(
x1,
x3)
U9_gag(
x1,
x2,
x3,
x4) =
U9_gag(
x1,
x3,
x4)
add_out_gag(
x1,
x2,
x3) =
add_out_gag(
x1,
x2,
x3)
U6_gga(
x1,
x2,
x3,
x4) =
U6_gga(
x1,
x2,
x4)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x1,
x2,
x4)
gt_in_gg(
x1,
x2) =
gt_in_gg(
x1,
x2)
U7_gg(
x1,
x2,
x3) =
U7_gg(
x1,
x2,
x3)
gt_out_gg(
x1,
x2) =
gt_out_gg(
x1,
x2)
U4_gga(
x1,
x2,
x3,
x4) =
U4_gga(
x1,
x2,
x4)
gcd_out_gga(
x1,
x2,
x3) =
gcd_out_gga(
x1,
x2,
x3)
(39) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
GCD_IN_GGA(X, Y, D) → U1_GGA(X, Y, D, le_in_gg(X, Y))
GCD_IN_GGA(X, Y, D) → LE_IN_GG(X, Y)
LE_IN_GG(s(X), s(Y)) → U8_GG(X, Y, le_in_gg(X, Y))
LE_IN_GG(s(X), s(Y)) → LE_IN_GG(X, Y)
U1_GGA(X, Y, D, le_out_gg(X, Y)) → U2_GGA(X, Y, D, gcd_le_in_gga(X, Y, D))
U1_GGA(X, Y, D, le_out_gg(X, Y)) → GCD_LE_IN_GGA(X, Y, D)
GCD_LE_IN_GGA(s(X), Y, D) → U5_GGA(X, Y, D, add_in_gag(s(X), Z, Y))
GCD_LE_IN_GGA(s(X), Y, D) → ADD_IN_GAG(s(X), Z, Y)
ADD_IN_GAG(s(X), Y, s(Z)) → U9_GAG(X, Y, Z, add_in_gag(X, Y, Z))
ADD_IN_GAG(s(X), Y, s(Z)) → ADD_IN_GAG(X, Y, Z)
U5_GGA(X, Y, D, add_out_gag(s(X), Z, Y)) → U6_GGA(X, Y, D, gcd_in_gga(s(X), Z, D))
U5_GGA(X, Y, D, add_out_gag(s(X), Z, Y)) → GCD_IN_GGA(s(X), Z, D)
GCD_IN_GGA(X, Y, D) → U3_GGA(X, Y, D, gt_in_gg(X, Y))
GCD_IN_GGA(X, Y, D) → GT_IN_GG(X, Y)
GT_IN_GG(s(X), s(Y)) → U7_GG(X, Y, gt_in_gg(X, Y))
GT_IN_GG(s(X), s(Y)) → GT_IN_GG(X, Y)
U3_GGA(X, Y, D, gt_out_gg(X, Y)) → U4_GGA(X, Y, D, gcd_le_in_gga(Y, X, D))
U3_GGA(X, Y, D, gt_out_gg(X, Y)) → GCD_LE_IN_GGA(Y, X, D)
The TRS R consists of the following rules:
gcd_in_gga(X, Y, D) → U1_gga(X, Y, D, le_in_gg(X, Y))
le_in_gg(s(X), s(Y)) → U8_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg(0, s(Y))
le_in_gg(0, 0) → le_out_gg(0, 0)
U8_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U1_gga(X, Y, D, le_out_gg(X, Y)) → U2_gga(X, Y, D, gcd_le_in_gga(X, Y, D))
gcd_le_in_gga(0, Y, Y) → gcd_le_out_gga(0, Y, Y)
gcd_le_in_gga(s(X), Y, D) → U5_gga(X, Y, D, add_in_gag(s(X), Z, Y))
add_in_gag(s(X), Y, s(Z)) → U9_gag(X, Y, Z, add_in_gag(X, Y, Z))
add_in_gag(0, X, X) → add_out_gag(0, X, X)
U9_gag(X, Y, Z, add_out_gag(X, Y, Z)) → add_out_gag(s(X), Y, s(Z))
U5_gga(X, Y, D, add_out_gag(s(X), Z, Y)) → U6_gga(X, Y, D, gcd_in_gga(s(X), Z, D))
gcd_in_gga(X, Y, D) → U3_gga(X, Y, D, gt_in_gg(X, Y))
gt_in_gg(s(X), s(Y)) → U7_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg(s(X), 0)
U7_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))
U3_gga(X, Y, D, gt_out_gg(X, Y)) → U4_gga(X, Y, D, gcd_le_in_gga(Y, X, D))
U4_gga(X, Y, D, gcd_le_out_gga(Y, X, D)) → gcd_out_gga(X, Y, D)
U6_gga(X, Y, D, gcd_out_gga(s(X), Z, D)) → gcd_le_out_gga(s(X), Y, D)
U2_gga(X, Y, D, gcd_le_out_gga(X, Y, D)) → gcd_out_gga(X, Y, D)
The argument filtering Pi contains the following mapping:
gcd_in_gga(
x1,
x2,
x3) =
gcd_in_gga(
x1,
x2)
U1_gga(
x1,
x2,
x3,
x4) =
U1_gga(
x1,
x2,
x4)
le_in_gg(
x1,
x2) =
le_in_gg(
x1,
x2)
s(
x1) =
s(
x1)
U8_gg(
x1,
x2,
x3) =
U8_gg(
x1,
x2,
x3)
0 =
0
le_out_gg(
x1,
x2) =
le_out_gg(
x1,
x2)
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x1,
x2,
x4)
gcd_le_in_gga(
x1,
x2,
x3) =
gcd_le_in_gga(
x1,
x2)
gcd_le_out_gga(
x1,
x2,
x3) =
gcd_le_out_gga(
x1,
x2,
x3)
U5_gga(
x1,
x2,
x3,
x4) =
U5_gga(
x1,
x2,
x4)
add_in_gag(
x1,
x2,
x3) =
add_in_gag(
x1,
x3)
U9_gag(
x1,
x2,
x3,
x4) =
U9_gag(
x1,
x3,
x4)
add_out_gag(
x1,
x2,
x3) =
add_out_gag(
x1,
x2,
x3)
U6_gga(
x1,
x2,
x3,
x4) =
U6_gga(
x1,
x2,
x4)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x1,
x2,
x4)
gt_in_gg(
x1,
x2) =
gt_in_gg(
x1,
x2)
U7_gg(
x1,
x2,
x3) =
U7_gg(
x1,
x2,
x3)
gt_out_gg(
x1,
x2) =
gt_out_gg(
x1,
x2)
U4_gga(
x1,
x2,
x3,
x4) =
U4_gga(
x1,
x2,
x4)
gcd_out_gga(
x1,
x2,
x3) =
gcd_out_gga(
x1,
x2,
x3)
GCD_IN_GGA(
x1,
x2,
x3) =
GCD_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3,
x4) =
U1_GGA(
x1,
x2,
x4)
LE_IN_GG(
x1,
x2) =
LE_IN_GG(
x1,
x2)
U8_GG(
x1,
x2,
x3) =
U8_GG(
x1,
x2,
x3)
U2_GGA(
x1,
x2,
x3,
x4) =
U2_GGA(
x1,
x2,
x4)
GCD_LE_IN_GGA(
x1,
x2,
x3) =
GCD_LE_IN_GGA(
x1,
x2)
U5_GGA(
x1,
x2,
x3,
x4) =
U5_GGA(
x1,
x2,
x4)
ADD_IN_GAG(
x1,
x2,
x3) =
ADD_IN_GAG(
x1,
x3)
U9_GAG(
x1,
x2,
x3,
x4) =
U9_GAG(
x1,
x3,
x4)
U6_GGA(
x1,
x2,
x3,
x4) =
U6_GGA(
x1,
x2,
x4)
U3_GGA(
x1,
x2,
x3,
x4) =
U3_GGA(
x1,
x2,
x4)
GT_IN_GG(
x1,
x2) =
GT_IN_GG(
x1,
x2)
U7_GG(
x1,
x2,
x3) =
U7_GG(
x1,
x2,
x3)
U4_GGA(
x1,
x2,
x3,
x4) =
U4_GGA(
x1,
x2,
x4)
We have to consider all (P,R,Pi)-chains
(40) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
GCD_IN_GGA(X, Y, D) → U1_GGA(X, Y, D, le_in_gg(X, Y))
GCD_IN_GGA(X, Y, D) → LE_IN_GG(X, Y)
LE_IN_GG(s(X), s(Y)) → U8_GG(X, Y, le_in_gg(X, Y))
LE_IN_GG(s(X), s(Y)) → LE_IN_GG(X, Y)
U1_GGA(X, Y, D, le_out_gg(X, Y)) → U2_GGA(X, Y, D, gcd_le_in_gga(X, Y, D))
U1_GGA(X, Y, D, le_out_gg(X, Y)) → GCD_LE_IN_GGA(X, Y, D)
GCD_LE_IN_GGA(s(X), Y, D) → U5_GGA(X, Y, D, add_in_gag(s(X), Z, Y))
GCD_LE_IN_GGA(s(X), Y, D) → ADD_IN_GAG(s(X), Z, Y)
ADD_IN_GAG(s(X), Y, s(Z)) → U9_GAG(X, Y, Z, add_in_gag(X, Y, Z))
ADD_IN_GAG(s(X), Y, s(Z)) → ADD_IN_GAG(X, Y, Z)
U5_GGA(X, Y, D, add_out_gag(s(X), Z, Y)) → U6_GGA(X, Y, D, gcd_in_gga(s(X), Z, D))
U5_GGA(X, Y, D, add_out_gag(s(X), Z, Y)) → GCD_IN_GGA(s(X), Z, D)
GCD_IN_GGA(X, Y, D) → U3_GGA(X, Y, D, gt_in_gg(X, Y))
GCD_IN_GGA(X, Y, D) → GT_IN_GG(X, Y)
GT_IN_GG(s(X), s(Y)) → U7_GG(X, Y, gt_in_gg(X, Y))
GT_IN_GG(s(X), s(Y)) → GT_IN_GG(X, Y)
U3_GGA(X, Y, D, gt_out_gg(X, Y)) → U4_GGA(X, Y, D, gcd_le_in_gga(Y, X, D))
U3_GGA(X, Y, D, gt_out_gg(X, Y)) → GCD_LE_IN_GGA(Y, X, D)
The TRS R consists of the following rules:
gcd_in_gga(X, Y, D) → U1_gga(X, Y, D, le_in_gg(X, Y))
le_in_gg(s(X), s(Y)) → U8_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg(0, s(Y))
le_in_gg(0, 0) → le_out_gg(0, 0)
U8_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U1_gga(X, Y, D, le_out_gg(X, Y)) → U2_gga(X, Y, D, gcd_le_in_gga(X, Y, D))
gcd_le_in_gga(0, Y, Y) → gcd_le_out_gga(0, Y, Y)
gcd_le_in_gga(s(X), Y, D) → U5_gga(X, Y, D, add_in_gag(s(X), Z, Y))
add_in_gag(s(X), Y, s(Z)) → U9_gag(X, Y, Z, add_in_gag(X, Y, Z))
add_in_gag(0, X, X) → add_out_gag(0, X, X)
U9_gag(X, Y, Z, add_out_gag(X, Y, Z)) → add_out_gag(s(X), Y, s(Z))
U5_gga(X, Y, D, add_out_gag(s(X), Z, Y)) → U6_gga(X, Y, D, gcd_in_gga(s(X), Z, D))
gcd_in_gga(X, Y, D) → U3_gga(X, Y, D, gt_in_gg(X, Y))
gt_in_gg(s(X), s(Y)) → U7_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg(s(X), 0)
U7_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))
U3_gga(X, Y, D, gt_out_gg(X, Y)) → U4_gga(X, Y, D, gcd_le_in_gga(Y, X, D))
U4_gga(X, Y, D, gcd_le_out_gga(Y, X, D)) → gcd_out_gga(X, Y, D)
U6_gga(X, Y, D, gcd_out_gga(s(X), Z, D)) → gcd_le_out_gga(s(X), Y, D)
U2_gga(X, Y, D, gcd_le_out_gga(X, Y, D)) → gcd_out_gga(X, Y, D)
The argument filtering Pi contains the following mapping:
gcd_in_gga(
x1,
x2,
x3) =
gcd_in_gga(
x1,
x2)
U1_gga(
x1,
x2,
x3,
x4) =
U1_gga(
x1,
x2,
x4)
le_in_gg(
x1,
x2) =
le_in_gg(
x1,
x2)
s(
x1) =
s(
x1)
U8_gg(
x1,
x2,
x3) =
U8_gg(
x1,
x2,
x3)
0 =
0
le_out_gg(
x1,
x2) =
le_out_gg(
x1,
x2)
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x1,
x2,
x4)
gcd_le_in_gga(
x1,
x2,
x3) =
gcd_le_in_gga(
x1,
x2)
gcd_le_out_gga(
x1,
x2,
x3) =
gcd_le_out_gga(
x1,
x2,
x3)
U5_gga(
x1,
x2,
x3,
x4) =
U5_gga(
x1,
x2,
x4)
add_in_gag(
x1,
x2,
x3) =
add_in_gag(
x1,
x3)
U9_gag(
x1,
x2,
x3,
x4) =
U9_gag(
x1,
x3,
x4)
add_out_gag(
x1,
x2,
x3) =
add_out_gag(
x1,
x2,
x3)
U6_gga(
x1,
x2,
x3,
x4) =
U6_gga(
x1,
x2,
x4)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x1,
x2,
x4)
gt_in_gg(
x1,
x2) =
gt_in_gg(
x1,
x2)
U7_gg(
x1,
x2,
x3) =
U7_gg(
x1,
x2,
x3)
gt_out_gg(
x1,
x2) =
gt_out_gg(
x1,
x2)
U4_gga(
x1,
x2,
x3,
x4) =
U4_gga(
x1,
x2,
x4)
gcd_out_gga(
x1,
x2,
x3) =
gcd_out_gga(
x1,
x2,
x3)
GCD_IN_GGA(
x1,
x2,
x3) =
GCD_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3,
x4) =
U1_GGA(
x1,
x2,
x4)
LE_IN_GG(
x1,
x2) =
LE_IN_GG(
x1,
x2)
U8_GG(
x1,
x2,
x3) =
U8_GG(
x1,
x2,
x3)
U2_GGA(
x1,
x2,
x3,
x4) =
U2_GGA(
x1,
x2,
x4)
GCD_LE_IN_GGA(
x1,
x2,
x3) =
GCD_LE_IN_GGA(
x1,
x2)
U5_GGA(
x1,
x2,
x3,
x4) =
U5_GGA(
x1,
x2,
x4)
ADD_IN_GAG(
x1,
x2,
x3) =
ADD_IN_GAG(
x1,
x3)
U9_GAG(
x1,
x2,
x3,
x4) =
U9_GAG(
x1,
x3,
x4)
U6_GGA(
x1,
x2,
x3,
x4) =
U6_GGA(
x1,
x2,
x4)
U3_GGA(
x1,
x2,
x3,
x4) =
U3_GGA(
x1,
x2,
x4)
GT_IN_GG(
x1,
x2) =
GT_IN_GG(
x1,
x2)
U7_GG(
x1,
x2,
x3) =
U7_GG(
x1,
x2,
x3)
U4_GGA(
x1,
x2,
x3,
x4) =
U4_GGA(
x1,
x2,
x4)
We have to consider all (P,R,Pi)-chains
(41) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 4 SCCs with 9 less nodes.
(42) Complex Obligation (AND)
(43) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
GT_IN_GG(s(X), s(Y)) → GT_IN_GG(X, Y)
The TRS R consists of the following rules:
gcd_in_gga(X, Y, D) → U1_gga(X, Y, D, le_in_gg(X, Y))
le_in_gg(s(X), s(Y)) → U8_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg(0, s(Y))
le_in_gg(0, 0) → le_out_gg(0, 0)
U8_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U1_gga(X, Y, D, le_out_gg(X, Y)) → U2_gga(X, Y, D, gcd_le_in_gga(X, Y, D))
gcd_le_in_gga(0, Y, Y) → gcd_le_out_gga(0, Y, Y)
gcd_le_in_gga(s(X), Y, D) → U5_gga(X, Y, D, add_in_gag(s(X), Z, Y))
add_in_gag(s(X), Y, s(Z)) → U9_gag(X, Y, Z, add_in_gag(X, Y, Z))
add_in_gag(0, X, X) → add_out_gag(0, X, X)
U9_gag(X, Y, Z, add_out_gag(X, Y, Z)) → add_out_gag(s(X), Y, s(Z))
U5_gga(X, Y, D, add_out_gag(s(X), Z, Y)) → U6_gga(X, Y, D, gcd_in_gga(s(X), Z, D))
gcd_in_gga(X, Y, D) → U3_gga(X, Y, D, gt_in_gg(X, Y))
gt_in_gg(s(X), s(Y)) → U7_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg(s(X), 0)
U7_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))
U3_gga(X, Y, D, gt_out_gg(X, Y)) → U4_gga(X, Y, D, gcd_le_in_gga(Y, X, D))
U4_gga(X, Y, D, gcd_le_out_gga(Y, X, D)) → gcd_out_gga(X, Y, D)
U6_gga(X, Y, D, gcd_out_gga(s(X), Z, D)) → gcd_le_out_gga(s(X), Y, D)
U2_gga(X, Y, D, gcd_le_out_gga(X, Y, D)) → gcd_out_gga(X, Y, D)
The argument filtering Pi contains the following mapping:
gcd_in_gga(
x1,
x2,
x3) =
gcd_in_gga(
x1,
x2)
U1_gga(
x1,
x2,
x3,
x4) =
U1_gga(
x1,
x2,
x4)
le_in_gg(
x1,
x2) =
le_in_gg(
x1,
x2)
s(
x1) =
s(
x1)
U8_gg(
x1,
x2,
x3) =
U8_gg(
x1,
x2,
x3)
0 =
0
le_out_gg(
x1,
x2) =
le_out_gg(
x1,
x2)
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x1,
x2,
x4)
gcd_le_in_gga(
x1,
x2,
x3) =
gcd_le_in_gga(
x1,
x2)
gcd_le_out_gga(
x1,
x2,
x3) =
gcd_le_out_gga(
x1,
x2,
x3)
U5_gga(
x1,
x2,
x3,
x4) =
U5_gga(
x1,
x2,
x4)
add_in_gag(
x1,
x2,
x3) =
add_in_gag(
x1,
x3)
U9_gag(
x1,
x2,
x3,
x4) =
U9_gag(
x1,
x3,
x4)
add_out_gag(
x1,
x2,
x3) =
add_out_gag(
x1,
x2,
x3)
U6_gga(
x1,
x2,
x3,
x4) =
U6_gga(
x1,
x2,
x4)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x1,
x2,
x4)
gt_in_gg(
x1,
x2) =
gt_in_gg(
x1,
x2)
U7_gg(
x1,
x2,
x3) =
U7_gg(
x1,
x2,
x3)
gt_out_gg(
x1,
x2) =
gt_out_gg(
x1,
x2)
U4_gga(
x1,
x2,
x3,
x4) =
U4_gga(
x1,
x2,
x4)
gcd_out_gga(
x1,
x2,
x3) =
gcd_out_gga(
x1,
x2,
x3)
GT_IN_GG(
x1,
x2) =
GT_IN_GG(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(44) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(45) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
GT_IN_GG(s(X), s(Y)) → GT_IN_GG(X, Y)
R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains
(46) PiDPToQDPProof (EQUIVALENT transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(47) Obligation:
Q DP problem:
The TRS P consists of the following rules:
GT_IN_GG(s(X), s(Y)) → GT_IN_GG(X, Y)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(48) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- GT_IN_GG(s(X), s(Y)) → GT_IN_GG(X, Y)
The graph contains the following edges 1 > 1, 2 > 2
(49) TRUE
(50) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
ADD_IN_GAG(s(X), Y, s(Z)) → ADD_IN_GAG(X, Y, Z)
The TRS R consists of the following rules:
gcd_in_gga(X, Y, D) → U1_gga(X, Y, D, le_in_gg(X, Y))
le_in_gg(s(X), s(Y)) → U8_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg(0, s(Y))
le_in_gg(0, 0) → le_out_gg(0, 0)
U8_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U1_gga(X, Y, D, le_out_gg(X, Y)) → U2_gga(X, Y, D, gcd_le_in_gga(X, Y, D))
gcd_le_in_gga(0, Y, Y) → gcd_le_out_gga(0, Y, Y)
gcd_le_in_gga(s(X), Y, D) → U5_gga(X, Y, D, add_in_gag(s(X), Z, Y))
add_in_gag(s(X), Y, s(Z)) → U9_gag(X, Y, Z, add_in_gag(X, Y, Z))
add_in_gag(0, X, X) → add_out_gag(0, X, X)
U9_gag(X, Y, Z, add_out_gag(X, Y, Z)) → add_out_gag(s(X), Y, s(Z))
U5_gga(X, Y, D, add_out_gag(s(X), Z, Y)) → U6_gga(X, Y, D, gcd_in_gga(s(X), Z, D))
gcd_in_gga(X, Y, D) → U3_gga(X, Y, D, gt_in_gg(X, Y))
gt_in_gg(s(X), s(Y)) → U7_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg(s(X), 0)
U7_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))
U3_gga(X, Y, D, gt_out_gg(X, Y)) → U4_gga(X, Y, D, gcd_le_in_gga(Y, X, D))
U4_gga(X, Y, D, gcd_le_out_gga(Y, X, D)) → gcd_out_gga(X, Y, D)
U6_gga(X, Y, D, gcd_out_gga(s(X), Z, D)) → gcd_le_out_gga(s(X), Y, D)
U2_gga(X, Y, D, gcd_le_out_gga(X, Y, D)) → gcd_out_gga(X, Y, D)
The argument filtering Pi contains the following mapping:
gcd_in_gga(
x1,
x2,
x3) =
gcd_in_gga(
x1,
x2)
U1_gga(
x1,
x2,
x3,
x4) =
U1_gga(
x1,
x2,
x4)
le_in_gg(
x1,
x2) =
le_in_gg(
x1,
x2)
s(
x1) =
s(
x1)
U8_gg(
x1,
x2,
x3) =
U8_gg(
x1,
x2,
x3)
0 =
0
le_out_gg(
x1,
x2) =
le_out_gg(
x1,
x2)
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x1,
x2,
x4)
gcd_le_in_gga(
x1,
x2,
x3) =
gcd_le_in_gga(
x1,
x2)
gcd_le_out_gga(
x1,
x2,
x3) =
gcd_le_out_gga(
x1,
x2,
x3)
U5_gga(
x1,
x2,
x3,
x4) =
U5_gga(
x1,
x2,
x4)
add_in_gag(
x1,
x2,
x3) =
add_in_gag(
x1,
x3)
U9_gag(
x1,
x2,
x3,
x4) =
U9_gag(
x1,
x3,
x4)
add_out_gag(
x1,
x2,
x3) =
add_out_gag(
x1,
x2,
x3)
U6_gga(
x1,
x2,
x3,
x4) =
U6_gga(
x1,
x2,
x4)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x1,
x2,
x4)
gt_in_gg(
x1,
x2) =
gt_in_gg(
x1,
x2)
U7_gg(
x1,
x2,
x3) =
U7_gg(
x1,
x2,
x3)
gt_out_gg(
x1,
x2) =
gt_out_gg(
x1,
x2)
U4_gga(
x1,
x2,
x3,
x4) =
U4_gga(
x1,
x2,
x4)
gcd_out_gga(
x1,
x2,
x3) =
gcd_out_gga(
x1,
x2,
x3)
ADD_IN_GAG(
x1,
x2,
x3) =
ADD_IN_GAG(
x1,
x3)
We have to consider all (P,R,Pi)-chains
(51) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(52) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
ADD_IN_GAG(s(X), Y, s(Z)) → ADD_IN_GAG(X, Y, Z)
R is empty.
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
ADD_IN_GAG(
x1,
x2,
x3) =
ADD_IN_GAG(
x1,
x3)
We have to consider all (P,R,Pi)-chains
(53) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(54) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ADD_IN_GAG(s(X), s(Z)) → ADD_IN_GAG(X, Z)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(55) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- ADD_IN_GAG(s(X), s(Z)) → ADD_IN_GAG(X, Z)
The graph contains the following edges 1 > 1, 2 > 2
(56) TRUE
(57) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
LE_IN_GG(s(X), s(Y)) → LE_IN_GG(X, Y)
The TRS R consists of the following rules:
gcd_in_gga(X, Y, D) → U1_gga(X, Y, D, le_in_gg(X, Y))
le_in_gg(s(X), s(Y)) → U8_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg(0, s(Y))
le_in_gg(0, 0) → le_out_gg(0, 0)
U8_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U1_gga(X, Y, D, le_out_gg(X, Y)) → U2_gga(X, Y, D, gcd_le_in_gga(X, Y, D))
gcd_le_in_gga(0, Y, Y) → gcd_le_out_gga(0, Y, Y)
gcd_le_in_gga(s(X), Y, D) → U5_gga(X, Y, D, add_in_gag(s(X), Z, Y))
add_in_gag(s(X), Y, s(Z)) → U9_gag(X, Y, Z, add_in_gag(X, Y, Z))
add_in_gag(0, X, X) → add_out_gag(0, X, X)
U9_gag(X, Y, Z, add_out_gag(X, Y, Z)) → add_out_gag(s(X), Y, s(Z))
U5_gga(X, Y, D, add_out_gag(s(X), Z, Y)) → U6_gga(X, Y, D, gcd_in_gga(s(X), Z, D))
gcd_in_gga(X, Y, D) → U3_gga(X, Y, D, gt_in_gg(X, Y))
gt_in_gg(s(X), s(Y)) → U7_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg(s(X), 0)
U7_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))
U3_gga(X, Y, D, gt_out_gg(X, Y)) → U4_gga(X, Y, D, gcd_le_in_gga(Y, X, D))
U4_gga(X, Y, D, gcd_le_out_gga(Y, X, D)) → gcd_out_gga(X, Y, D)
U6_gga(X, Y, D, gcd_out_gga(s(X), Z, D)) → gcd_le_out_gga(s(X), Y, D)
U2_gga(X, Y, D, gcd_le_out_gga(X, Y, D)) → gcd_out_gga(X, Y, D)
The argument filtering Pi contains the following mapping:
gcd_in_gga(
x1,
x2,
x3) =
gcd_in_gga(
x1,
x2)
U1_gga(
x1,
x2,
x3,
x4) =
U1_gga(
x1,
x2,
x4)
le_in_gg(
x1,
x2) =
le_in_gg(
x1,
x2)
s(
x1) =
s(
x1)
U8_gg(
x1,
x2,
x3) =
U8_gg(
x1,
x2,
x3)
0 =
0
le_out_gg(
x1,
x2) =
le_out_gg(
x1,
x2)
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x1,
x2,
x4)
gcd_le_in_gga(
x1,
x2,
x3) =
gcd_le_in_gga(
x1,
x2)
gcd_le_out_gga(
x1,
x2,
x3) =
gcd_le_out_gga(
x1,
x2,
x3)
U5_gga(
x1,
x2,
x3,
x4) =
U5_gga(
x1,
x2,
x4)
add_in_gag(
x1,
x2,
x3) =
add_in_gag(
x1,
x3)
U9_gag(
x1,
x2,
x3,
x4) =
U9_gag(
x1,
x3,
x4)
add_out_gag(
x1,
x2,
x3) =
add_out_gag(
x1,
x2,
x3)
U6_gga(
x1,
x2,
x3,
x4) =
U6_gga(
x1,
x2,
x4)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x1,
x2,
x4)
gt_in_gg(
x1,
x2) =
gt_in_gg(
x1,
x2)
U7_gg(
x1,
x2,
x3) =
U7_gg(
x1,
x2,
x3)
gt_out_gg(
x1,
x2) =
gt_out_gg(
x1,
x2)
U4_gga(
x1,
x2,
x3,
x4) =
U4_gga(
x1,
x2,
x4)
gcd_out_gga(
x1,
x2,
x3) =
gcd_out_gga(
x1,
x2,
x3)
LE_IN_GG(
x1,
x2) =
LE_IN_GG(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(58) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(59) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
LE_IN_GG(s(X), s(Y)) → LE_IN_GG(X, Y)
R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains
(60) PiDPToQDPProof (EQUIVALENT transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(61) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LE_IN_GG(s(X), s(Y)) → LE_IN_GG(X, Y)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(62) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- LE_IN_GG(s(X), s(Y)) → LE_IN_GG(X, Y)
The graph contains the following edges 1 > 1, 2 > 2
(63) TRUE
(64) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
U1_GGA(X, Y, D, le_out_gg(X, Y)) → GCD_LE_IN_GGA(X, Y, D)
GCD_LE_IN_GGA(s(X), Y, D) → U5_GGA(X, Y, D, add_in_gag(s(X), Z, Y))
U5_GGA(X, Y, D, add_out_gag(s(X), Z, Y)) → GCD_IN_GGA(s(X), Z, D)
GCD_IN_GGA(X, Y, D) → U1_GGA(X, Y, D, le_in_gg(X, Y))
GCD_IN_GGA(X, Y, D) → U3_GGA(X, Y, D, gt_in_gg(X, Y))
U3_GGA(X, Y, D, gt_out_gg(X, Y)) → GCD_LE_IN_GGA(Y, X, D)
The TRS R consists of the following rules:
gcd_in_gga(X, Y, D) → U1_gga(X, Y, D, le_in_gg(X, Y))
le_in_gg(s(X), s(Y)) → U8_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg(0, s(Y))
le_in_gg(0, 0) → le_out_gg(0, 0)
U8_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U1_gga(X, Y, D, le_out_gg(X, Y)) → U2_gga(X, Y, D, gcd_le_in_gga(X, Y, D))
gcd_le_in_gga(0, Y, Y) → gcd_le_out_gga(0, Y, Y)
gcd_le_in_gga(s(X), Y, D) → U5_gga(X, Y, D, add_in_gag(s(X), Z, Y))
add_in_gag(s(X), Y, s(Z)) → U9_gag(X, Y, Z, add_in_gag(X, Y, Z))
add_in_gag(0, X, X) → add_out_gag(0, X, X)
U9_gag(X, Y, Z, add_out_gag(X, Y, Z)) → add_out_gag(s(X), Y, s(Z))
U5_gga(X, Y, D, add_out_gag(s(X), Z, Y)) → U6_gga(X, Y, D, gcd_in_gga(s(X), Z, D))
gcd_in_gga(X, Y, D) → U3_gga(X, Y, D, gt_in_gg(X, Y))
gt_in_gg(s(X), s(Y)) → U7_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg(s(X), 0)
U7_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))
U3_gga(X, Y, D, gt_out_gg(X, Y)) → U4_gga(X, Y, D, gcd_le_in_gga(Y, X, D))
U4_gga(X, Y, D, gcd_le_out_gga(Y, X, D)) → gcd_out_gga(X, Y, D)
U6_gga(X, Y, D, gcd_out_gga(s(X), Z, D)) → gcd_le_out_gga(s(X), Y, D)
U2_gga(X, Y, D, gcd_le_out_gga(X, Y, D)) → gcd_out_gga(X, Y, D)
The argument filtering Pi contains the following mapping:
gcd_in_gga(
x1,
x2,
x3) =
gcd_in_gga(
x1,
x2)
U1_gga(
x1,
x2,
x3,
x4) =
U1_gga(
x1,
x2,
x4)
le_in_gg(
x1,
x2) =
le_in_gg(
x1,
x2)
s(
x1) =
s(
x1)
U8_gg(
x1,
x2,
x3) =
U8_gg(
x1,
x2,
x3)
0 =
0
le_out_gg(
x1,
x2) =
le_out_gg(
x1,
x2)
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x1,
x2,
x4)
gcd_le_in_gga(
x1,
x2,
x3) =
gcd_le_in_gga(
x1,
x2)
gcd_le_out_gga(
x1,
x2,
x3) =
gcd_le_out_gga(
x1,
x2,
x3)
U5_gga(
x1,
x2,
x3,
x4) =
U5_gga(
x1,
x2,
x4)
add_in_gag(
x1,
x2,
x3) =
add_in_gag(
x1,
x3)
U9_gag(
x1,
x2,
x3,
x4) =
U9_gag(
x1,
x3,
x4)
add_out_gag(
x1,
x2,
x3) =
add_out_gag(
x1,
x2,
x3)
U6_gga(
x1,
x2,
x3,
x4) =
U6_gga(
x1,
x2,
x4)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x1,
x2,
x4)
gt_in_gg(
x1,
x2) =
gt_in_gg(
x1,
x2)
U7_gg(
x1,
x2,
x3) =
U7_gg(
x1,
x2,
x3)
gt_out_gg(
x1,
x2) =
gt_out_gg(
x1,
x2)
U4_gga(
x1,
x2,
x3,
x4) =
U4_gga(
x1,
x2,
x4)
gcd_out_gga(
x1,
x2,
x3) =
gcd_out_gga(
x1,
x2,
x3)
GCD_IN_GGA(
x1,
x2,
x3) =
GCD_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3,
x4) =
U1_GGA(
x1,
x2,
x4)
GCD_LE_IN_GGA(
x1,
x2,
x3) =
GCD_LE_IN_GGA(
x1,
x2)
U5_GGA(
x1,
x2,
x3,
x4) =
U5_GGA(
x1,
x2,
x4)
U3_GGA(
x1,
x2,
x3,
x4) =
U3_GGA(
x1,
x2,
x4)
We have to consider all (P,R,Pi)-chains
(65) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(66) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
U1_GGA(X, Y, D, le_out_gg(X, Y)) → GCD_LE_IN_GGA(X, Y, D)
GCD_LE_IN_GGA(s(X), Y, D) → U5_GGA(X, Y, D, add_in_gag(s(X), Z, Y))
U5_GGA(X, Y, D, add_out_gag(s(X), Z, Y)) → GCD_IN_GGA(s(X), Z, D)
GCD_IN_GGA(X, Y, D) → U1_GGA(X, Y, D, le_in_gg(X, Y))
GCD_IN_GGA(X, Y, D) → U3_GGA(X, Y, D, gt_in_gg(X, Y))
U3_GGA(X, Y, D, gt_out_gg(X, Y)) → GCD_LE_IN_GGA(Y, X, D)
The TRS R consists of the following rules:
add_in_gag(s(X), Y, s(Z)) → U9_gag(X, Y, Z, add_in_gag(X, Y, Z))
le_in_gg(s(X), s(Y)) → U8_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg(0, s(Y))
le_in_gg(0, 0) → le_out_gg(0, 0)
gt_in_gg(s(X), s(Y)) → U7_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg(s(X), 0)
U9_gag(X, Y, Z, add_out_gag(X, Y, Z)) → add_out_gag(s(X), Y, s(Z))
U8_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U7_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))
add_in_gag(0, X, X) → add_out_gag(0, X, X)
The argument filtering Pi contains the following mapping:
le_in_gg(
x1,
x2) =
le_in_gg(
x1,
x2)
s(
x1) =
s(
x1)
U8_gg(
x1,
x2,
x3) =
U8_gg(
x1,
x2,
x3)
0 =
0
le_out_gg(
x1,
x2) =
le_out_gg(
x1,
x2)
add_in_gag(
x1,
x2,
x3) =
add_in_gag(
x1,
x3)
U9_gag(
x1,
x2,
x3,
x4) =
U9_gag(
x1,
x3,
x4)
add_out_gag(
x1,
x2,
x3) =
add_out_gag(
x1,
x2,
x3)
gt_in_gg(
x1,
x2) =
gt_in_gg(
x1,
x2)
U7_gg(
x1,
x2,
x3) =
U7_gg(
x1,
x2,
x3)
gt_out_gg(
x1,
x2) =
gt_out_gg(
x1,
x2)
GCD_IN_GGA(
x1,
x2,
x3) =
GCD_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3,
x4) =
U1_GGA(
x1,
x2,
x4)
GCD_LE_IN_GGA(
x1,
x2,
x3) =
GCD_LE_IN_GGA(
x1,
x2)
U5_GGA(
x1,
x2,
x3,
x4) =
U5_GGA(
x1,
x2,
x4)
U3_GGA(
x1,
x2,
x3,
x4) =
U3_GGA(
x1,
x2,
x4)
We have to consider all (P,R,Pi)-chains
(67) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(68) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U1_GGA(X, Y, le_out_gg(X, Y)) → GCD_LE_IN_GGA(X, Y)
GCD_LE_IN_GGA(s(X), Y) → U5_GGA(X, Y, add_in_gag(s(X), Y))
U5_GGA(X, Y, add_out_gag(s(X), Z, Y)) → GCD_IN_GGA(s(X), Z)
GCD_IN_GGA(X, Y) → U1_GGA(X, Y, le_in_gg(X, Y))
GCD_IN_GGA(X, Y) → U3_GGA(X, Y, gt_in_gg(X, Y))
U3_GGA(X, Y, gt_out_gg(X, Y)) → GCD_LE_IN_GGA(Y, X)
The TRS R consists of the following rules:
add_in_gag(s(X), s(Z)) → U9_gag(X, Z, add_in_gag(X, Z))
le_in_gg(s(X), s(Y)) → U8_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg(0, s(Y))
le_in_gg(0, 0) → le_out_gg(0, 0)
gt_in_gg(s(X), s(Y)) → U7_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg(s(X), 0)
U9_gag(X, Z, add_out_gag(X, Y, Z)) → add_out_gag(s(X), Y, s(Z))
U8_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U7_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))
add_in_gag(0, X) → add_out_gag(0, X, X)
The set Q consists of the following terms:
add_in_gag(x0, x1)
le_in_gg(x0, x1)
gt_in_gg(x0, x1)
U9_gag(x0, x1, x2)
U8_gg(x0, x1, x2)
U7_gg(x0, x1, x2)
We have to consider all (P,Q,R)-chains.
(69) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
U3_GGA(X, Y, gt_out_gg(X, Y)) → GCD_LE_IN_GGA(Y, X)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:
POL(0) = 0
POL(GCD_IN_GGA(x1, x2)) = x1
POL(GCD_LE_IN_GGA(x1, x2)) = x1
POL(U1_GGA(x1, x2, x3)) = x1
POL(U3_GGA(x1, x2, x3)) = x3
POL(U5_GGA(x1, x2, x3)) = 1 + x1
POL(U7_gg(x1, x2, x3)) = 1 + x3
POL(U8_gg(x1, x2, x3)) = 0
POL(U9_gag(x1, x2, x3)) = 0
POL(add_in_gag(x1, x2)) = 1
POL(add_out_gag(x1, x2, x3)) = 0
POL(gt_in_gg(x1, x2)) = x1
POL(gt_out_gg(x1, x2)) = 1 + x2
POL(le_in_gg(x1, x2)) = 0
POL(le_out_gg(x1, x2)) = 0
POL(s(x1)) = 1 + x1
The following usable rules [FROCOS05] were oriented:
gt_in_gg(s(X), s(Y)) → U7_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg(s(X), 0)
U7_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))
(70) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U1_GGA(X, Y, le_out_gg(X, Y)) → GCD_LE_IN_GGA(X, Y)
GCD_LE_IN_GGA(s(X), Y) → U5_GGA(X, Y, add_in_gag(s(X), Y))
U5_GGA(X, Y, add_out_gag(s(X), Z, Y)) → GCD_IN_GGA(s(X), Z)
GCD_IN_GGA(X, Y) → U1_GGA(X, Y, le_in_gg(X, Y))
GCD_IN_GGA(X, Y) → U3_GGA(X, Y, gt_in_gg(X, Y))
The TRS R consists of the following rules:
add_in_gag(s(X), s(Z)) → U9_gag(X, Z, add_in_gag(X, Z))
le_in_gg(s(X), s(Y)) → U8_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg(0, s(Y))
le_in_gg(0, 0) → le_out_gg(0, 0)
gt_in_gg(s(X), s(Y)) → U7_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg(s(X), 0)
U9_gag(X, Z, add_out_gag(X, Y, Z)) → add_out_gag(s(X), Y, s(Z))
U8_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U7_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))
add_in_gag(0, X) → add_out_gag(0, X, X)
The set Q consists of the following terms:
add_in_gag(x0, x1)
le_in_gg(x0, x1)
gt_in_gg(x0, x1)
U9_gag(x0, x1, x2)
U8_gg(x0, x1, x2)
U7_gg(x0, x1, x2)
We have to consider all (P,Q,R)-chains.
(71) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(72) Obligation:
Q DP problem:
The TRS P consists of the following rules:
GCD_LE_IN_GGA(s(X), Y) → U5_GGA(X, Y, add_in_gag(s(X), Y))
U5_GGA(X, Y, add_out_gag(s(X), Z, Y)) → GCD_IN_GGA(s(X), Z)
GCD_IN_GGA(X, Y) → U1_GGA(X, Y, le_in_gg(X, Y))
U1_GGA(X, Y, le_out_gg(X, Y)) → GCD_LE_IN_GGA(X, Y)
The TRS R consists of the following rules:
add_in_gag(s(X), s(Z)) → U9_gag(X, Z, add_in_gag(X, Z))
le_in_gg(s(X), s(Y)) → U8_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg(0, s(Y))
le_in_gg(0, 0) → le_out_gg(0, 0)
gt_in_gg(s(X), s(Y)) → U7_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg(s(X), 0)
U9_gag(X, Z, add_out_gag(X, Y, Z)) → add_out_gag(s(X), Y, s(Z))
U8_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U7_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))
add_in_gag(0, X) → add_out_gag(0, X, X)
The set Q consists of the following terms:
add_in_gag(x0, x1)
le_in_gg(x0, x1)
gt_in_gg(x0, x1)
U9_gag(x0, x1, x2)
U8_gg(x0, x1, x2)
U7_gg(x0, x1, x2)
We have to consider all (P,Q,R)-chains.
(73) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(74) Obligation:
Q DP problem:
The TRS P consists of the following rules:
GCD_LE_IN_GGA(s(X), Y) → U5_GGA(X, Y, add_in_gag(s(X), Y))
U5_GGA(X, Y, add_out_gag(s(X), Z, Y)) → GCD_IN_GGA(s(X), Z)
GCD_IN_GGA(X, Y) → U1_GGA(X, Y, le_in_gg(X, Y))
U1_GGA(X, Y, le_out_gg(X, Y)) → GCD_LE_IN_GGA(X, Y)
The TRS R consists of the following rules:
le_in_gg(s(X), s(Y)) → U8_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg(0, s(Y))
le_in_gg(0, 0) → le_out_gg(0, 0)
U8_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
add_in_gag(s(X), s(Z)) → U9_gag(X, Z, add_in_gag(X, Z))
add_in_gag(0, X) → add_out_gag(0, X, X)
U9_gag(X, Z, add_out_gag(X, Y, Z)) → add_out_gag(s(X), Y, s(Z))
The set Q consists of the following terms:
add_in_gag(x0, x1)
le_in_gg(x0, x1)
gt_in_gg(x0, x1)
U9_gag(x0, x1, x2)
U8_gg(x0, x1, x2)
U7_gg(x0, x1, x2)
We have to consider all (P,Q,R)-chains.
(75) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
gt_in_gg(x0, x1)
U7_gg(x0, x1, x2)
(76) Obligation:
Q DP problem:
The TRS P consists of the following rules:
GCD_LE_IN_GGA(s(X), Y) → U5_GGA(X, Y, add_in_gag(s(X), Y))
U5_GGA(X, Y, add_out_gag(s(X), Z, Y)) → GCD_IN_GGA(s(X), Z)
GCD_IN_GGA(X, Y) → U1_GGA(X, Y, le_in_gg(X, Y))
U1_GGA(X, Y, le_out_gg(X, Y)) → GCD_LE_IN_GGA(X, Y)
The TRS R consists of the following rules:
le_in_gg(s(X), s(Y)) → U8_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg(0, s(Y))
le_in_gg(0, 0) → le_out_gg(0, 0)
U8_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
add_in_gag(s(X), s(Z)) → U9_gag(X, Z, add_in_gag(X, Z))
add_in_gag(0, X) → add_out_gag(0, X, X)
U9_gag(X, Z, add_out_gag(X, Y, Z)) → add_out_gag(s(X), Y, s(Z))
The set Q consists of the following terms:
add_in_gag(x0, x1)
le_in_gg(x0, x1)
U9_gag(x0, x1, x2)
U8_gg(x0, x1, x2)
We have to consider all (P,Q,R)-chains.