(0) Obligation:

Clauses:

myis(Z, X) :- evaluate(X, Z).
evaluate(+(X, Y), Z) :- ','(evaluate(X, X1), ','(evaluate(Y, Y1), add(X1, Y1, Z))).
evaluate(-(X, Y), Z) :- ','(evaluate(X, X1), ','(evaluate(Y, Y1), sub(X1, Y1, Z))).
evaluate(*(X, Y), Z) :- ','(evaluate(X, X1), ','(evaluate(Y, Y1), mult(X1, Y1, Z))).
evaluate(X, X) :- myinteger(X).
myinteger(s(X)) :- myinteger(X).
myinteger(0).
add(s(X), Y, s(Z)) :- add(X, Y, Z).
add(0, X, X).
sub(s(X), s(Y), Z) :- sub(X, Y, Z).
sub(X, 0, X).
mult(s(X), Y, R) :- ','(mult(X, Y, Z), add(Y, Z, R)).
mult(0, Y, 0).
notEq(s(X), s(Y)) :- notEq(X, Y).
notEq(s(X), 0).
notEq(0, s(X)).
lt(s(X), s(Y)) :- lt(X, Y).
lt(0, s(Y)).
gt(s(X), s(Y)) :- gt(X, Y).
gt(s(X), 0).
le(s(X), s(Y)) :- le(X, Y).
le(0, s(Y)).
le(0, 0).

Queries:

myis(a,g).

(1) PrologToDTProblemTransformerProof (SOUND transformation)

Built DT problem from termination graph.

(2) Obligation:

Triples:

evaluate3(+(T20, T21), T23) :- evaluate3(T20, X25).
evaluate3(+(T20, T21), T23) :- ','(evaluatec3(T20, T26), evaluate3(T21, X26)).
evaluate3(+(T20, T21), T23) :- ','(evaluatec3(T20, T26), ','(evaluatec3(T21, T31), add12(T26, T31, T23))).
evaluate3(-(T71, T72), T74) :- evaluate3(T71, X101).
evaluate3(-(T71, T72), T74) :- ','(evaluatec3(T71, T77), evaluate3(T72, X102)).
evaluate3(-(T71, T72), T74) :- ','(evaluatec3(T71, T77), ','(evaluatec3(T72, T82), sub28(T77, T82, T74))).
evaluate3(*(T122, T123), T125) :- evaluate3(T122, X177).
evaluate3(*(T122, T123), T125) :- ','(evaluatec3(T122, T128), evaluate3(T123, X178)).
evaluate3(*(T122, T123), T154) :- ','(evaluatec3(T122, s(T151)), ','(evaluatec3(T123, T152), mult50(T151, T152, X227))).
evaluate3(*(T122, T123), T154) :- ','(evaluatec3(T122, s(T151)), ','(evaluatec3(T123, T152), ','(multc50(T151, T152, T157), add12(T152, T157, T154)))).
evaluate3(T203, T203) :- myinteger73(T203).
add12(s(T49), T50, s(T52)) :- add12(T49, T50, T52).
sub28(s(T100), s(T101), T103) :- sub28(T100, T101, T103).
mult50(s(T168), T169, X263) :- mult50(T168, T169, X262).
mult50(s(T168), T169, X263) :- ','(multc50(T168, T169, T172), add58(T169, T172, X263)).
add58(s(T185), T186, s(X300)) :- add58(T185, T186, X300).
myinteger73(s(T209)) :- myinteger73(T209).
myis1(T7, T6) :- evaluate3(T6, T7).

Clauses:

evaluatec3(+(T20, T21), T23) :- ','(evaluatec3(T20, T26), ','(evaluatec3(T21, T31), addc12(T26, T31, T23))).
evaluatec3(-(T71, T72), T74) :- ','(evaluatec3(T71, T77), ','(evaluatec3(T72, T82), subc28(T77, T82, T74))).
evaluatec3(*(T122, T123), T154) :- ','(evaluatec3(T122, s(T151)), ','(evaluatec3(T123, T152), ','(multc50(T151, T152, T157), addc12(T152, T157, T154)))).
evaluatec3(*(T122, T123), 0) :- ','(evaluatec3(T122, 0), evaluatec3(T123, T200)).
evaluatec3(T203, T203) :- myintegerc73(T203).
addc12(s(T49), T50, s(T52)) :- addc12(T49, T50, T52).
addc12(0, T58, T58).
subc28(s(T100), s(T101), T103) :- subc28(T100, T101, T103).
subc28(T109, 0, T109).
multc50(s(T168), T169, X263) :- ','(multc50(T168, T169, T172), addc58(T169, T172, X263)).
multc50(0, T194, 0).
addc58(s(T185), T186, s(X300)) :- addc58(T185, T186, X300).
addc58(0, T191, T191).
myintegerc73(s(T209)) :- myintegerc73(T209).
myintegerc73(0).

Afs:

myis1(x1, x2)  =  myis1(x2)

(3) TriplesToPiDPProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
myis1_in: (f,b)
evaluate3_in: (b,f)
evaluatec3_in: (b,f) (b,b)
myintegerc73_in: (b)
addc12_in: (b,b,b) (b,b,f)
subc28_in: (b,b,b) (b,b,f)
multc50_in: (b,b,f)
addc58_in: (b,b,f)
mult50_in: (b,b,f)
add58_in: (b,b,f)
add12_in: (b,b,f)
myinteger73_in: (b)
sub28_in: (b,b,f)
Transforming TRIPLES into the following Term Rewriting System:
Pi DP problem:
The TRS P consists of the following rules:

MYIS1_IN_AG(T7, T6) → U27_AG(T7, T6, evaluate3_in_ga(T6, T7))
MYIS1_IN_AG(T7, T6) → EVALUATE3_IN_GA(T6, T7)
EVALUATE3_IN_GA(+(T20, T21), T23) → U1_GA(T20, T21, T23, evaluate3_in_ga(T20, X25))
EVALUATE3_IN_GA(+(T20, T21), T23) → EVALUATE3_IN_GA(T20, X25)
EVALUATE3_IN_GA(+(T20, T21), T23) → U2_GA(T20, T21, T23, evaluatec3_in_ga(T20, T26))
U2_GA(T20, T21, T23, evaluatec3_out_ga(T20, T26)) → U3_GA(T20, T21, T23, evaluate3_in_ga(T21, X26))
U2_GA(T20, T21, T23, evaluatec3_out_ga(T20, T26)) → EVALUATE3_IN_GA(T21, X26)
EVALUATE3_IN_GA(-(T71, T72), T74) → U6_GA(T71, T72, T74, evaluate3_in_ga(T71, X101))
EVALUATE3_IN_GA(-(T71, T72), T74) → EVALUATE3_IN_GA(T71, X101)
EVALUATE3_IN_GA(-(T71, T72), T74) → U7_GA(T71, T72, T74, evaluatec3_in_ga(T71, T77))
U7_GA(T71, T72, T74, evaluatec3_out_ga(T71, T77)) → U8_GA(T71, T72, T74, evaluate3_in_ga(T72, X102))
U7_GA(T71, T72, T74, evaluatec3_out_ga(T71, T77)) → EVALUATE3_IN_GA(T72, X102)
EVALUATE3_IN_GA(*(T122, T123), T125) → U11_GA(T122, T123, T125, evaluate3_in_ga(T122, X177))
EVALUATE3_IN_GA(*(T122, T123), T125) → EVALUATE3_IN_GA(T122, X177)
EVALUATE3_IN_GA(*(T122, T123), T125) → U12_GA(T122, T123, T125, evaluatec3_in_ga(T122, T128))
U12_GA(T122, T123, T125, evaluatec3_out_ga(T122, T128)) → U13_GA(T122, T123, T125, evaluate3_in_ga(T123, X178))
U12_GA(T122, T123, T125, evaluatec3_out_ga(T122, T128)) → EVALUATE3_IN_GA(T123, X178)
EVALUATE3_IN_GA(*(T122, T123), T154) → U14_GA(T122, T123, T154, evaluatec3_in_ga(T122, s(T151)))
U14_GA(T122, T123, T154, evaluatec3_out_ga(T122, s(T151))) → U15_GA(T122, T123, T154, T151, evaluatec3_in_ga(T123, T152))
U15_GA(T122, T123, T154, T151, evaluatec3_out_ga(T123, T152)) → U16_GA(T122, T123, T154, mult50_in_gga(T151, T152, X227))
U15_GA(T122, T123, T154, T151, evaluatec3_out_ga(T123, T152)) → MULT50_IN_GGA(T151, T152, X227)
MULT50_IN_GGA(s(T168), T169, X263) → U22_GGA(T168, T169, X263, mult50_in_gga(T168, T169, X262))
MULT50_IN_GGA(s(T168), T169, X263) → MULT50_IN_GGA(T168, T169, X262)
MULT50_IN_GGA(s(T168), T169, X263) → U23_GGA(T168, T169, X263, multc50_in_gga(T168, T169, T172))
U23_GGA(T168, T169, X263, multc50_out_gga(T168, T169, T172)) → U24_GGA(T168, T169, X263, add58_in_gga(T169, T172, X263))
U23_GGA(T168, T169, X263, multc50_out_gga(T168, T169, T172)) → ADD58_IN_GGA(T169, T172, X263)
ADD58_IN_GGA(s(T185), T186, s(X300)) → U25_GGA(T185, T186, X300, add58_in_gga(T185, T186, X300))
ADD58_IN_GGA(s(T185), T186, s(X300)) → ADD58_IN_GGA(T185, T186, X300)
U15_GA(T122, T123, T154, T151, evaluatec3_out_ga(T123, T152)) → U17_GA(T122, T123, T154, T152, multc50_in_gga(T151, T152, T157))
U17_GA(T122, T123, T154, T152, multc50_out_gga(T151, T152, T157)) → U18_GA(T122, T123, T154, add12_in_gga(T152, T157, T154))
U17_GA(T122, T123, T154, T152, multc50_out_gga(T151, T152, T157)) → ADD12_IN_GGA(T152, T157, T154)
ADD12_IN_GGA(s(T49), T50, s(T52)) → U20_GGA(T49, T50, T52, add12_in_gga(T49, T50, T52))
ADD12_IN_GGA(s(T49), T50, s(T52)) → ADD12_IN_GGA(T49, T50, T52)
EVALUATE3_IN_GA(T203, T203) → U19_GA(T203, myinteger73_in_g(T203))
EVALUATE3_IN_GA(T203, T203) → MYINTEGER73_IN_G(T203)
MYINTEGER73_IN_G(s(T209)) → U26_G(T209, myinteger73_in_g(T209))
MYINTEGER73_IN_G(s(T209)) → MYINTEGER73_IN_G(T209)
U7_GA(T71, T72, T74, evaluatec3_out_ga(T71, T77)) → U9_GA(T71, T72, T74, T77, evaluatec3_in_ga(T72, T82))
U9_GA(T71, T72, T74, T77, evaluatec3_out_ga(T72, T82)) → U10_GA(T71, T72, T74, sub28_in_gga(T77, T82, T74))
U9_GA(T71, T72, T74, T77, evaluatec3_out_ga(T72, T82)) → SUB28_IN_GGA(T77, T82, T74)
SUB28_IN_GGA(s(T100), s(T101), T103) → U21_GGA(T100, T101, T103, sub28_in_gga(T100, T101, T103))
SUB28_IN_GGA(s(T100), s(T101), T103) → SUB28_IN_GGA(T100, T101, T103)
U2_GA(T20, T21, T23, evaluatec3_out_ga(T20, T26)) → U4_GA(T20, T21, T23, T26, evaluatec3_in_ga(T21, T31))
U4_GA(T20, T21, T23, T26, evaluatec3_out_ga(T21, T31)) → U5_GA(T20, T21, T23, add12_in_gga(T26, T31, T23))
U4_GA(T20, T21, T23, T26, evaluatec3_out_ga(T21, T31)) → ADD12_IN_GGA(T26, T31, T23)

The TRS R consists of the following rules:

evaluatec3_in_ga(+(T20, T21), T23) → U29_ga(T20, T21, T23, evaluatec3_in_ga(T20, T26))
evaluatec3_in_ga(-(T71, T72), T74) → U32_ga(T71, T72, T74, evaluatec3_in_ga(T71, T77))
evaluatec3_in_ga(*(T122, T123), T154) → U35_ga(T122, T123, T154, evaluatec3_in_ga(T122, s(T151)))
evaluatec3_in_ga(*(T122, T123), 0) → U39_ga(T122, T123, evaluatec3_in_gg(T122, 0))
evaluatec3_in_gg(+(T20, T21), T23) → U29_gg(T20, T21, T23, evaluatec3_in_ga(T20, T26))
evaluatec3_in_ga(T203, T203) → U41_ga(T203, myintegerc73_in_g(T203))
myintegerc73_in_g(s(T209)) → U47_g(T209, myintegerc73_in_g(T209))
myintegerc73_in_g(0) → myintegerc73_out_g(0)
U47_g(T209, myintegerc73_out_g(T209)) → myintegerc73_out_g(s(T209))
U41_ga(T203, myintegerc73_out_g(T203)) → evaluatec3_out_ga(T203, T203)
U29_gg(T20, T21, T23, evaluatec3_out_ga(T20, T26)) → U30_gg(T20, T21, T23, T26, evaluatec3_in_ga(T21, T31))
U30_gg(T20, T21, T23, T26, evaluatec3_out_ga(T21, T31)) → U31_gg(T20, T21, T23, addc12_in_ggg(T26, T31, T23))
addc12_in_ggg(s(T49), T50, s(T52)) → U42_ggg(T49, T50, T52, addc12_in_ggg(T49, T50, T52))
addc12_in_ggg(0, T58, T58) → addc12_out_ggg(0, T58, T58)
U42_ggg(T49, T50, T52, addc12_out_ggg(T49, T50, T52)) → addc12_out_ggg(s(T49), T50, s(T52))
U31_gg(T20, T21, T23, addc12_out_ggg(T26, T31, T23)) → evaluatec3_out_gg(+(T20, T21), T23)
evaluatec3_in_gg(-(T71, T72), T74) → U32_gg(T71, T72, T74, evaluatec3_in_ga(T71, T77))
U32_gg(T71, T72, T74, evaluatec3_out_ga(T71, T77)) → U33_gg(T71, T72, T74, T77, evaluatec3_in_ga(T72, T82))
U33_gg(T71, T72, T74, T77, evaluatec3_out_ga(T72, T82)) → U34_gg(T71, T72, T74, subc28_in_ggg(T77, T82, T74))
subc28_in_ggg(s(T100), s(T101), T103) → U43_ggg(T100, T101, T103, subc28_in_ggg(T100, T101, T103))
subc28_in_ggg(T109, 0, T109) → subc28_out_ggg(T109, 0, T109)
U43_ggg(T100, T101, T103, subc28_out_ggg(T100, T101, T103)) → subc28_out_ggg(s(T100), s(T101), T103)
U34_gg(T71, T72, T74, subc28_out_ggg(T77, T82, T74)) → evaluatec3_out_gg(-(T71, T72), T74)
evaluatec3_in_gg(*(T122, T123), T154) → U35_gg(T122, T123, T154, evaluatec3_in_ga(T122, s(T151)))
U35_gg(T122, T123, T154, evaluatec3_out_ga(T122, s(T151))) → U36_gg(T122, T123, T154, T151, evaluatec3_in_ga(T123, T152))
U36_gg(T122, T123, T154, T151, evaluatec3_out_ga(T123, T152)) → U37_gg(T122, T123, T154, T152, multc50_in_gga(T151, T152, T157))
multc50_in_gga(s(T168), T169, X263) → U44_gga(T168, T169, X263, multc50_in_gga(T168, T169, T172))
multc50_in_gga(0, T194, 0) → multc50_out_gga(0, T194, 0)
U44_gga(T168, T169, X263, multc50_out_gga(T168, T169, T172)) → U45_gga(T168, T169, X263, addc58_in_gga(T169, T172, X263))
addc58_in_gga(s(T185), T186, s(X300)) → U46_gga(T185, T186, X300, addc58_in_gga(T185, T186, X300))
addc58_in_gga(0, T191, T191) → addc58_out_gga(0, T191, T191)
U46_gga(T185, T186, X300, addc58_out_gga(T185, T186, X300)) → addc58_out_gga(s(T185), T186, s(X300))
U45_gga(T168, T169, X263, addc58_out_gga(T169, T172, X263)) → multc50_out_gga(s(T168), T169, X263)
U37_gg(T122, T123, T154, T152, multc50_out_gga(T151, T152, T157)) → U38_gg(T122, T123, T154, addc12_in_ggg(T152, T157, T154))
U38_gg(T122, T123, T154, addc12_out_ggg(T152, T157, T154)) → evaluatec3_out_gg(*(T122, T123), T154)
evaluatec3_in_gg(*(T122, T123), 0) → U39_gg(T122, T123, evaluatec3_in_gg(T122, 0))
evaluatec3_in_gg(T203, T203) → U41_gg(T203, myintegerc73_in_g(T203))
U41_gg(T203, myintegerc73_out_g(T203)) → evaluatec3_out_gg(T203, T203)
U39_gg(T122, T123, evaluatec3_out_gg(T122, 0)) → U40_gg(T122, T123, evaluatec3_in_ga(T123, T200))
U40_gg(T122, T123, evaluatec3_out_ga(T123, T200)) → evaluatec3_out_gg(*(T122, T123), 0)
U39_ga(T122, T123, evaluatec3_out_gg(T122, 0)) → U40_ga(T122, T123, evaluatec3_in_ga(T123, T200))
U40_ga(T122, T123, evaluatec3_out_ga(T123, T200)) → evaluatec3_out_ga(*(T122, T123), 0)
U35_ga(T122, T123, T154, evaluatec3_out_ga(T122, s(T151))) → U36_ga(T122, T123, T154, T151, evaluatec3_in_ga(T123, T152))
U36_ga(T122, T123, T154, T151, evaluatec3_out_ga(T123, T152)) → U37_ga(T122, T123, T154, T152, multc50_in_gga(T151, T152, T157))
U37_ga(T122, T123, T154, T152, multc50_out_gga(T151, T152, T157)) → U38_ga(T122, T123, T154, addc12_in_gga(T152, T157, T154))
addc12_in_gga(s(T49), T50, s(T52)) → U42_gga(T49, T50, T52, addc12_in_gga(T49, T50, T52))
addc12_in_gga(0, T58, T58) → addc12_out_gga(0, T58, T58)
U42_gga(T49, T50, T52, addc12_out_gga(T49, T50, T52)) → addc12_out_gga(s(T49), T50, s(T52))
U38_ga(T122, T123, T154, addc12_out_gga(T152, T157, T154)) → evaluatec3_out_ga(*(T122, T123), T154)
U32_ga(T71, T72, T74, evaluatec3_out_ga(T71, T77)) → U33_ga(T71, T72, T74, T77, evaluatec3_in_ga(T72, T82))
U33_ga(T71, T72, T74, T77, evaluatec3_out_ga(T72, T82)) → U34_ga(T71, T72, T74, subc28_in_gga(T77, T82, T74))
subc28_in_gga(s(T100), s(T101), T103) → U43_gga(T100, T101, T103, subc28_in_gga(T100, T101, T103))
subc28_in_gga(T109, 0, T109) → subc28_out_gga(T109, 0, T109)
U43_gga(T100, T101, T103, subc28_out_gga(T100, T101, T103)) → subc28_out_gga(s(T100), s(T101), T103)
U34_ga(T71, T72, T74, subc28_out_gga(T77, T82, T74)) → evaluatec3_out_ga(-(T71, T72), T74)
U29_ga(T20, T21, T23, evaluatec3_out_ga(T20, T26)) → U30_ga(T20, T21, T23, T26, evaluatec3_in_ga(T21, T31))
U30_ga(T20, T21, T23, T26, evaluatec3_out_ga(T21, T31)) → U31_ga(T20, T21, T23, addc12_in_gga(T26, T31, T23))
U31_ga(T20, T21, T23, addc12_out_gga(T26, T31, T23)) → evaluatec3_out_ga(+(T20, T21), T23)

The argument filtering Pi contains the following mapping:
evaluate3_in_ga(x1, x2)  =  evaluate3_in_ga(x1)
+(x1, x2)  =  +(x1, x2)
evaluatec3_in_ga(x1, x2)  =  evaluatec3_in_ga(x1)
U29_ga(x1, x2, x3, x4)  =  U29_ga(x1, x2, x4)
-(x1, x2)  =  -(x1, x2)
U32_ga(x1, x2, x3, x4)  =  U32_ga(x1, x2, x4)
*(x1, x2)  =  *(x1, x2)
U35_ga(x1, x2, x3, x4)  =  U35_ga(x1, x2, x4)
U39_ga(x1, x2, x3)  =  U39_ga(x1, x2, x3)
evaluatec3_in_gg(x1, x2)  =  evaluatec3_in_gg(x1, x2)
U29_gg(x1, x2, x3, x4)  =  U29_gg(x1, x2, x3, x4)
U41_ga(x1, x2)  =  U41_ga(x1, x2)
myintegerc73_in_g(x1)  =  myintegerc73_in_g(x1)
s(x1)  =  s(x1)
U47_g(x1, x2)  =  U47_g(x1, x2)
0  =  0
myintegerc73_out_g(x1)  =  myintegerc73_out_g(x1)
evaluatec3_out_ga(x1, x2)  =  evaluatec3_out_ga(x1, x2)
U30_gg(x1, x2, x3, x4, x5)  =  U30_gg(x1, x2, x3, x4, x5)
U31_gg(x1, x2, x3, x4)  =  U31_gg(x1, x2, x3, x4)
addc12_in_ggg(x1, x2, x3)  =  addc12_in_ggg(x1, x2, x3)
U42_ggg(x1, x2, x3, x4)  =  U42_ggg(x1, x2, x3, x4)
addc12_out_ggg(x1, x2, x3)  =  addc12_out_ggg(x1, x2, x3)
evaluatec3_out_gg(x1, x2)  =  evaluatec3_out_gg(x1, x2)
U32_gg(x1, x2, x3, x4)  =  U32_gg(x1, x2, x3, x4)
U33_gg(x1, x2, x3, x4, x5)  =  U33_gg(x1, x2, x3, x4, x5)
U34_gg(x1, x2, x3, x4)  =  U34_gg(x1, x2, x3, x4)
subc28_in_ggg(x1, x2, x3)  =  subc28_in_ggg(x1, x2, x3)
U43_ggg(x1, x2, x3, x4)  =  U43_ggg(x1, x2, x3, x4)
subc28_out_ggg(x1, x2, x3)  =  subc28_out_ggg(x1, x2, x3)
U35_gg(x1, x2, x3, x4)  =  U35_gg(x1, x2, x3, x4)
U36_gg(x1, x2, x3, x4, x5)  =  U36_gg(x1, x2, x3, x4, x5)
U37_gg(x1, x2, x3, x4, x5)  =  U37_gg(x1, x2, x3, x4, x5)
multc50_in_gga(x1, x2, x3)  =  multc50_in_gga(x1, x2)
U44_gga(x1, x2, x3, x4)  =  U44_gga(x1, x2, x4)
multc50_out_gga(x1, x2, x3)  =  multc50_out_gga(x1, x2, x3)
U45_gga(x1, x2, x3, x4)  =  U45_gga(x1, x2, x4)
addc58_in_gga(x1, x2, x3)  =  addc58_in_gga(x1, x2)
U46_gga(x1, x2, x3, x4)  =  U46_gga(x1, x2, x4)
addc58_out_gga(x1, x2, x3)  =  addc58_out_gga(x1, x2, x3)
U38_gg(x1, x2, x3, x4)  =  U38_gg(x1, x2, x3, x4)
U39_gg(x1, x2, x3)  =  U39_gg(x1, x2, x3)
U41_gg(x1, x2)  =  U41_gg(x1, x2)
U40_gg(x1, x2, x3)  =  U40_gg(x1, x2, x3)
U40_ga(x1, x2, x3)  =  U40_ga(x1, x2, x3)
U36_ga(x1, x2, x3, x4, x5)  =  U36_ga(x1, x2, x4, x5)
U37_ga(x1, x2, x3, x4, x5)  =  U37_ga(x1, x2, x4, x5)
U38_ga(x1, x2, x3, x4)  =  U38_ga(x1, x2, x4)
addc12_in_gga(x1, x2, x3)  =  addc12_in_gga(x1, x2)
U42_gga(x1, x2, x3, x4)  =  U42_gga(x1, x2, x4)
addc12_out_gga(x1, x2, x3)  =  addc12_out_gga(x1, x2, x3)
U33_ga(x1, x2, x3, x4, x5)  =  U33_ga(x1, x2, x4, x5)
U34_ga(x1, x2, x3, x4)  =  U34_ga(x1, x2, x4)
subc28_in_gga(x1, x2, x3)  =  subc28_in_gga(x1, x2)
U43_gga(x1, x2, x3, x4)  =  U43_gga(x1, x2, x4)
subc28_out_gga(x1, x2, x3)  =  subc28_out_gga(x1, x2, x3)
U30_ga(x1, x2, x3, x4, x5)  =  U30_ga(x1, x2, x4, x5)
U31_ga(x1, x2, x3, x4)  =  U31_ga(x1, x2, x4)
mult50_in_gga(x1, x2, x3)  =  mult50_in_gga(x1, x2)
add58_in_gga(x1, x2, x3)  =  add58_in_gga(x1, x2)
add12_in_gga(x1, x2, x3)  =  add12_in_gga(x1, x2)
myinteger73_in_g(x1)  =  myinteger73_in_g(x1)
sub28_in_gga(x1, x2, x3)  =  sub28_in_gga(x1, x2)
MYIS1_IN_AG(x1, x2)  =  MYIS1_IN_AG(x2)
U27_AG(x1, x2, x3)  =  U27_AG(x2, x3)
EVALUATE3_IN_GA(x1, x2)  =  EVALUATE3_IN_GA(x1)
U1_GA(x1, x2, x3, x4)  =  U1_GA(x1, x2, x4)
U2_GA(x1, x2, x3, x4)  =  U2_GA(x1, x2, x4)
U3_GA(x1, x2, x3, x4)  =  U3_GA(x1, x2, x4)
U6_GA(x1, x2, x3, x4)  =  U6_GA(x1, x2, x4)
U7_GA(x1, x2, x3, x4)  =  U7_GA(x1, x2, x4)
U8_GA(x1, x2, x3, x4)  =  U8_GA(x1, x2, x4)
U11_GA(x1, x2, x3, x4)  =  U11_GA(x1, x2, x4)
U12_GA(x1, x2, x3, x4)  =  U12_GA(x1, x2, x4)
U13_GA(x1, x2, x3, x4)  =  U13_GA(x1, x2, x4)
U14_GA(x1, x2, x3, x4)  =  U14_GA(x1, x2, x4)
U15_GA(x1, x2, x3, x4, x5)  =  U15_GA(x1, x2, x4, x5)
U16_GA(x1, x2, x3, x4)  =  U16_GA(x1, x2, x4)
MULT50_IN_GGA(x1, x2, x3)  =  MULT50_IN_GGA(x1, x2)
U22_GGA(x1, x2, x3, x4)  =  U22_GGA(x1, x2, x4)
U23_GGA(x1, x2, x3, x4)  =  U23_GGA(x1, x2, x4)
U24_GGA(x1, x2, x3, x4)  =  U24_GGA(x1, x2, x4)
ADD58_IN_GGA(x1, x2, x3)  =  ADD58_IN_GGA(x1, x2)
U25_GGA(x1, x2, x3, x4)  =  U25_GGA(x1, x2, x4)
U17_GA(x1, x2, x3, x4, x5)  =  U17_GA(x1, x2, x4, x5)
U18_GA(x1, x2, x3, x4)  =  U18_GA(x1, x2, x4)
ADD12_IN_GGA(x1, x2, x3)  =  ADD12_IN_GGA(x1, x2)
U20_GGA(x1, x2, x3, x4)  =  U20_GGA(x1, x2, x4)
U19_GA(x1, x2)  =  U19_GA(x1, x2)
MYINTEGER73_IN_G(x1)  =  MYINTEGER73_IN_G(x1)
U26_G(x1, x2)  =  U26_G(x1, x2)
U9_GA(x1, x2, x3, x4, x5)  =  U9_GA(x1, x2, x4, x5)
U10_GA(x1, x2, x3, x4)  =  U10_GA(x1, x2, x4)
SUB28_IN_GGA(x1, x2, x3)  =  SUB28_IN_GGA(x1, x2)
U21_GGA(x1, x2, x3, x4)  =  U21_GGA(x1, x2, x4)
U4_GA(x1, x2, x3, x4, x5)  =  U4_GA(x1, x2, x4, x5)
U5_GA(x1, x2, x3, x4)  =  U5_GA(x1, x2, x4)

We have to consider all (P,R,Pi)-chains

Infinitary Constructor Rewriting Termination of PiDP implies Termination of TRIPLES

(4) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MYIS1_IN_AG(T7, T6) → U27_AG(T7, T6, evaluate3_in_ga(T6, T7))
MYIS1_IN_AG(T7, T6) → EVALUATE3_IN_GA(T6, T7)
EVALUATE3_IN_GA(+(T20, T21), T23) → U1_GA(T20, T21, T23, evaluate3_in_ga(T20, X25))
EVALUATE3_IN_GA(+(T20, T21), T23) → EVALUATE3_IN_GA(T20, X25)
EVALUATE3_IN_GA(+(T20, T21), T23) → U2_GA(T20, T21, T23, evaluatec3_in_ga(T20, T26))
U2_GA(T20, T21, T23, evaluatec3_out_ga(T20, T26)) → U3_GA(T20, T21, T23, evaluate3_in_ga(T21, X26))
U2_GA(T20, T21, T23, evaluatec3_out_ga(T20, T26)) → EVALUATE3_IN_GA(T21, X26)
EVALUATE3_IN_GA(-(T71, T72), T74) → U6_GA(T71, T72, T74, evaluate3_in_ga(T71, X101))
EVALUATE3_IN_GA(-(T71, T72), T74) → EVALUATE3_IN_GA(T71, X101)
EVALUATE3_IN_GA(-(T71, T72), T74) → U7_GA(T71, T72, T74, evaluatec3_in_ga(T71, T77))
U7_GA(T71, T72, T74, evaluatec3_out_ga(T71, T77)) → U8_GA(T71, T72, T74, evaluate3_in_ga(T72, X102))
U7_GA(T71, T72, T74, evaluatec3_out_ga(T71, T77)) → EVALUATE3_IN_GA(T72, X102)
EVALUATE3_IN_GA(*(T122, T123), T125) → U11_GA(T122, T123, T125, evaluate3_in_ga(T122, X177))
EVALUATE3_IN_GA(*(T122, T123), T125) → EVALUATE3_IN_GA(T122, X177)
EVALUATE3_IN_GA(*(T122, T123), T125) → U12_GA(T122, T123, T125, evaluatec3_in_ga(T122, T128))
U12_GA(T122, T123, T125, evaluatec3_out_ga(T122, T128)) → U13_GA(T122, T123, T125, evaluate3_in_ga(T123, X178))
U12_GA(T122, T123, T125, evaluatec3_out_ga(T122, T128)) → EVALUATE3_IN_GA(T123, X178)
EVALUATE3_IN_GA(*(T122, T123), T154) → U14_GA(T122, T123, T154, evaluatec3_in_ga(T122, s(T151)))
U14_GA(T122, T123, T154, evaluatec3_out_ga(T122, s(T151))) → U15_GA(T122, T123, T154, T151, evaluatec3_in_ga(T123, T152))
U15_GA(T122, T123, T154, T151, evaluatec3_out_ga(T123, T152)) → U16_GA(T122, T123, T154, mult50_in_gga(T151, T152, X227))
U15_GA(T122, T123, T154, T151, evaluatec3_out_ga(T123, T152)) → MULT50_IN_GGA(T151, T152, X227)
MULT50_IN_GGA(s(T168), T169, X263) → U22_GGA(T168, T169, X263, mult50_in_gga(T168, T169, X262))
MULT50_IN_GGA(s(T168), T169, X263) → MULT50_IN_GGA(T168, T169, X262)
MULT50_IN_GGA(s(T168), T169, X263) → U23_GGA(T168, T169, X263, multc50_in_gga(T168, T169, T172))
U23_GGA(T168, T169, X263, multc50_out_gga(T168, T169, T172)) → U24_GGA(T168, T169, X263, add58_in_gga(T169, T172, X263))
U23_GGA(T168, T169, X263, multc50_out_gga(T168, T169, T172)) → ADD58_IN_GGA(T169, T172, X263)
ADD58_IN_GGA(s(T185), T186, s(X300)) → U25_GGA(T185, T186, X300, add58_in_gga(T185, T186, X300))
ADD58_IN_GGA(s(T185), T186, s(X300)) → ADD58_IN_GGA(T185, T186, X300)
U15_GA(T122, T123, T154, T151, evaluatec3_out_ga(T123, T152)) → U17_GA(T122, T123, T154, T152, multc50_in_gga(T151, T152, T157))
U17_GA(T122, T123, T154, T152, multc50_out_gga(T151, T152, T157)) → U18_GA(T122, T123, T154, add12_in_gga(T152, T157, T154))
U17_GA(T122, T123, T154, T152, multc50_out_gga(T151, T152, T157)) → ADD12_IN_GGA(T152, T157, T154)
ADD12_IN_GGA(s(T49), T50, s(T52)) → U20_GGA(T49, T50, T52, add12_in_gga(T49, T50, T52))
ADD12_IN_GGA(s(T49), T50, s(T52)) → ADD12_IN_GGA(T49, T50, T52)
EVALUATE3_IN_GA(T203, T203) → U19_GA(T203, myinteger73_in_g(T203))
EVALUATE3_IN_GA(T203, T203) → MYINTEGER73_IN_G(T203)
MYINTEGER73_IN_G(s(T209)) → U26_G(T209, myinteger73_in_g(T209))
MYINTEGER73_IN_G(s(T209)) → MYINTEGER73_IN_G(T209)
U7_GA(T71, T72, T74, evaluatec3_out_ga(T71, T77)) → U9_GA(T71, T72, T74, T77, evaluatec3_in_ga(T72, T82))
U9_GA(T71, T72, T74, T77, evaluatec3_out_ga(T72, T82)) → U10_GA(T71, T72, T74, sub28_in_gga(T77, T82, T74))
U9_GA(T71, T72, T74, T77, evaluatec3_out_ga(T72, T82)) → SUB28_IN_GGA(T77, T82, T74)
SUB28_IN_GGA(s(T100), s(T101), T103) → U21_GGA(T100, T101, T103, sub28_in_gga(T100, T101, T103))
SUB28_IN_GGA(s(T100), s(T101), T103) → SUB28_IN_GGA(T100, T101, T103)
U2_GA(T20, T21, T23, evaluatec3_out_ga(T20, T26)) → U4_GA(T20, T21, T23, T26, evaluatec3_in_ga(T21, T31))
U4_GA(T20, T21, T23, T26, evaluatec3_out_ga(T21, T31)) → U5_GA(T20, T21, T23, add12_in_gga(T26, T31, T23))
U4_GA(T20, T21, T23, T26, evaluatec3_out_ga(T21, T31)) → ADD12_IN_GGA(T26, T31, T23)

The TRS R consists of the following rules:

evaluatec3_in_ga(+(T20, T21), T23) → U29_ga(T20, T21, T23, evaluatec3_in_ga(T20, T26))
evaluatec3_in_ga(-(T71, T72), T74) → U32_ga(T71, T72, T74, evaluatec3_in_ga(T71, T77))
evaluatec3_in_ga(*(T122, T123), T154) → U35_ga(T122, T123, T154, evaluatec3_in_ga(T122, s(T151)))
evaluatec3_in_ga(*(T122, T123), 0) → U39_ga(T122, T123, evaluatec3_in_gg(T122, 0))
evaluatec3_in_gg(+(T20, T21), T23) → U29_gg(T20, T21, T23, evaluatec3_in_ga(T20, T26))
evaluatec3_in_ga(T203, T203) → U41_ga(T203, myintegerc73_in_g(T203))
myintegerc73_in_g(s(T209)) → U47_g(T209, myintegerc73_in_g(T209))
myintegerc73_in_g(0) → myintegerc73_out_g(0)
U47_g(T209, myintegerc73_out_g(T209)) → myintegerc73_out_g(s(T209))
U41_ga(T203, myintegerc73_out_g(T203)) → evaluatec3_out_ga(T203, T203)
U29_gg(T20, T21, T23, evaluatec3_out_ga(T20, T26)) → U30_gg(T20, T21, T23, T26, evaluatec3_in_ga(T21, T31))
U30_gg(T20, T21, T23, T26, evaluatec3_out_ga(T21, T31)) → U31_gg(T20, T21, T23, addc12_in_ggg(T26, T31, T23))
addc12_in_ggg(s(T49), T50, s(T52)) → U42_ggg(T49, T50, T52, addc12_in_ggg(T49, T50, T52))
addc12_in_ggg(0, T58, T58) → addc12_out_ggg(0, T58, T58)
U42_ggg(T49, T50, T52, addc12_out_ggg(T49, T50, T52)) → addc12_out_ggg(s(T49), T50, s(T52))
U31_gg(T20, T21, T23, addc12_out_ggg(T26, T31, T23)) → evaluatec3_out_gg(+(T20, T21), T23)
evaluatec3_in_gg(-(T71, T72), T74) → U32_gg(T71, T72, T74, evaluatec3_in_ga(T71, T77))
U32_gg(T71, T72, T74, evaluatec3_out_ga(T71, T77)) → U33_gg(T71, T72, T74, T77, evaluatec3_in_ga(T72, T82))
U33_gg(T71, T72, T74, T77, evaluatec3_out_ga(T72, T82)) → U34_gg(T71, T72, T74, subc28_in_ggg(T77, T82, T74))
subc28_in_ggg(s(T100), s(T101), T103) → U43_ggg(T100, T101, T103, subc28_in_ggg(T100, T101, T103))
subc28_in_ggg(T109, 0, T109) → subc28_out_ggg(T109, 0, T109)
U43_ggg(T100, T101, T103, subc28_out_ggg(T100, T101, T103)) → subc28_out_ggg(s(T100), s(T101), T103)
U34_gg(T71, T72, T74, subc28_out_ggg(T77, T82, T74)) → evaluatec3_out_gg(-(T71, T72), T74)
evaluatec3_in_gg(*(T122, T123), T154) → U35_gg(T122, T123, T154, evaluatec3_in_ga(T122, s(T151)))
U35_gg(T122, T123, T154, evaluatec3_out_ga(T122, s(T151))) → U36_gg(T122, T123, T154, T151, evaluatec3_in_ga(T123, T152))
U36_gg(T122, T123, T154, T151, evaluatec3_out_ga(T123, T152)) → U37_gg(T122, T123, T154, T152, multc50_in_gga(T151, T152, T157))
multc50_in_gga(s(T168), T169, X263) → U44_gga(T168, T169, X263, multc50_in_gga(T168, T169, T172))
multc50_in_gga(0, T194, 0) → multc50_out_gga(0, T194, 0)
U44_gga(T168, T169, X263, multc50_out_gga(T168, T169, T172)) → U45_gga(T168, T169, X263, addc58_in_gga(T169, T172, X263))
addc58_in_gga(s(T185), T186, s(X300)) → U46_gga(T185, T186, X300, addc58_in_gga(T185, T186, X300))
addc58_in_gga(0, T191, T191) → addc58_out_gga(0, T191, T191)
U46_gga(T185, T186, X300, addc58_out_gga(T185, T186, X300)) → addc58_out_gga(s(T185), T186, s(X300))
U45_gga(T168, T169, X263, addc58_out_gga(T169, T172, X263)) → multc50_out_gga(s(T168), T169, X263)
U37_gg(T122, T123, T154, T152, multc50_out_gga(T151, T152, T157)) → U38_gg(T122, T123, T154, addc12_in_ggg(T152, T157, T154))
U38_gg(T122, T123, T154, addc12_out_ggg(T152, T157, T154)) → evaluatec3_out_gg(*(T122, T123), T154)
evaluatec3_in_gg(*(T122, T123), 0) → U39_gg(T122, T123, evaluatec3_in_gg(T122, 0))
evaluatec3_in_gg(T203, T203) → U41_gg(T203, myintegerc73_in_g(T203))
U41_gg(T203, myintegerc73_out_g(T203)) → evaluatec3_out_gg(T203, T203)
U39_gg(T122, T123, evaluatec3_out_gg(T122, 0)) → U40_gg(T122, T123, evaluatec3_in_ga(T123, T200))
U40_gg(T122, T123, evaluatec3_out_ga(T123, T200)) → evaluatec3_out_gg(*(T122, T123), 0)
U39_ga(T122, T123, evaluatec3_out_gg(T122, 0)) → U40_ga(T122, T123, evaluatec3_in_ga(T123, T200))
U40_ga(T122, T123, evaluatec3_out_ga(T123, T200)) → evaluatec3_out_ga(*(T122, T123), 0)
U35_ga(T122, T123, T154, evaluatec3_out_ga(T122, s(T151))) → U36_ga(T122, T123, T154, T151, evaluatec3_in_ga(T123, T152))
U36_ga(T122, T123, T154, T151, evaluatec3_out_ga(T123, T152)) → U37_ga(T122, T123, T154, T152, multc50_in_gga(T151, T152, T157))
U37_ga(T122, T123, T154, T152, multc50_out_gga(T151, T152, T157)) → U38_ga(T122, T123, T154, addc12_in_gga(T152, T157, T154))
addc12_in_gga(s(T49), T50, s(T52)) → U42_gga(T49, T50, T52, addc12_in_gga(T49, T50, T52))
addc12_in_gga(0, T58, T58) → addc12_out_gga(0, T58, T58)
U42_gga(T49, T50, T52, addc12_out_gga(T49, T50, T52)) → addc12_out_gga(s(T49), T50, s(T52))
U38_ga(T122, T123, T154, addc12_out_gga(T152, T157, T154)) → evaluatec3_out_ga(*(T122, T123), T154)
U32_ga(T71, T72, T74, evaluatec3_out_ga(T71, T77)) → U33_ga(T71, T72, T74, T77, evaluatec3_in_ga(T72, T82))
U33_ga(T71, T72, T74, T77, evaluatec3_out_ga(T72, T82)) → U34_ga(T71, T72, T74, subc28_in_gga(T77, T82, T74))
subc28_in_gga(s(T100), s(T101), T103) → U43_gga(T100, T101, T103, subc28_in_gga(T100, T101, T103))
subc28_in_gga(T109, 0, T109) → subc28_out_gga(T109, 0, T109)
U43_gga(T100, T101, T103, subc28_out_gga(T100, T101, T103)) → subc28_out_gga(s(T100), s(T101), T103)
U34_ga(T71, T72, T74, subc28_out_gga(T77, T82, T74)) → evaluatec3_out_ga(-(T71, T72), T74)
U29_ga(T20, T21, T23, evaluatec3_out_ga(T20, T26)) → U30_ga(T20, T21, T23, T26, evaluatec3_in_ga(T21, T31))
U30_ga(T20, T21, T23, T26, evaluatec3_out_ga(T21, T31)) → U31_ga(T20, T21, T23, addc12_in_gga(T26, T31, T23))
U31_ga(T20, T21, T23, addc12_out_gga(T26, T31, T23)) → evaluatec3_out_ga(+(T20, T21), T23)

The argument filtering Pi contains the following mapping:
evaluate3_in_ga(x1, x2)  =  evaluate3_in_ga(x1)
+(x1, x2)  =  +(x1, x2)
evaluatec3_in_ga(x1, x2)  =  evaluatec3_in_ga(x1)
U29_ga(x1, x2, x3, x4)  =  U29_ga(x1, x2, x4)
-(x1, x2)  =  -(x1, x2)
U32_ga(x1, x2, x3, x4)  =  U32_ga(x1, x2, x4)
*(x1, x2)  =  *(x1, x2)
U35_ga(x1, x2, x3, x4)  =  U35_ga(x1, x2, x4)
U39_ga(x1, x2, x3)  =  U39_ga(x1, x2, x3)
evaluatec3_in_gg(x1, x2)  =  evaluatec3_in_gg(x1, x2)
U29_gg(x1, x2, x3, x4)  =  U29_gg(x1, x2, x3, x4)
U41_ga(x1, x2)  =  U41_ga(x1, x2)
myintegerc73_in_g(x1)  =  myintegerc73_in_g(x1)
s(x1)  =  s(x1)
U47_g(x1, x2)  =  U47_g(x1, x2)
0  =  0
myintegerc73_out_g(x1)  =  myintegerc73_out_g(x1)
evaluatec3_out_ga(x1, x2)  =  evaluatec3_out_ga(x1, x2)
U30_gg(x1, x2, x3, x4, x5)  =  U30_gg(x1, x2, x3, x4, x5)
U31_gg(x1, x2, x3, x4)  =  U31_gg(x1, x2, x3, x4)
addc12_in_ggg(x1, x2, x3)  =  addc12_in_ggg(x1, x2, x3)
U42_ggg(x1, x2, x3, x4)  =  U42_ggg(x1, x2, x3, x4)
addc12_out_ggg(x1, x2, x3)  =  addc12_out_ggg(x1, x2, x3)
evaluatec3_out_gg(x1, x2)  =  evaluatec3_out_gg(x1, x2)
U32_gg(x1, x2, x3, x4)  =  U32_gg(x1, x2, x3, x4)
U33_gg(x1, x2, x3, x4, x5)  =  U33_gg(x1, x2, x3, x4, x5)
U34_gg(x1, x2, x3, x4)  =  U34_gg(x1, x2, x3, x4)
subc28_in_ggg(x1, x2, x3)  =  subc28_in_ggg(x1, x2, x3)
U43_ggg(x1, x2, x3, x4)  =  U43_ggg(x1, x2, x3, x4)
subc28_out_ggg(x1, x2, x3)  =  subc28_out_ggg(x1, x2, x3)
U35_gg(x1, x2, x3, x4)  =  U35_gg(x1, x2, x3, x4)
U36_gg(x1, x2, x3, x4, x5)  =  U36_gg(x1, x2, x3, x4, x5)
U37_gg(x1, x2, x3, x4, x5)  =  U37_gg(x1, x2, x3, x4, x5)
multc50_in_gga(x1, x2, x3)  =  multc50_in_gga(x1, x2)
U44_gga(x1, x2, x3, x4)  =  U44_gga(x1, x2, x4)
multc50_out_gga(x1, x2, x3)  =  multc50_out_gga(x1, x2, x3)
U45_gga(x1, x2, x3, x4)  =  U45_gga(x1, x2, x4)
addc58_in_gga(x1, x2, x3)  =  addc58_in_gga(x1, x2)
U46_gga(x1, x2, x3, x4)  =  U46_gga(x1, x2, x4)
addc58_out_gga(x1, x2, x3)  =  addc58_out_gga(x1, x2, x3)
U38_gg(x1, x2, x3, x4)  =  U38_gg(x1, x2, x3, x4)
U39_gg(x1, x2, x3)  =  U39_gg(x1, x2, x3)
U41_gg(x1, x2)  =  U41_gg(x1, x2)
U40_gg(x1, x2, x3)  =  U40_gg(x1, x2, x3)
U40_ga(x1, x2, x3)  =  U40_ga(x1, x2, x3)
U36_ga(x1, x2, x3, x4, x5)  =  U36_ga(x1, x2, x4, x5)
U37_ga(x1, x2, x3, x4, x5)  =  U37_ga(x1, x2, x4, x5)
U38_ga(x1, x2, x3, x4)  =  U38_ga(x1, x2, x4)
addc12_in_gga(x1, x2, x3)  =  addc12_in_gga(x1, x2)
U42_gga(x1, x2, x3, x4)  =  U42_gga(x1, x2, x4)
addc12_out_gga(x1, x2, x3)  =  addc12_out_gga(x1, x2, x3)
U33_ga(x1, x2, x3, x4, x5)  =  U33_ga(x1, x2, x4, x5)
U34_ga(x1, x2, x3, x4)  =  U34_ga(x1, x2, x4)
subc28_in_gga(x1, x2, x3)  =  subc28_in_gga(x1, x2)
U43_gga(x1, x2, x3, x4)  =  U43_gga(x1, x2, x4)
subc28_out_gga(x1, x2, x3)  =  subc28_out_gga(x1, x2, x3)
U30_ga(x1, x2, x3, x4, x5)  =  U30_ga(x1, x2, x4, x5)
U31_ga(x1, x2, x3, x4)  =  U31_ga(x1, x2, x4)
mult50_in_gga(x1, x2, x3)  =  mult50_in_gga(x1, x2)
add58_in_gga(x1, x2, x3)  =  add58_in_gga(x1, x2)
add12_in_gga(x1, x2, x3)  =  add12_in_gga(x1, x2)
myinteger73_in_g(x1)  =  myinteger73_in_g(x1)
sub28_in_gga(x1, x2, x3)  =  sub28_in_gga(x1, x2)
MYIS1_IN_AG(x1, x2)  =  MYIS1_IN_AG(x2)
U27_AG(x1, x2, x3)  =  U27_AG(x2, x3)
EVALUATE3_IN_GA(x1, x2)  =  EVALUATE3_IN_GA(x1)
U1_GA(x1, x2, x3, x4)  =  U1_GA(x1, x2, x4)
U2_GA(x1, x2, x3, x4)  =  U2_GA(x1, x2, x4)
U3_GA(x1, x2, x3, x4)  =  U3_GA(x1, x2, x4)
U6_GA(x1, x2, x3, x4)  =  U6_GA(x1, x2, x4)
U7_GA(x1, x2, x3, x4)  =  U7_GA(x1, x2, x4)
U8_GA(x1, x2, x3, x4)  =  U8_GA(x1, x2, x4)
U11_GA(x1, x2, x3, x4)  =  U11_GA(x1, x2, x4)
U12_GA(x1, x2, x3, x4)  =  U12_GA(x1, x2, x4)
U13_GA(x1, x2, x3, x4)  =  U13_GA(x1, x2, x4)
U14_GA(x1, x2, x3, x4)  =  U14_GA(x1, x2, x4)
U15_GA(x1, x2, x3, x4, x5)  =  U15_GA(x1, x2, x4, x5)
U16_GA(x1, x2, x3, x4)  =  U16_GA(x1, x2, x4)
MULT50_IN_GGA(x1, x2, x3)  =  MULT50_IN_GGA(x1, x2)
U22_GGA(x1, x2, x3, x4)  =  U22_GGA(x1, x2, x4)
U23_GGA(x1, x2, x3, x4)  =  U23_GGA(x1, x2, x4)
U24_GGA(x1, x2, x3, x4)  =  U24_GGA(x1, x2, x4)
ADD58_IN_GGA(x1, x2, x3)  =  ADD58_IN_GGA(x1, x2)
U25_GGA(x1, x2, x3, x4)  =  U25_GGA(x1, x2, x4)
U17_GA(x1, x2, x3, x4, x5)  =  U17_GA(x1, x2, x4, x5)
U18_GA(x1, x2, x3, x4)  =  U18_GA(x1, x2, x4)
ADD12_IN_GGA(x1, x2, x3)  =  ADD12_IN_GGA(x1, x2)
U20_GGA(x1, x2, x3, x4)  =  U20_GGA(x1, x2, x4)
U19_GA(x1, x2)  =  U19_GA(x1, x2)
MYINTEGER73_IN_G(x1)  =  MYINTEGER73_IN_G(x1)
U26_G(x1, x2)  =  U26_G(x1, x2)
U9_GA(x1, x2, x3, x4, x5)  =  U9_GA(x1, x2, x4, x5)
U10_GA(x1, x2, x3, x4)  =  U10_GA(x1, x2, x4)
SUB28_IN_GGA(x1, x2, x3)  =  SUB28_IN_GGA(x1, x2)
U21_GGA(x1, x2, x3, x4)  =  U21_GGA(x1, x2, x4)
U4_GA(x1, x2, x3, x4, x5)  =  U4_GA(x1, x2, x4, x5)
U5_GA(x1, x2, x3, x4)  =  U5_GA(x1, x2, x4)

We have to consider all (P,R,Pi)-chains

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 6 SCCs with 31 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

SUB28_IN_GGA(s(T100), s(T101), T103) → SUB28_IN_GGA(T100, T101, T103)

The TRS R consists of the following rules:

evaluatec3_in_ga(+(T20, T21), T23) → U29_ga(T20, T21, T23, evaluatec3_in_ga(T20, T26))
evaluatec3_in_ga(-(T71, T72), T74) → U32_ga(T71, T72, T74, evaluatec3_in_ga(T71, T77))
evaluatec3_in_ga(*(T122, T123), T154) → U35_ga(T122, T123, T154, evaluatec3_in_ga(T122, s(T151)))
evaluatec3_in_ga(*(T122, T123), 0) → U39_ga(T122, T123, evaluatec3_in_gg(T122, 0))
evaluatec3_in_gg(+(T20, T21), T23) → U29_gg(T20, T21, T23, evaluatec3_in_ga(T20, T26))
evaluatec3_in_ga(T203, T203) → U41_ga(T203, myintegerc73_in_g(T203))
myintegerc73_in_g(s(T209)) → U47_g(T209, myintegerc73_in_g(T209))
myintegerc73_in_g(0) → myintegerc73_out_g(0)
U47_g(T209, myintegerc73_out_g(T209)) → myintegerc73_out_g(s(T209))
U41_ga(T203, myintegerc73_out_g(T203)) → evaluatec3_out_ga(T203, T203)
U29_gg(T20, T21, T23, evaluatec3_out_ga(T20, T26)) → U30_gg(T20, T21, T23, T26, evaluatec3_in_ga(T21, T31))
U30_gg(T20, T21, T23, T26, evaluatec3_out_ga(T21, T31)) → U31_gg(T20, T21, T23, addc12_in_ggg(T26, T31, T23))
addc12_in_ggg(s(T49), T50, s(T52)) → U42_ggg(T49, T50, T52, addc12_in_ggg(T49, T50, T52))
addc12_in_ggg(0, T58, T58) → addc12_out_ggg(0, T58, T58)
U42_ggg(T49, T50, T52, addc12_out_ggg(T49, T50, T52)) → addc12_out_ggg(s(T49), T50, s(T52))
U31_gg(T20, T21, T23, addc12_out_ggg(T26, T31, T23)) → evaluatec3_out_gg(+(T20, T21), T23)
evaluatec3_in_gg(-(T71, T72), T74) → U32_gg(T71, T72, T74, evaluatec3_in_ga(T71, T77))
U32_gg(T71, T72, T74, evaluatec3_out_ga(T71, T77)) → U33_gg(T71, T72, T74, T77, evaluatec3_in_ga(T72, T82))
U33_gg(T71, T72, T74, T77, evaluatec3_out_ga(T72, T82)) → U34_gg(T71, T72, T74, subc28_in_ggg(T77, T82, T74))
subc28_in_ggg(s(T100), s(T101), T103) → U43_ggg(T100, T101, T103, subc28_in_ggg(T100, T101, T103))
subc28_in_ggg(T109, 0, T109) → subc28_out_ggg(T109, 0, T109)
U43_ggg(T100, T101, T103, subc28_out_ggg(T100, T101, T103)) → subc28_out_ggg(s(T100), s(T101), T103)
U34_gg(T71, T72, T74, subc28_out_ggg(T77, T82, T74)) → evaluatec3_out_gg(-(T71, T72), T74)
evaluatec3_in_gg(*(T122, T123), T154) → U35_gg(T122, T123, T154, evaluatec3_in_ga(T122, s(T151)))
U35_gg(T122, T123, T154, evaluatec3_out_ga(T122, s(T151))) → U36_gg(T122, T123, T154, T151, evaluatec3_in_ga(T123, T152))
U36_gg(T122, T123, T154, T151, evaluatec3_out_ga(T123, T152)) → U37_gg(T122, T123, T154, T152, multc50_in_gga(T151, T152, T157))
multc50_in_gga(s(T168), T169, X263) → U44_gga(T168, T169, X263, multc50_in_gga(T168, T169, T172))
multc50_in_gga(0, T194, 0) → multc50_out_gga(0, T194, 0)
U44_gga(T168, T169, X263, multc50_out_gga(T168, T169, T172)) → U45_gga(T168, T169, X263, addc58_in_gga(T169, T172, X263))
addc58_in_gga(s(T185), T186, s(X300)) → U46_gga(T185, T186, X300, addc58_in_gga(T185, T186, X300))
addc58_in_gga(0, T191, T191) → addc58_out_gga(0, T191, T191)
U46_gga(T185, T186, X300, addc58_out_gga(T185, T186, X300)) → addc58_out_gga(s(T185), T186, s(X300))
U45_gga(T168, T169, X263, addc58_out_gga(T169, T172, X263)) → multc50_out_gga(s(T168), T169, X263)
U37_gg(T122, T123, T154, T152, multc50_out_gga(T151, T152, T157)) → U38_gg(T122, T123, T154, addc12_in_ggg(T152, T157, T154))
U38_gg(T122, T123, T154, addc12_out_ggg(T152, T157, T154)) → evaluatec3_out_gg(*(T122, T123), T154)
evaluatec3_in_gg(*(T122, T123), 0) → U39_gg(T122, T123, evaluatec3_in_gg(T122, 0))
evaluatec3_in_gg(T203, T203) → U41_gg(T203, myintegerc73_in_g(T203))
U41_gg(T203, myintegerc73_out_g(T203)) → evaluatec3_out_gg(T203, T203)
U39_gg(T122, T123, evaluatec3_out_gg(T122, 0)) → U40_gg(T122, T123, evaluatec3_in_ga(T123, T200))
U40_gg(T122, T123, evaluatec3_out_ga(T123, T200)) → evaluatec3_out_gg(*(T122, T123), 0)
U39_ga(T122, T123, evaluatec3_out_gg(T122, 0)) → U40_ga(T122, T123, evaluatec3_in_ga(T123, T200))
U40_ga(T122, T123, evaluatec3_out_ga(T123, T200)) → evaluatec3_out_ga(*(T122, T123), 0)
U35_ga(T122, T123, T154, evaluatec3_out_ga(T122, s(T151))) → U36_ga(T122, T123, T154, T151, evaluatec3_in_ga(T123, T152))
U36_ga(T122, T123, T154, T151, evaluatec3_out_ga(T123, T152)) → U37_ga(T122, T123, T154, T152, multc50_in_gga(T151, T152, T157))
U37_ga(T122, T123, T154, T152, multc50_out_gga(T151, T152, T157)) → U38_ga(T122, T123, T154, addc12_in_gga(T152, T157, T154))
addc12_in_gga(s(T49), T50, s(T52)) → U42_gga(T49, T50, T52, addc12_in_gga(T49, T50, T52))
addc12_in_gga(0, T58, T58) → addc12_out_gga(0, T58, T58)
U42_gga(T49, T50, T52, addc12_out_gga(T49, T50, T52)) → addc12_out_gga(s(T49), T50, s(T52))
U38_ga(T122, T123, T154, addc12_out_gga(T152, T157, T154)) → evaluatec3_out_ga(*(T122, T123), T154)
U32_ga(T71, T72, T74, evaluatec3_out_ga(T71, T77)) → U33_ga(T71, T72, T74, T77, evaluatec3_in_ga(T72, T82))
U33_ga(T71, T72, T74, T77, evaluatec3_out_ga(T72, T82)) → U34_ga(T71, T72, T74, subc28_in_gga(T77, T82, T74))
subc28_in_gga(s(T100), s(T101), T103) → U43_gga(T100, T101, T103, subc28_in_gga(T100, T101, T103))
subc28_in_gga(T109, 0, T109) → subc28_out_gga(T109, 0, T109)
U43_gga(T100, T101, T103, subc28_out_gga(T100, T101, T103)) → subc28_out_gga(s(T100), s(T101), T103)
U34_ga(T71, T72, T74, subc28_out_gga(T77, T82, T74)) → evaluatec3_out_ga(-(T71, T72), T74)
U29_ga(T20, T21, T23, evaluatec3_out_ga(T20, T26)) → U30_ga(T20, T21, T23, T26, evaluatec3_in_ga(T21, T31))
U30_ga(T20, T21, T23, T26, evaluatec3_out_ga(T21, T31)) → U31_ga(T20, T21, T23, addc12_in_gga(T26, T31, T23))
U31_ga(T20, T21, T23, addc12_out_gga(T26, T31, T23)) → evaluatec3_out_ga(+(T20, T21), T23)

The argument filtering Pi contains the following mapping:
+(x1, x2)  =  +(x1, x2)
evaluatec3_in_ga(x1, x2)  =  evaluatec3_in_ga(x1)
U29_ga(x1, x2, x3, x4)  =  U29_ga(x1, x2, x4)
-(x1, x2)  =  -(x1, x2)
U32_ga(x1, x2, x3, x4)  =  U32_ga(x1, x2, x4)
*(x1, x2)  =  *(x1, x2)
U35_ga(x1, x2, x3, x4)  =  U35_ga(x1, x2, x4)
U39_ga(x1, x2, x3)  =  U39_ga(x1, x2, x3)
evaluatec3_in_gg(x1, x2)  =  evaluatec3_in_gg(x1, x2)
U29_gg(x1, x2, x3, x4)  =  U29_gg(x1, x2, x3, x4)
U41_ga(x1, x2)  =  U41_ga(x1, x2)
myintegerc73_in_g(x1)  =  myintegerc73_in_g(x1)
s(x1)  =  s(x1)
U47_g(x1, x2)  =  U47_g(x1, x2)
0  =  0
myintegerc73_out_g(x1)  =  myintegerc73_out_g(x1)
evaluatec3_out_ga(x1, x2)  =  evaluatec3_out_ga(x1, x2)
U30_gg(x1, x2, x3, x4, x5)  =  U30_gg(x1, x2, x3, x4, x5)
U31_gg(x1, x2, x3, x4)  =  U31_gg(x1, x2, x3, x4)
addc12_in_ggg(x1, x2, x3)  =  addc12_in_ggg(x1, x2, x3)
U42_ggg(x1, x2, x3, x4)  =  U42_ggg(x1, x2, x3, x4)
addc12_out_ggg(x1, x2, x3)  =  addc12_out_ggg(x1, x2, x3)
evaluatec3_out_gg(x1, x2)  =  evaluatec3_out_gg(x1, x2)
U32_gg(x1, x2, x3, x4)  =  U32_gg(x1, x2, x3, x4)
U33_gg(x1, x2, x3, x4, x5)  =  U33_gg(x1, x2, x3, x4, x5)
U34_gg(x1, x2, x3, x4)  =  U34_gg(x1, x2, x3, x4)
subc28_in_ggg(x1, x2, x3)  =  subc28_in_ggg(x1, x2, x3)
U43_ggg(x1, x2, x3, x4)  =  U43_ggg(x1, x2, x3, x4)
subc28_out_ggg(x1, x2, x3)  =  subc28_out_ggg(x1, x2, x3)
U35_gg(x1, x2, x3, x4)  =  U35_gg(x1, x2, x3, x4)
U36_gg(x1, x2, x3, x4, x5)  =  U36_gg(x1, x2, x3, x4, x5)
U37_gg(x1, x2, x3, x4, x5)  =  U37_gg(x1, x2, x3, x4, x5)
multc50_in_gga(x1, x2, x3)  =  multc50_in_gga(x1, x2)
U44_gga(x1, x2, x3, x4)  =  U44_gga(x1, x2, x4)
multc50_out_gga(x1, x2, x3)  =  multc50_out_gga(x1, x2, x3)
U45_gga(x1, x2, x3, x4)  =  U45_gga(x1, x2, x4)
addc58_in_gga(x1, x2, x3)  =  addc58_in_gga(x1, x2)
U46_gga(x1, x2, x3, x4)  =  U46_gga(x1, x2, x4)
addc58_out_gga(x1, x2, x3)  =  addc58_out_gga(x1, x2, x3)
U38_gg(x1, x2, x3, x4)  =  U38_gg(x1, x2, x3, x4)
U39_gg(x1, x2, x3)  =  U39_gg(x1, x2, x3)
U41_gg(x1, x2)  =  U41_gg(x1, x2)
U40_gg(x1, x2, x3)  =  U40_gg(x1, x2, x3)
U40_ga(x1, x2, x3)  =  U40_ga(x1, x2, x3)
U36_ga(x1, x2, x3, x4, x5)  =  U36_ga(x1, x2, x4, x5)
U37_ga(x1, x2, x3, x4, x5)  =  U37_ga(x1, x2, x4, x5)
U38_ga(x1, x2, x3, x4)  =  U38_ga(x1, x2, x4)
addc12_in_gga(x1, x2, x3)  =  addc12_in_gga(x1, x2)
U42_gga(x1, x2, x3, x4)  =  U42_gga(x1, x2, x4)
addc12_out_gga(x1, x2, x3)  =  addc12_out_gga(x1, x2, x3)
U33_ga(x1, x2, x3, x4, x5)  =  U33_ga(x1, x2, x4, x5)
U34_ga(x1, x2, x3, x4)  =  U34_ga(x1, x2, x4)
subc28_in_gga(x1, x2, x3)  =  subc28_in_gga(x1, x2)
U43_gga(x1, x2, x3, x4)  =  U43_gga(x1, x2, x4)
subc28_out_gga(x1, x2, x3)  =  subc28_out_gga(x1, x2, x3)
U30_ga(x1, x2, x3, x4, x5)  =  U30_ga(x1, x2, x4, x5)
U31_ga(x1, x2, x3, x4)  =  U31_ga(x1, x2, x4)
SUB28_IN_GGA(x1, x2, x3)  =  SUB28_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(8) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

SUB28_IN_GGA(s(T100), s(T101), T103) → SUB28_IN_GGA(T100, T101, T103)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
SUB28_IN_GGA(x1, x2, x3)  =  SUB28_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(10) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SUB28_IN_GGA(s(T100), s(T101)) → SUB28_IN_GGA(T100, T101)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(12) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • SUB28_IN_GGA(s(T100), s(T101)) → SUB28_IN_GGA(T100, T101)
    The graph contains the following edges 1 > 1, 2 > 2

(13) YES

(14) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MYINTEGER73_IN_G(s(T209)) → MYINTEGER73_IN_G(T209)

The TRS R consists of the following rules:

evaluatec3_in_ga(+(T20, T21), T23) → U29_ga(T20, T21, T23, evaluatec3_in_ga(T20, T26))
evaluatec3_in_ga(-(T71, T72), T74) → U32_ga(T71, T72, T74, evaluatec3_in_ga(T71, T77))
evaluatec3_in_ga(*(T122, T123), T154) → U35_ga(T122, T123, T154, evaluatec3_in_ga(T122, s(T151)))
evaluatec3_in_ga(*(T122, T123), 0) → U39_ga(T122, T123, evaluatec3_in_gg(T122, 0))
evaluatec3_in_gg(+(T20, T21), T23) → U29_gg(T20, T21, T23, evaluatec3_in_ga(T20, T26))
evaluatec3_in_ga(T203, T203) → U41_ga(T203, myintegerc73_in_g(T203))
myintegerc73_in_g(s(T209)) → U47_g(T209, myintegerc73_in_g(T209))
myintegerc73_in_g(0) → myintegerc73_out_g(0)
U47_g(T209, myintegerc73_out_g(T209)) → myintegerc73_out_g(s(T209))
U41_ga(T203, myintegerc73_out_g(T203)) → evaluatec3_out_ga(T203, T203)
U29_gg(T20, T21, T23, evaluatec3_out_ga(T20, T26)) → U30_gg(T20, T21, T23, T26, evaluatec3_in_ga(T21, T31))
U30_gg(T20, T21, T23, T26, evaluatec3_out_ga(T21, T31)) → U31_gg(T20, T21, T23, addc12_in_ggg(T26, T31, T23))
addc12_in_ggg(s(T49), T50, s(T52)) → U42_ggg(T49, T50, T52, addc12_in_ggg(T49, T50, T52))
addc12_in_ggg(0, T58, T58) → addc12_out_ggg(0, T58, T58)
U42_ggg(T49, T50, T52, addc12_out_ggg(T49, T50, T52)) → addc12_out_ggg(s(T49), T50, s(T52))
U31_gg(T20, T21, T23, addc12_out_ggg(T26, T31, T23)) → evaluatec3_out_gg(+(T20, T21), T23)
evaluatec3_in_gg(-(T71, T72), T74) → U32_gg(T71, T72, T74, evaluatec3_in_ga(T71, T77))
U32_gg(T71, T72, T74, evaluatec3_out_ga(T71, T77)) → U33_gg(T71, T72, T74, T77, evaluatec3_in_ga(T72, T82))
U33_gg(T71, T72, T74, T77, evaluatec3_out_ga(T72, T82)) → U34_gg(T71, T72, T74, subc28_in_ggg(T77, T82, T74))
subc28_in_ggg(s(T100), s(T101), T103) → U43_ggg(T100, T101, T103, subc28_in_ggg(T100, T101, T103))
subc28_in_ggg(T109, 0, T109) → subc28_out_ggg(T109, 0, T109)
U43_ggg(T100, T101, T103, subc28_out_ggg(T100, T101, T103)) → subc28_out_ggg(s(T100), s(T101), T103)
U34_gg(T71, T72, T74, subc28_out_ggg(T77, T82, T74)) → evaluatec3_out_gg(-(T71, T72), T74)
evaluatec3_in_gg(*(T122, T123), T154) → U35_gg(T122, T123, T154, evaluatec3_in_ga(T122, s(T151)))
U35_gg(T122, T123, T154, evaluatec3_out_ga(T122, s(T151))) → U36_gg(T122, T123, T154, T151, evaluatec3_in_ga(T123, T152))
U36_gg(T122, T123, T154, T151, evaluatec3_out_ga(T123, T152)) → U37_gg(T122, T123, T154, T152, multc50_in_gga(T151, T152, T157))
multc50_in_gga(s(T168), T169, X263) → U44_gga(T168, T169, X263, multc50_in_gga(T168, T169, T172))
multc50_in_gga(0, T194, 0) → multc50_out_gga(0, T194, 0)
U44_gga(T168, T169, X263, multc50_out_gga(T168, T169, T172)) → U45_gga(T168, T169, X263, addc58_in_gga(T169, T172, X263))
addc58_in_gga(s(T185), T186, s(X300)) → U46_gga(T185, T186, X300, addc58_in_gga(T185, T186, X300))
addc58_in_gga(0, T191, T191) → addc58_out_gga(0, T191, T191)
U46_gga(T185, T186, X300, addc58_out_gga(T185, T186, X300)) → addc58_out_gga(s(T185), T186, s(X300))
U45_gga(T168, T169, X263, addc58_out_gga(T169, T172, X263)) → multc50_out_gga(s(T168), T169, X263)
U37_gg(T122, T123, T154, T152, multc50_out_gga(T151, T152, T157)) → U38_gg(T122, T123, T154, addc12_in_ggg(T152, T157, T154))
U38_gg(T122, T123, T154, addc12_out_ggg(T152, T157, T154)) → evaluatec3_out_gg(*(T122, T123), T154)
evaluatec3_in_gg(*(T122, T123), 0) → U39_gg(T122, T123, evaluatec3_in_gg(T122, 0))
evaluatec3_in_gg(T203, T203) → U41_gg(T203, myintegerc73_in_g(T203))
U41_gg(T203, myintegerc73_out_g(T203)) → evaluatec3_out_gg(T203, T203)
U39_gg(T122, T123, evaluatec3_out_gg(T122, 0)) → U40_gg(T122, T123, evaluatec3_in_ga(T123, T200))
U40_gg(T122, T123, evaluatec3_out_ga(T123, T200)) → evaluatec3_out_gg(*(T122, T123), 0)
U39_ga(T122, T123, evaluatec3_out_gg(T122, 0)) → U40_ga(T122, T123, evaluatec3_in_ga(T123, T200))
U40_ga(T122, T123, evaluatec3_out_ga(T123, T200)) → evaluatec3_out_ga(*(T122, T123), 0)
U35_ga(T122, T123, T154, evaluatec3_out_ga(T122, s(T151))) → U36_ga(T122, T123, T154, T151, evaluatec3_in_ga(T123, T152))
U36_ga(T122, T123, T154, T151, evaluatec3_out_ga(T123, T152)) → U37_ga(T122, T123, T154, T152, multc50_in_gga(T151, T152, T157))
U37_ga(T122, T123, T154, T152, multc50_out_gga(T151, T152, T157)) → U38_ga(T122, T123, T154, addc12_in_gga(T152, T157, T154))
addc12_in_gga(s(T49), T50, s(T52)) → U42_gga(T49, T50, T52, addc12_in_gga(T49, T50, T52))
addc12_in_gga(0, T58, T58) → addc12_out_gga(0, T58, T58)
U42_gga(T49, T50, T52, addc12_out_gga(T49, T50, T52)) → addc12_out_gga(s(T49), T50, s(T52))
U38_ga(T122, T123, T154, addc12_out_gga(T152, T157, T154)) → evaluatec3_out_ga(*(T122, T123), T154)
U32_ga(T71, T72, T74, evaluatec3_out_ga(T71, T77)) → U33_ga(T71, T72, T74, T77, evaluatec3_in_ga(T72, T82))
U33_ga(T71, T72, T74, T77, evaluatec3_out_ga(T72, T82)) → U34_ga(T71, T72, T74, subc28_in_gga(T77, T82, T74))
subc28_in_gga(s(T100), s(T101), T103) → U43_gga(T100, T101, T103, subc28_in_gga(T100, T101, T103))
subc28_in_gga(T109, 0, T109) → subc28_out_gga(T109, 0, T109)
U43_gga(T100, T101, T103, subc28_out_gga(T100, T101, T103)) → subc28_out_gga(s(T100), s(T101), T103)
U34_ga(T71, T72, T74, subc28_out_gga(T77, T82, T74)) → evaluatec3_out_ga(-(T71, T72), T74)
U29_ga(T20, T21, T23, evaluatec3_out_ga(T20, T26)) → U30_ga(T20, T21, T23, T26, evaluatec3_in_ga(T21, T31))
U30_ga(T20, T21, T23, T26, evaluatec3_out_ga(T21, T31)) → U31_ga(T20, T21, T23, addc12_in_gga(T26, T31, T23))
U31_ga(T20, T21, T23, addc12_out_gga(T26, T31, T23)) → evaluatec3_out_ga(+(T20, T21), T23)

The argument filtering Pi contains the following mapping:
+(x1, x2)  =  +(x1, x2)
evaluatec3_in_ga(x1, x2)  =  evaluatec3_in_ga(x1)
U29_ga(x1, x2, x3, x4)  =  U29_ga(x1, x2, x4)
-(x1, x2)  =  -(x1, x2)
U32_ga(x1, x2, x3, x4)  =  U32_ga(x1, x2, x4)
*(x1, x2)  =  *(x1, x2)
U35_ga(x1, x2, x3, x4)  =  U35_ga(x1, x2, x4)
U39_ga(x1, x2, x3)  =  U39_ga(x1, x2, x3)
evaluatec3_in_gg(x1, x2)  =  evaluatec3_in_gg(x1, x2)
U29_gg(x1, x2, x3, x4)  =  U29_gg(x1, x2, x3, x4)
U41_ga(x1, x2)  =  U41_ga(x1, x2)
myintegerc73_in_g(x1)  =  myintegerc73_in_g(x1)
s(x1)  =  s(x1)
U47_g(x1, x2)  =  U47_g(x1, x2)
0  =  0
myintegerc73_out_g(x1)  =  myintegerc73_out_g(x1)
evaluatec3_out_ga(x1, x2)  =  evaluatec3_out_ga(x1, x2)
U30_gg(x1, x2, x3, x4, x5)  =  U30_gg(x1, x2, x3, x4, x5)
U31_gg(x1, x2, x3, x4)  =  U31_gg(x1, x2, x3, x4)
addc12_in_ggg(x1, x2, x3)  =  addc12_in_ggg(x1, x2, x3)
U42_ggg(x1, x2, x3, x4)  =  U42_ggg(x1, x2, x3, x4)
addc12_out_ggg(x1, x2, x3)  =  addc12_out_ggg(x1, x2, x3)
evaluatec3_out_gg(x1, x2)  =  evaluatec3_out_gg(x1, x2)
U32_gg(x1, x2, x3, x4)  =  U32_gg(x1, x2, x3, x4)
U33_gg(x1, x2, x3, x4, x5)  =  U33_gg(x1, x2, x3, x4, x5)
U34_gg(x1, x2, x3, x4)  =  U34_gg(x1, x2, x3, x4)
subc28_in_ggg(x1, x2, x3)  =  subc28_in_ggg(x1, x2, x3)
U43_ggg(x1, x2, x3, x4)  =  U43_ggg(x1, x2, x3, x4)
subc28_out_ggg(x1, x2, x3)  =  subc28_out_ggg(x1, x2, x3)
U35_gg(x1, x2, x3, x4)  =  U35_gg(x1, x2, x3, x4)
U36_gg(x1, x2, x3, x4, x5)  =  U36_gg(x1, x2, x3, x4, x5)
U37_gg(x1, x2, x3, x4, x5)  =  U37_gg(x1, x2, x3, x4, x5)
multc50_in_gga(x1, x2, x3)  =  multc50_in_gga(x1, x2)
U44_gga(x1, x2, x3, x4)  =  U44_gga(x1, x2, x4)
multc50_out_gga(x1, x2, x3)  =  multc50_out_gga(x1, x2, x3)
U45_gga(x1, x2, x3, x4)  =  U45_gga(x1, x2, x4)
addc58_in_gga(x1, x2, x3)  =  addc58_in_gga(x1, x2)
U46_gga(x1, x2, x3, x4)  =  U46_gga(x1, x2, x4)
addc58_out_gga(x1, x2, x3)  =  addc58_out_gga(x1, x2, x3)
U38_gg(x1, x2, x3, x4)  =  U38_gg(x1, x2, x3, x4)
U39_gg(x1, x2, x3)  =  U39_gg(x1, x2, x3)
U41_gg(x1, x2)  =  U41_gg(x1, x2)
U40_gg(x1, x2, x3)  =  U40_gg(x1, x2, x3)
U40_ga(x1, x2, x3)  =  U40_ga(x1, x2, x3)
U36_ga(x1, x2, x3, x4, x5)  =  U36_ga(x1, x2, x4, x5)
U37_ga(x1, x2, x3, x4, x5)  =  U37_ga(x1, x2, x4, x5)
U38_ga(x1, x2, x3, x4)  =  U38_ga(x1, x2, x4)
addc12_in_gga(x1, x2, x3)  =  addc12_in_gga(x1, x2)
U42_gga(x1, x2, x3, x4)  =  U42_gga(x1, x2, x4)
addc12_out_gga(x1, x2, x3)  =  addc12_out_gga(x1, x2, x3)
U33_ga(x1, x2, x3, x4, x5)  =  U33_ga(x1, x2, x4, x5)
U34_ga(x1, x2, x3, x4)  =  U34_ga(x1, x2, x4)
subc28_in_gga(x1, x2, x3)  =  subc28_in_gga(x1, x2)
U43_gga(x1, x2, x3, x4)  =  U43_gga(x1, x2, x4)
subc28_out_gga(x1, x2, x3)  =  subc28_out_gga(x1, x2, x3)
U30_ga(x1, x2, x3, x4, x5)  =  U30_ga(x1, x2, x4, x5)
U31_ga(x1, x2, x3, x4)  =  U31_ga(x1, x2, x4)
MYINTEGER73_IN_G(x1)  =  MYINTEGER73_IN_G(x1)

We have to consider all (P,R,Pi)-chains

(15) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MYINTEGER73_IN_G(s(T209)) → MYINTEGER73_IN_G(T209)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains

(17) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MYINTEGER73_IN_G(s(T209)) → MYINTEGER73_IN_G(T209)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(19) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • MYINTEGER73_IN_G(s(T209)) → MYINTEGER73_IN_G(T209)
    The graph contains the following edges 1 > 1

(20) YES

(21) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

ADD12_IN_GGA(s(T49), T50, s(T52)) → ADD12_IN_GGA(T49, T50, T52)

The TRS R consists of the following rules:

evaluatec3_in_ga(+(T20, T21), T23) → U29_ga(T20, T21, T23, evaluatec3_in_ga(T20, T26))
evaluatec3_in_ga(-(T71, T72), T74) → U32_ga(T71, T72, T74, evaluatec3_in_ga(T71, T77))
evaluatec3_in_ga(*(T122, T123), T154) → U35_ga(T122, T123, T154, evaluatec3_in_ga(T122, s(T151)))
evaluatec3_in_ga(*(T122, T123), 0) → U39_ga(T122, T123, evaluatec3_in_gg(T122, 0))
evaluatec3_in_gg(+(T20, T21), T23) → U29_gg(T20, T21, T23, evaluatec3_in_ga(T20, T26))
evaluatec3_in_ga(T203, T203) → U41_ga(T203, myintegerc73_in_g(T203))
myintegerc73_in_g(s(T209)) → U47_g(T209, myintegerc73_in_g(T209))
myintegerc73_in_g(0) → myintegerc73_out_g(0)
U47_g(T209, myintegerc73_out_g(T209)) → myintegerc73_out_g(s(T209))
U41_ga(T203, myintegerc73_out_g(T203)) → evaluatec3_out_ga(T203, T203)
U29_gg(T20, T21, T23, evaluatec3_out_ga(T20, T26)) → U30_gg(T20, T21, T23, T26, evaluatec3_in_ga(T21, T31))
U30_gg(T20, T21, T23, T26, evaluatec3_out_ga(T21, T31)) → U31_gg(T20, T21, T23, addc12_in_ggg(T26, T31, T23))
addc12_in_ggg(s(T49), T50, s(T52)) → U42_ggg(T49, T50, T52, addc12_in_ggg(T49, T50, T52))
addc12_in_ggg(0, T58, T58) → addc12_out_ggg(0, T58, T58)
U42_ggg(T49, T50, T52, addc12_out_ggg(T49, T50, T52)) → addc12_out_ggg(s(T49), T50, s(T52))
U31_gg(T20, T21, T23, addc12_out_ggg(T26, T31, T23)) → evaluatec3_out_gg(+(T20, T21), T23)
evaluatec3_in_gg(-(T71, T72), T74) → U32_gg(T71, T72, T74, evaluatec3_in_ga(T71, T77))
U32_gg(T71, T72, T74, evaluatec3_out_ga(T71, T77)) → U33_gg(T71, T72, T74, T77, evaluatec3_in_ga(T72, T82))
U33_gg(T71, T72, T74, T77, evaluatec3_out_ga(T72, T82)) → U34_gg(T71, T72, T74, subc28_in_ggg(T77, T82, T74))
subc28_in_ggg(s(T100), s(T101), T103) → U43_ggg(T100, T101, T103, subc28_in_ggg(T100, T101, T103))
subc28_in_ggg(T109, 0, T109) → subc28_out_ggg(T109, 0, T109)
U43_ggg(T100, T101, T103, subc28_out_ggg(T100, T101, T103)) → subc28_out_ggg(s(T100), s(T101), T103)
U34_gg(T71, T72, T74, subc28_out_ggg(T77, T82, T74)) → evaluatec3_out_gg(-(T71, T72), T74)
evaluatec3_in_gg(*(T122, T123), T154) → U35_gg(T122, T123, T154, evaluatec3_in_ga(T122, s(T151)))
U35_gg(T122, T123, T154, evaluatec3_out_ga(T122, s(T151))) → U36_gg(T122, T123, T154, T151, evaluatec3_in_ga(T123, T152))
U36_gg(T122, T123, T154, T151, evaluatec3_out_ga(T123, T152)) → U37_gg(T122, T123, T154, T152, multc50_in_gga(T151, T152, T157))
multc50_in_gga(s(T168), T169, X263) → U44_gga(T168, T169, X263, multc50_in_gga(T168, T169, T172))
multc50_in_gga(0, T194, 0) → multc50_out_gga(0, T194, 0)
U44_gga(T168, T169, X263, multc50_out_gga(T168, T169, T172)) → U45_gga(T168, T169, X263, addc58_in_gga(T169, T172, X263))
addc58_in_gga(s(T185), T186, s(X300)) → U46_gga(T185, T186, X300, addc58_in_gga(T185, T186, X300))
addc58_in_gga(0, T191, T191) → addc58_out_gga(0, T191, T191)
U46_gga(T185, T186, X300, addc58_out_gga(T185, T186, X300)) → addc58_out_gga(s(T185), T186, s(X300))
U45_gga(T168, T169, X263, addc58_out_gga(T169, T172, X263)) → multc50_out_gga(s(T168), T169, X263)
U37_gg(T122, T123, T154, T152, multc50_out_gga(T151, T152, T157)) → U38_gg(T122, T123, T154, addc12_in_ggg(T152, T157, T154))
U38_gg(T122, T123, T154, addc12_out_ggg(T152, T157, T154)) → evaluatec3_out_gg(*(T122, T123), T154)
evaluatec3_in_gg(*(T122, T123), 0) → U39_gg(T122, T123, evaluatec3_in_gg(T122, 0))
evaluatec3_in_gg(T203, T203) → U41_gg(T203, myintegerc73_in_g(T203))
U41_gg(T203, myintegerc73_out_g(T203)) → evaluatec3_out_gg(T203, T203)
U39_gg(T122, T123, evaluatec3_out_gg(T122, 0)) → U40_gg(T122, T123, evaluatec3_in_ga(T123, T200))
U40_gg(T122, T123, evaluatec3_out_ga(T123, T200)) → evaluatec3_out_gg(*(T122, T123), 0)
U39_ga(T122, T123, evaluatec3_out_gg(T122, 0)) → U40_ga(T122, T123, evaluatec3_in_ga(T123, T200))
U40_ga(T122, T123, evaluatec3_out_ga(T123, T200)) → evaluatec3_out_ga(*(T122, T123), 0)
U35_ga(T122, T123, T154, evaluatec3_out_ga(T122, s(T151))) → U36_ga(T122, T123, T154, T151, evaluatec3_in_ga(T123, T152))
U36_ga(T122, T123, T154, T151, evaluatec3_out_ga(T123, T152)) → U37_ga(T122, T123, T154, T152, multc50_in_gga(T151, T152, T157))
U37_ga(T122, T123, T154, T152, multc50_out_gga(T151, T152, T157)) → U38_ga(T122, T123, T154, addc12_in_gga(T152, T157, T154))
addc12_in_gga(s(T49), T50, s(T52)) → U42_gga(T49, T50, T52, addc12_in_gga(T49, T50, T52))
addc12_in_gga(0, T58, T58) → addc12_out_gga(0, T58, T58)
U42_gga(T49, T50, T52, addc12_out_gga(T49, T50, T52)) → addc12_out_gga(s(T49), T50, s(T52))
U38_ga(T122, T123, T154, addc12_out_gga(T152, T157, T154)) → evaluatec3_out_ga(*(T122, T123), T154)
U32_ga(T71, T72, T74, evaluatec3_out_ga(T71, T77)) → U33_ga(T71, T72, T74, T77, evaluatec3_in_ga(T72, T82))
U33_ga(T71, T72, T74, T77, evaluatec3_out_ga(T72, T82)) → U34_ga(T71, T72, T74, subc28_in_gga(T77, T82, T74))
subc28_in_gga(s(T100), s(T101), T103) → U43_gga(T100, T101, T103, subc28_in_gga(T100, T101, T103))
subc28_in_gga(T109, 0, T109) → subc28_out_gga(T109, 0, T109)
U43_gga(T100, T101, T103, subc28_out_gga(T100, T101, T103)) → subc28_out_gga(s(T100), s(T101), T103)
U34_ga(T71, T72, T74, subc28_out_gga(T77, T82, T74)) → evaluatec3_out_ga(-(T71, T72), T74)
U29_ga(T20, T21, T23, evaluatec3_out_ga(T20, T26)) → U30_ga(T20, T21, T23, T26, evaluatec3_in_ga(T21, T31))
U30_ga(T20, T21, T23, T26, evaluatec3_out_ga(T21, T31)) → U31_ga(T20, T21, T23, addc12_in_gga(T26, T31, T23))
U31_ga(T20, T21, T23, addc12_out_gga(T26, T31, T23)) → evaluatec3_out_ga(+(T20, T21), T23)

The argument filtering Pi contains the following mapping:
+(x1, x2)  =  +(x1, x2)
evaluatec3_in_ga(x1, x2)  =  evaluatec3_in_ga(x1)
U29_ga(x1, x2, x3, x4)  =  U29_ga(x1, x2, x4)
-(x1, x2)  =  -(x1, x2)
U32_ga(x1, x2, x3, x4)  =  U32_ga(x1, x2, x4)
*(x1, x2)  =  *(x1, x2)
U35_ga(x1, x2, x3, x4)  =  U35_ga(x1, x2, x4)
U39_ga(x1, x2, x3)  =  U39_ga(x1, x2, x3)
evaluatec3_in_gg(x1, x2)  =  evaluatec3_in_gg(x1, x2)
U29_gg(x1, x2, x3, x4)  =  U29_gg(x1, x2, x3, x4)
U41_ga(x1, x2)  =  U41_ga(x1, x2)
myintegerc73_in_g(x1)  =  myintegerc73_in_g(x1)
s(x1)  =  s(x1)
U47_g(x1, x2)  =  U47_g(x1, x2)
0  =  0
myintegerc73_out_g(x1)  =  myintegerc73_out_g(x1)
evaluatec3_out_ga(x1, x2)  =  evaluatec3_out_ga(x1, x2)
U30_gg(x1, x2, x3, x4, x5)  =  U30_gg(x1, x2, x3, x4, x5)
U31_gg(x1, x2, x3, x4)  =  U31_gg(x1, x2, x3, x4)
addc12_in_ggg(x1, x2, x3)  =  addc12_in_ggg(x1, x2, x3)
U42_ggg(x1, x2, x3, x4)  =  U42_ggg(x1, x2, x3, x4)
addc12_out_ggg(x1, x2, x3)  =  addc12_out_ggg(x1, x2, x3)
evaluatec3_out_gg(x1, x2)  =  evaluatec3_out_gg(x1, x2)
U32_gg(x1, x2, x3, x4)  =  U32_gg(x1, x2, x3, x4)
U33_gg(x1, x2, x3, x4, x5)  =  U33_gg(x1, x2, x3, x4, x5)
U34_gg(x1, x2, x3, x4)  =  U34_gg(x1, x2, x3, x4)
subc28_in_ggg(x1, x2, x3)  =  subc28_in_ggg(x1, x2, x3)
U43_ggg(x1, x2, x3, x4)  =  U43_ggg(x1, x2, x3, x4)
subc28_out_ggg(x1, x2, x3)  =  subc28_out_ggg(x1, x2, x3)
U35_gg(x1, x2, x3, x4)  =  U35_gg(x1, x2, x3, x4)
U36_gg(x1, x2, x3, x4, x5)  =  U36_gg(x1, x2, x3, x4, x5)
U37_gg(x1, x2, x3, x4, x5)  =  U37_gg(x1, x2, x3, x4, x5)
multc50_in_gga(x1, x2, x3)  =  multc50_in_gga(x1, x2)
U44_gga(x1, x2, x3, x4)  =  U44_gga(x1, x2, x4)
multc50_out_gga(x1, x2, x3)  =  multc50_out_gga(x1, x2, x3)
U45_gga(x1, x2, x3, x4)  =  U45_gga(x1, x2, x4)
addc58_in_gga(x1, x2, x3)  =  addc58_in_gga(x1, x2)
U46_gga(x1, x2, x3, x4)  =  U46_gga(x1, x2, x4)
addc58_out_gga(x1, x2, x3)  =  addc58_out_gga(x1, x2, x3)
U38_gg(x1, x2, x3, x4)  =  U38_gg(x1, x2, x3, x4)
U39_gg(x1, x2, x3)  =  U39_gg(x1, x2, x3)
U41_gg(x1, x2)  =  U41_gg(x1, x2)
U40_gg(x1, x2, x3)  =  U40_gg(x1, x2, x3)
U40_ga(x1, x2, x3)  =  U40_ga(x1, x2, x3)
U36_ga(x1, x2, x3, x4, x5)  =  U36_ga(x1, x2, x4, x5)
U37_ga(x1, x2, x3, x4, x5)  =  U37_ga(x1, x2, x4, x5)
U38_ga(x1, x2, x3, x4)  =  U38_ga(x1, x2, x4)
addc12_in_gga(x1, x2, x3)  =  addc12_in_gga(x1, x2)
U42_gga(x1, x2, x3, x4)  =  U42_gga(x1, x2, x4)
addc12_out_gga(x1, x2, x3)  =  addc12_out_gga(x1, x2, x3)
U33_ga(x1, x2, x3, x4, x5)  =  U33_ga(x1, x2, x4, x5)
U34_ga(x1, x2, x3, x4)  =  U34_ga(x1, x2, x4)
subc28_in_gga(x1, x2, x3)  =  subc28_in_gga(x1, x2)
U43_gga(x1, x2, x3, x4)  =  U43_gga(x1, x2, x4)
subc28_out_gga(x1, x2, x3)  =  subc28_out_gga(x1, x2, x3)
U30_ga(x1, x2, x3, x4, x5)  =  U30_ga(x1, x2, x4, x5)
U31_ga(x1, x2, x3, x4)  =  U31_ga(x1, x2, x4)
ADD12_IN_GGA(x1, x2, x3)  =  ADD12_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(22) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(23) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

ADD12_IN_GGA(s(T49), T50, s(T52)) → ADD12_IN_GGA(T49, T50, T52)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
ADD12_IN_GGA(x1, x2, x3)  =  ADD12_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(24) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ADD12_IN_GGA(s(T49), T50) → ADD12_IN_GGA(T49, T50)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(26) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • ADD12_IN_GGA(s(T49), T50) → ADD12_IN_GGA(T49, T50)
    The graph contains the following edges 1 > 1, 2 >= 2

(27) YES

(28) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

ADD58_IN_GGA(s(T185), T186, s(X300)) → ADD58_IN_GGA(T185, T186, X300)

The TRS R consists of the following rules:

evaluatec3_in_ga(+(T20, T21), T23) → U29_ga(T20, T21, T23, evaluatec3_in_ga(T20, T26))
evaluatec3_in_ga(-(T71, T72), T74) → U32_ga(T71, T72, T74, evaluatec3_in_ga(T71, T77))
evaluatec3_in_ga(*(T122, T123), T154) → U35_ga(T122, T123, T154, evaluatec3_in_ga(T122, s(T151)))
evaluatec3_in_ga(*(T122, T123), 0) → U39_ga(T122, T123, evaluatec3_in_gg(T122, 0))
evaluatec3_in_gg(+(T20, T21), T23) → U29_gg(T20, T21, T23, evaluatec3_in_ga(T20, T26))
evaluatec3_in_ga(T203, T203) → U41_ga(T203, myintegerc73_in_g(T203))
myintegerc73_in_g(s(T209)) → U47_g(T209, myintegerc73_in_g(T209))
myintegerc73_in_g(0) → myintegerc73_out_g(0)
U47_g(T209, myintegerc73_out_g(T209)) → myintegerc73_out_g(s(T209))
U41_ga(T203, myintegerc73_out_g(T203)) → evaluatec3_out_ga(T203, T203)
U29_gg(T20, T21, T23, evaluatec3_out_ga(T20, T26)) → U30_gg(T20, T21, T23, T26, evaluatec3_in_ga(T21, T31))
U30_gg(T20, T21, T23, T26, evaluatec3_out_ga(T21, T31)) → U31_gg(T20, T21, T23, addc12_in_ggg(T26, T31, T23))
addc12_in_ggg(s(T49), T50, s(T52)) → U42_ggg(T49, T50, T52, addc12_in_ggg(T49, T50, T52))
addc12_in_ggg(0, T58, T58) → addc12_out_ggg(0, T58, T58)
U42_ggg(T49, T50, T52, addc12_out_ggg(T49, T50, T52)) → addc12_out_ggg(s(T49), T50, s(T52))
U31_gg(T20, T21, T23, addc12_out_ggg(T26, T31, T23)) → evaluatec3_out_gg(+(T20, T21), T23)
evaluatec3_in_gg(-(T71, T72), T74) → U32_gg(T71, T72, T74, evaluatec3_in_ga(T71, T77))
U32_gg(T71, T72, T74, evaluatec3_out_ga(T71, T77)) → U33_gg(T71, T72, T74, T77, evaluatec3_in_ga(T72, T82))
U33_gg(T71, T72, T74, T77, evaluatec3_out_ga(T72, T82)) → U34_gg(T71, T72, T74, subc28_in_ggg(T77, T82, T74))
subc28_in_ggg(s(T100), s(T101), T103) → U43_ggg(T100, T101, T103, subc28_in_ggg(T100, T101, T103))
subc28_in_ggg(T109, 0, T109) → subc28_out_ggg(T109, 0, T109)
U43_ggg(T100, T101, T103, subc28_out_ggg(T100, T101, T103)) → subc28_out_ggg(s(T100), s(T101), T103)
U34_gg(T71, T72, T74, subc28_out_ggg(T77, T82, T74)) → evaluatec3_out_gg(-(T71, T72), T74)
evaluatec3_in_gg(*(T122, T123), T154) → U35_gg(T122, T123, T154, evaluatec3_in_ga(T122, s(T151)))
U35_gg(T122, T123, T154, evaluatec3_out_ga(T122, s(T151))) → U36_gg(T122, T123, T154, T151, evaluatec3_in_ga(T123, T152))
U36_gg(T122, T123, T154, T151, evaluatec3_out_ga(T123, T152)) → U37_gg(T122, T123, T154, T152, multc50_in_gga(T151, T152, T157))
multc50_in_gga(s(T168), T169, X263) → U44_gga(T168, T169, X263, multc50_in_gga(T168, T169, T172))
multc50_in_gga(0, T194, 0) → multc50_out_gga(0, T194, 0)
U44_gga(T168, T169, X263, multc50_out_gga(T168, T169, T172)) → U45_gga(T168, T169, X263, addc58_in_gga(T169, T172, X263))
addc58_in_gga(s(T185), T186, s(X300)) → U46_gga(T185, T186, X300, addc58_in_gga(T185, T186, X300))
addc58_in_gga(0, T191, T191) → addc58_out_gga(0, T191, T191)
U46_gga(T185, T186, X300, addc58_out_gga(T185, T186, X300)) → addc58_out_gga(s(T185), T186, s(X300))
U45_gga(T168, T169, X263, addc58_out_gga(T169, T172, X263)) → multc50_out_gga(s(T168), T169, X263)
U37_gg(T122, T123, T154, T152, multc50_out_gga(T151, T152, T157)) → U38_gg(T122, T123, T154, addc12_in_ggg(T152, T157, T154))
U38_gg(T122, T123, T154, addc12_out_ggg(T152, T157, T154)) → evaluatec3_out_gg(*(T122, T123), T154)
evaluatec3_in_gg(*(T122, T123), 0) → U39_gg(T122, T123, evaluatec3_in_gg(T122, 0))
evaluatec3_in_gg(T203, T203) → U41_gg(T203, myintegerc73_in_g(T203))
U41_gg(T203, myintegerc73_out_g(T203)) → evaluatec3_out_gg(T203, T203)
U39_gg(T122, T123, evaluatec3_out_gg(T122, 0)) → U40_gg(T122, T123, evaluatec3_in_ga(T123, T200))
U40_gg(T122, T123, evaluatec3_out_ga(T123, T200)) → evaluatec3_out_gg(*(T122, T123), 0)
U39_ga(T122, T123, evaluatec3_out_gg(T122, 0)) → U40_ga(T122, T123, evaluatec3_in_ga(T123, T200))
U40_ga(T122, T123, evaluatec3_out_ga(T123, T200)) → evaluatec3_out_ga(*(T122, T123), 0)
U35_ga(T122, T123, T154, evaluatec3_out_ga(T122, s(T151))) → U36_ga(T122, T123, T154, T151, evaluatec3_in_ga(T123, T152))
U36_ga(T122, T123, T154, T151, evaluatec3_out_ga(T123, T152)) → U37_ga(T122, T123, T154, T152, multc50_in_gga(T151, T152, T157))
U37_ga(T122, T123, T154, T152, multc50_out_gga(T151, T152, T157)) → U38_ga(T122, T123, T154, addc12_in_gga(T152, T157, T154))
addc12_in_gga(s(T49), T50, s(T52)) → U42_gga(T49, T50, T52, addc12_in_gga(T49, T50, T52))
addc12_in_gga(0, T58, T58) → addc12_out_gga(0, T58, T58)
U42_gga(T49, T50, T52, addc12_out_gga(T49, T50, T52)) → addc12_out_gga(s(T49), T50, s(T52))
U38_ga(T122, T123, T154, addc12_out_gga(T152, T157, T154)) → evaluatec3_out_ga(*(T122, T123), T154)
U32_ga(T71, T72, T74, evaluatec3_out_ga(T71, T77)) → U33_ga(T71, T72, T74, T77, evaluatec3_in_ga(T72, T82))
U33_ga(T71, T72, T74, T77, evaluatec3_out_ga(T72, T82)) → U34_ga(T71, T72, T74, subc28_in_gga(T77, T82, T74))
subc28_in_gga(s(T100), s(T101), T103) → U43_gga(T100, T101, T103, subc28_in_gga(T100, T101, T103))
subc28_in_gga(T109, 0, T109) → subc28_out_gga(T109, 0, T109)
U43_gga(T100, T101, T103, subc28_out_gga(T100, T101, T103)) → subc28_out_gga(s(T100), s(T101), T103)
U34_ga(T71, T72, T74, subc28_out_gga(T77, T82, T74)) → evaluatec3_out_ga(-(T71, T72), T74)
U29_ga(T20, T21, T23, evaluatec3_out_ga(T20, T26)) → U30_ga(T20, T21, T23, T26, evaluatec3_in_ga(T21, T31))
U30_ga(T20, T21, T23, T26, evaluatec3_out_ga(T21, T31)) → U31_ga(T20, T21, T23, addc12_in_gga(T26, T31, T23))
U31_ga(T20, T21, T23, addc12_out_gga(T26, T31, T23)) → evaluatec3_out_ga(+(T20, T21), T23)

The argument filtering Pi contains the following mapping:
+(x1, x2)  =  +(x1, x2)
evaluatec3_in_ga(x1, x2)  =  evaluatec3_in_ga(x1)
U29_ga(x1, x2, x3, x4)  =  U29_ga(x1, x2, x4)
-(x1, x2)  =  -(x1, x2)
U32_ga(x1, x2, x3, x4)  =  U32_ga(x1, x2, x4)
*(x1, x2)  =  *(x1, x2)
U35_ga(x1, x2, x3, x4)  =  U35_ga(x1, x2, x4)
U39_ga(x1, x2, x3)  =  U39_ga(x1, x2, x3)
evaluatec3_in_gg(x1, x2)  =  evaluatec3_in_gg(x1, x2)
U29_gg(x1, x2, x3, x4)  =  U29_gg(x1, x2, x3, x4)
U41_ga(x1, x2)  =  U41_ga(x1, x2)
myintegerc73_in_g(x1)  =  myintegerc73_in_g(x1)
s(x1)  =  s(x1)
U47_g(x1, x2)  =  U47_g(x1, x2)
0  =  0
myintegerc73_out_g(x1)  =  myintegerc73_out_g(x1)
evaluatec3_out_ga(x1, x2)  =  evaluatec3_out_ga(x1, x2)
U30_gg(x1, x2, x3, x4, x5)  =  U30_gg(x1, x2, x3, x4, x5)
U31_gg(x1, x2, x3, x4)  =  U31_gg(x1, x2, x3, x4)
addc12_in_ggg(x1, x2, x3)  =  addc12_in_ggg(x1, x2, x3)
U42_ggg(x1, x2, x3, x4)  =  U42_ggg(x1, x2, x3, x4)
addc12_out_ggg(x1, x2, x3)  =  addc12_out_ggg(x1, x2, x3)
evaluatec3_out_gg(x1, x2)  =  evaluatec3_out_gg(x1, x2)
U32_gg(x1, x2, x3, x4)  =  U32_gg(x1, x2, x3, x4)
U33_gg(x1, x2, x3, x4, x5)  =  U33_gg(x1, x2, x3, x4, x5)
U34_gg(x1, x2, x3, x4)  =  U34_gg(x1, x2, x3, x4)
subc28_in_ggg(x1, x2, x3)  =  subc28_in_ggg(x1, x2, x3)
U43_ggg(x1, x2, x3, x4)  =  U43_ggg(x1, x2, x3, x4)
subc28_out_ggg(x1, x2, x3)  =  subc28_out_ggg(x1, x2, x3)
U35_gg(x1, x2, x3, x4)  =  U35_gg(x1, x2, x3, x4)
U36_gg(x1, x2, x3, x4, x5)  =  U36_gg(x1, x2, x3, x4, x5)
U37_gg(x1, x2, x3, x4, x5)  =  U37_gg(x1, x2, x3, x4, x5)
multc50_in_gga(x1, x2, x3)  =  multc50_in_gga(x1, x2)
U44_gga(x1, x2, x3, x4)  =  U44_gga(x1, x2, x4)
multc50_out_gga(x1, x2, x3)  =  multc50_out_gga(x1, x2, x3)
U45_gga(x1, x2, x3, x4)  =  U45_gga(x1, x2, x4)
addc58_in_gga(x1, x2, x3)  =  addc58_in_gga(x1, x2)
U46_gga(x1, x2, x3, x4)  =  U46_gga(x1, x2, x4)
addc58_out_gga(x1, x2, x3)  =  addc58_out_gga(x1, x2, x3)
U38_gg(x1, x2, x3, x4)  =  U38_gg(x1, x2, x3, x4)
U39_gg(x1, x2, x3)  =  U39_gg(x1, x2, x3)
U41_gg(x1, x2)  =  U41_gg(x1, x2)
U40_gg(x1, x2, x3)  =  U40_gg(x1, x2, x3)
U40_ga(x1, x2, x3)  =  U40_ga(x1, x2, x3)
U36_ga(x1, x2, x3, x4, x5)  =  U36_ga(x1, x2, x4, x5)
U37_ga(x1, x2, x3, x4, x5)  =  U37_ga(x1, x2, x4, x5)
U38_ga(x1, x2, x3, x4)  =  U38_ga(x1, x2, x4)
addc12_in_gga(x1, x2, x3)  =  addc12_in_gga(x1, x2)
U42_gga(x1, x2, x3, x4)  =  U42_gga(x1, x2, x4)
addc12_out_gga(x1, x2, x3)  =  addc12_out_gga(x1, x2, x3)
U33_ga(x1, x2, x3, x4, x5)  =  U33_ga(x1, x2, x4, x5)
U34_ga(x1, x2, x3, x4)  =  U34_ga(x1, x2, x4)
subc28_in_gga(x1, x2, x3)  =  subc28_in_gga(x1, x2)
U43_gga(x1, x2, x3, x4)  =  U43_gga(x1, x2, x4)
subc28_out_gga(x1, x2, x3)  =  subc28_out_gga(x1, x2, x3)
U30_ga(x1, x2, x3, x4, x5)  =  U30_ga(x1, x2, x4, x5)
U31_ga(x1, x2, x3, x4)  =  U31_ga(x1, x2, x4)
ADD58_IN_GGA(x1, x2, x3)  =  ADD58_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(29) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(30) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

ADD58_IN_GGA(s(T185), T186, s(X300)) → ADD58_IN_GGA(T185, T186, X300)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
ADD58_IN_GGA(x1, x2, x3)  =  ADD58_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(31) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(32) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ADD58_IN_GGA(s(T185), T186) → ADD58_IN_GGA(T185, T186)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(33) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • ADD58_IN_GGA(s(T185), T186) → ADD58_IN_GGA(T185, T186)
    The graph contains the following edges 1 > 1, 2 >= 2

(34) YES

(35) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MULT50_IN_GGA(s(T168), T169, X263) → MULT50_IN_GGA(T168, T169, X262)

The TRS R consists of the following rules:

evaluatec3_in_ga(+(T20, T21), T23) → U29_ga(T20, T21, T23, evaluatec3_in_ga(T20, T26))
evaluatec3_in_ga(-(T71, T72), T74) → U32_ga(T71, T72, T74, evaluatec3_in_ga(T71, T77))
evaluatec3_in_ga(*(T122, T123), T154) → U35_ga(T122, T123, T154, evaluatec3_in_ga(T122, s(T151)))
evaluatec3_in_ga(*(T122, T123), 0) → U39_ga(T122, T123, evaluatec3_in_gg(T122, 0))
evaluatec3_in_gg(+(T20, T21), T23) → U29_gg(T20, T21, T23, evaluatec3_in_ga(T20, T26))
evaluatec3_in_ga(T203, T203) → U41_ga(T203, myintegerc73_in_g(T203))
myintegerc73_in_g(s(T209)) → U47_g(T209, myintegerc73_in_g(T209))
myintegerc73_in_g(0) → myintegerc73_out_g(0)
U47_g(T209, myintegerc73_out_g(T209)) → myintegerc73_out_g(s(T209))
U41_ga(T203, myintegerc73_out_g(T203)) → evaluatec3_out_ga(T203, T203)
U29_gg(T20, T21, T23, evaluatec3_out_ga(T20, T26)) → U30_gg(T20, T21, T23, T26, evaluatec3_in_ga(T21, T31))
U30_gg(T20, T21, T23, T26, evaluatec3_out_ga(T21, T31)) → U31_gg(T20, T21, T23, addc12_in_ggg(T26, T31, T23))
addc12_in_ggg(s(T49), T50, s(T52)) → U42_ggg(T49, T50, T52, addc12_in_ggg(T49, T50, T52))
addc12_in_ggg(0, T58, T58) → addc12_out_ggg(0, T58, T58)
U42_ggg(T49, T50, T52, addc12_out_ggg(T49, T50, T52)) → addc12_out_ggg(s(T49), T50, s(T52))
U31_gg(T20, T21, T23, addc12_out_ggg(T26, T31, T23)) → evaluatec3_out_gg(+(T20, T21), T23)
evaluatec3_in_gg(-(T71, T72), T74) → U32_gg(T71, T72, T74, evaluatec3_in_ga(T71, T77))
U32_gg(T71, T72, T74, evaluatec3_out_ga(T71, T77)) → U33_gg(T71, T72, T74, T77, evaluatec3_in_ga(T72, T82))
U33_gg(T71, T72, T74, T77, evaluatec3_out_ga(T72, T82)) → U34_gg(T71, T72, T74, subc28_in_ggg(T77, T82, T74))
subc28_in_ggg(s(T100), s(T101), T103) → U43_ggg(T100, T101, T103, subc28_in_ggg(T100, T101, T103))
subc28_in_ggg(T109, 0, T109) → subc28_out_ggg(T109, 0, T109)
U43_ggg(T100, T101, T103, subc28_out_ggg(T100, T101, T103)) → subc28_out_ggg(s(T100), s(T101), T103)
U34_gg(T71, T72, T74, subc28_out_ggg(T77, T82, T74)) → evaluatec3_out_gg(-(T71, T72), T74)
evaluatec3_in_gg(*(T122, T123), T154) → U35_gg(T122, T123, T154, evaluatec3_in_ga(T122, s(T151)))
U35_gg(T122, T123, T154, evaluatec3_out_ga(T122, s(T151))) → U36_gg(T122, T123, T154, T151, evaluatec3_in_ga(T123, T152))
U36_gg(T122, T123, T154, T151, evaluatec3_out_ga(T123, T152)) → U37_gg(T122, T123, T154, T152, multc50_in_gga(T151, T152, T157))
multc50_in_gga(s(T168), T169, X263) → U44_gga(T168, T169, X263, multc50_in_gga(T168, T169, T172))
multc50_in_gga(0, T194, 0) → multc50_out_gga(0, T194, 0)
U44_gga(T168, T169, X263, multc50_out_gga(T168, T169, T172)) → U45_gga(T168, T169, X263, addc58_in_gga(T169, T172, X263))
addc58_in_gga(s(T185), T186, s(X300)) → U46_gga(T185, T186, X300, addc58_in_gga(T185, T186, X300))
addc58_in_gga(0, T191, T191) → addc58_out_gga(0, T191, T191)
U46_gga(T185, T186, X300, addc58_out_gga(T185, T186, X300)) → addc58_out_gga(s(T185), T186, s(X300))
U45_gga(T168, T169, X263, addc58_out_gga(T169, T172, X263)) → multc50_out_gga(s(T168), T169, X263)
U37_gg(T122, T123, T154, T152, multc50_out_gga(T151, T152, T157)) → U38_gg(T122, T123, T154, addc12_in_ggg(T152, T157, T154))
U38_gg(T122, T123, T154, addc12_out_ggg(T152, T157, T154)) → evaluatec3_out_gg(*(T122, T123), T154)
evaluatec3_in_gg(*(T122, T123), 0) → U39_gg(T122, T123, evaluatec3_in_gg(T122, 0))
evaluatec3_in_gg(T203, T203) → U41_gg(T203, myintegerc73_in_g(T203))
U41_gg(T203, myintegerc73_out_g(T203)) → evaluatec3_out_gg(T203, T203)
U39_gg(T122, T123, evaluatec3_out_gg(T122, 0)) → U40_gg(T122, T123, evaluatec3_in_ga(T123, T200))
U40_gg(T122, T123, evaluatec3_out_ga(T123, T200)) → evaluatec3_out_gg(*(T122, T123), 0)
U39_ga(T122, T123, evaluatec3_out_gg(T122, 0)) → U40_ga(T122, T123, evaluatec3_in_ga(T123, T200))
U40_ga(T122, T123, evaluatec3_out_ga(T123, T200)) → evaluatec3_out_ga(*(T122, T123), 0)
U35_ga(T122, T123, T154, evaluatec3_out_ga(T122, s(T151))) → U36_ga(T122, T123, T154, T151, evaluatec3_in_ga(T123, T152))
U36_ga(T122, T123, T154, T151, evaluatec3_out_ga(T123, T152)) → U37_ga(T122, T123, T154, T152, multc50_in_gga(T151, T152, T157))
U37_ga(T122, T123, T154, T152, multc50_out_gga(T151, T152, T157)) → U38_ga(T122, T123, T154, addc12_in_gga(T152, T157, T154))
addc12_in_gga(s(T49), T50, s(T52)) → U42_gga(T49, T50, T52, addc12_in_gga(T49, T50, T52))
addc12_in_gga(0, T58, T58) → addc12_out_gga(0, T58, T58)
U42_gga(T49, T50, T52, addc12_out_gga(T49, T50, T52)) → addc12_out_gga(s(T49), T50, s(T52))
U38_ga(T122, T123, T154, addc12_out_gga(T152, T157, T154)) → evaluatec3_out_ga(*(T122, T123), T154)
U32_ga(T71, T72, T74, evaluatec3_out_ga(T71, T77)) → U33_ga(T71, T72, T74, T77, evaluatec3_in_ga(T72, T82))
U33_ga(T71, T72, T74, T77, evaluatec3_out_ga(T72, T82)) → U34_ga(T71, T72, T74, subc28_in_gga(T77, T82, T74))
subc28_in_gga(s(T100), s(T101), T103) → U43_gga(T100, T101, T103, subc28_in_gga(T100, T101, T103))
subc28_in_gga(T109, 0, T109) → subc28_out_gga(T109, 0, T109)
U43_gga(T100, T101, T103, subc28_out_gga(T100, T101, T103)) → subc28_out_gga(s(T100), s(T101), T103)
U34_ga(T71, T72, T74, subc28_out_gga(T77, T82, T74)) → evaluatec3_out_ga(-(T71, T72), T74)
U29_ga(T20, T21, T23, evaluatec3_out_ga(T20, T26)) → U30_ga(T20, T21, T23, T26, evaluatec3_in_ga(T21, T31))
U30_ga(T20, T21, T23, T26, evaluatec3_out_ga(T21, T31)) → U31_ga(T20, T21, T23, addc12_in_gga(T26, T31, T23))
U31_ga(T20, T21, T23, addc12_out_gga(T26, T31, T23)) → evaluatec3_out_ga(+(T20, T21), T23)

The argument filtering Pi contains the following mapping:
+(x1, x2)  =  +(x1, x2)
evaluatec3_in_ga(x1, x2)  =  evaluatec3_in_ga(x1)
U29_ga(x1, x2, x3, x4)  =  U29_ga(x1, x2, x4)
-(x1, x2)  =  -(x1, x2)
U32_ga(x1, x2, x3, x4)  =  U32_ga(x1, x2, x4)
*(x1, x2)  =  *(x1, x2)
U35_ga(x1, x2, x3, x4)  =  U35_ga(x1, x2, x4)
U39_ga(x1, x2, x3)  =  U39_ga(x1, x2, x3)
evaluatec3_in_gg(x1, x2)  =  evaluatec3_in_gg(x1, x2)
U29_gg(x1, x2, x3, x4)  =  U29_gg(x1, x2, x3, x4)
U41_ga(x1, x2)  =  U41_ga(x1, x2)
myintegerc73_in_g(x1)  =  myintegerc73_in_g(x1)
s(x1)  =  s(x1)
U47_g(x1, x2)  =  U47_g(x1, x2)
0  =  0
myintegerc73_out_g(x1)  =  myintegerc73_out_g(x1)
evaluatec3_out_ga(x1, x2)  =  evaluatec3_out_ga(x1, x2)
U30_gg(x1, x2, x3, x4, x5)  =  U30_gg(x1, x2, x3, x4, x5)
U31_gg(x1, x2, x3, x4)  =  U31_gg(x1, x2, x3, x4)
addc12_in_ggg(x1, x2, x3)  =  addc12_in_ggg(x1, x2, x3)
U42_ggg(x1, x2, x3, x4)  =  U42_ggg(x1, x2, x3, x4)
addc12_out_ggg(x1, x2, x3)  =  addc12_out_ggg(x1, x2, x3)
evaluatec3_out_gg(x1, x2)  =  evaluatec3_out_gg(x1, x2)
U32_gg(x1, x2, x3, x4)  =  U32_gg(x1, x2, x3, x4)
U33_gg(x1, x2, x3, x4, x5)  =  U33_gg(x1, x2, x3, x4, x5)
U34_gg(x1, x2, x3, x4)  =  U34_gg(x1, x2, x3, x4)
subc28_in_ggg(x1, x2, x3)  =  subc28_in_ggg(x1, x2, x3)
U43_ggg(x1, x2, x3, x4)  =  U43_ggg(x1, x2, x3, x4)
subc28_out_ggg(x1, x2, x3)  =  subc28_out_ggg(x1, x2, x3)
U35_gg(x1, x2, x3, x4)  =  U35_gg(x1, x2, x3, x4)
U36_gg(x1, x2, x3, x4, x5)  =  U36_gg(x1, x2, x3, x4, x5)
U37_gg(x1, x2, x3, x4, x5)  =  U37_gg(x1, x2, x3, x4, x5)
multc50_in_gga(x1, x2, x3)  =  multc50_in_gga(x1, x2)
U44_gga(x1, x2, x3, x4)  =  U44_gga(x1, x2, x4)
multc50_out_gga(x1, x2, x3)  =  multc50_out_gga(x1, x2, x3)
U45_gga(x1, x2, x3, x4)  =  U45_gga(x1, x2, x4)
addc58_in_gga(x1, x2, x3)  =  addc58_in_gga(x1, x2)
U46_gga(x1, x2, x3, x4)  =  U46_gga(x1, x2, x4)
addc58_out_gga(x1, x2, x3)  =  addc58_out_gga(x1, x2, x3)
U38_gg(x1, x2, x3, x4)  =  U38_gg(x1, x2, x3, x4)
U39_gg(x1, x2, x3)  =  U39_gg(x1, x2, x3)
U41_gg(x1, x2)  =  U41_gg(x1, x2)
U40_gg(x1, x2, x3)  =  U40_gg(x1, x2, x3)
U40_ga(x1, x2, x3)  =  U40_ga(x1, x2, x3)
U36_ga(x1, x2, x3, x4, x5)  =  U36_ga(x1, x2, x4, x5)
U37_ga(x1, x2, x3, x4, x5)  =  U37_ga(x1, x2, x4, x5)
U38_ga(x1, x2, x3, x4)  =  U38_ga(x1, x2, x4)
addc12_in_gga(x1, x2, x3)  =  addc12_in_gga(x1, x2)
U42_gga(x1, x2, x3, x4)  =  U42_gga(x1, x2, x4)
addc12_out_gga(x1, x2, x3)  =  addc12_out_gga(x1, x2, x3)
U33_ga(x1, x2, x3, x4, x5)  =  U33_ga(x1, x2, x4, x5)
U34_ga(x1, x2, x3, x4)  =  U34_ga(x1, x2, x4)
subc28_in_gga(x1, x2, x3)  =  subc28_in_gga(x1, x2)
U43_gga(x1, x2, x3, x4)  =  U43_gga(x1, x2, x4)
subc28_out_gga(x1, x2, x3)  =  subc28_out_gga(x1, x2, x3)
U30_ga(x1, x2, x3, x4, x5)  =  U30_ga(x1, x2, x4, x5)
U31_ga(x1, x2, x3, x4)  =  U31_ga(x1, x2, x4)
MULT50_IN_GGA(x1, x2, x3)  =  MULT50_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(36) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(37) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MULT50_IN_GGA(s(T168), T169, X263) → MULT50_IN_GGA(T168, T169, X262)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
MULT50_IN_GGA(x1, x2, x3)  =  MULT50_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(38) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(39) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MULT50_IN_GGA(s(T168), T169) → MULT50_IN_GGA(T168, T169)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(40) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • MULT50_IN_GGA(s(T168), T169) → MULT50_IN_GGA(T168, T169)
    The graph contains the following edges 1 > 1, 2 >= 2

(41) YES

(42) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

EVALUATE3_IN_GA(+(T20, T21), T23) → U2_GA(T20, T21, T23, evaluatec3_in_ga(T20, T26))
U2_GA(T20, T21, T23, evaluatec3_out_ga(T20, T26)) → EVALUATE3_IN_GA(T21, X26)
EVALUATE3_IN_GA(+(T20, T21), T23) → EVALUATE3_IN_GA(T20, X25)
EVALUATE3_IN_GA(-(T71, T72), T74) → EVALUATE3_IN_GA(T71, X101)
EVALUATE3_IN_GA(-(T71, T72), T74) → U7_GA(T71, T72, T74, evaluatec3_in_ga(T71, T77))
U7_GA(T71, T72, T74, evaluatec3_out_ga(T71, T77)) → EVALUATE3_IN_GA(T72, X102)
EVALUATE3_IN_GA(*(T122, T123), T125) → EVALUATE3_IN_GA(T122, X177)
EVALUATE3_IN_GA(*(T122, T123), T125) → U12_GA(T122, T123, T125, evaluatec3_in_ga(T122, T128))
U12_GA(T122, T123, T125, evaluatec3_out_ga(T122, T128)) → EVALUATE3_IN_GA(T123, X178)

The TRS R consists of the following rules:

evaluatec3_in_ga(+(T20, T21), T23) → U29_ga(T20, T21, T23, evaluatec3_in_ga(T20, T26))
evaluatec3_in_ga(-(T71, T72), T74) → U32_ga(T71, T72, T74, evaluatec3_in_ga(T71, T77))
evaluatec3_in_ga(*(T122, T123), T154) → U35_ga(T122, T123, T154, evaluatec3_in_ga(T122, s(T151)))
evaluatec3_in_ga(*(T122, T123), 0) → U39_ga(T122, T123, evaluatec3_in_gg(T122, 0))
evaluatec3_in_gg(+(T20, T21), T23) → U29_gg(T20, T21, T23, evaluatec3_in_ga(T20, T26))
evaluatec3_in_ga(T203, T203) → U41_ga(T203, myintegerc73_in_g(T203))
myintegerc73_in_g(s(T209)) → U47_g(T209, myintegerc73_in_g(T209))
myintegerc73_in_g(0) → myintegerc73_out_g(0)
U47_g(T209, myintegerc73_out_g(T209)) → myintegerc73_out_g(s(T209))
U41_ga(T203, myintegerc73_out_g(T203)) → evaluatec3_out_ga(T203, T203)
U29_gg(T20, T21, T23, evaluatec3_out_ga(T20, T26)) → U30_gg(T20, T21, T23, T26, evaluatec3_in_ga(T21, T31))
U30_gg(T20, T21, T23, T26, evaluatec3_out_ga(T21, T31)) → U31_gg(T20, T21, T23, addc12_in_ggg(T26, T31, T23))
addc12_in_ggg(s(T49), T50, s(T52)) → U42_ggg(T49, T50, T52, addc12_in_ggg(T49, T50, T52))
addc12_in_ggg(0, T58, T58) → addc12_out_ggg(0, T58, T58)
U42_ggg(T49, T50, T52, addc12_out_ggg(T49, T50, T52)) → addc12_out_ggg(s(T49), T50, s(T52))
U31_gg(T20, T21, T23, addc12_out_ggg(T26, T31, T23)) → evaluatec3_out_gg(+(T20, T21), T23)
evaluatec3_in_gg(-(T71, T72), T74) → U32_gg(T71, T72, T74, evaluatec3_in_ga(T71, T77))
U32_gg(T71, T72, T74, evaluatec3_out_ga(T71, T77)) → U33_gg(T71, T72, T74, T77, evaluatec3_in_ga(T72, T82))
U33_gg(T71, T72, T74, T77, evaluatec3_out_ga(T72, T82)) → U34_gg(T71, T72, T74, subc28_in_ggg(T77, T82, T74))
subc28_in_ggg(s(T100), s(T101), T103) → U43_ggg(T100, T101, T103, subc28_in_ggg(T100, T101, T103))
subc28_in_ggg(T109, 0, T109) → subc28_out_ggg(T109, 0, T109)
U43_ggg(T100, T101, T103, subc28_out_ggg(T100, T101, T103)) → subc28_out_ggg(s(T100), s(T101), T103)
U34_gg(T71, T72, T74, subc28_out_ggg(T77, T82, T74)) → evaluatec3_out_gg(-(T71, T72), T74)
evaluatec3_in_gg(*(T122, T123), T154) → U35_gg(T122, T123, T154, evaluatec3_in_ga(T122, s(T151)))
U35_gg(T122, T123, T154, evaluatec3_out_ga(T122, s(T151))) → U36_gg(T122, T123, T154, T151, evaluatec3_in_ga(T123, T152))
U36_gg(T122, T123, T154, T151, evaluatec3_out_ga(T123, T152)) → U37_gg(T122, T123, T154, T152, multc50_in_gga(T151, T152, T157))
multc50_in_gga(s(T168), T169, X263) → U44_gga(T168, T169, X263, multc50_in_gga(T168, T169, T172))
multc50_in_gga(0, T194, 0) → multc50_out_gga(0, T194, 0)
U44_gga(T168, T169, X263, multc50_out_gga(T168, T169, T172)) → U45_gga(T168, T169, X263, addc58_in_gga(T169, T172, X263))
addc58_in_gga(s(T185), T186, s(X300)) → U46_gga(T185, T186, X300, addc58_in_gga(T185, T186, X300))
addc58_in_gga(0, T191, T191) → addc58_out_gga(0, T191, T191)
U46_gga(T185, T186, X300, addc58_out_gga(T185, T186, X300)) → addc58_out_gga(s(T185), T186, s(X300))
U45_gga(T168, T169, X263, addc58_out_gga(T169, T172, X263)) → multc50_out_gga(s(T168), T169, X263)
U37_gg(T122, T123, T154, T152, multc50_out_gga(T151, T152, T157)) → U38_gg(T122, T123, T154, addc12_in_ggg(T152, T157, T154))
U38_gg(T122, T123, T154, addc12_out_ggg(T152, T157, T154)) → evaluatec3_out_gg(*(T122, T123), T154)
evaluatec3_in_gg(*(T122, T123), 0) → U39_gg(T122, T123, evaluatec3_in_gg(T122, 0))
evaluatec3_in_gg(T203, T203) → U41_gg(T203, myintegerc73_in_g(T203))
U41_gg(T203, myintegerc73_out_g(T203)) → evaluatec3_out_gg(T203, T203)
U39_gg(T122, T123, evaluatec3_out_gg(T122, 0)) → U40_gg(T122, T123, evaluatec3_in_ga(T123, T200))
U40_gg(T122, T123, evaluatec3_out_ga(T123, T200)) → evaluatec3_out_gg(*(T122, T123), 0)
U39_ga(T122, T123, evaluatec3_out_gg(T122, 0)) → U40_ga(T122, T123, evaluatec3_in_ga(T123, T200))
U40_ga(T122, T123, evaluatec3_out_ga(T123, T200)) → evaluatec3_out_ga(*(T122, T123), 0)
U35_ga(T122, T123, T154, evaluatec3_out_ga(T122, s(T151))) → U36_ga(T122, T123, T154, T151, evaluatec3_in_ga(T123, T152))
U36_ga(T122, T123, T154, T151, evaluatec3_out_ga(T123, T152)) → U37_ga(T122, T123, T154, T152, multc50_in_gga(T151, T152, T157))
U37_ga(T122, T123, T154, T152, multc50_out_gga(T151, T152, T157)) → U38_ga(T122, T123, T154, addc12_in_gga(T152, T157, T154))
addc12_in_gga(s(T49), T50, s(T52)) → U42_gga(T49, T50, T52, addc12_in_gga(T49, T50, T52))
addc12_in_gga(0, T58, T58) → addc12_out_gga(0, T58, T58)
U42_gga(T49, T50, T52, addc12_out_gga(T49, T50, T52)) → addc12_out_gga(s(T49), T50, s(T52))
U38_ga(T122, T123, T154, addc12_out_gga(T152, T157, T154)) → evaluatec3_out_ga(*(T122, T123), T154)
U32_ga(T71, T72, T74, evaluatec3_out_ga(T71, T77)) → U33_ga(T71, T72, T74, T77, evaluatec3_in_ga(T72, T82))
U33_ga(T71, T72, T74, T77, evaluatec3_out_ga(T72, T82)) → U34_ga(T71, T72, T74, subc28_in_gga(T77, T82, T74))
subc28_in_gga(s(T100), s(T101), T103) → U43_gga(T100, T101, T103, subc28_in_gga(T100, T101, T103))
subc28_in_gga(T109, 0, T109) → subc28_out_gga(T109, 0, T109)
U43_gga(T100, T101, T103, subc28_out_gga(T100, T101, T103)) → subc28_out_gga(s(T100), s(T101), T103)
U34_ga(T71, T72, T74, subc28_out_gga(T77, T82, T74)) → evaluatec3_out_ga(-(T71, T72), T74)
U29_ga(T20, T21, T23, evaluatec3_out_ga(T20, T26)) → U30_ga(T20, T21, T23, T26, evaluatec3_in_ga(T21, T31))
U30_ga(T20, T21, T23, T26, evaluatec3_out_ga(T21, T31)) → U31_ga(T20, T21, T23, addc12_in_gga(T26, T31, T23))
U31_ga(T20, T21, T23, addc12_out_gga(T26, T31, T23)) → evaluatec3_out_ga(+(T20, T21), T23)

The argument filtering Pi contains the following mapping:
+(x1, x2)  =  +(x1, x2)
evaluatec3_in_ga(x1, x2)  =  evaluatec3_in_ga(x1)
U29_ga(x1, x2, x3, x4)  =  U29_ga(x1, x2, x4)
-(x1, x2)  =  -(x1, x2)
U32_ga(x1, x2, x3, x4)  =  U32_ga(x1, x2, x4)
*(x1, x2)  =  *(x1, x2)
U35_ga(x1, x2, x3, x4)  =  U35_ga(x1, x2, x4)
U39_ga(x1, x2, x3)  =  U39_ga(x1, x2, x3)
evaluatec3_in_gg(x1, x2)  =  evaluatec3_in_gg(x1, x2)
U29_gg(x1, x2, x3, x4)  =  U29_gg(x1, x2, x3, x4)
U41_ga(x1, x2)  =  U41_ga(x1, x2)
myintegerc73_in_g(x1)  =  myintegerc73_in_g(x1)
s(x1)  =  s(x1)
U47_g(x1, x2)  =  U47_g(x1, x2)
0  =  0
myintegerc73_out_g(x1)  =  myintegerc73_out_g(x1)
evaluatec3_out_ga(x1, x2)  =  evaluatec3_out_ga(x1, x2)
U30_gg(x1, x2, x3, x4, x5)  =  U30_gg(x1, x2, x3, x4, x5)
U31_gg(x1, x2, x3, x4)  =  U31_gg(x1, x2, x3, x4)
addc12_in_ggg(x1, x2, x3)  =  addc12_in_ggg(x1, x2, x3)
U42_ggg(x1, x2, x3, x4)  =  U42_ggg(x1, x2, x3, x4)
addc12_out_ggg(x1, x2, x3)  =  addc12_out_ggg(x1, x2, x3)
evaluatec3_out_gg(x1, x2)  =  evaluatec3_out_gg(x1, x2)
U32_gg(x1, x2, x3, x4)  =  U32_gg(x1, x2, x3, x4)
U33_gg(x1, x2, x3, x4, x5)  =  U33_gg(x1, x2, x3, x4, x5)
U34_gg(x1, x2, x3, x4)  =  U34_gg(x1, x2, x3, x4)
subc28_in_ggg(x1, x2, x3)  =  subc28_in_ggg(x1, x2, x3)
U43_ggg(x1, x2, x3, x4)  =  U43_ggg(x1, x2, x3, x4)
subc28_out_ggg(x1, x2, x3)  =  subc28_out_ggg(x1, x2, x3)
U35_gg(x1, x2, x3, x4)  =  U35_gg(x1, x2, x3, x4)
U36_gg(x1, x2, x3, x4, x5)  =  U36_gg(x1, x2, x3, x4, x5)
U37_gg(x1, x2, x3, x4, x5)  =  U37_gg(x1, x2, x3, x4, x5)
multc50_in_gga(x1, x2, x3)  =  multc50_in_gga(x1, x2)
U44_gga(x1, x2, x3, x4)  =  U44_gga(x1, x2, x4)
multc50_out_gga(x1, x2, x3)  =  multc50_out_gga(x1, x2, x3)
U45_gga(x1, x2, x3, x4)  =  U45_gga(x1, x2, x4)
addc58_in_gga(x1, x2, x3)  =  addc58_in_gga(x1, x2)
U46_gga(x1, x2, x3, x4)  =  U46_gga(x1, x2, x4)
addc58_out_gga(x1, x2, x3)  =  addc58_out_gga(x1, x2, x3)
U38_gg(x1, x2, x3, x4)  =  U38_gg(x1, x2, x3, x4)
U39_gg(x1, x2, x3)  =  U39_gg(x1, x2, x3)
U41_gg(x1, x2)  =  U41_gg(x1, x2)
U40_gg(x1, x2, x3)  =  U40_gg(x1, x2, x3)
U40_ga(x1, x2, x3)  =  U40_ga(x1, x2, x3)
U36_ga(x1, x2, x3, x4, x5)  =  U36_ga(x1, x2, x4, x5)
U37_ga(x1, x2, x3, x4, x5)  =  U37_ga(x1, x2, x4, x5)
U38_ga(x1, x2, x3, x4)  =  U38_ga(x1, x2, x4)
addc12_in_gga(x1, x2, x3)  =  addc12_in_gga(x1, x2)
U42_gga(x1, x2, x3, x4)  =  U42_gga(x1, x2, x4)
addc12_out_gga(x1, x2, x3)  =  addc12_out_gga(x1, x2, x3)
U33_ga(x1, x2, x3, x4, x5)  =  U33_ga(x1, x2, x4, x5)
U34_ga(x1, x2, x3, x4)  =  U34_ga(x1, x2, x4)
subc28_in_gga(x1, x2, x3)  =  subc28_in_gga(x1, x2)
U43_gga(x1, x2, x3, x4)  =  U43_gga(x1, x2, x4)
subc28_out_gga(x1, x2, x3)  =  subc28_out_gga(x1, x2, x3)
U30_ga(x1, x2, x3, x4, x5)  =  U30_ga(x1, x2, x4, x5)
U31_ga(x1, x2, x3, x4)  =  U31_ga(x1, x2, x4)
EVALUATE3_IN_GA(x1, x2)  =  EVALUATE3_IN_GA(x1)
U2_GA(x1, x2, x3, x4)  =  U2_GA(x1, x2, x4)
U7_GA(x1, x2, x3, x4)  =  U7_GA(x1, x2, x4)
U12_GA(x1, x2, x3, x4)  =  U12_GA(x1, x2, x4)

We have to consider all (P,R,Pi)-chains

(43) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(44) Obligation:

Q DP problem:
The TRS P consists of the following rules:

EVALUATE3_IN_GA(+(T20, T21)) → U2_GA(T20, T21, evaluatec3_in_ga(T20))
U2_GA(T20, T21, evaluatec3_out_ga(T20, T26)) → EVALUATE3_IN_GA(T21)
EVALUATE3_IN_GA(+(T20, T21)) → EVALUATE3_IN_GA(T20)
EVALUATE3_IN_GA(-(T71, T72)) → EVALUATE3_IN_GA(T71)
EVALUATE3_IN_GA(-(T71, T72)) → U7_GA(T71, T72, evaluatec3_in_ga(T71))
U7_GA(T71, T72, evaluatec3_out_ga(T71, T77)) → EVALUATE3_IN_GA(T72)
EVALUATE3_IN_GA(*(T122, T123)) → EVALUATE3_IN_GA(T122)
EVALUATE3_IN_GA(*(T122, T123)) → U12_GA(T122, T123, evaluatec3_in_ga(T122))
U12_GA(T122, T123, evaluatec3_out_ga(T122, T128)) → EVALUATE3_IN_GA(T123)

The TRS R consists of the following rules:

evaluatec3_in_ga(+(T20, T21)) → U29_ga(T20, T21, evaluatec3_in_ga(T20))
evaluatec3_in_ga(-(T71, T72)) → U32_ga(T71, T72, evaluatec3_in_ga(T71))
evaluatec3_in_ga(*(T122, T123)) → U35_ga(T122, T123, evaluatec3_in_ga(T122))
evaluatec3_in_ga(*(T122, T123)) → U39_ga(T122, T123, evaluatec3_in_gg(T122, 0))
evaluatec3_in_gg(+(T20, T21), T23) → U29_gg(T20, T21, T23, evaluatec3_in_ga(T20))
evaluatec3_in_ga(T203) → U41_ga(T203, myintegerc73_in_g(T203))
myintegerc73_in_g(s(T209)) → U47_g(T209, myintegerc73_in_g(T209))
myintegerc73_in_g(0) → myintegerc73_out_g(0)
U47_g(T209, myintegerc73_out_g(T209)) → myintegerc73_out_g(s(T209))
U41_ga(T203, myintegerc73_out_g(T203)) → evaluatec3_out_ga(T203, T203)
U29_gg(T20, T21, T23, evaluatec3_out_ga(T20, T26)) → U30_gg(T20, T21, T23, T26, evaluatec3_in_ga(T21))
U30_gg(T20, T21, T23, T26, evaluatec3_out_ga(T21, T31)) → U31_gg(T20, T21, T23, addc12_in_ggg(T26, T31, T23))
addc12_in_ggg(s(T49), T50, s(T52)) → U42_ggg(T49, T50, T52, addc12_in_ggg(T49, T50, T52))
addc12_in_ggg(0, T58, T58) → addc12_out_ggg(0, T58, T58)
U42_ggg(T49, T50, T52, addc12_out_ggg(T49, T50, T52)) → addc12_out_ggg(s(T49), T50, s(T52))
U31_gg(T20, T21, T23, addc12_out_ggg(T26, T31, T23)) → evaluatec3_out_gg(+(T20, T21), T23)
evaluatec3_in_gg(-(T71, T72), T74) → U32_gg(T71, T72, T74, evaluatec3_in_ga(T71))
U32_gg(T71, T72, T74, evaluatec3_out_ga(T71, T77)) → U33_gg(T71, T72, T74, T77, evaluatec3_in_ga(T72))
U33_gg(T71, T72, T74, T77, evaluatec3_out_ga(T72, T82)) → U34_gg(T71, T72, T74, subc28_in_ggg(T77, T82, T74))
subc28_in_ggg(s(T100), s(T101), T103) → U43_ggg(T100, T101, T103, subc28_in_ggg(T100, T101, T103))
subc28_in_ggg(T109, 0, T109) → subc28_out_ggg(T109, 0, T109)
U43_ggg(T100, T101, T103, subc28_out_ggg(T100, T101, T103)) → subc28_out_ggg(s(T100), s(T101), T103)
U34_gg(T71, T72, T74, subc28_out_ggg(T77, T82, T74)) → evaluatec3_out_gg(-(T71, T72), T74)
evaluatec3_in_gg(*(T122, T123), T154) → U35_gg(T122, T123, T154, evaluatec3_in_ga(T122))
U35_gg(T122, T123, T154, evaluatec3_out_ga(T122, s(T151))) → U36_gg(T122, T123, T154, T151, evaluatec3_in_ga(T123))
U36_gg(T122, T123, T154, T151, evaluatec3_out_ga(T123, T152)) → U37_gg(T122, T123, T154, T152, multc50_in_gga(T151, T152))
multc50_in_gga(s(T168), T169) → U44_gga(T168, T169, multc50_in_gga(T168, T169))
multc50_in_gga(0, T194) → multc50_out_gga(0, T194, 0)
U44_gga(T168, T169, multc50_out_gga(T168, T169, T172)) → U45_gga(T168, T169, addc58_in_gga(T169, T172))
addc58_in_gga(s(T185), T186) → U46_gga(T185, T186, addc58_in_gga(T185, T186))
addc58_in_gga(0, T191) → addc58_out_gga(0, T191, T191)
U46_gga(T185, T186, addc58_out_gga(T185, T186, X300)) → addc58_out_gga(s(T185), T186, s(X300))
U45_gga(T168, T169, addc58_out_gga(T169, T172, X263)) → multc50_out_gga(s(T168), T169, X263)
U37_gg(T122, T123, T154, T152, multc50_out_gga(T151, T152, T157)) → U38_gg(T122, T123, T154, addc12_in_ggg(T152, T157, T154))
U38_gg(T122, T123, T154, addc12_out_ggg(T152, T157, T154)) → evaluatec3_out_gg(*(T122, T123), T154)
evaluatec3_in_gg(*(T122, T123), 0) → U39_gg(T122, T123, evaluatec3_in_gg(T122, 0))
evaluatec3_in_gg(T203, T203) → U41_gg(T203, myintegerc73_in_g(T203))
U41_gg(T203, myintegerc73_out_g(T203)) → evaluatec3_out_gg(T203, T203)
U39_gg(T122, T123, evaluatec3_out_gg(T122, 0)) → U40_gg(T122, T123, evaluatec3_in_ga(T123))
U40_gg(T122, T123, evaluatec3_out_ga(T123, T200)) → evaluatec3_out_gg(*(T122, T123), 0)
U39_ga(T122, T123, evaluatec3_out_gg(T122, 0)) → U40_ga(T122, T123, evaluatec3_in_ga(T123))
U40_ga(T122, T123, evaluatec3_out_ga(T123, T200)) → evaluatec3_out_ga(*(T122, T123), 0)
U35_ga(T122, T123, evaluatec3_out_ga(T122, s(T151))) → U36_ga(T122, T123, T151, evaluatec3_in_ga(T123))
U36_ga(T122, T123, T151, evaluatec3_out_ga(T123, T152)) → U37_ga(T122, T123, T152, multc50_in_gga(T151, T152))
U37_ga(T122, T123, T152, multc50_out_gga(T151, T152, T157)) → U38_ga(T122, T123, addc12_in_gga(T152, T157))
addc12_in_gga(s(T49), T50) → U42_gga(T49, T50, addc12_in_gga(T49, T50))
addc12_in_gga(0, T58) → addc12_out_gga(0, T58, T58)
U42_gga(T49, T50, addc12_out_gga(T49, T50, T52)) → addc12_out_gga(s(T49), T50, s(T52))
U38_ga(T122, T123, addc12_out_gga(T152, T157, T154)) → evaluatec3_out_ga(*(T122, T123), T154)
U32_ga(T71, T72, evaluatec3_out_ga(T71, T77)) → U33_ga(T71, T72, T77, evaluatec3_in_ga(T72))
U33_ga(T71, T72, T77, evaluatec3_out_ga(T72, T82)) → U34_ga(T71, T72, subc28_in_gga(T77, T82))
subc28_in_gga(s(T100), s(T101)) → U43_gga(T100, T101, subc28_in_gga(T100, T101))
subc28_in_gga(T109, 0) → subc28_out_gga(T109, 0, T109)
U43_gga(T100, T101, subc28_out_gga(T100, T101, T103)) → subc28_out_gga(s(T100), s(T101), T103)
U34_ga(T71, T72, subc28_out_gga(T77, T82, T74)) → evaluatec3_out_ga(-(T71, T72), T74)
U29_ga(T20, T21, evaluatec3_out_ga(T20, T26)) → U30_ga(T20, T21, T26, evaluatec3_in_ga(T21))
U30_ga(T20, T21, T26, evaluatec3_out_ga(T21, T31)) → U31_ga(T20, T21, addc12_in_gga(T26, T31))
U31_ga(T20, T21, addc12_out_gga(T26, T31, T23)) → evaluatec3_out_ga(+(T20, T21), T23)

The set Q consists of the following terms:

evaluatec3_in_ga(x0)
evaluatec3_in_gg(x0, x1)
myintegerc73_in_g(x0)
U47_g(x0, x1)
U41_ga(x0, x1)
U29_gg(x0, x1, x2, x3)
U30_gg(x0, x1, x2, x3, x4)
addc12_in_ggg(x0, x1, x2)
U42_ggg(x0, x1, x2, x3)
U31_gg(x0, x1, x2, x3)
U32_gg(x0, x1, x2, x3)
U33_gg(x0, x1, x2, x3, x4)
subc28_in_ggg(x0, x1, x2)
U43_ggg(x0, x1, x2, x3)
U34_gg(x0, x1, x2, x3)
U35_gg(x0, x1, x2, x3)
U36_gg(x0, x1, x2, x3, x4)
multc50_in_gga(x0, x1)
U44_gga(x0, x1, x2)
addc58_in_gga(x0, x1)
U46_gga(x0, x1, x2)
U45_gga(x0, x1, x2)
U37_gg(x0, x1, x2, x3, x4)
U38_gg(x0, x1, x2, x3)
U41_gg(x0, x1)
U39_gg(x0, x1, x2)
U40_gg(x0, x1, x2)
U39_ga(x0, x1, x2)
U40_ga(x0, x1, x2)
U35_ga(x0, x1, x2)
U36_ga(x0, x1, x2, x3)
U37_ga(x0, x1, x2, x3)
addc12_in_gga(x0, x1)
U42_gga(x0, x1, x2)
U38_ga(x0, x1, x2)
U32_ga(x0, x1, x2)
U33_ga(x0, x1, x2, x3)
subc28_in_gga(x0, x1)
U43_gga(x0, x1, x2)
U34_ga(x0, x1, x2)
U29_ga(x0, x1, x2)
U30_ga(x0, x1, x2, x3)
U31_ga(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(45) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • U2_GA(T20, T21, evaluatec3_out_ga(T20, T26)) → EVALUATE3_IN_GA(T21)
    The graph contains the following edges 2 >= 1

  • EVALUATE3_IN_GA(+(T20, T21)) → U2_GA(T20, T21, evaluatec3_in_ga(T20))
    The graph contains the following edges 1 > 1, 1 > 2

  • U7_GA(T71, T72, evaluatec3_out_ga(T71, T77)) → EVALUATE3_IN_GA(T72)
    The graph contains the following edges 2 >= 1

  • U12_GA(T122, T123, evaluatec3_out_ga(T122, T128)) → EVALUATE3_IN_GA(T123)
    The graph contains the following edges 2 >= 1

  • EVALUATE3_IN_GA(-(T71, T72)) → U7_GA(T71, T72, evaluatec3_in_ga(T71))
    The graph contains the following edges 1 > 1, 1 > 2

  • EVALUATE3_IN_GA(*(T122, T123)) → U12_GA(T122, T123, evaluatec3_in_ga(T122))
    The graph contains the following edges 1 > 1, 1 > 2

  • EVALUATE3_IN_GA(+(T20, T21)) → EVALUATE3_IN_GA(T20)
    The graph contains the following edges 1 > 1

  • EVALUATE3_IN_GA(-(T71, T72)) → EVALUATE3_IN_GA(T71)
    The graph contains the following edges 1 > 1

  • EVALUATE3_IN_GA(*(T122, T123)) → EVALUATE3_IN_GA(T122)
    The graph contains the following edges 1 > 1

(46) YES