(0) Obligation:
Clauses:
div(X, s(Y), Z) :- div_s(X, Y, Z).
div_s(0, Y, 0).
div_s(s(X), Y, 0) :- lss(X, Y).
div_s(s(X), Y, s(Z)) :- ','(sub(X, Y, R), div_s(R, Y, Z)).
lss(s(X), s(Y)) :- lss(X, Y).
lss(0, s(Y)).
sub(s(X), s(Y), Z) :- sub(X, Y, Z).
sub(X, 0, X).
Queries:
div(g,g,a).
(1) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
div_in: (b,b,f)
div_s_in: (b,b,f)
lss_in: (b,b)
sub_in: (b,b,f)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
div_in_gga(X, s(Y), Z) → U1_gga(X, Y, Z, div_s_in_gga(X, Y, Z))
div_s_in_gga(0, Y, 0) → div_s_out_gga(0, Y, 0)
div_s_in_gga(s(X), Y, 0) → U2_gga(X, Y, lss_in_gg(X, Y))
lss_in_gg(s(X), s(Y)) → U5_gg(X, Y, lss_in_gg(X, Y))
lss_in_gg(0, s(Y)) → lss_out_gg(0, s(Y))
U5_gg(X, Y, lss_out_gg(X, Y)) → lss_out_gg(s(X), s(Y))
U2_gga(X, Y, lss_out_gg(X, Y)) → div_s_out_gga(s(X), Y, 0)
div_s_in_gga(s(X), Y, s(Z)) → U3_gga(X, Y, Z, sub_in_gga(X, Y, R))
sub_in_gga(s(X), s(Y), Z) → U6_gga(X, Y, Z, sub_in_gga(X, Y, Z))
sub_in_gga(X, 0, X) → sub_out_gga(X, 0, X)
U6_gga(X, Y, Z, sub_out_gga(X, Y, Z)) → sub_out_gga(s(X), s(Y), Z)
U3_gga(X, Y, Z, sub_out_gga(X, Y, R)) → U4_gga(X, Y, Z, div_s_in_gga(R, Y, Z))
U4_gga(X, Y, Z, div_s_out_gga(R, Y, Z)) → div_s_out_gga(s(X), Y, s(Z))
U1_gga(X, Y, Z, div_s_out_gga(X, Y, Z)) → div_out_gga(X, s(Y), Z)
The argument filtering Pi contains the following mapping:
div_in_gga(
x1,
x2,
x3) =
div_in_gga(
x1,
x2)
s(
x1) =
s(
x1)
U1_gga(
x1,
x2,
x3,
x4) =
U1_gga(
x4)
div_s_in_gga(
x1,
x2,
x3) =
div_s_in_gga(
x1,
x2)
0 =
0
div_s_out_gga(
x1,
x2,
x3) =
div_s_out_gga(
x3)
U2_gga(
x1,
x2,
x3) =
U2_gga(
x3)
lss_in_gg(
x1,
x2) =
lss_in_gg(
x1,
x2)
U5_gg(
x1,
x2,
x3) =
U5_gg(
x3)
lss_out_gg(
x1,
x2) =
lss_out_gg
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x2,
x4)
sub_in_gga(
x1,
x2,
x3) =
sub_in_gga(
x1,
x2)
U6_gga(
x1,
x2,
x3,
x4) =
U6_gga(
x4)
sub_out_gga(
x1,
x2,
x3) =
sub_out_gga(
x3)
U4_gga(
x1,
x2,
x3,
x4) =
U4_gga(
x4)
div_out_gga(
x1,
x2,
x3) =
div_out_gga(
x3)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(2) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
div_in_gga(X, s(Y), Z) → U1_gga(X, Y, Z, div_s_in_gga(X, Y, Z))
div_s_in_gga(0, Y, 0) → div_s_out_gga(0, Y, 0)
div_s_in_gga(s(X), Y, 0) → U2_gga(X, Y, lss_in_gg(X, Y))
lss_in_gg(s(X), s(Y)) → U5_gg(X, Y, lss_in_gg(X, Y))
lss_in_gg(0, s(Y)) → lss_out_gg(0, s(Y))
U5_gg(X, Y, lss_out_gg(X, Y)) → lss_out_gg(s(X), s(Y))
U2_gga(X, Y, lss_out_gg(X, Y)) → div_s_out_gga(s(X), Y, 0)
div_s_in_gga(s(X), Y, s(Z)) → U3_gga(X, Y, Z, sub_in_gga(X, Y, R))
sub_in_gga(s(X), s(Y), Z) → U6_gga(X, Y, Z, sub_in_gga(X, Y, Z))
sub_in_gga(X, 0, X) → sub_out_gga(X, 0, X)
U6_gga(X, Y, Z, sub_out_gga(X, Y, Z)) → sub_out_gga(s(X), s(Y), Z)
U3_gga(X, Y, Z, sub_out_gga(X, Y, R)) → U4_gga(X, Y, Z, div_s_in_gga(R, Y, Z))
U4_gga(X, Y, Z, div_s_out_gga(R, Y, Z)) → div_s_out_gga(s(X), Y, s(Z))
U1_gga(X, Y, Z, div_s_out_gga(X, Y, Z)) → div_out_gga(X, s(Y), Z)
The argument filtering Pi contains the following mapping:
div_in_gga(
x1,
x2,
x3) =
div_in_gga(
x1,
x2)
s(
x1) =
s(
x1)
U1_gga(
x1,
x2,
x3,
x4) =
U1_gga(
x4)
div_s_in_gga(
x1,
x2,
x3) =
div_s_in_gga(
x1,
x2)
0 =
0
div_s_out_gga(
x1,
x2,
x3) =
div_s_out_gga(
x3)
U2_gga(
x1,
x2,
x3) =
U2_gga(
x3)
lss_in_gg(
x1,
x2) =
lss_in_gg(
x1,
x2)
U5_gg(
x1,
x2,
x3) =
U5_gg(
x3)
lss_out_gg(
x1,
x2) =
lss_out_gg
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x2,
x4)
sub_in_gga(
x1,
x2,
x3) =
sub_in_gga(
x1,
x2)
U6_gga(
x1,
x2,
x3,
x4) =
U6_gga(
x4)
sub_out_gga(
x1,
x2,
x3) =
sub_out_gga(
x3)
U4_gga(
x1,
x2,
x3,
x4) =
U4_gga(
x4)
div_out_gga(
x1,
x2,
x3) =
div_out_gga(
x3)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
DIV_IN_GGA(X, s(Y), Z) → U1_GGA(X, Y, Z, div_s_in_gga(X, Y, Z))
DIV_IN_GGA(X, s(Y), Z) → DIV_S_IN_GGA(X, Y, Z)
DIV_S_IN_GGA(s(X), Y, 0) → U2_GGA(X, Y, lss_in_gg(X, Y))
DIV_S_IN_GGA(s(X), Y, 0) → LSS_IN_GG(X, Y)
LSS_IN_GG(s(X), s(Y)) → U5_GG(X, Y, lss_in_gg(X, Y))
LSS_IN_GG(s(X), s(Y)) → LSS_IN_GG(X, Y)
DIV_S_IN_GGA(s(X), Y, s(Z)) → U3_GGA(X, Y, Z, sub_in_gga(X, Y, R))
DIV_S_IN_GGA(s(X), Y, s(Z)) → SUB_IN_GGA(X, Y, R)
SUB_IN_GGA(s(X), s(Y), Z) → U6_GGA(X, Y, Z, sub_in_gga(X, Y, Z))
SUB_IN_GGA(s(X), s(Y), Z) → SUB_IN_GGA(X, Y, Z)
U3_GGA(X, Y, Z, sub_out_gga(X, Y, R)) → U4_GGA(X, Y, Z, div_s_in_gga(R, Y, Z))
U3_GGA(X, Y, Z, sub_out_gga(X, Y, R)) → DIV_S_IN_GGA(R, Y, Z)
The TRS R consists of the following rules:
div_in_gga(X, s(Y), Z) → U1_gga(X, Y, Z, div_s_in_gga(X, Y, Z))
div_s_in_gga(0, Y, 0) → div_s_out_gga(0, Y, 0)
div_s_in_gga(s(X), Y, 0) → U2_gga(X, Y, lss_in_gg(X, Y))
lss_in_gg(s(X), s(Y)) → U5_gg(X, Y, lss_in_gg(X, Y))
lss_in_gg(0, s(Y)) → lss_out_gg(0, s(Y))
U5_gg(X, Y, lss_out_gg(X, Y)) → lss_out_gg(s(X), s(Y))
U2_gga(X, Y, lss_out_gg(X, Y)) → div_s_out_gga(s(X), Y, 0)
div_s_in_gga(s(X), Y, s(Z)) → U3_gga(X, Y, Z, sub_in_gga(X, Y, R))
sub_in_gga(s(X), s(Y), Z) → U6_gga(X, Y, Z, sub_in_gga(X, Y, Z))
sub_in_gga(X, 0, X) → sub_out_gga(X, 0, X)
U6_gga(X, Y, Z, sub_out_gga(X, Y, Z)) → sub_out_gga(s(X), s(Y), Z)
U3_gga(X, Y, Z, sub_out_gga(X, Y, R)) → U4_gga(X, Y, Z, div_s_in_gga(R, Y, Z))
U4_gga(X, Y, Z, div_s_out_gga(R, Y, Z)) → div_s_out_gga(s(X), Y, s(Z))
U1_gga(X, Y, Z, div_s_out_gga(X, Y, Z)) → div_out_gga(X, s(Y), Z)
The argument filtering Pi contains the following mapping:
div_in_gga(
x1,
x2,
x3) =
div_in_gga(
x1,
x2)
s(
x1) =
s(
x1)
U1_gga(
x1,
x2,
x3,
x4) =
U1_gga(
x4)
div_s_in_gga(
x1,
x2,
x3) =
div_s_in_gga(
x1,
x2)
0 =
0
div_s_out_gga(
x1,
x2,
x3) =
div_s_out_gga(
x3)
U2_gga(
x1,
x2,
x3) =
U2_gga(
x3)
lss_in_gg(
x1,
x2) =
lss_in_gg(
x1,
x2)
U5_gg(
x1,
x2,
x3) =
U5_gg(
x3)
lss_out_gg(
x1,
x2) =
lss_out_gg
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x2,
x4)
sub_in_gga(
x1,
x2,
x3) =
sub_in_gga(
x1,
x2)
U6_gga(
x1,
x2,
x3,
x4) =
U6_gga(
x4)
sub_out_gga(
x1,
x2,
x3) =
sub_out_gga(
x3)
U4_gga(
x1,
x2,
x3,
x4) =
U4_gga(
x4)
div_out_gga(
x1,
x2,
x3) =
div_out_gga(
x3)
DIV_IN_GGA(
x1,
x2,
x3) =
DIV_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3,
x4) =
U1_GGA(
x4)
DIV_S_IN_GGA(
x1,
x2,
x3) =
DIV_S_IN_GGA(
x1,
x2)
U2_GGA(
x1,
x2,
x3) =
U2_GGA(
x3)
LSS_IN_GG(
x1,
x2) =
LSS_IN_GG(
x1,
x2)
U5_GG(
x1,
x2,
x3) =
U5_GG(
x3)
U3_GGA(
x1,
x2,
x3,
x4) =
U3_GGA(
x2,
x4)
SUB_IN_GGA(
x1,
x2,
x3) =
SUB_IN_GGA(
x1,
x2)
U6_GGA(
x1,
x2,
x3,
x4) =
U6_GGA(
x4)
U4_GGA(
x1,
x2,
x3,
x4) =
U4_GGA(
x4)
We have to consider all (P,R,Pi)-chains
(4) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
DIV_IN_GGA(X, s(Y), Z) → U1_GGA(X, Y, Z, div_s_in_gga(X, Y, Z))
DIV_IN_GGA(X, s(Y), Z) → DIV_S_IN_GGA(X, Y, Z)
DIV_S_IN_GGA(s(X), Y, 0) → U2_GGA(X, Y, lss_in_gg(X, Y))
DIV_S_IN_GGA(s(X), Y, 0) → LSS_IN_GG(X, Y)
LSS_IN_GG(s(X), s(Y)) → U5_GG(X, Y, lss_in_gg(X, Y))
LSS_IN_GG(s(X), s(Y)) → LSS_IN_GG(X, Y)
DIV_S_IN_GGA(s(X), Y, s(Z)) → U3_GGA(X, Y, Z, sub_in_gga(X, Y, R))
DIV_S_IN_GGA(s(X), Y, s(Z)) → SUB_IN_GGA(X, Y, R)
SUB_IN_GGA(s(X), s(Y), Z) → U6_GGA(X, Y, Z, sub_in_gga(X, Y, Z))
SUB_IN_GGA(s(X), s(Y), Z) → SUB_IN_GGA(X, Y, Z)
U3_GGA(X, Y, Z, sub_out_gga(X, Y, R)) → U4_GGA(X, Y, Z, div_s_in_gga(R, Y, Z))
U3_GGA(X, Y, Z, sub_out_gga(X, Y, R)) → DIV_S_IN_GGA(R, Y, Z)
The TRS R consists of the following rules:
div_in_gga(X, s(Y), Z) → U1_gga(X, Y, Z, div_s_in_gga(X, Y, Z))
div_s_in_gga(0, Y, 0) → div_s_out_gga(0, Y, 0)
div_s_in_gga(s(X), Y, 0) → U2_gga(X, Y, lss_in_gg(X, Y))
lss_in_gg(s(X), s(Y)) → U5_gg(X, Y, lss_in_gg(X, Y))
lss_in_gg(0, s(Y)) → lss_out_gg(0, s(Y))
U5_gg(X, Y, lss_out_gg(X, Y)) → lss_out_gg(s(X), s(Y))
U2_gga(X, Y, lss_out_gg(X, Y)) → div_s_out_gga(s(X), Y, 0)
div_s_in_gga(s(X), Y, s(Z)) → U3_gga(X, Y, Z, sub_in_gga(X, Y, R))
sub_in_gga(s(X), s(Y), Z) → U6_gga(X, Y, Z, sub_in_gga(X, Y, Z))
sub_in_gga(X, 0, X) → sub_out_gga(X, 0, X)
U6_gga(X, Y, Z, sub_out_gga(X, Y, Z)) → sub_out_gga(s(X), s(Y), Z)
U3_gga(X, Y, Z, sub_out_gga(X, Y, R)) → U4_gga(X, Y, Z, div_s_in_gga(R, Y, Z))
U4_gga(X, Y, Z, div_s_out_gga(R, Y, Z)) → div_s_out_gga(s(X), Y, s(Z))
U1_gga(X, Y, Z, div_s_out_gga(X, Y, Z)) → div_out_gga(X, s(Y), Z)
The argument filtering Pi contains the following mapping:
div_in_gga(
x1,
x2,
x3) =
div_in_gga(
x1,
x2)
s(
x1) =
s(
x1)
U1_gga(
x1,
x2,
x3,
x4) =
U1_gga(
x4)
div_s_in_gga(
x1,
x2,
x3) =
div_s_in_gga(
x1,
x2)
0 =
0
div_s_out_gga(
x1,
x2,
x3) =
div_s_out_gga(
x3)
U2_gga(
x1,
x2,
x3) =
U2_gga(
x3)
lss_in_gg(
x1,
x2) =
lss_in_gg(
x1,
x2)
U5_gg(
x1,
x2,
x3) =
U5_gg(
x3)
lss_out_gg(
x1,
x2) =
lss_out_gg
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x2,
x4)
sub_in_gga(
x1,
x2,
x3) =
sub_in_gga(
x1,
x2)
U6_gga(
x1,
x2,
x3,
x4) =
U6_gga(
x4)
sub_out_gga(
x1,
x2,
x3) =
sub_out_gga(
x3)
U4_gga(
x1,
x2,
x3,
x4) =
U4_gga(
x4)
div_out_gga(
x1,
x2,
x3) =
div_out_gga(
x3)
DIV_IN_GGA(
x1,
x2,
x3) =
DIV_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3,
x4) =
U1_GGA(
x4)
DIV_S_IN_GGA(
x1,
x2,
x3) =
DIV_S_IN_GGA(
x1,
x2)
U2_GGA(
x1,
x2,
x3) =
U2_GGA(
x3)
LSS_IN_GG(
x1,
x2) =
LSS_IN_GG(
x1,
x2)
U5_GG(
x1,
x2,
x3) =
U5_GG(
x3)
U3_GGA(
x1,
x2,
x3,
x4) =
U3_GGA(
x2,
x4)
SUB_IN_GGA(
x1,
x2,
x3) =
SUB_IN_GGA(
x1,
x2)
U6_GGA(
x1,
x2,
x3,
x4) =
U6_GGA(
x4)
U4_GGA(
x1,
x2,
x3,
x4) =
U4_GGA(
x4)
We have to consider all (P,R,Pi)-chains
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 3 SCCs with 8 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
SUB_IN_GGA(s(X), s(Y), Z) → SUB_IN_GGA(X, Y, Z)
The TRS R consists of the following rules:
div_in_gga(X, s(Y), Z) → U1_gga(X, Y, Z, div_s_in_gga(X, Y, Z))
div_s_in_gga(0, Y, 0) → div_s_out_gga(0, Y, 0)
div_s_in_gga(s(X), Y, 0) → U2_gga(X, Y, lss_in_gg(X, Y))
lss_in_gg(s(X), s(Y)) → U5_gg(X, Y, lss_in_gg(X, Y))
lss_in_gg(0, s(Y)) → lss_out_gg(0, s(Y))
U5_gg(X, Y, lss_out_gg(X, Y)) → lss_out_gg(s(X), s(Y))
U2_gga(X, Y, lss_out_gg(X, Y)) → div_s_out_gga(s(X), Y, 0)
div_s_in_gga(s(X), Y, s(Z)) → U3_gga(X, Y, Z, sub_in_gga(X, Y, R))
sub_in_gga(s(X), s(Y), Z) → U6_gga(X, Y, Z, sub_in_gga(X, Y, Z))
sub_in_gga(X, 0, X) → sub_out_gga(X, 0, X)
U6_gga(X, Y, Z, sub_out_gga(X, Y, Z)) → sub_out_gga(s(X), s(Y), Z)
U3_gga(X, Y, Z, sub_out_gga(X, Y, R)) → U4_gga(X, Y, Z, div_s_in_gga(R, Y, Z))
U4_gga(X, Y, Z, div_s_out_gga(R, Y, Z)) → div_s_out_gga(s(X), Y, s(Z))
U1_gga(X, Y, Z, div_s_out_gga(X, Y, Z)) → div_out_gga(X, s(Y), Z)
The argument filtering Pi contains the following mapping:
div_in_gga(
x1,
x2,
x3) =
div_in_gga(
x1,
x2)
s(
x1) =
s(
x1)
U1_gga(
x1,
x2,
x3,
x4) =
U1_gga(
x4)
div_s_in_gga(
x1,
x2,
x3) =
div_s_in_gga(
x1,
x2)
0 =
0
div_s_out_gga(
x1,
x2,
x3) =
div_s_out_gga(
x3)
U2_gga(
x1,
x2,
x3) =
U2_gga(
x3)
lss_in_gg(
x1,
x2) =
lss_in_gg(
x1,
x2)
U5_gg(
x1,
x2,
x3) =
U5_gg(
x3)
lss_out_gg(
x1,
x2) =
lss_out_gg
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x2,
x4)
sub_in_gga(
x1,
x2,
x3) =
sub_in_gga(
x1,
x2)
U6_gga(
x1,
x2,
x3,
x4) =
U6_gga(
x4)
sub_out_gga(
x1,
x2,
x3) =
sub_out_gga(
x3)
U4_gga(
x1,
x2,
x3,
x4) =
U4_gga(
x4)
div_out_gga(
x1,
x2,
x3) =
div_out_gga(
x3)
SUB_IN_GGA(
x1,
x2,
x3) =
SUB_IN_GGA(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(8) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(9) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
SUB_IN_GGA(s(X), s(Y), Z) → SUB_IN_GGA(X, Y, Z)
R is empty.
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
SUB_IN_GGA(
x1,
x2,
x3) =
SUB_IN_GGA(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(10) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SUB_IN_GGA(s(X), s(Y)) → SUB_IN_GGA(X, Y)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(12) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- SUB_IN_GGA(s(X), s(Y)) → SUB_IN_GGA(X, Y)
The graph contains the following edges 1 > 1, 2 > 2
(13) TRUE
(14) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
LSS_IN_GG(s(X), s(Y)) → LSS_IN_GG(X, Y)
The TRS R consists of the following rules:
div_in_gga(X, s(Y), Z) → U1_gga(X, Y, Z, div_s_in_gga(X, Y, Z))
div_s_in_gga(0, Y, 0) → div_s_out_gga(0, Y, 0)
div_s_in_gga(s(X), Y, 0) → U2_gga(X, Y, lss_in_gg(X, Y))
lss_in_gg(s(X), s(Y)) → U5_gg(X, Y, lss_in_gg(X, Y))
lss_in_gg(0, s(Y)) → lss_out_gg(0, s(Y))
U5_gg(X, Y, lss_out_gg(X, Y)) → lss_out_gg(s(X), s(Y))
U2_gga(X, Y, lss_out_gg(X, Y)) → div_s_out_gga(s(X), Y, 0)
div_s_in_gga(s(X), Y, s(Z)) → U3_gga(X, Y, Z, sub_in_gga(X, Y, R))
sub_in_gga(s(X), s(Y), Z) → U6_gga(X, Y, Z, sub_in_gga(X, Y, Z))
sub_in_gga(X, 0, X) → sub_out_gga(X, 0, X)
U6_gga(X, Y, Z, sub_out_gga(X, Y, Z)) → sub_out_gga(s(X), s(Y), Z)
U3_gga(X, Y, Z, sub_out_gga(X, Y, R)) → U4_gga(X, Y, Z, div_s_in_gga(R, Y, Z))
U4_gga(X, Y, Z, div_s_out_gga(R, Y, Z)) → div_s_out_gga(s(X), Y, s(Z))
U1_gga(X, Y, Z, div_s_out_gga(X, Y, Z)) → div_out_gga(X, s(Y), Z)
The argument filtering Pi contains the following mapping:
div_in_gga(
x1,
x2,
x3) =
div_in_gga(
x1,
x2)
s(
x1) =
s(
x1)
U1_gga(
x1,
x2,
x3,
x4) =
U1_gga(
x4)
div_s_in_gga(
x1,
x2,
x3) =
div_s_in_gga(
x1,
x2)
0 =
0
div_s_out_gga(
x1,
x2,
x3) =
div_s_out_gga(
x3)
U2_gga(
x1,
x2,
x3) =
U2_gga(
x3)
lss_in_gg(
x1,
x2) =
lss_in_gg(
x1,
x2)
U5_gg(
x1,
x2,
x3) =
U5_gg(
x3)
lss_out_gg(
x1,
x2) =
lss_out_gg
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x2,
x4)
sub_in_gga(
x1,
x2,
x3) =
sub_in_gga(
x1,
x2)
U6_gga(
x1,
x2,
x3,
x4) =
U6_gga(
x4)
sub_out_gga(
x1,
x2,
x3) =
sub_out_gga(
x3)
U4_gga(
x1,
x2,
x3,
x4) =
U4_gga(
x4)
div_out_gga(
x1,
x2,
x3) =
div_out_gga(
x3)
LSS_IN_GG(
x1,
x2) =
LSS_IN_GG(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(15) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(16) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
LSS_IN_GG(s(X), s(Y)) → LSS_IN_GG(X, Y)
R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains
(17) PiDPToQDPProof (EQUIVALENT transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LSS_IN_GG(s(X), s(Y)) → LSS_IN_GG(X, Y)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(19) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- LSS_IN_GG(s(X), s(Y)) → LSS_IN_GG(X, Y)
The graph contains the following edges 1 > 1, 2 > 2
(20) TRUE
(21) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
DIV_S_IN_GGA(s(X), Y, s(Z)) → U3_GGA(X, Y, Z, sub_in_gga(X, Y, R))
U3_GGA(X, Y, Z, sub_out_gga(X, Y, R)) → DIV_S_IN_GGA(R, Y, Z)
The TRS R consists of the following rules:
div_in_gga(X, s(Y), Z) → U1_gga(X, Y, Z, div_s_in_gga(X, Y, Z))
div_s_in_gga(0, Y, 0) → div_s_out_gga(0, Y, 0)
div_s_in_gga(s(X), Y, 0) → U2_gga(X, Y, lss_in_gg(X, Y))
lss_in_gg(s(X), s(Y)) → U5_gg(X, Y, lss_in_gg(X, Y))
lss_in_gg(0, s(Y)) → lss_out_gg(0, s(Y))
U5_gg(X, Y, lss_out_gg(X, Y)) → lss_out_gg(s(X), s(Y))
U2_gga(X, Y, lss_out_gg(X, Y)) → div_s_out_gga(s(X), Y, 0)
div_s_in_gga(s(X), Y, s(Z)) → U3_gga(X, Y, Z, sub_in_gga(X, Y, R))
sub_in_gga(s(X), s(Y), Z) → U6_gga(X, Y, Z, sub_in_gga(X, Y, Z))
sub_in_gga(X, 0, X) → sub_out_gga(X, 0, X)
U6_gga(X, Y, Z, sub_out_gga(X, Y, Z)) → sub_out_gga(s(X), s(Y), Z)
U3_gga(X, Y, Z, sub_out_gga(X, Y, R)) → U4_gga(X, Y, Z, div_s_in_gga(R, Y, Z))
U4_gga(X, Y, Z, div_s_out_gga(R, Y, Z)) → div_s_out_gga(s(X), Y, s(Z))
U1_gga(X, Y, Z, div_s_out_gga(X, Y, Z)) → div_out_gga(X, s(Y), Z)
The argument filtering Pi contains the following mapping:
div_in_gga(
x1,
x2,
x3) =
div_in_gga(
x1,
x2)
s(
x1) =
s(
x1)
U1_gga(
x1,
x2,
x3,
x4) =
U1_gga(
x4)
div_s_in_gga(
x1,
x2,
x3) =
div_s_in_gga(
x1,
x2)
0 =
0
div_s_out_gga(
x1,
x2,
x3) =
div_s_out_gga(
x3)
U2_gga(
x1,
x2,
x3) =
U2_gga(
x3)
lss_in_gg(
x1,
x2) =
lss_in_gg(
x1,
x2)
U5_gg(
x1,
x2,
x3) =
U5_gg(
x3)
lss_out_gg(
x1,
x2) =
lss_out_gg
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x2,
x4)
sub_in_gga(
x1,
x2,
x3) =
sub_in_gga(
x1,
x2)
U6_gga(
x1,
x2,
x3,
x4) =
U6_gga(
x4)
sub_out_gga(
x1,
x2,
x3) =
sub_out_gga(
x3)
U4_gga(
x1,
x2,
x3,
x4) =
U4_gga(
x4)
div_out_gga(
x1,
x2,
x3) =
div_out_gga(
x3)
DIV_S_IN_GGA(
x1,
x2,
x3) =
DIV_S_IN_GGA(
x1,
x2)
U3_GGA(
x1,
x2,
x3,
x4) =
U3_GGA(
x2,
x4)
We have to consider all (P,R,Pi)-chains
(22) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(23) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
DIV_S_IN_GGA(s(X), Y, s(Z)) → U3_GGA(X, Y, Z, sub_in_gga(X, Y, R))
U3_GGA(X, Y, Z, sub_out_gga(X, Y, R)) → DIV_S_IN_GGA(R, Y, Z)
The TRS R consists of the following rules:
sub_in_gga(s(X), s(Y), Z) → U6_gga(X, Y, Z, sub_in_gga(X, Y, Z))
sub_in_gga(X, 0, X) → sub_out_gga(X, 0, X)
U6_gga(X, Y, Z, sub_out_gga(X, Y, Z)) → sub_out_gga(s(X), s(Y), Z)
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
0 =
0
sub_in_gga(
x1,
x2,
x3) =
sub_in_gga(
x1,
x2)
U6_gga(
x1,
x2,
x3,
x4) =
U6_gga(
x4)
sub_out_gga(
x1,
x2,
x3) =
sub_out_gga(
x3)
DIV_S_IN_GGA(
x1,
x2,
x3) =
DIV_S_IN_GGA(
x1,
x2)
U3_GGA(
x1,
x2,
x3,
x4) =
U3_GGA(
x2,
x4)
We have to consider all (P,R,Pi)-chains
(24) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(25) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DIV_S_IN_GGA(s(X), Y) → U3_GGA(Y, sub_in_gga(X, Y))
U3_GGA(Y, sub_out_gga(R)) → DIV_S_IN_GGA(R, Y)
The TRS R consists of the following rules:
sub_in_gga(s(X), s(Y)) → U6_gga(sub_in_gga(X, Y))
sub_in_gga(X, 0) → sub_out_gga(X)
U6_gga(sub_out_gga(Z)) → sub_out_gga(Z)
The set Q consists of the following terms:
sub_in_gga(x0, x1)
U6_gga(x0)
We have to consider all (P,Q,R)-chains.
(26) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
DIV_S_IN_GGA(s(X), Y) → U3_GGA(Y, sub_in_gga(X, Y))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:
POL(0) = 0
POL(DIV_S_IN_GGA(x1, x2)) = x1
POL(U3_GGA(x1, x2)) = x2
POL(U6_gga(x1)) = 1 + x1
POL(s(x1)) = 1 + x1
POL(sub_in_gga(x1, x2)) = x1
POL(sub_out_gga(x1)) = x1
The following usable rules [FROCOS05] were oriented:
sub_in_gga(s(X), s(Y)) → U6_gga(sub_in_gga(X, Y))
sub_in_gga(X, 0) → sub_out_gga(X)
U6_gga(sub_out_gga(Z)) → sub_out_gga(Z)
(27) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U3_GGA(Y, sub_out_gga(R)) → DIV_S_IN_GGA(R, Y)
The TRS R consists of the following rules:
sub_in_gga(s(X), s(Y)) → U6_gga(sub_in_gga(X, Y))
sub_in_gga(X, 0) → sub_out_gga(X)
U6_gga(sub_out_gga(Z)) → sub_out_gga(Z)
The set Q consists of the following terms:
sub_in_gga(x0, x1)
U6_gga(x0)
We have to consider all (P,Q,R)-chains.
(28) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(29) TRUE
(30) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
div_in: (b,b,f)
div_s_in: (b,b,f)
lss_in: (b,b)
sub_in: (b,b,f)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
div_in_gga(X, s(Y), Z) → U1_gga(X, Y, Z, div_s_in_gga(X, Y, Z))
div_s_in_gga(0, Y, 0) → div_s_out_gga(0, Y, 0)
div_s_in_gga(s(X), Y, 0) → U2_gga(X, Y, lss_in_gg(X, Y))
lss_in_gg(s(X), s(Y)) → U5_gg(X, Y, lss_in_gg(X, Y))
lss_in_gg(0, s(Y)) → lss_out_gg(0, s(Y))
U5_gg(X, Y, lss_out_gg(X, Y)) → lss_out_gg(s(X), s(Y))
U2_gga(X, Y, lss_out_gg(X, Y)) → div_s_out_gga(s(X), Y, 0)
div_s_in_gga(s(X), Y, s(Z)) → U3_gga(X, Y, Z, sub_in_gga(X, Y, R))
sub_in_gga(s(X), s(Y), Z) → U6_gga(X, Y, Z, sub_in_gga(X, Y, Z))
sub_in_gga(X, 0, X) → sub_out_gga(X, 0, X)
U6_gga(X, Y, Z, sub_out_gga(X, Y, Z)) → sub_out_gga(s(X), s(Y), Z)
U3_gga(X, Y, Z, sub_out_gga(X, Y, R)) → U4_gga(X, Y, Z, div_s_in_gga(R, Y, Z))
U4_gga(X, Y, Z, div_s_out_gga(R, Y, Z)) → div_s_out_gga(s(X), Y, s(Z))
U1_gga(X, Y, Z, div_s_out_gga(X, Y, Z)) → div_out_gga(X, s(Y), Z)
The argument filtering Pi contains the following mapping:
div_in_gga(
x1,
x2,
x3) =
div_in_gga(
x1,
x2)
s(
x1) =
s(
x1)
U1_gga(
x1,
x2,
x3,
x4) =
U1_gga(
x1,
x2,
x4)
div_s_in_gga(
x1,
x2,
x3) =
div_s_in_gga(
x1,
x2)
0 =
0
div_s_out_gga(
x1,
x2,
x3) =
div_s_out_gga(
x1,
x2,
x3)
U2_gga(
x1,
x2,
x3) =
U2_gga(
x1,
x2,
x3)
lss_in_gg(
x1,
x2) =
lss_in_gg(
x1,
x2)
U5_gg(
x1,
x2,
x3) =
U5_gg(
x1,
x2,
x3)
lss_out_gg(
x1,
x2) =
lss_out_gg(
x1,
x2)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x1,
x2,
x4)
sub_in_gga(
x1,
x2,
x3) =
sub_in_gga(
x1,
x2)
U6_gga(
x1,
x2,
x3,
x4) =
U6_gga(
x1,
x2,
x4)
sub_out_gga(
x1,
x2,
x3) =
sub_out_gga(
x1,
x2,
x3)
U4_gga(
x1,
x2,
x3,
x4) =
U4_gga(
x1,
x2,
x4)
div_out_gga(
x1,
x2,
x3) =
div_out_gga(
x1,
x2,
x3)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(31) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
div_in_gga(X, s(Y), Z) → U1_gga(X, Y, Z, div_s_in_gga(X, Y, Z))
div_s_in_gga(0, Y, 0) → div_s_out_gga(0, Y, 0)
div_s_in_gga(s(X), Y, 0) → U2_gga(X, Y, lss_in_gg(X, Y))
lss_in_gg(s(X), s(Y)) → U5_gg(X, Y, lss_in_gg(X, Y))
lss_in_gg(0, s(Y)) → lss_out_gg(0, s(Y))
U5_gg(X, Y, lss_out_gg(X, Y)) → lss_out_gg(s(X), s(Y))
U2_gga(X, Y, lss_out_gg(X, Y)) → div_s_out_gga(s(X), Y, 0)
div_s_in_gga(s(X), Y, s(Z)) → U3_gga(X, Y, Z, sub_in_gga(X, Y, R))
sub_in_gga(s(X), s(Y), Z) → U6_gga(X, Y, Z, sub_in_gga(X, Y, Z))
sub_in_gga(X, 0, X) → sub_out_gga(X, 0, X)
U6_gga(X, Y, Z, sub_out_gga(X, Y, Z)) → sub_out_gga(s(X), s(Y), Z)
U3_gga(X, Y, Z, sub_out_gga(X, Y, R)) → U4_gga(X, Y, Z, div_s_in_gga(R, Y, Z))
U4_gga(X, Y, Z, div_s_out_gga(R, Y, Z)) → div_s_out_gga(s(X), Y, s(Z))
U1_gga(X, Y, Z, div_s_out_gga(X, Y, Z)) → div_out_gga(X, s(Y), Z)
The argument filtering Pi contains the following mapping:
div_in_gga(
x1,
x2,
x3) =
div_in_gga(
x1,
x2)
s(
x1) =
s(
x1)
U1_gga(
x1,
x2,
x3,
x4) =
U1_gga(
x1,
x2,
x4)
div_s_in_gga(
x1,
x2,
x3) =
div_s_in_gga(
x1,
x2)
0 =
0
div_s_out_gga(
x1,
x2,
x3) =
div_s_out_gga(
x1,
x2,
x3)
U2_gga(
x1,
x2,
x3) =
U2_gga(
x1,
x2,
x3)
lss_in_gg(
x1,
x2) =
lss_in_gg(
x1,
x2)
U5_gg(
x1,
x2,
x3) =
U5_gg(
x1,
x2,
x3)
lss_out_gg(
x1,
x2) =
lss_out_gg(
x1,
x2)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x1,
x2,
x4)
sub_in_gga(
x1,
x2,
x3) =
sub_in_gga(
x1,
x2)
U6_gga(
x1,
x2,
x3,
x4) =
U6_gga(
x1,
x2,
x4)
sub_out_gga(
x1,
x2,
x3) =
sub_out_gga(
x1,
x2,
x3)
U4_gga(
x1,
x2,
x3,
x4) =
U4_gga(
x1,
x2,
x4)
div_out_gga(
x1,
x2,
x3) =
div_out_gga(
x1,
x2,
x3)
(32) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
DIV_IN_GGA(X, s(Y), Z) → U1_GGA(X, Y, Z, div_s_in_gga(X, Y, Z))
DIV_IN_GGA(X, s(Y), Z) → DIV_S_IN_GGA(X, Y, Z)
DIV_S_IN_GGA(s(X), Y, 0) → U2_GGA(X, Y, lss_in_gg(X, Y))
DIV_S_IN_GGA(s(X), Y, 0) → LSS_IN_GG(X, Y)
LSS_IN_GG(s(X), s(Y)) → U5_GG(X, Y, lss_in_gg(X, Y))
LSS_IN_GG(s(X), s(Y)) → LSS_IN_GG(X, Y)
DIV_S_IN_GGA(s(X), Y, s(Z)) → U3_GGA(X, Y, Z, sub_in_gga(X, Y, R))
DIV_S_IN_GGA(s(X), Y, s(Z)) → SUB_IN_GGA(X, Y, R)
SUB_IN_GGA(s(X), s(Y), Z) → U6_GGA(X, Y, Z, sub_in_gga(X, Y, Z))
SUB_IN_GGA(s(X), s(Y), Z) → SUB_IN_GGA(X, Y, Z)
U3_GGA(X, Y, Z, sub_out_gga(X, Y, R)) → U4_GGA(X, Y, Z, div_s_in_gga(R, Y, Z))
U3_GGA(X, Y, Z, sub_out_gga(X, Y, R)) → DIV_S_IN_GGA(R, Y, Z)
The TRS R consists of the following rules:
div_in_gga(X, s(Y), Z) → U1_gga(X, Y, Z, div_s_in_gga(X, Y, Z))
div_s_in_gga(0, Y, 0) → div_s_out_gga(0, Y, 0)
div_s_in_gga(s(X), Y, 0) → U2_gga(X, Y, lss_in_gg(X, Y))
lss_in_gg(s(X), s(Y)) → U5_gg(X, Y, lss_in_gg(X, Y))
lss_in_gg(0, s(Y)) → lss_out_gg(0, s(Y))
U5_gg(X, Y, lss_out_gg(X, Y)) → lss_out_gg(s(X), s(Y))
U2_gga(X, Y, lss_out_gg(X, Y)) → div_s_out_gga(s(X), Y, 0)
div_s_in_gga(s(X), Y, s(Z)) → U3_gga(X, Y, Z, sub_in_gga(X, Y, R))
sub_in_gga(s(X), s(Y), Z) → U6_gga(X, Y, Z, sub_in_gga(X, Y, Z))
sub_in_gga(X, 0, X) → sub_out_gga(X, 0, X)
U6_gga(X, Y, Z, sub_out_gga(X, Y, Z)) → sub_out_gga(s(X), s(Y), Z)
U3_gga(X, Y, Z, sub_out_gga(X, Y, R)) → U4_gga(X, Y, Z, div_s_in_gga(R, Y, Z))
U4_gga(X, Y, Z, div_s_out_gga(R, Y, Z)) → div_s_out_gga(s(X), Y, s(Z))
U1_gga(X, Y, Z, div_s_out_gga(X, Y, Z)) → div_out_gga(X, s(Y), Z)
The argument filtering Pi contains the following mapping:
div_in_gga(
x1,
x2,
x3) =
div_in_gga(
x1,
x2)
s(
x1) =
s(
x1)
U1_gga(
x1,
x2,
x3,
x4) =
U1_gga(
x1,
x2,
x4)
div_s_in_gga(
x1,
x2,
x3) =
div_s_in_gga(
x1,
x2)
0 =
0
div_s_out_gga(
x1,
x2,
x3) =
div_s_out_gga(
x1,
x2,
x3)
U2_gga(
x1,
x2,
x3) =
U2_gga(
x1,
x2,
x3)
lss_in_gg(
x1,
x2) =
lss_in_gg(
x1,
x2)
U5_gg(
x1,
x2,
x3) =
U5_gg(
x1,
x2,
x3)
lss_out_gg(
x1,
x2) =
lss_out_gg(
x1,
x2)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x1,
x2,
x4)
sub_in_gga(
x1,
x2,
x3) =
sub_in_gga(
x1,
x2)
U6_gga(
x1,
x2,
x3,
x4) =
U6_gga(
x1,
x2,
x4)
sub_out_gga(
x1,
x2,
x3) =
sub_out_gga(
x1,
x2,
x3)
U4_gga(
x1,
x2,
x3,
x4) =
U4_gga(
x1,
x2,
x4)
div_out_gga(
x1,
x2,
x3) =
div_out_gga(
x1,
x2,
x3)
DIV_IN_GGA(
x1,
x2,
x3) =
DIV_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3,
x4) =
U1_GGA(
x1,
x2,
x4)
DIV_S_IN_GGA(
x1,
x2,
x3) =
DIV_S_IN_GGA(
x1,
x2)
U2_GGA(
x1,
x2,
x3) =
U2_GGA(
x1,
x2,
x3)
LSS_IN_GG(
x1,
x2) =
LSS_IN_GG(
x1,
x2)
U5_GG(
x1,
x2,
x3) =
U5_GG(
x1,
x2,
x3)
U3_GGA(
x1,
x2,
x3,
x4) =
U3_GGA(
x1,
x2,
x4)
SUB_IN_GGA(
x1,
x2,
x3) =
SUB_IN_GGA(
x1,
x2)
U6_GGA(
x1,
x2,
x3,
x4) =
U6_GGA(
x1,
x2,
x4)
U4_GGA(
x1,
x2,
x3,
x4) =
U4_GGA(
x1,
x2,
x4)
We have to consider all (P,R,Pi)-chains
(33) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
DIV_IN_GGA(X, s(Y), Z) → U1_GGA(X, Y, Z, div_s_in_gga(X, Y, Z))
DIV_IN_GGA(X, s(Y), Z) → DIV_S_IN_GGA(X, Y, Z)
DIV_S_IN_GGA(s(X), Y, 0) → U2_GGA(X, Y, lss_in_gg(X, Y))
DIV_S_IN_GGA(s(X), Y, 0) → LSS_IN_GG(X, Y)
LSS_IN_GG(s(X), s(Y)) → U5_GG(X, Y, lss_in_gg(X, Y))
LSS_IN_GG(s(X), s(Y)) → LSS_IN_GG(X, Y)
DIV_S_IN_GGA(s(X), Y, s(Z)) → U3_GGA(X, Y, Z, sub_in_gga(X, Y, R))
DIV_S_IN_GGA(s(X), Y, s(Z)) → SUB_IN_GGA(X, Y, R)
SUB_IN_GGA(s(X), s(Y), Z) → U6_GGA(X, Y, Z, sub_in_gga(X, Y, Z))
SUB_IN_GGA(s(X), s(Y), Z) → SUB_IN_GGA(X, Y, Z)
U3_GGA(X, Y, Z, sub_out_gga(X, Y, R)) → U4_GGA(X, Y, Z, div_s_in_gga(R, Y, Z))
U3_GGA(X, Y, Z, sub_out_gga(X, Y, R)) → DIV_S_IN_GGA(R, Y, Z)
The TRS R consists of the following rules:
div_in_gga(X, s(Y), Z) → U1_gga(X, Y, Z, div_s_in_gga(X, Y, Z))
div_s_in_gga(0, Y, 0) → div_s_out_gga(0, Y, 0)
div_s_in_gga(s(X), Y, 0) → U2_gga(X, Y, lss_in_gg(X, Y))
lss_in_gg(s(X), s(Y)) → U5_gg(X, Y, lss_in_gg(X, Y))
lss_in_gg(0, s(Y)) → lss_out_gg(0, s(Y))
U5_gg(X, Y, lss_out_gg(X, Y)) → lss_out_gg(s(X), s(Y))
U2_gga(X, Y, lss_out_gg(X, Y)) → div_s_out_gga(s(X), Y, 0)
div_s_in_gga(s(X), Y, s(Z)) → U3_gga(X, Y, Z, sub_in_gga(X, Y, R))
sub_in_gga(s(X), s(Y), Z) → U6_gga(X, Y, Z, sub_in_gga(X, Y, Z))
sub_in_gga(X, 0, X) → sub_out_gga(X, 0, X)
U6_gga(X, Y, Z, sub_out_gga(X, Y, Z)) → sub_out_gga(s(X), s(Y), Z)
U3_gga(X, Y, Z, sub_out_gga(X, Y, R)) → U4_gga(X, Y, Z, div_s_in_gga(R, Y, Z))
U4_gga(X, Y, Z, div_s_out_gga(R, Y, Z)) → div_s_out_gga(s(X), Y, s(Z))
U1_gga(X, Y, Z, div_s_out_gga(X, Y, Z)) → div_out_gga(X, s(Y), Z)
The argument filtering Pi contains the following mapping:
div_in_gga(
x1,
x2,
x3) =
div_in_gga(
x1,
x2)
s(
x1) =
s(
x1)
U1_gga(
x1,
x2,
x3,
x4) =
U1_gga(
x1,
x2,
x4)
div_s_in_gga(
x1,
x2,
x3) =
div_s_in_gga(
x1,
x2)
0 =
0
div_s_out_gga(
x1,
x2,
x3) =
div_s_out_gga(
x1,
x2,
x3)
U2_gga(
x1,
x2,
x3) =
U2_gga(
x1,
x2,
x3)
lss_in_gg(
x1,
x2) =
lss_in_gg(
x1,
x2)
U5_gg(
x1,
x2,
x3) =
U5_gg(
x1,
x2,
x3)
lss_out_gg(
x1,
x2) =
lss_out_gg(
x1,
x2)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x1,
x2,
x4)
sub_in_gga(
x1,
x2,
x3) =
sub_in_gga(
x1,
x2)
U6_gga(
x1,
x2,
x3,
x4) =
U6_gga(
x1,
x2,
x4)
sub_out_gga(
x1,
x2,
x3) =
sub_out_gga(
x1,
x2,
x3)
U4_gga(
x1,
x2,
x3,
x4) =
U4_gga(
x1,
x2,
x4)
div_out_gga(
x1,
x2,
x3) =
div_out_gga(
x1,
x2,
x3)
DIV_IN_GGA(
x1,
x2,
x3) =
DIV_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3,
x4) =
U1_GGA(
x1,
x2,
x4)
DIV_S_IN_GGA(
x1,
x2,
x3) =
DIV_S_IN_GGA(
x1,
x2)
U2_GGA(
x1,
x2,
x3) =
U2_GGA(
x1,
x2,
x3)
LSS_IN_GG(
x1,
x2) =
LSS_IN_GG(
x1,
x2)
U5_GG(
x1,
x2,
x3) =
U5_GG(
x1,
x2,
x3)
U3_GGA(
x1,
x2,
x3,
x4) =
U3_GGA(
x1,
x2,
x4)
SUB_IN_GGA(
x1,
x2,
x3) =
SUB_IN_GGA(
x1,
x2)
U6_GGA(
x1,
x2,
x3,
x4) =
U6_GGA(
x1,
x2,
x4)
U4_GGA(
x1,
x2,
x3,
x4) =
U4_GGA(
x1,
x2,
x4)
We have to consider all (P,R,Pi)-chains
(34) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 3 SCCs with 8 less nodes.
(35) Complex Obligation (AND)
(36) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
SUB_IN_GGA(s(X), s(Y), Z) → SUB_IN_GGA(X, Y, Z)
The TRS R consists of the following rules:
div_in_gga(X, s(Y), Z) → U1_gga(X, Y, Z, div_s_in_gga(X, Y, Z))
div_s_in_gga(0, Y, 0) → div_s_out_gga(0, Y, 0)
div_s_in_gga(s(X), Y, 0) → U2_gga(X, Y, lss_in_gg(X, Y))
lss_in_gg(s(X), s(Y)) → U5_gg(X, Y, lss_in_gg(X, Y))
lss_in_gg(0, s(Y)) → lss_out_gg(0, s(Y))
U5_gg(X, Y, lss_out_gg(X, Y)) → lss_out_gg(s(X), s(Y))
U2_gga(X, Y, lss_out_gg(X, Y)) → div_s_out_gga(s(X), Y, 0)
div_s_in_gga(s(X), Y, s(Z)) → U3_gga(X, Y, Z, sub_in_gga(X, Y, R))
sub_in_gga(s(X), s(Y), Z) → U6_gga(X, Y, Z, sub_in_gga(X, Y, Z))
sub_in_gga(X, 0, X) → sub_out_gga(X, 0, X)
U6_gga(X, Y, Z, sub_out_gga(X, Y, Z)) → sub_out_gga(s(X), s(Y), Z)
U3_gga(X, Y, Z, sub_out_gga(X, Y, R)) → U4_gga(X, Y, Z, div_s_in_gga(R, Y, Z))
U4_gga(X, Y, Z, div_s_out_gga(R, Y, Z)) → div_s_out_gga(s(X), Y, s(Z))
U1_gga(X, Y, Z, div_s_out_gga(X, Y, Z)) → div_out_gga(X, s(Y), Z)
The argument filtering Pi contains the following mapping:
div_in_gga(
x1,
x2,
x3) =
div_in_gga(
x1,
x2)
s(
x1) =
s(
x1)
U1_gga(
x1,
x2,
x3,
x4) =
U1_gga(
x1,
x2,
x4)
div_s_in_gga(
x1,
x2,
x3) =
div_s_in_gga(
x1,
x2)
0 =
0
div_s_out_gga(
x1,
x2,
x3) =
div_s_out_gga(
x1,
x2,
x3)
U2_gga(
x1,
x2,
x3) =
U2_gga(
x1,
x2,
x3)
lss_in_gg(
x1,
x2) =
lss_in_gg(
x1,
x2)
U5_gg(
x1,
x2,
x3) =
U5_gg(
x1,
x2,
x3)
lss_out_gg(
x1,
x2) =
lss_out_gg(
x1,
x2)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x1,
x2,
x4)
sub_in_gga(
x1,
x2,
x3) =
sub_in_gga(
x1,
x2)
U6_gga(
x1,
x2,
x3,
x4) =
U6_gga(
x1,
x2,
x4)
sub_out_gga(
x1,
x2,
x3) =
sub_out_gga(
x1,
x2,
x3)
U4_gga(
x1,
x2,
x3,
x4) =
U4_gga(
x1,
x2,
x4)
div_out_gga(
x1,
x2,
x3) =
div_out_gga(
x1,
x2,
x3)
SUB_IN_GGA(
x1,
x2,
x3) =
SUB_IN_GGA(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(37) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(38) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
SUB_IN_GGA(s(X), s(Y), Z) → SUB_IN_GGA(X, Y, Z)
R is empty.
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
SUB_IN_GGA(
x1,
x2,
x3) =
SUB_IN_GGA(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(39) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(40) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SUB_IN_GGA(s(X), s(Y)) → SUB_IN_GGA(X, Y)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(41) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- SUB_IN_GGA(s(X), s(Y)) → SUB_IN_GGA(X, Y)
The graph contains the following edges 1 > 1, 2 > 2
(42) TRUE
(43) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
LSS_IN_GG(s(X), s(Y)) → LSS_IN_GG(X, Y)
The TRS R consists of the following rules:
div_in_gga(X, s(Y), Z) → U1_gga(X, Y, Z, div_s_in_gga(X, Y, Z))
div_s_in_gga(0, Y, 0) → div_s_out_gga(0, Y, 0)
div_s_in_gga(s(X), Y, 0) → U2_gga(X, Y, lss_in_gg(X, Y))
lss_in_gg(s(X), s(Y)) → U5_gg(X, Y, lss_in_gg(X, Y))
lss_in_gg(0, s(Y)) → lss_out_gg(0, s(Y))
U5_gg(X, Y, lss_out_gg(X, Y)) → lss_out_gg(s(X), s(Y))
U2_gga(X, Y, lss_out_gg(X, Y)) → div_s_out_gga(s(X), Y, 0)
div_s_in_gga(s(X), Y, s(Z)) → U3_gga(X, Y, Z, sub_in_gga(X, Y, R))
sub_in_gga(s(X), s(Y), Z) → U6_gga(X, Y, Z, sub_in_gga(X, Y, Z))
sub_in_gga(X, 0, X) → sub_out_gga(X, 0, X)
U6_gga(X, Y, Z, sub_out_gga(X, Y, Z)) → sub_out_gga(s(X), s(Y), Z)
U3_gga(X, Y, Z, sub_out_gga(X, Y, R)) → U4_gga(X, Y, Z, div_s_in_gga(R, Y, Z))
U4_gga(X, Y, Z, div_s_out_gga(R, Y, Z)) → div_s_out_gga(s(X), Y, s(Z))
U1_gga(X, Y, Z, div_s_out_gga(X, Y, Z)) → div_out_gga(X, s(Y), Z)
The argument filtering Pi contains the following mapping:
div_in_gga(
x1,
x2,
x3) =
div_in_gga(
x1,
x2)
s(
x1) =
s(
x1)
U1_gga(
x1,
x2,
x3,
x4) =
U1_gga(
x1,
x2,
x4)
div_s_in_gga(
x1,
x2,
x3) =
div_s_in_gga(
x1,
x2)
0 =
0
div_s_out_gga(
x1,
x2,
x3) =
div_s_out_gga(
x1,
x2,
x3)
U2_gga(
x1,
x2,
x3) =
U2_gga(
x1,
x2,
x3)
lss_in_gg(
x1,
x2) =
lss_in_gg(
x1,
x2)
U5_gg(
x1,
x2,
x3) =
U5_gg(
x1,
x2,
x3)
lss_out_gg(
x1,
x2) =
lss_out_gg(
x1,
x2)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x1,
x2,
x4)
sub_in_gga(
x1,
x2,
x3) =
sub_in_gga(
x1,
x2)
U6_gga(
x1,
x2,
x3,
x4) =
U6_gga(
x1,
x2,
x4)
sub_out_gga(
x1,
x2,
x3) =
sub_out_gga(
x1,
x2,
x3)
U4_gga(
x1,
x2,
x3,
x4) =
U4_gga(
x1,
x2,
x4)
div_out_gga(
x1,
x2,
x3) =
div_out_gga(
x1,
x2,
x3)
LSS_IN_GG(
x1,
x2) =
LSS_IN_GG(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(44) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(45) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
LSS_IN_GG(s(X), s(Y)) → LSS_IN_GG(X, Y)
R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains
(46) PiDPToQDPProof (EQUIVALENT transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(47) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LSS_IN_GG(s(X), s(Y)) → LSS_IN_GG(X, Y)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(48) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- LSS_IN_GG(s(X), s(Y)) → LSS_IN_GG(X, Y)
The graph contains the following edges 1 > 1, 2 > 2
(49) TRUE
(50) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
DIV_S_IN_GGA(s(X), Y, s(Z)) → U3_GGA(X, Y, Z, sub_in_gga(X, Y, R))
U3_GGA(X, Y, Z, sub_out_gga(X, Y, R)) → DIV_S_IN_GGA(R, Y, Z)
The TRS R consists of the following rules:
div_in_gga(X, s(Y), Z) → U1_gga(X, Y, Z, div_s_in_gga(X, Y, Z))
div_s_in_gga(0, Y, 0) → div_s_out_gga(0, Y, 0)
div_s_in_gga(s(X), Y, 0) → U2_gga(X, Y, lss_in_gg(X, Y))
lss_in_gg(s(X), s(Y)) → U5_gg(X, Y, lss_in_gg(X, Y))
lss_in_gg(0, s(Y)) → lss_out_gg(0, s(Y))
U5_gg(X, Y, lss_out_gg(X, Y)) → lss_out_gg(s(X), s(Y))
U2_gga(X, Y, lss_out_gg(X, Y)) → div_s_out_gga(s(X), Y, 0)
div_s_in_gga(s(X), Y, s(Z)) → U3_gga(X, Y, Z, sub_in_gga(X, Y, R))
sub_in_gga(s(X), s(Y), Z) → U6_gga(X, Y, Z, sub_in_gga(X, Y, Z))
sub_in_gga(X, 0, X) → sub_out_gga(X, 0, X)
U6_gga(X, Y, Z, sub_out_gga(X, Y, Z)) → sub_out_gga(s(X), s(Y), Z)
U3_gga(X, Y, Z, sub_out_gga(X, Y, R)) → U4_gga(X, Y, Z, div_s_in_gga(R, Y, Z))
U4_gga(X, Y, Z, div_s_out_gga(R, Y, Z)) → div_s_out_gga(s(X), Y, s(Z))
U1_gga(X, Y, Z, div_s_out_gga(X, Y, Z)) → div_out_gga(X, s(Y), Z)
The argument filtering Pi contains the following mapping:
div_in_gga(
x1,
x2,
x3) =
div_in_gga(
x1,
x2)
s(
x1) =
s(
x1)
U1_gga(
x1,
x2,
x3,
x4) =
U1_gga(
x1,
x2,
x4)
div_s_in_gga(
x1,
x2,
x3) =
div_s_in_gga(
x1,
x2)
0 =
0
div_s_out_gga(
x1,
x2,
x3) =
div_s_out_gga(
x1,
x2,
x3)
U2_gga(
x1,
x2,
x3) =
U2_gga(
x1,
x2,
x3)
lss_in_gg(
x1,
x2) =
lss_in_gg(
x1,
x2)
U5_gg(
x1,
x2,
x3) =
U5_gg(
x1,
x2,
x3)
lss_out_gg(
x1,
x2) =
lss_out_gg(
x1,
x2)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x1,
x2,
x4)
sub_in_gga(
x1,
x2,
x3) =
sub_in_gga(
x1,
x2)
U6_gga(
x1,
x2,
x3,
x4) =
U6_gga(
x1,
x2,
x4)
sub_out_gga(
x1,
x2,
x3) =
sub_out_gga(
x1,
x2,
x3)
U4_gga(
x1,
x2,
x3,
x4) =
U4_gga(
x1,
x2,
x4)
div_out_gga(
x1,
x2,
x3) =
div_out_gga(
x1,
x2,
x3)
DIV_S_IN_GGA(
x1,
x2,
x3) =
DIV_S_IN_GGA(
x1,
x2)
U3_GGA(
x1,
x2,
x3,
x4) =
U3_GGA(
x1,
x2,
x4)
We have to consider all (P,R,Pi)-chains
(51) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(52) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
DIV_S_IN_GGA(s(X), Y, s(Z)) → U3_GGA(X, Y, Z, sub_in_gga(X, Y, R))
U3_GGA(X, Y, Z, sub_out_gga(X, Y, R)) → DIV_S_IN_GGA(R, Y, Z)
The TRS R consists of the following rules:
sub_in_gga(s(X), s(Y), Z) → U6_gga(X, Y, Z, sub_in_gga(X, Y, Z))
sub_in_gga(X, 0, X) → sub_out_gga(X, 0, X)
U6_gga(X, Y, Z, sub_out_gga(X, Y, Z)) → sub_out_gga(s(X), s(Y), Z)
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
0 =
0
sub_in_gga(
x1,
x2,
x3) =
sub_in_gga(
x1,
x2)
U6_gga(
x1,
x2,
x3,
x4) =
U6_gga(
x1,
x2,
x4)
sub_out_gga(
x1,
x2,
x3) =
sub_out_gga(
x1,
x2,
x3)
DIV_S_IN_GGA(
x1,
x2,
x3) =
DIV_S_IN_GGA(
x1,
x2)
U3_GGA(
x1,
x2,
x3,
x4) =
U3_GGA(
x1,
x2,
x4)
We have to consider all (P,R,Pi)-chains
(53) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(54) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DIV_S_IN_GGA(s(X), Y) → U3_GGA(X, Y, sub_in_gga(X, Y))
U3_GGA(X, Y, sub_out_gga(X, Y, R)) → DIV_S_IN_GGA(R, Y)
The TRS R consists of the following rules:
sub_in_gga(s(X), s(Y)) → U6_gga(X, Y, sub_in_gga(X, Y))
sub_in_gga(X, 0) → sub_out_gga(X, 0, X)
U6_gga(X, Y, sub_out_gga(X, Y, Z)) → sub_out_gga(s(X), s(Y), Z)
The set Q consists of the following terms:
sub_in_gga(x0, x1)
U6_gga(x0, x1, x2)
We have to consider all (P,Q,R)-chains.
(55) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
DIV_S_IN_GGA(s(X), Y) → U3_GGA(X, Y, sub_in_gga(X, Y))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:
POL(0) = 0
POL(DIV_S_IN_GGA(x1, x2)) = x1
POL(U3_GGA(x1, x2, x3)) = x3
POL(U6_gga(x1, x2, x3)) = x3
POL(s(x1)) = 1 + x1
POL(sub_in_gga(x1, x2)) = x1
POL(sub_out_gga(x1, x2, x3)) = x3
The following usable rules [FROCOS05] were oriented:
sub_in_gga(s(X), s(Y)) → U6_gga(X, Y, sub_in_gga(X, Y))
sub_in_gga(X, 0) → sub_out_gga(X, 0, X)
U6_gga(X, Y, sub_out_gga(X, Y, Z)) → sub_out_gga(s(X), s(Y), Z)
(56) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U3_GGA(X, Y, sub_out_gga(X, Y, R)) → DIV_S_IN_GGA(R, Y)
The TRS R consists of the following rules:
sub_in_gga(s(X), s(Y)) → U6_gga(X, Y, sub_in_gga(X, Y))
sub_in_gga(X, 0) → sub_out_gga(X, 0, X)
U6_gga(X, Y, sub_out_gga(X, Y, Z)) → sub_out_gga(s(X), s(Y), Z)
The set Q consists of the following terms:
sub_in_gga(x0, x1)
U6_gga(x0, x1, x2)
We have to consider all (P,Q,R)-chains.