(0) Obligation:
Clauses:
p1(f(X)) :- p1(X).
p2(f(X)) :- p2(X).
Queries:
p1(g).
(1) PrologToPrologProblemTransformerProof (SOUND transformation)
Built Prolog problem from termination graph.
(2) Obligation:
Clauses:
p11(f(f(T6))) :- p11(T6).
Queries:
p11(g).
(3) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
p11_in: (b)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
p11_in_g(f(f(T6))) → U1_g(T6, p11_in_g(T6))
U1_g(T6, p11_out_g(T6)) → p11_out_g(f(f(T6)))
The argument filtering Pi contains the following mapping:
p11_in_g(
x1) =
p11_in_g(
x1)
f(
x1) =
f(
x1)
U1_g(
x1,
x2) =
U1_g(
x2)
p11_out_g(
x1) =
p11_out_g
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(4) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
p11_in_g(f(f(T6))) → U1_g(T6, p11_in_g(T6))
U1_g(T6, p11_out_g(T6)) → p11_out_g(f(f(T6)))
The argument filtering Pi contains the following mapping:
p11_in_g(
x1) =
p11_in_g(
x1)
f(
x1) =
f(
x1)
U1_g(
x1,
x2) =
U1_g(
x2)
p11_out_g(
x1) =
p11_out_g
(5) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
P11_IN_G(f(f(T6))) → U1_G(T6, p11_in_g(T6))
P11_IN_G(f(f(T6))) → P11_IN_G(T6)
The TRS R consists of the following rules:
p11_in_g(f(f(T6))) → U1_g(T6, p11_in_g(T6))
U1_g(T6, p11_out_g(T6)) → p11_out_g(f(f(T6)))
The argument filtering Pi contains the following mapping:
p11_in_g(
x1) =
p11_in_g(
x1)
f(
x1) =
f(
x1)
U1_g(
x1,
x2) =
U1_g(
x2)
p11_out_g(
x1) =
p11_out_g
P11_IN_G(
x1) =
P11_IN_G(
x1)
U1_G(
x1,
x2) =
U1_G(
x2)
We have to consider all (P,R,Pi)-chains
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P11_IN_G(f(f(T6))) → U1_G(T6, p11_in_g(T6))
P11_IN_G(f(f(T6))) → P11_IN_G(T6)
The TRS R consists of the following rules:
p11_in_g(f(f(T6))) → U1_g(T6, p11_in_g(T6))
U1_g(T6, p11_out_g(T6)) → p11_out_g(f(f(T6)))
The argument filtering Pi contains the following mapping:
p11_in_g(
x1) =
p11_in_g(
x1)
f(
x1) =
f(
x1)
U1_g(
x1,
x2) =
U1_g(
x2)
p11_out_g(
x1) =
p11_out_g
P11_IN_G(
x1) =
P11_IN_G(
x1)
U1_G(
x1,
x2) =
U1_G(
x2)
We have to consider all (P,R,Pi)-chains
(7) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 1 less node.
(8) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P11_IN_G(f(f(T6))) → P11_IN_G(T6)
The TRS R consists of the following rules:
p11_in_g(f(f(T6))) → U1_g(T6, p11_in_g(T6))
U1_g(T6, p11_out_g(T6)) → p11_out_g(f(f(T6)))
The argument filtering Pi contains the following mapping:
p11_in_g(
x1) =
p11_in_g(
x1)
f(
x1) =
f(
x1)
U1_g(
x1,
x2) =
U1_g(
x2)
p11_out_g(
x1) =
p11_out_g
P11_IN_G(
x1) =
P11_IN_G(
x1)
We have to consider all (P,R,Pi)-chains
(9) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(10) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P11_IN_G(f(f(T6))) → P11_IN_G(T6)
R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains
(11) PiDPToQDPProof (EQUIVALENT transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
P11_IN_G(f(f(T6))) → P11_IN_G(T6)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(13) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- P11_IN_G(f(f(T6))) → P11_IN_G(T6)
The graph contains the following edges 1 > 1
(14) YES