(0) Obligation:

Clauses:

minsort([], []).
minsort(L, .(X, L1)) :- ','(min1(X, L), ','(remove(X, L, L2), minsort(L2, L1))).
min1(M, .(X, L)) :- min2(X, M, L).
min2(X, X, []).
min2(X, A, .(M, L)) :- ','(min(X, M, B), min2(B, A, L)).
min(X, Y, X) :- le(X, Y).
min(X, Y, Y) :- gt(X, Y).
remove(N, [], []).
remove(N, .(N, L), L).
remove(N, .(M, L), .(M, L1)) :- ','(notEq(N, M), remove(N, L, L1)).
gt(s(X), s(Y)) :- gt(X, Y).
gt(s(X), 0).
le(s(X), s(Y)) :- le(X, Y).
le(0, s(Y)).
le(0, 0).
notEq(s(X), s(Y)) :- notEq(X, Y).
notEq(s(X), 0).
notEq(0, s(X)).

Queries:

minsort(g,a).

(1) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
minsort_in: (b,f)
min1_in: (f,b)
min2_in: (b,f,b)
min_in: (b,b,f)
le_in: (b,b)
gt_in: (b,b)
remove_in: (b,b,f)
notEq_in: (b,b)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

minsort_in_ga([], []) → minsort_out_ga([], [])
minsort_in_ga(L, .(X, L1)) → U1_ga(L, X, L1, min1_in_ag(X, L))
min1_in_ag(M, .(X, L)) → U4_ag(M, X, L, min2_in_gag(X, M, L))
min2_in_gag(X, X, []) → min2_out_gag(X, X, [])
min2_in_gag(X, A, .(M, L)) → U5_gag(X, A, M, L, min_in_gga(X, M, B))
min_in_gga(X, Y, X) → U7_gga(X, Y, le_in_gg(X, Y))
le_in_gg(s(X), s(Y)) → U12_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg(0, s(Y))
le_in_gg(0, 0) → le_out_gg(0, 0)
U12_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U7_gga(X, Y, le_out_gg(X, Y)) → min_out_gga(X, Y, X)
min_in_gga(X, Y, Y) → U8_gga(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), s(Y)) → U11_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg(s(X), 0)
U11_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))
U8_gga(X, Y, gt_out_gg(X, Y)) → min_out_gga(X, Y, Y)
U5_gag(X, A, M, L, min_out_gga(X, M, B)) → U6_gag(X, A, M, L, min2_in_gag(B, A, L))
U6_gag(X, A, M, L, min2_out_gag(B, A, L)) → min2_out_gag(X, A, .(M, L))
U4_ag(M, X, L, min2_out_gag(X, M, L)) → min1_out_ag(M, .(X, L))
U1_ga(L, X, L1, min1_out_ag(X, L)) → U2_ga(L, X, L1, remove_in_gga(X, L, L2))
remove_in_gga(N, [], []) → remove_out_gga(N, [], [])
remove_in_gga(N, .(N, L), L) → remove_out_gga(N, .(N, L), L)
remove_in_gga(N, .(M, L), .(M, L1)) → U9_gga(N, M, L, L1, notEq_in_gg(N, M))
notEq_in_gg(s(X), s(Y)) → U13_gg(X, Y, notEq_in_gg(X, Y))
notEq_in_gg(s(X), 0) → notEq_out_gg(s(X), 0)
notEq_in_gg(0, s(X)) → notEq_out_gg(0, s(X))
U13_gg(X, Y, notEq_out_gg(X, Y)) → notEq_out_gg(s(X), s(Y))
U9_gga(N, M, L, L1, notEq_out_gg(N, M)) → U10_gga(N, M, L, L1, remove_in_gga(N, L, L1))
U10_gga(N, M, L, L1, remove_out_gga(N, L, L1)) → remove_out_gga(N, .(M, L), .(M, L1))
U2_ga(L, X, L1, remove_out_gga(X, L, L2)) → U3_ga(L, X, L1, minsort_in_ga(L2, L1))
U3_ga(L, X, L1, minsort_out_ga(L2, L1)) → minsort_out_ga(L, .(X, L1))

The argument filtering Pi contains the following mapping:
minsort_in_ga(x1, x2)  =  minsort_in_ga(x1)
[]  =  []
minsort_out_ga(x1, x2)  =  minsort_out_ga(x1, x2)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x1, x4)
min1_in_ag(x1, x2)  =  min1_in_ag(x2)
.(x1, x2)  =  .(x1, x2)
U4_ag(x1, x2, x3, x4)  =  U4_ag(x2, x3, x4)
min2_in_gag(x1, x2, x3)  =  min2_in_gag(x1, x3)
min2_out_gag(x1, x2, x3)  =  min2_out_gag(x1, x2, x3)
U5_gag(x1, x2, x3, x4, x5)  =  U5_gag(x1, x3, x4, x5)
min_in_gga(x1, x2, x3)  =  min_in_gga(x1, x2)
U7_gga(x1, x2, x3)  =  U7_gga(x1, x2, x3)
le_in_gg(x1, x2)  =  le_in_gg(x1, x2)
s(x1)  =  s(x1)
U12_gg(x1, x2, x3)  =  U12_gg(x1, x2, x3)
0  =  0
le_out_gg(x1, x2)  =  le_out_gg(x1, x2)
min_out_gga(x1, x2, x3)  =  min_out_gga(x1, x2, x3)
U8_gga(x1, x2, x3)  =  U8_gga(x1, x2, x3)
gt_in_gg(x1, x2)  =  gt_in_gg(x1, x2)
U11_gg(x1, x2, x3)  =  U11_gg(x1, x2, x3)
gt_out_gg(x1, x2)  =  gt_out_gg(x1, x2)
U6_gag(x1, x2, x3, x4, x5)  =  U6_gag(x1, x3, x4, x5)
min1_out_ag(x1, x2)  =  min1_out_ag(x1, x2)
U2_ga(x1, x2, x3, x4)  =  U2_ga(x1, x2, x4)
remove_in_gga(x1, x2, x3)  =  remove_in_gga(x1, x2)
remove_out_gga(x1, x2, x3)  =  remove_out_gga(x1, x2, x3)
U9_gga(x1, x2, x3, x4, x5)  =  U9_gga(x1, x2, x3, x5)
notEq_in_gg(x1, x2)  =  notEq_in_gg(x1, x2)
U13_gg(x1, x2, x3)  =  U13_gg(x1, x2, x3)
notEq_out_gg(x1, x2)  =  notEq_out_gg(x1, x2)
U10_gga(x1, x2, x3, x4, x5)  =  U10_gga(x1, x2, x3, x5)
U3_ga(x1, x2, x3, x4)  =  U3_ga(x1, x2, x4)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(2) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

minsort_in_ga([], []) → minsort_out_ga([], [])
minsort_in_ga(L, .(X, L1)) → U1_ga(L, X, L1, min1_in_ag(X, L))
min1_in_ag(M, .(X, L)) → U4_ag(M, X, L, min2_in_gag(X, M, L))
min2_in_gag(X, X, []) → min2_out_gag(X, X, [])
min2_in_gag(X, A, .(M, L)) → U5_gag(X, A, M, L, min_in_gga(X, M, B))
min_in_gga(X, Y, X) → U7_gga(X, Y, le_in_gg(X, Y))
le_in_gg(s(X), s(Y)) → U12_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg(0, s(Y))
le_in_gg(0, 0) → le_out_gg(0, 0)
U12_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U7_gga(X, Y, le_out_gg(X, Y)) → min_out_gga(X, Y, X)
min_in_gga(X, Y, Y) → U8_gga(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), s(Y)) → U11_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg(s(X), 0)
U11_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))
U8_gga(X, Y, gt_out_gg(X, Y)) → min_out_gga(X, Y, Y)
U5_gag(X, A, M, L, min_out_gga(X, M, B)) → U6_gag(X, A, M, L, min2_in_gag(B, A, L))
U6_gag(X, A, M, L, min2_out_gag(B, A, L)) → min2_out_gag(X, A, .(M, L))
U4_ag(M, X, L, min2_out_gag(X, M, L)) → min1_out_ag(M, .(X, L))
U1_ga(L, X, L1, min1_out_ag(X, L)) → U2_ga(L, X, L1, remove_in_gga(X, L, L2))
remove_in_gga(N, [], []) → remove_out_gga(N, [], [])
remove_in_gga(N, .(N, L), L) → remove_out_gga(N, .(N, L), L)
remove_in_gga(N, .(M, L), .(M, L1)) → U9_gga(N, M, L, L1, notEq_in_gg(N, M))
notEq_in_gg(s(X), s(Y)) → U13_gg(X, Y, notEq_in_gg(X, Y))
notEq_in_gg(s(X), 0) → notEq_out_gg(s(X), 0)
notEq_in_gg(0, s(X)) → notEq_out_gg(0, s(X))
U13_gg(X, Y, notEq_out_gg(X, Y)) → notEq_out_gg(s(X), s(Y))
U9_gga(N, M, L, L1, notEq_out_gg(N, M)) → U10_gga(N, M, L, L1, remove_in_gga(N, L, L1))
U10_gga(N, M, L, L1, remove_out_gga(N, L, L1)) → remove_out_gga(N, .(M, L), .(M, L1))
U2_ga(L, X, L1, remove_out_gga(X, L, L2)) → U3_ga(L, X, L1, minsort_in_ga(L2, L1))
U3_ga(L, X, L1, minsort_out_ga(L2, L1)) → minsort_out_ga(L, .(X, L1))

The argument filtering Pi contains the following mapping:
minsort_in_ga(x1, x2)  =  minsort_in_ga(x1)
[]  =  []
minsort_out_ga(x1, x2)  =  minsort_out_ga(x1, x2)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x1, x4)
min1_in_ag(x1, x2)  =  min1_in_ag(x2)
.(x1, x2)  =  .(x1, x2)
U4_ag(x1, x2, x3, x4)  =  U4_ag(x2, x3, x4)
min2_in_gag(x1, x2, x3)  =  min2_in_gag(x1, x3)
min2_out_gag(x1, x2, x3)  =  min2_out_gag(x1, x2, x3)
U5_gag(x1, x2, x3, x4, x5)  =  U5_gag(x1, x3, x4, x5)
min_in_gga(x1, x2, x3)  =  min_in_gga(x1, x2)
U7_gga(x1, x2, x3)  =  U7_gga(x1, x2, x3)
le_in_gg(x1, x2)  =  le_in_gg(x1, x2)
s(x1)  =  s(x1)
U12_gg(x1, x2, x3)  =  U12_gg(x1, x2, x3)
0  =  0
le_out_gg(x1, x2)  =  le_out_gg(x1, x2)
min_out_gga(x1, x2, x3)  =  min_out_gga(x1, x2, x3)
U8_gga(x1, x2, x3)  =  U8_gga(x1, x2, x3)
gt_in_gg(x1, x2)  =  gt_in_gg(x1, x2)
U11_gg(x1, x2, x3)  =  U11_gg(x1, x2, x3)
gt_out_gg(x1, x2)  =  gt_out_gg(x1, x2)
U6_gag(x1, x2, x3, x4, x5)  =  U6_gag(x1, x3, x4, x5)
min1_out_ag(x1, x2)  =  min1_out_ag(x1, x2)
U2_ga(x1, x2, x3, x4)  =  U2_ga(x1, x2, x4)
remove_in_gga(x1, x2, x3)  =  remove_in_gga(x1, x2)
remove_out_gga(x1, x2, x3)  =  remove_out_gga(x1, x2, x3)
U9_gga(x1, x2, x3, x4, x5)  =  U9_gga(x1, x2, x3, x5)
notEq_in_gg(x1, x2)  =  notEq_in_gg(x1, x2)
U13_gg(x1, x2, x3)  =  U13_gg(x1, x2, x3)
notEq_out_gg(x1, x2)  =  notEq_out_gg(x1, x2)
U10_gga(x1, x2, x3, x4, x5)  =  U10_gga(x1, x2, x3, x5)
U3_ga(x1, x2, x3, x4)  =  U3_ga(x1, x2, x4)

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

MINSORT_IN_GA(L, .(X, L1)) → U1_GA(L, X, L1, min1_in_ag(X, L))
MINSORT_IN_GA(L, .(X, L1)) → MIN1_IN_AG(X, L)
MIN1_IN_AG(M, .(X, L)) → U4_AG(M, X, L, min2_in_gag(X, M, L))
MIN1_IN_AG(M, .(X, L)) → MIN2_IN_GAG(X, M, L)
MIN2_IN_GAG(X, A, .(M, L)) → U5_GAG(X, A, M, L, min_in_gga(X, M, B))
MIN2_IN_GAG(X, A, .(M, L)) → MIN_IN_GGA(X, M, B)
MIN_IN_GGA(X, Y, X) → U7_GGA(X, Y, le_in_gg(X, Y))
MIN_IN_GGA(X, Y, X) → LE_IN_GG(X, Y)
LE_IN_GG(s(X), s(Y)) → U12_GG(X, Y, le_in_gg(X, Y))
LE_IN_GG(s(X), s(Y)) → LE_IN_GG(X, Y)
MIN_IN_GGA(X, Y, Y) → U8_GGA(X, Y, gt_in_gg(X, Y))
MIN_IN_GGA(X, Y, Y) → GT_IN_GG(X, Y)
GT_IN_GG(s(X), s(Y)) → U11_GG(X, Y, gt_in_gg(X, Y))
GT_IN_GG(s(X), s(Y)) → GT_IN_GG(X, Y)
U5_GAG(X, A, M, L, min_out_gga(X, M, B)) → U6_GAG(X, A, M, L, min2_in_gag(B, A, L))
U5_GAG(X, A, M, L, min_out_gga(X, M, B)) → MIN2_IN_GAG(B, A, L)
U1_GA(L, X, L1, min1_out_ag(X, L)) → U2_GA(L, X, L1, remove_in_gga(X, L, L2))
U1_GA(L, X, L1, min1_out_ag(X, L)) → REMOVE_IN_GGA(X, L, L2)
REMOVE_IN_GGA(N, .(M, L), .(M, L1)) → U9_GGA(N, M, L, L1, notEq_in_gg(N, M))
REMOVE_IN_GGA(N, .(M, L), .(M, L1)) → NOTEQ_IN_GG(N, M)
NOTEQ_IN_GG(s(X), s(Y)) → U13_GG(X, Y, notEq_in_gg(X, Y))
NOTEQ_IN_GG(s(X), s(Y)) → NOTEQ_IN_GG(X, Y)
U9_GGA(N, M, L, L1, notEq_out_gg(N, M)) → U10_GGA(N, M, L, L1, remove_in_gga(N, L, L1))
U9_GGA(N, M, L, L1, notEq_out_gg(N, M)) → REMOVE_IN_GGA(N, L, L1)
U2_GA(L, X, L1, remove_out_gga(X, L, L2)) → U3_GA(L, X, L1, minsort_in_ga(L2, L1))
U2_GA(L, X, L1, remove_out_gga(X, L, L2)) → MINSORT_IN_GA(L2, L1)

The TRS R consists of the following rules:

minsort_in_ga([], []) → minsort_out_ga([], [])
minsort_in_ga(L, .(X, L1)) → U1_ga(L, X, L1, min1_in_ag(X, L))
min1_in_ag(M, .(X, L)) → U4_ag(M, X, L, min2_in_gag(X, M, L))
min2_in_gag(X, X, []) → min2_out_gag(X, X, [])
min2_in_gag(X, A, .(M, L)) → U5_gag(X, A, M, L, min_in_gga(X, M, B))
min_in_gga(X, Y, X) → U7_gga(X, Y, le_in_gg(X, Y))
le_in_gg(s(X), s(Y)) → U12_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg(0, s(Y))
le_in_gg(0, 0) → le_out_gg(0, 0)
U12_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U7_gga(X, Y, le_out_gg(X, Y)) → min_out_gga(X, Y, X)
min_in_gga(X, Y, Y) → U8_gga(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), s(Y)) → U11_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg(s(X), 0)
U11_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))
U8_gga(X, Y, gt_out_gg(X, Y)) → min_out_gga(X, Y, Y)
U5_gag(X, A, M, L, min_out_gga(X, M, B)) → U6_gag(X, A, M, L, min2_in_gag(B, A, L))
U6_gag(X, A, M, L, min2_out_gag(B, A, L)) → min2_out_gag(X, A, .(M, L))
U4_ag(M, X, L, min2_out_gag(X, M, L)) → min1_out_ag(M, .(X, L))
U1_ga(L, X, L1, min1_out_ag(X, L)) → U2_ga(L, X, L1, remove_in_gga(X, L, L2))
remove_in_gga(N, [], []) → remove_out_gga(N, [], [])
remove_in_gga(N, .(N, L), L) → remove_out_gga(N, .(N, L), L)
remove_in_gga(N, .(M, L), .(M, L1)) → U9_gga(N, M, L, L1, notEq_in_gg(N, M))
notEq_in_gg(s(X), s(Y)) → U13_gg(X, Y, notEq_in_gg(X, Y))
notEq_in_gg(s(X), 0) → notEq_out_gg(s(X), 0)
notEq_in_gg(0, s(X)) → notEq_out_gg(0, s(X))
U13_gg(X, Y, notEq_out_gg(X, Y)) → notEq_out_gg(s(X), s(Y))
U9_gga(N, M, L, L1, notEq_out_gg(N, M)) → U10_gga(N, M, L, L1, remove_in_gga(N, L, L1))
U10_gga(N, M, L, L1, remove_out_gga(N, L, L1)) → remove_out_gga(N, .(M, L), .(M, L1))
U2_ga(L, X, L1, remove_out_gga(X, L, L2)) → U3_ga(L, X, L1, minsort_in_ga(L2, L1))
U3_ga(L, X, L1, minsort_out_ga(L2, L1)) → minsort_out_ga(L, .(X, L1))

The argument filtering Pi contains the following mapping:
minsort_in_ga(x1, x2)  =  minsort_in_ga(x1)
[]  =  []
minsort_out_ga(x1, x2)  =  minsort_out_ga(x1, x2)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x1, x4)
min1_in_ag(x1, x2)  =  min1_in_ag(x2)
.(x1, x2)  =  .(x1, x2)
U4_ag(x1, x2, x3, x4)  =  U4_ag(x2, x3, x4)
min2_in_gag(x1, x2, x3)  =  min2_in_gag(x1, x3)
min2_out_gag(x1, x2, x3)  =  min2_out_gag(x1, x2, x3)
U5_gag(x1, x2, x3, x4, x5)  =  U5_gag(x1, x3, x4, x5)
min_in_gga(x1, x2, x3)  =  min_in_gga(x1, x2)
U7_gga(x1, x2, x3)  =  U7_gga(x1, x2, x3)
le_in_gg(x1, x2)  =  le_in_gg(x1, x2)
s(x1)  =  s(x1)
U12_gg(x1, x2, x3)  =  U12_gg(x1, x2, x3)
0  =  0
le_out_gg(x1, x2)  =  le_out_gg(x1, x2)
min_out_gga(x1, x2, x3)  =  min_out_gga(x1, x2, x3)
U8_gga(x1, x2, x3)  =  U8_gga(x1, x2, x3)
gt_in_gg(x1, x2)  =  gt_in_gg(x1, x2)
U11_gg(x1, x2, x3)  =  U11_gg(x1, x2, x3)
gt_out_gg(x1, x2)  =  gt_out_gg(x1, x2)
U6_gag(x1, x2, x3, x4, x5)  =  U6_gag(x1, x3, x4, x5)
min1_out_ag(x1, x2)  =  min1_out_ag(x1, x2)
U2_ga(x1, x2, x3, x4)  =  U2_ga(x1, x2, x4)
remove_in_gga(x1, x2, x3)  =  remove_in_gga(x1, x2)
remove_out_gga(x1, x2, x3)  =  remove_out_gga(x1, x2, x3)
U9_gga(x1, x2, x3, x4, x5)  =  U9_gga(x1, x2, x3, x5)
notEq_in_gg(x1, x2)  =  notEq_in_gg(x1, x2)
U13_gg(x1, x2, x3)  =  U13_gg(x1, x2, x3)
notEq_out_gg(x1, x2)  =  notEq_out_gg(x1, x2)
U10_gga(x1, x2, x3, x4, x5)  =  U10_gga(x1, x2, x3, x5)
U3_ga(x1, x2, x3, x4)  =  U3_ga(x1, x2, x4)
MINSORT_IN_GA(x1, x2)  =  MINSORT_IN_GA(x1)
U1_GA(x1, x2, x3, x4)  =  U1_GA(x1, x4)
MIN1_IN_AG(x1, x2)  =  MIN1_IN_AG(x2)
U4_AG(x1, x2, x3, x4)  =  U4_AG(x2, x3, x4)
MIN2_IN_GAG(x1, x2, x3)  =  MIN2_IN_GAG(x1, x3)
U5_GAG(x1, x2, x3, x4, x5)  =  U5_GAG(x1, x3, x4, x5)
MIN_IN_GGA(x1, x2, x3)  =  MIN_IN_GGA(x1, x2)
U7_GGA(x1, x2, x3)  =  U7_GGA(x1, x2, x3)
LE_IN_GG(x1, x2)  =  LE_IN_GG(x1, x2)
U12_GG(x1, x2, x3)  =  U12_GG(x1, x2, x3)
U8_GGA(x1, x2, x3)  =  U8_GGA(x1, x2, x3)
GT_IN_GG(x1, x2)  =  GT_IN_GG(x1, x2)
U11_GG(x1, x2, x3)  =  U11_GG(x1, x2, x3)
U6_GAG(x1, x2, x3, x4, x5)  =  U6_GAG(x1, x3, x4, x5)
U2_GA(x1, x2, x3, x4)  =  U2_GA(x1, x2, x4)
REMOVE_IN_GGA(x1, x2, x3)  =  REMOVE_IN_GGA(x1, x2)
U9_GGA(x1, x2, x3, x4, x5)  =  U9_GGA(x1, x2, x3, x5)
NOTEQ_IN_GG(x1, x2)  =  NOTEQ_IN_GG(x1, x2)
U13_GG(x1, x2, x3)  =  U13_GG(x1, x2, x3)
U10_GGA(x1, x2, x3, x4, x5)  =  U10_GGA(x1, x2, x3, x5)
U3_GA(x1, x2, x3, x4)  =  U3_GA(x1, x2, x4)

We have to consider all (P,R,Pi)-chains

(4) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MINSORT_IN_GA(L, .(X, L1)) → U1_GA(L, X, L1, min1_in_ag(X, L))
MINSORT_IN_GA(L, .(X, L1)) → MIN1_IN_AG(X, L)
MIN1_IN_AG(M, .(X, L)) → U4_AG(M, X, L, min2_in_gag(X, M, L))
MIN1_IN_AG(M, .(X, L)) → MIN2_IN_GAG(X, M, L)
MIN2_IN_GAG(X, A, .(M, L)) → U5_GAG(X, A, M, L, min_in_gga(X, M, B))
MIN2_IN_GAG(X, A, .(M, L)) → MIN_IN_GGA(X, M, B)
MIN_IN_GGA(X, Y, X) → U7_GGA(X, Y, le_in_gg(X, Y))
MIN_IN_GGA(X, Y, X) → LE_IN_GG(X, Y)
LE_IN_GG(s(X), s(Y)) → U12_GG(X, Y, le_in_gg(X, Y))
LE_IN_GG(s(X), s(Y)) → LE_IN_GG(X, Y)
MIN_IN_GGA(X, Y, Y) → U8_GGA(X, Y, gt_in_gg(X, Y))
MIN_IN_GGA(X, Y, Y) → GT_IN_GG(X, Y)
GT_IN_GG(s(X), s(Y)) → U11_GG(X, Y, gt_in_gg(X, Y))
GT_IN_GG(s(X), s(Y)) → GT_IN_GG(X, Y)
U5_GAG(X, A, M, L, min_out_gga(X, M, B)) → U6_GAG(X, A, M, L, min2_in_gag(B, A, L))
U5_GAG(X, A, M, L, min_out_gga(X, M, B)) → MIN2_IN_GAG(B, A, L)
U1_GA(L, X, L1, min1_out_ag(X, L)) → U2_GA(L, X, L1, remove_in_gga(X, L, L2))
U1_GA(L, X, L1, min1_out_ag(X, L)) → REMOVE_IN_GGA(X, L, L2)
REMOVE_IN_GGA(N, .(M, L), .(M, L1)) → U9_GGA(N, M, L, L1, notEq_in_gg(N, M))
REMOVE_IN_GGA(N, .(M, L), .(M, L1)) → NOTEQ_IN_GG(N, M)
NOTEQ_IN_GG(s(X), s(Y)) → U13_GG(X, Y, notEq_in_gg(X, Y))
NOTEQ_IN_GG(s(X), s(Y)) → NOTEQ_IN_GG(X, Y)
U9_GGA(N, M, L, L1, notEq_out_gg(N, M)) → U10_GGA(N, M, L, L1, remove_in_gga(N, L, L1))
U9_GGA(N, M, L, L1, notEq_out_gg(N, M)) → REMOVE_IN_GGA(N, L, L1)
U2_GA(L, X, L1, remove_out_gga(X, L, L2)) → U3_GA(L, X, L1, minsort_in_ga(L2, L1))
U2_GA(L, X, L1, remove_out_gga(X, L, L2)) → MINSORT_IN_GA(L2, L1)

The TRS R consists of the following rules:

minsort_in_ga([], []) → minsort_out_ga([], [])
minsort_in_ga(L, .(X, L1)) → U1_ga(L, X, L1, min1_in_ag(X, L))
min1_in_ag(M, .(X, L)) → U4_ag(M, X, L, min2_in_gag(X, M, L))
min2_in_gag(X, X, []) → min2_out_gag(X, X, [])
min2_in_gag(X, A, .(M, L)) → U5_gag(X, A, M, L, min_in_gga(X, M, B))
min_in_gga(X, Y, X) → U7_gga(X, Y, le_in_gg(X, Y))
le_in_gg(s(X), s(Y)) → U12_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg(0, s(Y))
le_in_gg(0, 0) → le_out_gg(0, 0)
U12_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U7_gga(X, Y, le_out_gg(X, Y)) → min_out_gga(X, Y, X)
min_in_gga(X, Y, Y) → U8_gga(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), s(Y)) → U11_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg(s(X), 0)
U11_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))
U8_gga(X, Y, gt_out_gg(X, Y)) → min_out_gga(X, Y, Y)
U5_gag(X, A, M, L, min_out_gga(X, M, B)) → U6_gag(X, A, M, L, min2_in_gag(B, A, L))
U6_gag(X, A, M, L, min2_out_gag(B, A, L)) → min2_out_gag(X, A, .(M, L))
U4_ag(M, X, L, min2_out_gag(X, M, L)) → min1_out_ag(M, .(X, L))
U1_ga(L, X, L1, min1_out_ag(X, L)) → U2_ga(L, X, L1, remove_in_gga(X, L, L2))
remove_in_gga(N, [], []) → remove_out_gga(N, [], [])
remove_in_gga(N, .(N, L), L) → remove_out_gga(N, .(N, L), L)
remove_in_gga(N, .(M, L), .(M, L1)) → U9_gga(N, M, L, L1, notEq_in_gg(N, M))
notEq_in_gg(s(X), s(Y)) → U13_gg(X, Y, notEq_in_gg(X, Y))
notEq_in_gg(s(X), 0) → notEq_out_gg(s(X), 0)
notEq_in_gg(0, s(X)) → notEq_out_gg(0, s(X))
U13_gg(X, Y, notEq_out_gg(X, Y)) → notEq_out_gg(s(X), s(Y))
U9_gga(N, M, L, L1, notEq_out_gg(N, M)) → U10_gga(N, M, L, L1, remove_in_gga(N, L, L1))
U10_gga(N, M, L, L1, remove_out_gga(N, L, L1)) → remove_out_gga(N, .(M, L), .(M, L1))
U2_ga(L, X, L1, remove_out_gga(X, L, L2)) → U3_ga(L, X, L1, minsort_in_ga(L2, L1))
U3_ga(L, X, L1, minsort_out_ga(L2, L1)) → minsort_out_ga(L, .(X, L1))

The argument filtering Pi contains the following mapping:
minsort_in_ga(x1, x2)  =  minsort_in_ga(x1)
[]  =  []
minsort_out_ga(x1, x2)  =  minsort_out_ga(x1, x2)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x1, x4)
min1_in_ag(x1, x2)  =  min1_in_ag(x2)
.(x1, x2)  =  .(x1, x2)
U4_ag(x1, x2, x3, x4)  =  U4_ag(x2, x3, x4)
min2_in_gag(x1, x2, x3)  =  min2_in_gag(x1, x3)
min2_out_gag(x1, x2, x3)  =  min2_out_gag(x1, x2, x3)
U5_gag(x1, x2, x3, x4, x5)  =  U5_gag(x1, x3, x4, x5)
min_in_gga(x1, x2, x3)  =  min_in_gga(x1, x2)
U7_gga(x1, x2, x3)  =  U7_gga(x1, x2, x3)
le_in_gg(x1, x2)  =  le_in_gg(x1, x2)
s(x1)  =  s(x1)
U12_gg(x1, x2, x3)  =  U12_gg(x1, x2, x3)
0  =  0
le_out_gg(x1, x2)  =  le_out_gg(x1, x2)
min_out_gga(x1, x2, x3)  =  min_out_gga(x1, x2, x3)
U8_gga(x1, x2, x3)  =  U8_gga(x1, x2, x3)
gt_in_gg(x1, x2)  =  gt_in_gg(x1, x2)
U11_gg(x1, x2, x3)  =  U11_gg(x1, x2, x3)
gt_out_gg(x1, x2)  =  gt_out_gg(x1, x2)
U6_gag(x1, x2, x3, x4, x5)  =  U6_gag(x1, x3, x4, x5)
min1_out_ag(x1, x2)  =  min1_out_ag(x1, x2)
U2_ga(x1, x2, x3, x4)  =  U2_ga(x1, x2, x4)
remove_in_gga(x1, x2, x3)  =  remove_in_gga(x1, x2)
remove_out_gga(x1, x2, x3)  =  remove_out_gga(x1, x2, x3)
U9_gga(x1, x2, x3, x4, x5)  =  U9_gga(x1, x2, x3, x5)
notEq_in_gg(x1, x2)  =  notEq_in_gg(x1, x2)
U13_gg(x1, x2, x3)  =  U13_gg(x1, x2, x3)
notEq_out_gg(x1, x2)  =  notEq_out_gg(x1, x2)
U10_gga(x1, x2, x3, x4, x5)  =  U10_gga(x1, x2, x3, x5)
U3_ga(x1, x2, x3, x4)  =  U3_ga(x1, x2, x4)
MINSORT_IN_GA(x1, x2)  =  MINSORT_IN_GA(x1)
U1_GA(x1, x2, x3, x4)  =  U1_GA(x1, x4)
MIN1_IN_AG(x1, x2)  =  MIN1_IN_AG(x2)
U4_AG(x1, x2, x3, x4)  =  U4_AG(x2, x3, x4)
MIN2_IN_GAG(x1, x2, x3)  =  MIN2_IN_GAG(x1, x3)
U5_GAG(x1, x2, x3, x4, x5)  =  U5_GAG(x1, x3, x4, x5)
MIN_IN_GGA(x1, x2, x3)  =  MIN_IN_GGA(x1, x2)
U7_GGA(x1, x2, x3)  =  U7_GGA(x1, x2, x3)
LE_IN_GG(x1, x2)  =  LE_IN_GG(x1, x2)
U12_GG(x1, x2, x3)  =  U12_GG(x1, x2, x3)
U8_GGA(x1, x2, x3)  =  U8_GGA(x1, x2, x3)
GT_IN_GG(x1, x2)  =  GT_IN_GG(x1, x2)
U11_GG(x1, x2, x3)  =  U11_GG(x1, x2, x3)
U6_GAG(x1, x2, x3, x4, x5)  =  U6_GAG(x1, x3, x4, x5)
U2_GA(x1, x2, x3, x4)  =  U2_GA(x1, x2, x4)
REMOVE_IN_GGA(x1, x2, x3)  =  REMOVE_IN_GGA(x1, x2)
U9_GGA(x1, x2, x3, x4, x5)  =  U9_GGA(x1, x2, x3, x5)
NOTEQ_IN_GG(x1, x2)  =  NOTEQ_IN_GG(x1, x2)
U13_GG(x1, x2, x3)  =  U13_GG(x1, x2, x3)
U10_GGA(x1, x2, x3, x4, x5)  =  U10_GGA(x1, x2, x3, x5)
U3_GA(x1, x2, x3, x4)  =  U3_GA(x1, x2, x4)

We have to consider all (P,R,Pi)-chains

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 6 SCCs with 16 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

NOTEQ_IN_GG(s(X), s(Y)) → NOTEQ_IN_GG(X, Y)

The TRS R consists of the following rules:

minsort_in_ga([], []) → minsort_out_ga([], [])
minsort_in_ga(L, .(X, L1)) → U1_ga(L, X, L1, min1_in_ag(X, L))
min1_in_ag(M, .(X, L)) → U4_ag(M, X, L, min2_in_gag(X, M, L))
min2_in_gag(X, X, []) → min2_out_gag(X, X, [])
min2_in_gag(X, A, .(M, L)) → U5_gag(X, A, M, L, min_in_gga(X, M, B))
min_in_gga(X, Y, X) → U7_gga(X, Y, le_in_gg(X, Y))
le_in_gg(s(X), s(Y)) → U12_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg(0, s(Y))
le_in_gg(0, 0) → le_out_gg(0, 0)
U12_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U7_gga(X, Y, le_out_gg(X, Y)) → min_out_gga(X, Y, X)
min_in_gga(X, Y, Y) → U8_gga(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), s(Y)) → U11_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg(s(X), 0)
U11_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))
U8_gga(X, Y, gt_out_gg(X, Y)) → min_out_gga(X, Y, Y)
U5_gag(X, A, M, L, min_out_gga(X, M, B)) → U6_gag(X, A, M, L, min2_in_gag(B, A, L))
U6_gag(X, A, M, L, min2_out_gag(B, A, L)) → min2_out_gag(X, A, .(M, L))
U4_ag(M, X, L, min2_out_gag(X, M, L)) → min1_out_ag(M, .(X, L))
U1_ga(L, X, L1, min1_out_ag(X, L)) → U2_ga(L, X, L1, remove_in_gga(X, L, L2))
remove_in_gga(N, [], []) → remove_out_gga(N, [], [])
remove_in_gga(N, .(N, L), L) → remove_out_gga(N, .(N, L), L)
remove_in_gga(N, .(M, L), .(M, L1)) → U9_gga(N, M, L, L1, notEq_in_gg(N, M))
notEq_in_gg(s(X), s(Y)) → U13_gg(X, Y, notEq_in_gg(X, Y))
notEq_in_gg(s(X), 0) → notEq_out_gg(s(X), 0)
notEq_in_gg(0, s(X)) → notEq_out_gg(0, s(X))
U13_gg(X, Y, notEq_out_gg(X, Y)) → notEq_out_gg(s(X), s(Y))
U9_gga(N, M, L, L1, notEq_out_gg(N, M)) → U10_gga(N, M, L, L1, remove_in_gga(N, L, L1))
U10_gga(N, M, L, L1, remove_out_gga(N, L, L1)) → remove_out_gga(N, .(M, L), .(M, L1))
U2_ga(L, X, L1, remove_out_gga(X, L, L2)) → U3_ga(L, X, L1, minsort_in_ga(L2, L1))
U3_ga(L, X, L1, minsort_out_ga(L2, L1)) → minsort_out_ga(L, .(X, L1))

The argument filtering Pi contains the following mapping:
minsort_in_ga(x1, x2)  =  minsort_in_ga(x1)
[]  =  []
minsort_out_ga(x1, x2)  =  minsort_out_ga(x1, x2)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x1, x4)
min1_in_ag(x1, x2)  =  min1_in_ag(x2)
.(x1, x2)  =  .(x1, x2)
U4_ag(x1, x2, x3, x4)  =  U4_ag(x2, x3, x4)
min2_in_gag(x1, x2, x3)  =  min2_in_gag(x1, x3)
min2_out_gag(x1, x2, x3)  =  min2_out_gag(x1, x2, x3)
U5_gag(x1, x2, x3, x4, x5)  =  U5_gag(x1, x3, x4, x5)
min_in_gga(x1, x2, x3)  =  min_in_gga(x1, x2)
U7_gga(x1, x2, x3)  =  U7_gga(x1, x2, x3)
le_in_gg(x1, x2)  =  le_in_gg(x1, x2)
s(x1)  =  s(x1)
U12_gg(x1, x2, x3)  =  U12_gg(x1, x2, x3)
0  =  0
le_out_gg(x1, x2)  =  le_out_gg(x1, x2)
min_out_gga(x1, x2, x3)  =  min_out_gga(x1, x2, x3)
U8_gga(x1, x2, x3)  =  U8_gga(x1, x2, x3)
gt_in_gg(x1, x2)  =  gt_in_gg(x1, x2)
U11_gg(x1, x2, x3)  =  U11_gg(x1, x2, x3)
gt_out_gg(x1, x2)  =  gt_out_gg(x1, x2)
U6_gag(x1, x2, x3, x4, x5)  =  U6_gag(x1, x3, x4, x5)
min1_out_ag(x1, x2)  =  min1_out_ag(x1, x2)
U2_ga(x1, x2, x3, x4)  =  U2_ga(x1, x2, x4)
remove_in_gga(x1, x2, x3)  =  remove_in_gga(x1, x2)
remove_out_gga(x1, x2, x3)  =  remove_out_gga(x1, x2, x3)
U9_gga(x1, x2, x3, x4, x5)  =  U9_gga(x1, x2, x3, x5)
notEq_in_gg(x1, x2)  =  notEq_in_gg(x1, x2)
U13_gg(x1, x2, x3)  =  U13_gg(x1, x2, x3)
notEq_out_gg(x1, x2)  =  notEq_out_gg(x1, x2)
U10_gga(x1, x2, x3, x4, x5)  =  U10_gga(x1, x2, x3, x5)
U3_ga(x1, x2, x3, x4)  =  U3_ga(x1, x2, x4)
NOTEQ_IN_GG(x1, x2)  =  NOTEQ_IN_GG(x1, x2)

We have to consider all (P,R,Pi)-chains

(8) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

NOTEQ_IN_GG(s(X), s(Y)) → NOTEQ_IN_GG(X, Y)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains

(10) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

NOTEQ_IN_GG(s(X), s(Y)) → NOTEQ_IN_GG(X, Y)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(12) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • NOTEQ_IN_GG(s(X), s(Y)) → NOTEQ_IN_GG(X, Y)
    The graph contains the following edges 1 > 1, 2 > 2

(13) TRUE

(14) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

U9_GGA(N, M, L, L1, notEq_out_gg(N, M)) → REMOVE_IN_GGA(N, L, L1)
REMOVE_IN_GGA(N, .(M, L), .(M, L1)) → U9_GGA(N, M, L, L1, notEq_in_gg(N, M))

The TRS R consists of the following rules:

minsort_in_ga([], []) → minsort_out_ga([], [])
minsort_in_ga(L, .(X, L1)) → U1_ga(L, X, L1, min1_in_ag(X, L))
min1_in_ag(M, .(X, L)) → U4_ag(M, X, L, min2_in_gag(X, M, L))
min2_in_gag(X, X, []) → min2_out_gag(X, X, [])
min2_in_gag(X, A, .(M, L)) → U5_gag(X, A, M, L, min_in_gga(X, M, B))
min_in_gga(X, Y, X) → U7_gga(X, Y, le_in_gg(X, Y))
le_in_gg(s(X), s(Y)) → U12_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg(0, s(Y))
le_in_gg(0, 0) → le_out_gg(0, 0)
U12_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U7_gga(X, Y, le_out_gg(X, Y)) → min_out_gga(X, Y, X)
min_in_gga(X, Y, Y) → U8_gga(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), s(Y)) → U11_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg(s(X), 0)
U11_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))
U8_gga(X, Y, gt_out_gg(X, Y)) → min_out_gga(X, Y, Y)
U5_gag(X, A, M, L, min_out_gga(X, M, B)) → U6_gag(X, A, M, L, min2_in_gag(B, A, L))
U6_gag(X, A, M, L, min2_out_gag(B, A, L)) → min2_out_gag(X, A, .(M, L))
U4_ag(M, X, L, min2_out_gag(X, M, L)) → min1_out_ag(M, .(X, L))
U1_ga(L, X, L1, min1_out_ag(X, L)) → U2_ga(L, X, L1, remove_in_gga(X, L, L2))
remove_in_gga(N, [], []) → remove_out_gga(N, [], [])
remove_in_gga(N, .(N, L), L) → remove_out_gga(N, .(N, L), L)
remove_in_gga(N, .(M, L), .(M, L1)) → U9_gga(N, M, L, L1, notEq_in_gg(N, M))
notEq_in_gg(s(X), s(Y)) → U13_gg(X, Y, notEq_in_gg(X, Y))
notEq_in_gg(s(X), 0) → notEq_out_gg(s(X), 0)
notEq_in_gg(0, s(X)) → notEq_out_gg(0, s(X))
U13_gg(X, Y, notEq_out_gg(X, Y)) → notEq_out_gg(s(X), s(Y))
U9_gga(N, M, L, L1, notEq_out_gg(N, M)) → U10_gga(N, M, L, L1, remove_in_gga(N, L, L1))
U10_gga(N, M, L, L1, remove_out_gga(N, L, L1)) → remove_out_gga(N, .(M, L), .(M, L1))
U2_ga(L, X, L1, remove_out_gga(X, L, L2)) → U3_ga(L, X, L1, minsort_in_ga(L2, L1))
U3_ga(L, X, L1, minsort_out_ga(L2, L1)) → minsort_out_ga(L, .(X, L1))

The argument filtering Pi contains the following mapping:
minsort_in_ga(x1, x2)  =  minsort_in_ga(x1)
[]  =  []
minsort_out_ga(x1, x2)  =  minsort_out_ga(x1, x2)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x1, x4)
min1_in_ag(x1, x2)  =  min1_in_ag(x2)
.(x1, x2)  =  .(x1, x2)
U4_ag(x1, x2, x3, x4)  =  U4_ag(x2, x3, x4)
min2_in_gag(x1, x2, x3)  =  min2_in_gag(x1, x3)
min2_out_gag(x1, x2, x3)  =  min2_out_gag(x1, x2, x3)
U5_gag(x1, x2, x3, x4, x5)  =  U5_gag(x1, x3, x4, x5)
min_in_gga(x1, x2, x3)  =  min_in_gga(x1, x2)
U7_gga(x1, x2, x3)  =  U7_gga(x1, x2, x3)
le_in_gg(x1, x2)  =  le_in_gg(x1, x2)
s(x1)  =  s(x1)
U12_gg(x1, x2, x3)  =  U12_gg(x1, x2, x3)
0  =  0
le_out_gg(x1, x2)  =  le_out_gg(x1, x2)
min_out_gga(x1, x2, x3)  =  min_out_gga(x1, x2, x3)
U8_gga(x1, x2, x3)  =  U8_gga(x1, x2, x3)
gt_in_gg(x1, x2)  =  gt_in_gg(x1, x2)
U11_gg(x1, x2, x3)  =  U11_gg(x1, x2, x3)
gt_out_gg(x1, x2)  =  gt_out_gg(x1, x2)
U6_gag(x1, x2, x3, x4, x5)  =  U6_gag(x1, x3, x4, x5)
min1_out_ag(x1, x2)  =  min1_out_ag(x1, x2)
U2_ga(x1, x2, x3, x4)  =  U2_ga(x1, x2, x4)
remove_in_gga(x1, x2, x3)  =  remove_in_gga(x1, x2)
remove_out_gga(x1, x2, x3)  =  remove_out_gga(x1, x2, x3)
U9_gga(x1, x2, x3, x4, x5)  =  U9_gga(x1, x2, x3, x5)
notEq_in_gg(x1, x2)  =  notEq_in_gg(x1, x2)
U13_gg(x1, x2, x3)  =  U13_gg(x1, x2, x3)
notEq_out_gg(x1, x2)  =  notEq_out_gg(x1, x2)
U10_gga(x1, x2, x3, x4, x5)  =  U10_gga(x1, x2, x3, x5)
U3_ga(x1, x2, x3, x4)  =  U3_ga(x1, x2, x4)
REMOVE_IN_GGA(x1, x2, x3)  =  REMOVE_IN_GGA(x1, x2)
U9_GGA(x1, x2, x3, x4, x5)  =  U9_GGA(x1, x2, x3, x5)

We have to consider all (P,R,Pi)-chains

(15) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

U9_GGA(N, M, L, L1, notEq_out_gg(N, M)) → REMOVE_IN_GGA(N, L, L1)
REMOVE_IN_GGA(N, .(M, L), .(M, L1)) → U9_GGA(N, M, L, L1, notEq_in_gg(N, M))

The TRS R consists of the following rules:

notEq_in_gg(s(X), s(Y)) → U13_gg(X, Y, notEq_in_gg(X, Y))
notEq_in_gg(s(X), 0) → notEq_out_gg(s(X), 0)
notEq_in_gg(0, s(X)) → notEq_out_gg(0, s(X))
U13_gg(X, Y, notEq_out_gg(X, Y)) → notEq_out_gg(s(X), s(Y))

The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
s(x1)  =  s(x1)
0  =  0
notEq_in_gg(x1, x2)  =  notEq_in_gg(x1, x2)
U13_gg(x1, x2, x3)  =  U13_gg(x1, x2, x3)
notEq_out_gg(x1, x2)  =  notEq_out_gg(x1, x2)
REMOVE_IN_GGA(x1, x2, x3)  =  REMOVE_IN_GGA(x1, x2)
U9_GGA(x1, x2, x3, x4, x5)  =  U9_GGA(x1, x2, x3, x5)

We have to consider all (P,R,Pi)-chains

(17) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U9_GGA(N, M, L, notEq_out_gg(N, M)) → REMOVE_IN_GGA(N, L)
REMOVE_IN_GGA(N, .(M, L)) → U9_GGA(N, M, L, notEq_in_gg(N, M))

The TRS R consists of the following rules:

notEq_in_gg(s(X), s(Y)) → U13_gg(X, Y, notEq_in_gg(X, Y))
notEq_in_gg(s(X), 0) → notEq_out_gg(s(X), 0)
notEq_in_gg(0, s(X)) → notEq_out_gg(0, s(X))
U13_gg(X, Y, notEq_out_gg(X, Y)) → notEq_out_gg(s(X), s(Y))

The set Q consists of the following terms:

notEq_in_gg(x0, x1)
U13_gg(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(19) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • REMOVE_IN_GGA(N, .(M, L)) → U9_GGA(N, M, L, notEq_in_gg(N, M))
    The graph contains the following edges 1 >= 1, 2 > 2, 2 > 3

  • U9_GGA(N, M, L, notEq_out_gg(N, M)) → REMOVE_IN_GGA(N, L)
    The graph contains the following edges 1 >= 1, 4 > 1, 3 >= 2

(20) TRUE

(21) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

GT_IN_GG(s(X), s(Y)) → GT_IN_GG(X, Y)

The TRS R consists of the following rules:

minsort_in_ga([], []) → minsort_out_ga([], [])
minsort_in_ga(L, .(X, L1)) → U1_ga(L, X, L1, min1_in_ag(X, L))
min1_in_ag(M, .(X, L)) → U4_ag(M, X, L, min2_in_gag(X, M, L))
min2_in_gag(X, X, []) → min2_out_gag(X, X, [])
min2_in_gag(X, A, .(M, L)) → U5_gag(X, A, M, L, min_in_gga(X, M, B))
min_in_gga(X, Y, X) → U7_gga(X, Y, le_in_gg(X, Y))
le_in_gg(s(X), s(Y)) → U12_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg(0, s(Y))
le_in_gg(0, 0) → le_out_gg(0, 0)
U12_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U7_gga(X, Y, le_out_gg(X, Y)) → min_out_gga(X, Y, X)
min_in_gga(X, Y, Y) → U8_gga(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), s(Y)) → U11_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg(s(X), 0)
U11_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))
U8_gga(X, Y, gt_out_gg(X, Y)) → min_out_gga(X, Y, Y)
U5_gag(X, A, M, L, min_out_gga(X, M, B)) → U6_gag(X, A, M, L, min2_in_gag(B, A, L))
U6_gag(X, A, M, L, min2_out_gag(B, A, L)) → min2_out_gag(X, A, .(M, L))
U4_ag(M, X, L, min2_out_gag(X, M, L)) → min1_out_ag(M, .(X, L))
U1_ga(L, X, L1, min1_out_ag(X, L)) → U2_ga(L, X, L1, remove_in_gga(X, L, L2))
remove_in_gga(N, [], []) → remove_out_gga(N, [], [])
remove_in_gga(N, .(N, L), L) → remove_out_gga(N, .(N, L), L)
remove_in_gga(N, .(M, L), .(M, L1)) → U9_gga(N, M, L, L1, notEq_in_gg(N, M))
notEq_in_gg(s(X), s(Y)) → U13_gg(X, Y, notEq_in_gg(X, Y))
notEq_in_gg(s(X), 0) → notEq_out_gg(s(X), 0)
notEq_in_gg(0, s(X)) → notEq_out_gg(0, s(X))
U13_gg(X, Y, notEq_out_gg(X, Y)) → notEq_out_gg(s(X), s(Y))
U9_gga(N, M, L, L1, notEq_out_gg(N, M)) → U10_gga(N, M, L, L1, remove_in_gga(N, L, L1))
U10_gga(N, M, L, L1, remove_out_gga(N, L, L1)) → remove_out_gga(N, .(M, L), .(M, L1))
U2_ga(L, X, L1, remove_out_gga(X, L, L2)) → U3_ga(L, X, L1, minsort_in_ga(L2, L1))
U3_ga(L, X, L1, minsort_out_ga(L2, L1)) → minsort_out_ga(L, .(X, L1))

The argument filtering Pi contains the following mapping:
minsort_in_ga(x1, x2)  =  minsort_in_ga(x1)
[]  =  []
minsort_out_ga(x1, x2)  =  minsort_out_ga(x1, x2)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x1, x4)
min1_in_ag(x1, x2)  =  min1_in_ag(x2)
.(x1, x2)  =  .(x1, x2)
U4_ag(x1, x2, x3, x4)  =  U4_ag(x2, x3, x4)
min2_in_gag(x1, x2, x3)  =  min2_in_gag(x1, x3)
min2_out_gag(x1, x2, x3)  =  min2_out_gag(x1, x2, x3)
U5_gag(x1, x2, x3, x4, x5)  =  U5_gag(x1, x3, x4, x5)
min_in_gga(x1, x2, x3)  =  min_in_gga(x1, x2)
U7_gga(x1, x2, x3)  =  U7_gga(x1, x2, x3)
le_in_gg(x1, x2)  =  le_in_gg(x1, x2)
s(x1)  =  s(x1)
U12_gg(x1, x2, x3)  =  U12_gg(x1, x2, x3)
0  =  0
le_out_gg(x1, x2)  =  le_out_gg(x1, x2)
min_out_gga(x1, x2, x3)  =  min_out_gga(x1, x2, x3)
U8_gga(x1, x2, x3)  =  U8_gga(x1, x2, x3)
gt_in_gg(x1, x2)  =  gt_in_gg(x1, x2)
U11_gg(x1, x2, x3)  =  U11_gg(x1, x2, x3)
gt_out_gg(x1, x2)  =  gt_out_gg(x1, x2)
U6_gag(x1, x2, x3, x4, x5)  =  U6_gag(x1, x3, x4, x5)
min1_out_ag(x1, x2)  =  min1_out_ag(x1, x2)
U2_ga(x1, x2, x3, x4)  =  U2_ga(x1, x2, x4)
remove_in_gga(x1, x2, x3)  =  remove_in_gga(x1, x2)
remove_out_gga(x1, x2, x3)  =  remove_out_gga(x1, x2, x3)
U9_gga(x1, x2, x3, x4, x5)  =  U9_gga(x1, x2, x3, x5)
notEq_in_gg(x1, x2)  =  notEq_in_gg(x1, x2)
U13_gg(x1, x2, x3)  =  U13_gg(x1, x2, x3)
notEq_out_gg(x1, x2)  =  notEq_out_gg(x1, x2)
U10_gga(x1, x2, x3, x4, x5)  =  U10_gga(x1, x2, x3, x5)
U3_ga(x1, x2, x3, x4)  =  U3_ga(x1, x2, x4)
GT_IN_GG(x1, x2)  =  GT_IN_GG(x1, x2)

We have to consider all (P,R,Pi)-chains

(22) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(23) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

GT_IN_GG(s(X), s(Y)) → GT_IN_GG(X, Y)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains

(24) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

GT_IN_GG(s(X), s(Y)) → GT_IN_GG(X, Y)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(26) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • GT_IN_GG(s(X), s(Y)) → GT_IN_GG(X, Y)
    The graph contains the following edges 1 > 1, 2 > 2

(27) TRUE

(28) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LE_IN_GG(s(X), s(Y)) → LE_IN_GG(X, Y)

The TRS R consists of the following rules:

minsort_in_ga([], []) → minsort_out_ga([], [])
minsort_in_ga(L, .(X, L1)) → U1_ga(L, X, L1, min1_in_ag(X, L))
min1_in_ag(M, .(X, L)) → U4_ag(M, X, L, min2_in_gag(X, M, L))
min2_in_gag(X, X, []) → min2_out_gag(X, X, [])
min2_in_gag(X, A, .(M, L)) → U5_gag(X, A, M, L, min_in_gga(X, M, B))
min_in_gga(X, Y, X) → U7_gga(X, Y, le_in_gg(X, Y))
le_in_gg(s(X), s(Y)) → U12_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg(0, s(Y))
le_in_gg(0, 0) → le_out_gg(0, 0)
U12_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U7_gga(X, Y, le_out_gg(X, Y)) → min_out_gga(X, Y, X)
min_in_gga(X, Y, Y) → U8_gga(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), s(Y)) → U11_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg(s(X), 0)
U11_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))
U8_gga(X, Y, gt_out_gg(X, Y)) → min_out_gga(X, Y, Y)
U5_gag(X, A, M, L, min_out_gga(X, M, B)) → U6_gag(X, A, M, L, min2_in_gag(B, A, L))
U6_gag(X, A, M, L, min2_out_gag(B, A, L)) → min2_out_gag(X, A, .(M, L))
U4_ag(M, X, L, min2_out_gag(X, M, L)) → min1_out_ag(M, .(X, L))
U1_ga(L, X, L1, min1_out_ag(X, L)) → U2_ga(L, X, L1, remove_in_gga(X, L, L2))
remove_in_gga(N, [], []) → remove_out_gga(N, [], [])
remove_in_gga(N, .(N, L), L) → remove_out_gga(N, .(N, L), L)
remove_in_gga(N, .(M, L), .(M, L1)) → U9_gga(N, M, L, L1, notEq_in_gg(N, M))
notEq_in_gg(s(X), s(Y)) → U13_gg(X, Y, notEq_in_gg(X, Y))
notEq_in_gg(s(X), 0) → notEq_out_gg(s(X), 0)
notEq_in_gg(0, s(X)) → notEq_out_gg(0, s(X))
U13_gg(X, Y, notEq_out_gg(X, Y)) → notEq_out_gg(s(X), s(Y))
U9_gga(N, M, L, L1, notEq_out_gg(N, M)) → U10_gga(N, M, L, L1, remove_in_gga(N, L, L1))
U10_gga(N, M, L, L1, remove_out_gga(N, L, L1)) → remove_out_gga(N, .(M, L), .(M, L1))
U2_ga(L, X, L1, remove_out_gga(X, L, L2)) → U3_ga(L, X, L1, minsort_in_ga(L2, L1))
U3_ga(L, X, L1, minsort_out_ga(L2, L1)) → minsort_out_ga(L, .(X, L1))

The argument filtering Pi contains the following mapping:
minsort_in_ga(x1, x2)  =  minsort_in_ga(x1)
[]  =  []
minsort_out_ga(x1, x2)  =  minsort_out_ga(x1, x2)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x1, x4)
min1_in_ag(x1, x2)  =  min1_in_ag(x2)
.(x1, x2)  =  .(x1, x2)
U4_ag(x1, x2, x3, x4)  =  U4_ag(x2, x3, x4)
min2_in_gag(x1, x2, x3)  =  min2_in_gag(x1, x3)
min2_out_gag(x1, x2, x3)  =  min2_out_gag(x1, x2, x3)
U5_gag(x1, x2, x3, x4, x5)  =  U5_gag(x1, x3, x4, x5)
min_in_gga(x1, x2, x3)  =  min_in_gga(x1, x2)
U7_gga(x1, x2, x3)  =  U7_gga(x1, x2, x3)
le_in_gg(x1, x2)  =  le_in_gg(x1, x2)
s(x1)  =  s(x1)
U12_gg(x1, x2, x3)  =  U12_gg(x1, x2, x3)
0  =  0
le_out_gg(x1, x2)  =  le_out_gg(x1, x2)
min_out_gga(x1, x2, x3)  =  min_out_gga(x1, x2, x3)
U8_gga(x1, x2, x3)  =  U8_gga(x1, x2, x3)
gt_in_gg(x1, x2)  =  gt_in_gg(x1, x2)
U11_gg(x1, x2, x3)  =  U11_gg(x1, x2, x3)
gt_out_gg(x1, x2)  =  gt_out_gg(x1, x2)
U6_gag(x1, x2, x3, x4, x5)  =  U6_gag(x1, x3, x4, x5)
min1_out_ag(x1, x2)  =  min1_out_ag(x1, x2)
U2_ga(x1, x2, x3, x4)  =  U2_ga(x1, x2, x4)
remove_in_gga(x1, x2, x3)  =  remove_in_gga(x1, x2)
remove_out_gga(x1, x2, x3)  =  remove_out_gga(x1, x2, x3)
U9_gga(x1, x2, x3, x4, x5)  =  U9_gga(x1, x2, x3, x5)
notEq_in_gg(x1, x2)  =  notEq_in_gg(x1, x2)
U13_gg(x1, x2, x3)  =  U13_gg(x1, x2, x3)
notEq_out_gg(x1, x2)  =  notEq_out_gg(x1, x2)
U10_gga(x1, x2, x3, x4, x5)  =  U10_gga(x1, x2, x3, x5)
U3_ga(x1, x2, x3, x4)  =  U3_ga(x1, x2, x4)
LE_IN_GG(x1, x2)  =  LE_IN_GG(x1, x2)

We have to consider all (P,R,Pi)-chains

(29) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(30) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LE_IN_GG(s(X), s(Y)) → LE_IN_GG(X, Y)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains

(31) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(32) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LE_IN_GG(s(X), s(Y)) → LE_IN_GG(X, Y)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(33) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LE_IN_GG(s(X), s(Y)) → LE_IN_GG(X, Y)
    The graph contains the following edges 1 > 1, 2 > 2

(34) TRUE

(35) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

U5_GAG(X, A, M, L, min_out_gga(X, M, B)) → MIN2_IN_GAG(B, A, L)
MIN2_IN_GAG(X, A, .(M, L)) → U5_GAG(X, A, M, L, min_in_gga(X, M, B))

The TRS R consists of the following rules:

minsort_in_ga([], []) → minsort_out_ga([], [])
minsort_in_ga(L, .(X, L1)) → U1_ga(L, X, L1, min1_in_ag(X, L))
min1_in_ag(M, .(X, L)) → U4_ag(M, X, L, min2_in_gag(X, M, L))
min2_in_gag(X, X, []) → min2_out_gag(X, X, [])
min2_in_gag(X, A, .(M, L)) → U5_gag(X, A, M, L, min_in_gga(X, M, B))
min_in_gga(X, Y, X) → U7_gga(X, Y, le_in_gg(X, Y))
le_in_gg(s(X), s(Y)) → U12_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg(0, s(Y))
le_in_gg(0, 0) → le_out_gg(0, 0)
U12_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U7_gga(X, Y, le_out_gg(X, Y)) → min_out_gga(X, Y, X)
min_in_gga(X, Y, Y) → U8_gga(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), s(Y)) → U11_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg(s(X), 0)
U11_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))
U8_gga(X, Y, gt_out_gg(X, Y)) → min_out_gga(X, Y, Y)
U5_gag(X, A, M, L, min_out_gga(X, M, B)) → U6_gag(X, A, M, L, min2_in_gag(B, A, L))
U6_gag(X, A, M, L, min2_out_gag(B, A, L)) → min2_out_gag(X, A, .(M, L))
U4_ag(M, X, L, min2_out_gag(X, M, L)) → min1_out_ag(M, .(X, L))
U1_ga(L, X, L1, min1_out_ag(X, L)) → U2_ga(L, X, L1, remove_in_gga(X, L, L2))
remove_in_gga(N, [], []) → remove_out_gga(N, [], [])
remove_in_gga(N, .(N, L), L) → remove_out_gga(N, .(N, L), L)
remove_in_gga(N, .(M, L), .(M, L1)) → U9_gga(N, M, L, L1, notEq_in_gg(N, M))
notEq_in_gg(s(X), s(Y)) → U13_gg(X, Y, notEq_in_gg(X, Y))
notEq_in_gg(s(X), 0) → notEq_out_gg(s(X), 0)
notEq_in_gg(0, s(X)) → notEq_out_gg(0, s(X))
U13_gg(X, Y, notEq_out_gg(X, Y)) → notEq_out_gg(s(X), s(Y))
U9_gga(N, M, L, L1, notEq_out_gg(N, M)) → U10_gga(N, M, L, L1, remove_in_gga(N, L, L1))
U10_gga(N, M, L, L1, remove_out_gga(N, L, L1)) → remove_out_gga(N, .(M, L), .(M, L1))
U2_ga(L, X, L1, remove_out_gga(X, L, L2)) → U3_ga(L, X, L1, minsort_in_ga(L2, L1))
U3_ga(L, X, L1, minsort_out_ga(L2, L1)) → minsort_out_ga(L, .(X, L1))

The argument filtering Pi contains the following mapping:
minsort_in_ga(x1, x2)  =  minsort_in_ga(x1)
[]  =  []
minsort_out_ga(x1, x2)  =  minsort_out_ga(x1, x2)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x1, x4)
min1_in_ag(x1, x2)  =  min1_in_ag(x2)
.(x1, x2)  =  .(x1, x2)
U4_ag(x1, x2, x3, x4)  =  U4_ag(x2, x3, x4)
min2_in_gag(x1, x2, x3)  =  min2_in_gag(x1, x3)
min2_out_gag(x1, x2, x3)  =  min2_out_gag(x1, x2, x3)
U5_gag(x1, x2, x3, x4, x5)  =  U5_gag(x1, x3, x4, x5)
min_in_gga(x1, x2, x3)  =  min_in_gga(x1, x2)
U7_gga(x1, x2, x3)  =  U7_gga(x1, x2, x3)
le_in_gg(x1, x2)  =  le_in_gg(x1, x2)
s(x1)  =  s(x1)
U12_gg(x1, x2, x3)  =  U12_gg(x1, x2, x3)
0  =  0
le_out_gg(x1, x2)  =  le_out_gg(x1, x2)
min_out_gga(x1, x2, x3)  =  min_out_gga(x1, x2, x3)
U8_gga(x1, x2, x3)  =  U8_gga(x1, x2, x3)
gt_in_gg(x1, x2)  =  gt_in_gg(x1, x2)
U11_gg(x1, x2, x3)  =  U11_gg(x1, x2, x3)
gt_out_gg(x1, x2)  =  gt_out_gg(x1, x2)
U6_gag(x1, x2, x3, x4, x5)  =  U6_gag(x1, x3, x4, x5)
min1_out_ag(x1, x2)  =  min1_out_ag(x1, x2)
U2_ga(x1, x2, x3, x4)  =  U2_ga(x1, x2, x4)
remove_in_gga(x1, x2, x3)  =  remove_in_gga(x1, x2)
remove_out_gga(x1, x2, x3)  =  remove_out_gga(x1, x2, x3)
U9_gga(x1, x2, x3, x4, x5)  =  U9_gga(x1, x2, x3, x5)
notEq_in_gg(x1, x2)  =  notEq_in_gg(x1, x2)
U13_gg(x1, x2, x3)  =  U13_gg(x1, x2, x3)
notEq_out_gg(x1, x2)  =  notEq_out_gg(x1, x2)
U10_gga(x1, x2, x3, x4, x5)  =  U10_gga(x1, x2, x3, x5)
U3_ga(x1, x2, x3, x4)  =  U3_ga(x1, x2, x4)
MIN2_IN_GAG(x1, x2, x3)  =  MIN2_IN_GAG(x1, x3)
U5_GAG(x1, x2, x3, x4, x5)  =  U5_GAG(x1, x3, x4, x5)

We have to consider all (P,R,Pi)-chains

(36) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(37) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

U5_GAG(X, A, M, L, min_out_gga(X, M, B)) → MIN2_IN_GAG(B, A, L)
MIN2_IN_GAG(X, A, .(M, L)) → U5_GAG(X, A, M, L, min_in_gga(X, M, B))

The TRS R consists of the following rules:

min_in_gga(X, Y, X) → U7_gga(X, Y, le_in_gg(X, Y))
min_in_gga(X, Y, Y) → U8_gga(X, Y, gt_in_gg(X, Y))
U7_gga(X, Y, le_out_gg(X, Y)) → min_out_gga(X, Y, X)
U8_gga(X, Y, gt_out_gg(X, Y)) → min_out_gga(X, Y, Y)
le_in_gg(s(X), s(Y)) → U12_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg(0, s(Y))
le_in_gg(0, 0) → le_out_gg(0, 0)
gt_in_gg(s(X), s(Y)) → U11_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg(s(X), 0)
U12_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U11_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))

The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
min_in_gga(x1, x2, x3)  =  min_in_gga(x1, x2)
U7_gga(x1, x2, x3)  =  U7_gga(x1, x2, x3)
le_in_gg(x1, x2)  =  le_in_gg(x1, x2)
s(x1)  =  s(x1)
U12_gg(x1, x2, x3)  =  U12_gg(x1, x2, x3)
0  =  0
le_out_gg(x1, x2)  =  le_out_gg(x1, x2)
min_out_gga(x1, x2, x3)  =  min_out_gga(x1, x2, x3)
U8_gga(x1, x2, x3)  =  U8_gga(x1, x2, x3)
gt_in_gg(x1, x2)  =  gt_in_gg(x1, x2)
U11_gg(x1, x2, x3)  =  U11_gg(x1, x2, x3)
gt_out_gg(x1, x2)  =  gt_out_gg(x1, x2)
MIN2_IN_GAG(x1, x2, x3)  =  MIN2_IN_GAG(x1, x3)
U5_GAG(x1, x2, x3, x4, x5)  =  U5_GAG(x1, x3, x4, x5)

We have to consider all (P,R,Pi)-chains

(38) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(39) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U5_GAG(X, M, L, min_out_gga(X, M, B)) → MIN2_IN_GAG(B, L)
MIN2_IN_GAG(X, .(M, L)) → U5_GAG(X, M, L, min_in_gga(X, M))

The TRS R consists of the following rules:

min_in_gga(X, Y) → U7_gga(X, Y, le_in_gg(X, Y))
min_in_gga(X, Y) → U8_gga(X, Y, gt_in_gg(X, Y))
U7_gga(X, Y, le_out_gg(X, Y)) → min_out_gga(X, Y, X)
U8_gga(X, Y, gt_out_gg(X, Y)) → min_out_gga(X, Y, Y)
le_in_gg(s(X), s(Y)) → U12_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg(0, s(Y))
le_in_gg(0, 0) → le_out_gg(0, 0)
gt_in_gg(s(X), s(Y)) → U11_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg(s(X), 0)
U12_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U11_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))

The set Q consists of the following terms:

min_in_gga(x0, x1)
U7_gga(x0, x1, x2)
U8_gga(x0, x1, x2)
le_in_gg(x0, x1)
gt_in_gg(x0, x1)
U12_gg(x0, x1, x2)
U11_gg(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(40) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • MIN2_IN_GAG(X, .(M, L)) → U5_GAG(X, M, L, min_in_gga(X, M))
    The graph contains the following edges 1 >= 1, 2 > 2, 2 > 3

  • U5_GAG(X, M, L, min_out_gga(X, M, B)) → MIN2_IN_GAG(B, L)
    The graph contains the following edges 4 > 1, 3 >= 2

(41) TRUE

(42) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

U1_GA(L, X, L1, min1_out_ag(X, L)) → U2_GA(L, X, L1, remove_in_gga(X, L, L2))
U2_GA(L, X, L1, remove_out_gga(X, L, L2)) → MINSORT_IN_GA(L2, L1)
MINSORT_IN_GA(L, .(X, L1)) → U1_GA(L, X, L1, min1_in_ag(X, L))

The TRS R consists of the following rules:

minsort_in_ga([], []) → minsort_out_ga([], [])
minsort_in_ga(L, .(X, L1)) → U1_ga(L, X, L1, min1_in_ag(X, L))
min1_in_ag(M, .(X, L)) → U4_ag(M, X, L, min2_in_gag(X, M, L))
min2_in_gag(X, X, []) → min2_out_gag(X, X, [])
min2_in_gag(X, A, .(M, L)) → U5_gag(X, A, M, L, min_in_gga(X, M, B))
min_in_gga(X, Y, X) → U7_gga(X, Y, le_in_gg(X, Y))
le_in_gg(s(X), s(Y)) → U12_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg(0, s(Y))
le_in_gg(0, 0) → le_out_gg(0, 0)
U12_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U7_gga(X, Y, le_out_gg(X, Y)) → min_out_gga(X, Y, X)
min_in_gga(X, Y, Y) → U8_gga(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), s(Y)) → U11_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg(s(X), 0)
U11_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))
U8_gga(X, Y, gt_out_gg(X, Y)) → min_out_gga(X, Y, Y)
U5_gag(X, A, M, L, min_out_gga(X, M, B)) → U6_gag(X, A, M, L, min2_in_gag(B, A, L))
U6_gag(X, A, M, L, min2_out_gag(B, A, L)) → min2_out_gag(X, A, .(M, L))
U4_ag(M, X, L, min2_out_gag(X, M, L)) → min1_out_ag(M, .(X, L))
U1_ga(L, X, L1, min1_out_ag(X, L)) → U2_ga(L, X, L1, remove_in_gga(X, L, L2))
remove_in_gga(N, [], []) → remove_out_gga(N, [], [])
remove_in_gga(N, .(N, L), L) → remove_out_gga(N, .(N, L), L)
remove_in_gga(N, .(M, L), .(M, L1)) → U9_gga(N, M, L, L1, notEq_in_gg(N, M))
notEq_in_gg(s(X), s(Y)) → U13_gg(X, Y, notEq_in_gg(X, Y))
notEq_in_gg(s(X), 0) → notEq_out_gg(s(X), 0)
notEq_in_gg(0, s(X)) → notEq_out_gg(0, s(X))
U13_gg(X, Y, notEq_out_gg(X, Y)) → notEq_out_gg(s(X), s(Y))
U9_gga(N, M, L, L1, notEq_out_gg(N, M)) → U10_gga(N, M, L, L1, remove_in_gga(N, L, L1))
U10_gga(N, M, L, L1, remove_out_gga(N, L, L1)) → remove_out_gga(N, .(M, L), .(M, L1))
U2_ga(L, X, L1, remove_out_gga(X, L, L2)) → U3_ga(L, X, L1, minsort_in_ga(L2, L1))
U3_ga(L, X, L1, minsort_out_ga(L2, L1)) → minsort_out_ga(L, .(X, L1))

The argument filtering Pi contains the following mapping:
minsort_in_ga(x1, x2)  =  minsort_in_ga(x1)
[]  =  []
minsort_out_ga(x1, x2)  =  minsort_out_ga(x1, x2)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x1, x4)
min1_in_ag(x1, x2)  =  min1_in_ag(x2)
.(x1, x2)  =  .(x1, x2)
U4_ag(x1, x2, x3, x4)  =  U4_ag(x2, x3, x4)
min2_in_gag(x1, x2, x3)  =  min2_in_gag(x1, x3)
min2_out_gag(x1, x2, x3)  =  min2_out_gag(x1, x2, x3)
U5_gag(x1, x2, x3, x4, x5)  =  U5_gag(x1, x3, x4, x5)
min_in_gga(x1, x2, x3)  =  min_in_gga(x1, x2)
U7_gga(x1, x2, x3)  =  U7_gga(x1, x2, x3)
le_in_gg(x1, x2)  =  le_in_gg(x1, x2)
s(x1)  =  s(x1)
U12_gg(x1, x2, x3)  =  U12_gg(x1, x2, x3)
0  =  0
le_out_gg(x1, x2)  =  le_out_gg(x1, x2)
min_out_gga(x1, x2, x3)  =  min_out_gga(x1, x2, x3)
U8_gga(x1, x2, x3)  =  U8_gga(x1, x2, x3)
gt_in_gg(x1, x2)  =  gt_in_gg(x1, x2)
U11_gg(x1, x2, x3)  =  U11_gg(x1, x2, x3)
gt_out_gg(x1, x2)  =  gt_out_gg(x1, x2)
U6_gag(x1, x2, x3, x4, x5)  =  U6_gag(x1, x3, x4, x5)
min1_out_ag(x1, x2)  =  min1_out_ag(x1, x2)
U2_ga(x1, x2, x3, x4)  =  U2_ga(x1, x2, x4)
remove_in_gga(x1, x2, x3)  =  remove_in_gga(x1, x2)
remove_out_gga(x1, x2, x3)  =  remove_out_gga(x1, x2, x3)
U9_gga(x1, x2, x3, x4, x5)  =  U9_gga(x1, x2, x3, x5)
notEq_in_gg(x1, x2)  =  notEq_in_gg(x1, x2)
U13_gg(x1, x2, x3)  =  U13_gg(x1, x2, x3)
notEq_out_gg(x1, x2)  =  notEq_out_gg(x1, x2)
U10_gga(x1, x2, x3, x4, x5)  =  U10_gga(x1, x2, x3, x5)
U3_ga(x1, x2, x3, x4)  =  U3_ga(x1, x2, x4)
MINSORT_IN_GA(x1, x2)  =  MINSORT_IN_GA(x1)
U1_GA(x1, x2, x3, x4)  =  U1_GA(x1, x4)
U2_GA(x1, x2, x3, x4)  =  U2_GA(x1, x2, x4)

We have to consider all (P,R,Pi)-chains

(43) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(44) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

U1_GA(L, X, L1, min1_out_ag(X, L)) → U2_GA(L, X, L1, remove_in_gga(X, L, L2))
U2_GA(L, X, L1, remove_out_gga(X, L, L2)) → MINSORT_IN_GA(L2, L1)
MINSORT_IN_GA(L, .(X, L1)) → U1_GA(L, X, L1, min1_in_ag(X, L))

The TRS R consists of the following rules:

remove_in_gga(N, [], []) → remove_out_gga(N, [], [])
remove_in_gga(N, .(N, L), L) → remove_out_gga(N, .(N, L), L)
remove_in_gga(N, .(M, L), .(M, L1)) → U9_gga(N, M, L, L1, notEq_in_gg(N, M))
min1_in_ag(M, .(X, L)) → U4_ag(M, X, L, min2_in_gag(X, M, L))
U9_gga(N, M, L, L1, notEq_out_gg(N, M)) → U10_gga(N, M, L, L1, remove_in_gga(N, L, L1))
U4_ag(M, X, L, min2_out_gag(X, M, L)) → min1_out_ag(M, .(X, L))
notEq_in_gg(s(X), s(Y)) → U13_gg(X, Y, notEq_in_gg(X, Y))
notEq_in_gg(s(X), 0) → notEq_out_gg(s(X), 0)
notEq_in_gg(0, s(X)) → notEq_out_gg(0, s(X))
U10_gga(N, M, L, L1, remove_out_gga(N, L, L1)) → remove_out_gga(N, .(M, L), .(M, L1))
min2_in_gag(X, X, []) → min2_out_gag(X, X, [])
min2_in_gag(X, A, .(M, L)) → U5_gag(X, A, M, L, min_in_gga(X, M, B))
U13_gg(X, Y, notEq_out_gg(X, Y)) → notEq_out_gg(s(X), s(Y))
U5_gag(X, A, M, L, min_out_gga(X, M, B)) → U6_gag(X, A, M, L, min2_in_gag(B, A, L))
min_in_gga(X, Y, X) → U7_gga(X, Y, le_in_gg(X, Y))
min_in_gga(X, Y, Y) → U8_gga(X, Y, gt_in_gg(X, Y))
U6_gag(X, A, M, L, min2_out_gag(B, A, L)) → min2_out_gag(X, A, .(M, L))
U7_gga(X, Y, le_out_gg(X, Y)) → min_out_gga(X, Y, X)
U8_gga(X, Y, gt_out_gg(X, Y)) → min_out_gga(X, Y, Y)
le_in_gg(s(X), s(Y)) → U12_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg(0, s(Y))
le_in_gg(0, 0) → le_out_gg(0, 0)
gt_in_gg(s(X), s(Y)) → U11_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg(s(X), 0)
U12_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U11_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))

The argument filtering Pi contains the following mapping:
[]  =  []
min1_in_ag(x1, x2)  =  min1_in_ag(x2)
.(x1, x2)  =  .(x1, x2)
U4_ag(x1, x2, x3, x4)  =  U4_ag(x2, x3, x4)
min2_in_gag(x1, x2, x3)  =  min2_in_gag(x1, x3)
min2_out_gag(x1, x2, x3)  =  min2_out_gag(x1, x2, x3)
U5_gag(x1, x2, x3, x4, x5)  =  U5_gag(x1, x3, x4, x5)
min_in_gga(x1, x2, x3)  =  min_in_gga(x1, x2)
U7_gga(x1, x2, x3)  =  U7_gga(x1, x2, x3)
le_in_gg(x1, x2)  =  le_in_gg(x1, x2)
s(x1)  =  s(x1)
U12_gg(x1, x2, x3)  =  U12_gg(x1, x2, x3)
0  =  0
le_out_gg(x1, x2)  =  le_out_gg(x1, x2)
min_out_gga(x1, x2, x3)  =  min_out_gga(x1, x2, x3)
U8_gga(x1, x2, x3)  =  U8_gga(x1, x2, x3)
gt_in_gg(x1, x2)  =  gt_in_gg(x1, x2)
U11_gg(x1, x2, x3)  =  U11_gg(x1, x2, x3)
gt_out_gg(x1, x2)  =  gt_out_gg(x1, x2)
U6_gag(x1, x2, x3, x4, x5)  =  U6_gag(x1, x3, x4, x5)
min1_out_ag(x1, x2)  =  min1_out_ag(x1, x2)
remove_in_gga(x1, x2, x3)  =  remove_in_gga(x1, x2)
remove_out_gga(x1, x2, x3)  =  remove_out_gga(x1, x2, x3)
U9_gga(x1, x2, x3, x4, x5)  =  U9_gga(x1, x2, x3, x5)
notEq_in_gg(x1, x2)  =  notEq_in_gg(x1, x2)
U13_gg(x1, x2, x3)  =  U13_gg(x1, x2, x3)
notEq_out_gg(x1, x2)  =  notEq_out_gg(x1, x2)
U10_gga(x1, x2, x3, x4, x5)  =  U10_gga(x1, x2, x3, x5)
MINSORT_IN_GA(x1, x2)  =  MINSORT_IN_GA(x1)
U1_GA(x1, x2, x3, x4)  =  U1_GA(x1, x4)
U2_GA(x1, x2, x3, x4)  =  U2_GA(x1, x2, x4)

We have to consider all (P,R,Pi)-chains

(45) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(46) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U1_GA(L, min1_out_ag(X, L)) → U2_GA(L, X, remove_in_gga(X, L))
U2_GA(L, X, remove_out_gga(X, L, L2)) → MINSORT_IN_GA(L2)
MINSORT_IN_GA(L) → U1_GA(L, min1_in_ag(L))

The TRS R consists of the following rules:

remove_in_gga(N, []) → remove_out_gga(N, [], [])
remove_in_gga(N, .(N, L)) → remove_out_gga(N, .(N, L), L)
remove_in_gga(N, .(M, L)) → U9_gga(N, M, L, notEq_in_gg(N, M))
min1_in_ag(.(X, L)) → U4_ag(X, L, min2_in_gag(X, L))
U9_gga(N, M, L, notEq_out_gg(N, M)) → U10_gga(N, M, L, remove_in_gga(N, L))
U4_ag(X, L, min2_out_gag(X, M, L)) → min1_out_ag(M, .(X, L))
notEq_in_gg(s(X), s(Y)) → U13_gg(X, Y, notEq_in_gg(X, Y))
notEq_in_gg(s(X), 0) → notEq_out_gg(s(X), 0)
notEq_in_gg(0, s(X)) → notEq_out_gg(0, s(X))
U10_gga(N, M, L, remove_out_gga(N, L, L1)) → remove_out_gga(N, .(M, L), .(M, L1))
min2_in_gag(X, []) → min2_out_gag(X, X, [])
min2_in_gag(X, .(M, L)) → U5_gag(X, M, L, min_in_gga(X, M))
U13_gg(X, Y, notEq_out_gg(X, Y)) → notEq_out_gg(s(X), s(Y))
U5_gag(X, M, L, min_out_gga(X, M, B)) → U6_gag(X, M, L, min2_in_gag(B, L))
min_in_gga(X, Y) → U7_gga(X, Y, le_in_gg(X, Y))
min_in_gga(X, Y) → U8_gga(X, Y, gt_in_gg(X, Y))
U6_gag(X, M, L, min2_out_gag(B, A, L)) → min2_out_gag(X, A, .(M, L))
U7_gga(X, Y, le_out_gg(X, Y)) → min_out_gga(X, Y, X)
U8_gga(X, Y, gt_out_gg(X, Y)) → min_out_gga(X, Y, Y)
le_in_gg(s(X), s(Y)) → U12_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg(0, s(Y))
le_in_gg(0, 0) → le_out_gg(0, 0)
gt_in_gg(s(X), s(Y)) → U11_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg(s(X), 0)
U12_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U11_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))

The set Q consists of the following terms:

remove_in_gga(x0, x1)
min1_in_ag(x0)
U9_gga(x0, x1, x2, x3)
U4_ag(x0, x1, x2)
notEq_in_gg(x0, x1)
U10_gga(x0, x1, x2, x3)
min2_in_gag(x0, x1)
U13_gg(x0, x1, x2)
U5_gag(x0, x1, x2, x3)
min_in_gga(x0, x1)
U6_gag(x0, x1, x2, x3)
U7_gga(x0, x1, x2)
U8_gga(x0, x1, x2)
le_in_gg(x0, x1)
gt_in_gg(x0, x1)
U12_gg(x0, x1, x2)
U11_gg(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(47) Narrowing (SOUND transformation)

By narrowing [LPAR04] the rule U1_GA(L, min1_out_ag(X, L)) → U2_GA(L, X, remove_in_gga(X, L)) at position [2] we obtained the following new rules [LPAR04]:

U1_GA([], min1_out_ag(x0, [])) → U2_GA([], x0, remove_out_gga(x0, [], []))
U1_GA(.(x0, x1), min1_out_ag(x0, .(x0, x1))) → U2_GA(.(x0, x1), x0, remove_out_gga(x0, .(x0, x1), x1))
U1_GA(.(x1, x2), min1_out_ag(x0, .(x1, x2))) → U2_GA(.(x1, x2), x0, U9_gga(x0, x1, x2, notEq_in_gg(x0, x1)))

(48) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U2_GA(L, X, remove_out_gga(X, L, L2)) → MINSORT_IN_GA(L2)
MINSORT_IN_GA(L) → U1_GA(L, min1_in_ag(L))
U1_GA([], min1_out_ag(x0, [])) → U2_GA([], x0, remove_out_gga(x0, [], []))
U1_GA(.(x0, x1), min1_out_ag(x0, .(x0, x1))) → U2_GA(.(x0, x1), x0, remove_out_gga(x0, .(x0, x1), x1))
U1_GA(.(x1, x2), min1_out_ag(x0, .(x1, x2))) → U2_GA(.(x1, x2), x0, U9_gga(x0, x1, x2, notEq_in_gg(x0, x1)))

The TRS R consists of the following rules:

remove_in_gga(N, []) → remove_out_gga(N, [], [])
remove_in_gga(N, .(N, L)) → remove_out_gga(N, .(N, L), L)
remove_in_gga(N, .(M, L)) → U9_gga(N, M, L, notEq_in_gg(N, M))
min1_in_ag(.(X, L)) → U4_ag(X, L, min2_in_gag(X, L))
U9_gga(N, M, L, notEq_out_gg(N, M)) → U10_gga(N, M, L, remove_in_gga(N, L))
U4_ag(X, L, min2_out_gag(X, M, L)) → min1_out_ag(M, .(X, L))
notEq_in_gg(s(X), s(Y)) → U13_gg(X, Y, notEq_in_gg(X, Y))
notEq_in_gg(s(X), 0) → notEq_out_gg(s(X), 0)
notEq_in_gg(0, s(X)) → notEq_out_gg(0, s(X))
U10_gga(N, M, L, remove_out_gga(N, L, L1)) → remove_out_gga(N, .(M, L), .(M, L1))
min2_in_gag(X, []) → min2_out_gag(X, X, [])
min2_in_gag(X, .(M, L)) → U5_gag(X, M, L, min_in_gga(X, M))
U13_gg(X, Y, notEq_out_gg(X, Y)) → notEq_out_gg(s(X), s(Y))
U5_gag(X, M, L, min_out_gga(X, M, B)) → U6_gag(X, M, L, min2_in_gag(B, L))
min_in_gga(X, Y) → U7_gga(X, Y, le_in_gg(X, Y))
min_in_gga(X, Y) → U8_gga(X, Y, gt_in_gg(X, Y))
U6_gag(X, M, L, min2_out_gag(B, A, L)) → min2_out_gag(X, A, .(M, L))
U7_gga(X, Y, le_out_gg(X, Y)) → min_out_gga(X, Y, X)
U8_gga(X, Y, gt_out_gg(X, Y)) → min_out_gga(X, Y, Y)
le_in_gg(s(X), s(Y)) → U12_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg(0, s(Y))
le_in_gg(0, 0) → le_out_gg(0, 0)
gt_in_gg(s(X), s(Y)) → U11_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg(s(X), 0)
U12_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U11_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))

The set Q consists of the following terms:

remove_in_gga(x0, x1)
min1_in_ag(x0)
U9_gga(x0, x1, x2, x3)
U4_ag(x0, x1, x2)
notEq_in_gg(x0, x1)
U10_gga(x0, x1, x2, x3)
min2_in_gag(x0, x1)
U13_gg(x0, x1, x2)
U5_gag(x0, x1, x2, x3)
min_in_gga(x0, x1)
U6_gag(x0, x1, x2, x3)
U7_gga(x0, x1, x2)
U8_gga(x0, x1, x2)
le_in_gg(x0, x1)
gt_in_gg(x0, x1)
U12_gg(x0, x1, x2)
U11_gg(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(49) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(50) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINSORT_IN_GA(L) → U1_GA(L, min1_in_ag(L))
U1_GA(.(x0, x1), min1_out_ag(x0, .(x0, x1))) → U2_GA(.(x0, x1), x0, remove_out_gga(x0, .(x0, x1), x1))
U2_GA(L, X, remove_out_gga(X, L, L2)) → MINSORT_IN_GA(L2)
U1_GA(.(x1, x2), min1_out_ag(x0, .(x1, x2))) → U2_GA(.(x1, x2), x0, U9_gga(x0, x1, x2, notEq_in_gg(x0, x1)))

The TRS R consists of the following rules:

remove_in_gga(N, []) → remove_out_gga(N, [], [])
remove_in_gga(N, .(N, L)) → remove_out_gga(N, .(N, L), L)
remove_in_gga(N, .(M, L)) → U9_gga(N, M, L, notEq_in_gg(N, M))
min1_in_ag(.(X, L)) → U4_ag(X, L, min2_in_gag(X, L))
U9_gga(N, M, L, notEq_out_gg(N, M)) → U10_gga(N, M, L, remove_in_gga(N, L))
U4_ag(X, L, min2_out_gag(X, M, L)) → min1_out_ag(M, .(X, L))
notEq_in_gg(s(X), s(Y)) → U13_gg(X, Y, notEq_in_gg(X, Y))
notEq_in_gg(s(X), 0) → notEq_out_gg(s(X), 0)
notEq_in_gg(0, s(X)) → notEq_out_gg(0, s(X))
U10_gga(N, M, L, remove_out_gga(N, L, L1)) → remove_out_gga(N, .(M, L), .(M, L1))
min2_in_gag(X, []) → min2_out_gag(X, X, [])
min2_in_gag(X, .(M, L)) → U5_gag(X, M, L, min_in_gga(X, M))
U13_gg(X, Y, notEq_out_gg(X, Y)) → notEq_out_gg(s(X), s(Y))
U5_gag(X, M, L, min_out_gga(X, M, B)) → U6_gag(X, M, L, min2_in_gag(B, L))
min_in_gga(X, Y) → U7_gga(X, Y, le_in_gg(X, Y))
min_in_gga(X, Y) → U8_gga(X, Y, gt_in_gg(X, Y))
U6_gag(X, M, L, min2_out_gag(B, A, L)) → min2_out_gag(X, A, .(M, L))
U7_gga(X, Y, le_out_gg(X, Y)) → min_out_gga(X, Y, X)
U8_gga(X, Y, gt_out_gg(X, Y)) → min_out_gga(X, Y, Y)
le_in_gg(s(X), s(Y)) → U12_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg(0, s(Y))
le_in_gg(0, 0) → le_out_gg(0, 0)
gt_in_gg(s(X), s(Y)) → U11_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg(s(X), 0)
U12_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U11_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))

The set Q consists of the following terms:

remove_in_gga(x0, x1)
min1_in_ag(x0)
U9_gga(x0, x1, x2, x3)
U4_ag(x0, x1, x2)
notEq_in_gg(x0, x1)
U10_gga(x0, x1, x2, x3)
min2_in_gag(x0, x1)
U13_gg(x0, x1, x2)
U5_gag(x0, x1, x2, x3)
min_in_gga(x0, x1)
U6_gag(x0, x1, x2, x3)
U7_gga(x0, x1, x2)
U8_gga(x0, x1, x2)
le_in_gg(x0, x1)
gt_in_gg(x0, x1)
U12_gg(x0, x1, x2)
U11_gg(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(51) Narrowing (SOUND transformation)

By narrowing [LPAR04] the rule MINSORT_IN_GA(L) → U1_GA(L, min1_in_ag(L)) at position [1] we obtained the following new rules [LPAR04]:

MINSORT_IN_GA(.(x0, x1)) → U1_GA(.(x0, x1), U4_ag(x0, x1, min2_in_gag(x0, x1)))

(52) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U1_GA(.(x0, x1), min1_out_ag(x0, .(x0, x1))) → U2_GA(.(x0, x1), x0, remove_out_gga(x0, .(x0, x1), x1))
U2_GA(L, X, remove_out_gga(X, L, L2)) → MINSORT_IN_GA(L2)
U1_GA(.(x1, x2), min1_out_ag(x0, .(x1, x2))) → U2_GA(.(x1, x2), x0, U9_gga(x0, x1, x2, notEq_in_gg(x0, x1)))
MINSORT_IN_GA(.(x0, x1)) → U1_GA(.(x0, x1), U4_ag(x0, x1, min2_in_gag(x0, x1)))

The TRS R consists of the following rules:

remove_in_gga(N, []) → remove_out_gga(N, [], [])
remove_in_gga(N, .(N, L)) → remove_out_gga(N, .(N, L), L)
remove_in_gga(N, .(M, L)) → U9_gga(N, M, L, notEq_in_gg(N, M))
min1_in_ag(.(X, L)) → U4_ag(X, L, min2_in_gag(X, L))
U9_gga(N, M, L, notEq_out_gg(N, M)) → U10_gga(N, M, L, remove_in_gga(N, L))
U4_ag(X, L, min2_out_gag(X, M, L)) → min1_out_ag(M, .(X, L))
notEq_in_gg(s(X), s(Y)) → U13_gg(X, Y, notEq_in_gg(X, Y))
notEq_in_gg(s(X), 0) → notEq_out_gg(s(X), 0)
notEq_in_gg(0, s(X)) → notEq_out_gg(0, s(X))
U10_gga(N, M, L, remove_out_gga(N, L, L1)) → remove_out_gga(N, .(M, L), .(M, L1))
min2_in_gag(X, []) → min2_out_gag(X, X, [])
min2_in_gag(X, .(M, L)) → U5_gag(X, M, L, min_in_gga(X, M))
U13_gg(X, Y, notEq_out_gg(X, Y)) → notEq_out_gg(s(X), s(Y))
U5_gag(X, M, L, min_out_gga(X, M, B)) → U6_gag(X, M, L, min2_in_gag(B, L))
min_in_gga(X, Y) → U7_gga(X, Y, le_in_gg(X, Y))
min_in_gga(X, Y) → U8_gga(X, Y, gt_in_gg(X, Y))
U6_gag(X, M, L, min2_out_gag(B, A, L)) → min2_out_gag(X, A, .(M, L))
U7_gga(X, Y, le_out_gg(X, Y)) → min_out_gga(X, Y, X)
U8_gga(X, Y, gt_out_gg(X, Y)) → min_out_gga(X, Y, Y)
le_in_gg(s(X), s(Y)) → U12_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg(0, s(Y))
le_in_gg(0, 0) → le_out_gg(0, 0)
gt_in_gg(s(X), s(Y)) → U11_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg(s(X), 0)
U12_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U11_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))

The set Q consists of the following terms:

remove_in_gga(x0, x1)
min1_in_ag(x0)
U9_gga(x0, x1, x2, x3)
U4_ag(x0, x1, x2)
notEq_in_gg(x0, x1)
U10_gga(x0, x1, x2, x3)
min2_in_gag(x0, x1)
U13_gg(x0, x1, x2)
U5_gag(x0, x1, x2, x3)
min_in_gga(x0, x1)
U6_gag(x0, x1, x2, x3)
U7_gga(x0, x1, x2)
U8_gga(x0, x1, x2)
le_in_gg(x0, x1)
gt_in_gg(x0, x1)
U12_gg(x0, x1, x2)
U11_gg(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(53) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(54) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U1_GA(.(x0, x1), min1_out_ag(x0, .(x0, x1))) → U2_GA(.(x0, x1), x0, remove_out_gga(x0, .(x0, x1), x1))
U2_GA(L, X, remove_out_gga(X, L, L2)) → MINSORT_IN_GA(L2)
U1_GA(.(x1, x2), min1_out_ag(x0, .(x1, x2))) → U2_GA(.(x1, x2), x0, U9_gga(x0, x1, x2, notEq_in_gg(x0, x1)))
MINSORT_IN_GA(.(x0, x1)) → U1_GA(.(x0, x1), U4_ag(x0, x1, min2_in_gag(x0, x1)))

The TRS R consists of the following rules:

min2_in_gag(X, []) → min2_out_gag(X, X, [])
min2_in_gag(X, .(M, L)) → U5_gag(X, M, L, min_in_gga(X, M))
U4_ag(X, L, min2_out_gag(X, M, L)) → min1_out_ag(M, .(X, L))
min_in_gga(X, Y) → U7_gga(X, Y, le_in_gg(X, Y))
min_in_gga(X, Y) → U8_gga(X, Y, gt_in_gg(X, Y))
U5_gag(X, M, L, min_out_gga(X, M, B)) → U6_gag(X, M, L, min2_in_gag(B, L))
U6_gag(X, M, L, min2_out_gag(B, A, L)) → min2_out_gag(X, A, .(M, L))
gt_in_gg(s(X), s(Y)) → U11_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg(s(X), 0)
U8_gga(X, Y, gt_out_gg(X, Y)) → min_out_gga(X, Y, Y)
U11_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))
le_in_gg(s(X), s(Y)) → U12_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg(0, s(Y))
le_in_gg(0, 0) → le_out_gg(0, 0)
U7_gga(X, Y, le_out_gg(X, Y)) → min_out_gga(X, Y, X)
U12_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
notEq_in_gg(s(X), s(Y)) → U13_gg(X, Y, notEq_in_gg(X, Y))
notEq_in_gg(s(X), 0) → notEq_out_gg(s(X), 0)
notEq_in_gg(0, s(X)) → notEq_out_gg(0, s(X))
U9_gga(N, M, L, notEq_out_gg(N, M)) → U10_gga(N, M, L, remove_in_gga(N, L))
remove_in_gga(N, []) → remove_out_gga(N, [], [])
remove_in_gga(N, .(N, L)) → remove_out_gga(N, .(N, L), L)
remove_in_gga(N, .(M, L)) → U9_gga(N, M, L, notEq_in_gg(N, M))
U10_gga(N, M, L, remove_out_gga(N, L, L1)) → remove_out_gga(N, .(M, L), .(M, L1))
U13_gg(X, Y, notEq_out_gg(X, Y)) → notEq_out_gg(s(X), s(Y))

The set Q consists of the following terms:

remove_in_gga(x0, x1)
min1_in_ag(x0)
U9_gga(x0, x1, x2, x3)
U4_ag(x0, x1, x2)
notEq_in_gg(x0, x1)
U10_gga(x0, x1, x2, x3)
min2_in_gag(x0, x1)
U13_gg(x0, x1, x2)
U5_gag(x0, x1, x2, x3)
min_in_gga(x0, x1)
U6_gag(x0, x1, x2, x3)
U7_gga(x0, x1, x2)
U8_gga(x0, x1, x2)
le_in_gg(x0, x1)
gt_in_gg(x0, x1)
U12_gg(x0, x1, x2)
U11_gg(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(55) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

min1_in_ag(x0)

(56) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U1_GA(.(x0, x1), min1_out_ag(x0, .(x0, x1))) → U2_GA(.(x0, x1), x0, remove_out_gga(x0, .(x0, x1), x1))
U2_GA(L, X, remove_out_gga(X, L, L2)) → MINSORT_IN_GA(L2)
U1_GA(.(x1, x2), min1_out_ag(x0, .(x1, x2))) → U2_GA(.(x1, x2), x0, U9_gga(x0, x1, x2, notEq_in_gg(x0, x1)))
MINSORT_IN_GA(.(x0, x1)) → U1_GA(.(x0, x1), U4_ag(x0, x1, min2_in_gag(x0, x1)))

The TRS R consists of the following rules:

min2_in_gag(X, []) → min2_out_gag(X, X, [])
min2_in_gag(X, .(M, L)) → U5_gag(X, M, L, min_in_gga(X, M))
U4_ag(X, L, min2_out_gag(X, M, L)) → min1_out_ag(M, .(X, L))
min_in_gga(X, Y) → U7_gga(X, Y, le_in_gg(X, Y))
min_in_gga(X, Y) → U8_gga(X, Y, gt_in_gg(X, Y))
U5_gag(X, M, L, min_out_gga(X, M, B)) → U6_gag(X, M, L, min2_in_gag(B, L))
U6_gag(X, M, L, min2_out_gag(B, A, L)) → min2_out_gag(X, A, .(M, L))
gt_in_gg(s(X), s(Y)) → U11_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg(s(X), 0)
U8_gga(X, Y, gt_out_gg(X, Y)) → min_out_gga(X, Y, Y)
U11_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))
le_in_gg(s(X), s(Y)) → U12_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg(0, s(Y))
le_in_gg(0, 0) → le_out_gg(0, 0)
U7_gga(X, Y, le_out_gg(X, Y)) → min_out_gga(X, Y, X)
U12_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
notEq_in_gg(s(X), s(Y)) → U13_gg(X, Y, notEq_in_gg(X, Y))
notEq_in_gg(s(X), 0) → notEq_out_gg(s(X), 0)
notEq_in_gg(0, s(X)) → notEq_out_gg(0, s(X))
U9_gga(N, M, L, notEq_out_gg(N, M)) → U10_gga(N, M, L, remove_in_gga(N, L))
remove_in_gga(N, []) → remove_out_gga(N, [], [])
remove_in_gga(N, .(N, L)) → remove_out_gga(N, .(N, L), L)
remove_in_gga(N, .(M, L)) → U9_gga(N, M, L, notEq_in_gg(N, M))
U10_gga(N, M, L, remove_out_gga(N, L, L1)) → remove_out_gga(N, .(M, L), .(M, L1))
U13_gg(X, Y, notEq_out_gg(X, Y)) → notEq_out_gg(s(X), s(Y))

The set Q consists of the following terms:

remove_in_gga(x0, x1)
U9_gga(x0, x1, x2, x3)
U4_ag(x0, x1, x2)
notEq_in_gg(x0, x1)
U10_gga(x0, x1, x2, x3)
min2_in_gag(x0, x1)
U13_gg(x0, x1, x2)
U5_gag(x0, x1, x2, x3)
min_in_gga(x0, x1)
U6_gag(x0, x1, x2, x3)
U7_gga(x0, x1, x2)
U8_gga(x0, x1, x2)
le_in_gg(x0, x1)
gt_in_gg(x0, x1)
U12_gg(x0, x1, x2)
U11_gg(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(57) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U2_GA(L, X, remove_out_gga(X, L, L2)) → MINSORT_IN_GA(L2) we obtained the following new rules [LPAR04]:

U2_GA(.(z0, z1), z0, remove_out_gga(z0, .(z0, z1), z1)) → MINSORT_IN_GA(z1)
U2_GA(.(z0, z1), z2, remove_out_gga(z2, .(z0, z1), x2)) → MINSORT_IN_GA(x2)

(58) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U1_GA(.(x0, x1), min1_out_ag(x0, .(x0, x1))) → U2_GA(.(x0, x1), x0, remove_out_gga(x0, .(x0, x1), x1))
U1_GA(.(x1, x2), min1_out_ag(x0, .(x1, x2))) → U2_GA(.(x1, x2), x0, U9_gga(x0, x1, x2, notEq_in_gg(x0, x1)))
MINSORT_IN_GA(.(x0, x1)) → U1_GA(.(x0, x1), U4_ag(x0, x1, min2_in_gag(x0, x1)))
U2_GA(.(z0, z1), z0, remove_out_gga(z0, .(z0, z1), z1)) → MINSORT_IN_GA(z1)
U2_GA(.(z0, z1), z2, remove_out_gga(z2, .(z0, z1), x2)) → MINSORT_IN_GA(x2)

The TRS R consists of the following rules:

min2_in_gag(X, []) → min2_out_gag(X, X, [])
min2_in_gag(X, .(M, L)) → U5_gag(X, M, L, min_in_gga(X, M))
U4_ag(X, L, min2_out_gag(X, M, L)) → min1_out_ag(M, .(X, L))
min_in_gga(X, Y) → U7_gga(X, Y, le_in_gg(X, Y))
min_in_gga(X, Y) → U8_gga(X, Y, gt_in_gg(X, Y))
U5_gag(X, M, L, min_out_gga(X, M, B)) → U6_gag(X, M, L, min2_in_gag(B, L))
U6_gag(X, M, L, min2_out_gag(B, A, L)) → min2_out_gag(X, A, .(M, L))
gt_in_gg(s(X), s(Y)) → U11_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg(s(X), 0)
U8_gga(X, Y, gt_out_gg(X, Y)) → min_out_gga(X, Y, Y)
U11_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))
le_in_gg(s(X), s(Y)) → U12_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg(0, s(Y))
le_in_gg(0, 0) → le_out_gg(0, 0)
U7_gga(X, Y, le_out_gg(X, Y)) → min_out_gga(X, Y, X)
U12_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
notEq_in_gg(s(X), s(Y)) → U13_gg(X, Y, notEq_in_gg(X, Y))
notEq_in_gg(s(X), 0) → notEq_out_gg(s(X), 0)
notEq_in_gg(0, s(X)) → notEq_out_gg(0, s(X))
U9_gga(N, M, L, notEq_out_gg(N, M)) → U10_gga(N, M, L, remove_in_gga(N, L))
remove_in_gga(N, []) → remove_out_gga(N, [], [])
remove_in_gga(N, .(N, L)) → remove_out_gga(N, .(N, L), L)
remove_in_gga(N, .(M, L)) → U9_gga(N, M, L, notEq_in_gg(N, M))
U10_gga(N, M, L, remove_out_gga(N, L, L1)) → remove_out_gga(N, .(M, L), .(M, L1))
U13_gg(X, Y, notEq_out_gg(X, Y)) → notEq_out_gg(s(X), s(Y))

The set Q consists of the following terms:

remove_in_gga(x0, x1)
U9_gga(x0, x1, x2, x3)
U4_ag(x0, x1, x2)
notEq_in_gg(x0, x1)
U10_gga(x0, x1, x2, x3)
min2_in_gag(x0, x1)
U13_gg(x0, x1, x2)
U5_gag(x0, x1, x2, x3)
min_in_gga(x0, x1)
U6_gag(x0, x1, x2, x3)
U7_gga(x0, x1, x2)
U8_gga(x0, x1, x2)
le_in_gg(x0, x1)
gt_in_gg(x0, x1)
U12_gg(x0, x1, x2)
U11_gg(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(59) ForwardInstantiation (EQUIVALENT transformation)

By forward instantiating [JAR06] the rule U2_GA(.(z0, z1), z0, remove_out_gga(z0, .(z0, z1), z1)) → MINSORT_IN_GA(z1) we obtained the following new rules [LPAR04]:

U2_GA(.(x0, .(y_0, y_1)), x0, remove_out_gga(x0, .(x0, .(y_0, y_1)), .(y_0, y_1))) → MINSORT_IN_GA(.(y_0, y_1))

(60) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U1_GA(.(x0, x1), min1_out_ag(x0, .(x0, x1))) → U2_GA(.(x0, x1), x0, remove_out_gga(x0, .(x0, x1), x1))
U1_GA(.(x1, x2), min1_out_ag(x0, .(x1, x2))) → U2_GA(.(x1, x2), x0, U9_gga(x0, x1, x2, notEq_in_gg(x0, x1)))
MINSORT_IN_GA(.(x0, x1)) → U1_GA(.(x0, x1), U4_ag(x0, x1, min2_in_gag(x0, x1)))
U2_GA(.(z0, z1), z2, remove_out_gga(z2, .(z0, z1), x2)) → MINSORT_IN_GA(x2)
U2_GA(.(x0, .(y_0, y_1)), x0, remove_out_gga(x0, .(x0, .(y_0, y_1)), .(y_0, y_1))) → MINSORT_IN_GA(.(y_0, y_1))

The TRS R consists of the following rules:

min2_in_gag(X, []) → min2_out_gag(X, X, [])
min2_in_gag(X, .(M, L)) → U5_gag(X, M, L, min_in_gga(X, M))
U4_ag(X, L, min2_out_gag(X, M, L)) → min1_out_ag(M, .(X, L))
min_in_gga(X, Y) → U7_gga(X, Y, le_in_gg(X, Y))
min_in_gga(X, Y) → U8_gga(X, Y, gt_in_gg(X, Y))
U5_gag(X, M, L, min_out_gga(X, M, B)) → U6_gag(X, M, L, min2_in_gag(B, L))
U6_gag(X, M, L, min2_out_gag(B, A, L)) → min2_out_gag(X, A, .(M, L))
gt_in_gg(s(X), s(Y)) → U11_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg(s(X), 0)
U8_gga(X, Y, gt_out_gg(X, Y)) → min_out_gga(X, Y, Y)
U11_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))
le_in_gg(s(X), s(Y)) → U12_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg(0, s(Y))
le_in_gg(0, 0) → le_out_gg(0, 0)
U7_gga(X, Y, le_out_gg(X, Y)) → min_out_gga(X, Y, X)
U12_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
notEq_in_gg(s(X), s(Y)) → U13_gg(X, Y, notEq_in_gg(X, Y))
notEq_in_gg(s(X), 0) → notEq_out_gg(s(X), 0)
notEq_in_gg(0, s(X)) → notEq_out_gg(0, s(X))
U9_gga(N, M, L, notEq_out_gg(N, M)) → U10_gga(N, M, L, remove_in_gga(N, L))
remove_in_gga(N, []) → remove_out_gga(N, [], [])
remove_in_gga(N, .(N, L)) → remove_out_gga(N, .(N, L), L)
remove_in_gga(N, .(M, L)) → U9_gga(N, M, L, notEq_in_gg(N, M))
U10_gga(N, M, L, remove_out_gga(N, L, L1)) → remove_out_gga(N, .(M, L), .(M, L1))
U13_gg(X, Y, notEq_out_gg(X, Y)) → notEq_out_gg(s(X), s(Y))

The set Q consists of the following terms:

remove_in_gga(x0, x1)
U9_gga(x0, x1, x2, x3)
U4_ag(x0, x1, x2)
notEq_in_gg(x0, x1)
U10_gga(x0, x1, x2, x3)
min2_in_gag(x0, x1)
U13_gg(x0, x1, x2)
U5_gag(x0, x1, x2, x3)
min_in_gga(x0, x1)
U6_gag(x0, x1, x2, x3)
U7_gga(x0, x1, x2)
U8_gga(x0, x1, x2)
le_in_gg(x0, x1)
gt_in_gg(x0, x1)
U12_gg(x0, x1, x2)
U11_gg(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(61) ForwardInstantiation (EQUIVALENT transformation)

By forward instantiating [JAR06] the rule U2_GA(.(z0, z1), z2, remove_out_gga(z2, .(z0, z1), x2)) → MINSORT_IN_GA(x2) we obtained the following new rules [LPAR04]:

U2_GA(.(x0, x1), x2, remove_out_gga(x2, .(x0, x1), .(y_0, y_1))) → MINSORT_IN_GA(.(y_0, y_1))

(62) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U1_GA(.(x0, x1), min1_out_ag(x0, .(x0, x1))) → U2_GA(.(x0, x1), x0, remove_out_gga(x0, .(x0, x1), x1))
U1_GA(.(x1, x2), min1_out_ag(x0, .(x1, x2))) → U2_GA(.(x1, x2), x0, U9_gga(x0, x1, x2, notEq_in_gg(x0, x1)))
MINSORT_IN_GA(.(x0, x1)) → U1_GA(.(x0, x1), U4_ag(x0, x1, min2_in_gag(x0, x1)))
U2_GA(.(x0, .(y_0, y_1)), x0, remove_out_gga(x0, .(x0, .(y_0, y_1)), .(y_0, y_1))) → MINSORT_IN_GA(.(y_0, y_1))
U2_GA(.(x0, x1), x2, remove_out_gga(x2, .(x0, x1), .(y_0, y_1))) → MINSORT_IN_GA(.(y_0, y_1))

The TRS R consists of the following rules:

min2_in_gag(X, []) → min2_out_gag(X, X, [])
min2_in_gag(X, .(M, L)) → U5_gag(X, M, L, min_in_gga(X, M))
U4_ag(X, L, min2_out_gag(X, M, L)) → min1_out_ag(M, .(X, L))
min_in_gga(X, Y) → U7_gga(X, Y, le_in_gg(X, Y))
min_in_gga(X, Y) → U8_gga(X, Y, gt_in_gg(X, Y))
U5_gag(X, M, L, min_out_gga(X, M, B)) → U6_gag(X, M, L, min2_in_gag(B, L))
U6_gag(X, M, L, min2_out_gag(B, A, L)) → min2_out_gag(X, A, .(M, L))
gt_in_gg(s(X), s(Y)) → U11_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg(s(X), 0)
U8_gga(X, Y, gt_out_gg(X, Y)) → min_out_gga(X, Y, Y)
U11_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))
le_in_gg(s(X), s(Y)) → U12_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg(0, s(Y))
le_in_gg(0, 0) → le_out_gg(0, 0)
U7_gga(X, Y, le_out_gg(X, Y)) → min_out_gga(X, Y, X)
U12_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
notEq_in_gg(s(X), s(Y)) → U13_gg(X, Y, notEq_in_gg(X, Y))
notEq_in_gg(s(X), 0) → notEq_out_gg(s(X), 0)
notEq_in_gg(0, s(X)) → notEq_out_gg(0, s(X))
U9_gga(N, M, L, notEq_out_gg(N, M)) → U10_gga(N, M, L, remove_in_gga(N, L))
remove_in_gga(N, []) → remove_out_gga(N, [], [])
remove_in_gga(N, .(N, L)) → remove_out_gga(N, .(N, L), L)
remove_in_gga(N, .(M, L)) → U9_gga(N, M, L, notEq_in_gg(N, M))
U10_gga(N, M, L, remove_out_gga(N, L, L1)) → remove_out_gga(N, .(M, L), .(M, L1))
U13_gg(X, Y, notEq_out_gg(X, Y)) → notEq_out_gg(s(X), s(Y))

The set Q consists of the following terms:

remove_in_gga(x0, x1)
U9_gga(x0, x1, x2, x3)
U4_ag(x0, x1, x2)
notEq_in_gg(x0, x1)
U10_gga(x0, x1, x2, x3)
min2_in_gag(x0, x1)
U13_gg(x0, x1, x2)
U5_gag(x0, x1, x2, x3)
min_in_gga(x0, x1)
U6_gag(x0, x1, x2, x3)
U7_gga(x0, x1, x2)
U8_gga(x0, x1, x2)
le_in_gg(x0, x1)
gt_in_gg(x0, x1)
U12_gg(x0, x1, x2)
U11_gg(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(63) ForwardInstantiation (EQUIVALENT transformation)

By forward instantiating [JAR06] the rule U1_GA(.(x0, x1), min1_out_ag(x0, .(x0, x1))) → U2_GA(.(x0, x1), x0, remove_out_gga(x0, .(x0, x1), x1)) we obtained the following new rules [LPAR04]:

U1_GA(.(x0, .(y_1, y_2)), min1_out_ag(x0, .(x0, .(y_1, y_2)))) → U2_GA(.(x0, .(y_1, y_2)), x0, remove_out_gga(x0, .(x0, .(y_1, y_2)), .(y_1, y_2)))

(64) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U1_GA(.(x1, x2), min1_out_ag(x0, .(x1, x2))) → U2_GA(.(x1, x2), x0, U9_gga(x0, x1, x2, notEq_in_gg(x0, x1)))
MINSORT_IN_GA(.(x0, x1)) → U1_GA(.(x0, x1), U4_ag(x0, x1, min2_in_gag(x0, x1)))
U2_GA(.(x0, .(y_0, y_1)), x0, remove_out_gga(x0, .(x0, .(y_0, y_1)), .(y_0, y_1))) → MINSORT_IN_GA(.(y_0, y_1))
U2_GA(.(x0, x1), x2, remove_out_gga(x2, .(x0, x1), .(y_0, y_1))) → MINSORT_IN_GA(.(y_0, y_1))
U1_GA(.(x0, .(y_1, y_2)), min1_out_ag(x0, .(x0, .(y_1, y_2)))) → U2_GA(.(x0, .(y_1, y_2)), x0, remove_out_gga(x0, .(x0, .(y_1, y_2)), .(y_1, y_2)))

The TRS R consists of the following rules:

min2_in_gag(X, []) → min2_out_gag(X, X, [])
min2_in_gag(X, .(M, L)) → U5_gag(X, M, L, min_in_gga(X, M))
U4_ag(X, L, min2_out_gag(X, M, L)) → min1_out_ag(M, .(X, L))
min_in_gga(X, Y) → U7_gga(X, Y, le_in_gg(X, Y))
min_in_gga(X, Y) → U8_gga(X, Y, gt_in_gg(X, Y))
U5_gag(X, M, L, min_out_gga(X, M, B)) → U6_gag(X, M, L, min2_in_gag(B, L))
U6_gag(X, M, L, min2_out_gag(B, A, L)) → min2_out_gag(X, A, .(M, L))
gt_in_gg(s(X), s(Y)) → U11_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg(s(X), 0)
U8_gga(X, Y, gt_out_gg(X, Y)) → min_out_gga(X, Y, Y)
U11_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))
le_in_gg(s(X), s(Y)) → U12_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg(0, s(Y))
le_in_gg(0, 0) → le_out_gg(0, 0)
U7_gga(X, Y, le_out_gg(X, Y)) → min_out_gga(X, Y, X)
U12_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
notEq_in_gg(s(X), s(Y)) → U13_gg(X, Y, notEq_in_gg(X, Y))
notEq_in_gg(s(X), 0) → notEq_out_gg(s(X), 0)
notEq_in_gg(0, s(X)) → notEq_out_gg(0, s(X))
U9_gga(N, M, L, notEq_out_gg(N, M)) → U10_gga(N, M, L, remove_in_gga(N, L))
remove_in_gga(N, []) → remove_out_gga(N, [], [])
remove_in_gga(N, .(N, L)) → remove_out_gga(N, .(N, L), L)
remove_in_gga(N, .(M, L)) → U9_gga(N, M, L, notEq_in_gg(N, M))
U10_gga(N, M, L, remove_out_gga(N, L, L1)) → remove_out_gga(N, .(M, L), .(M, L1))
U13_gg(X, Y, notEq_out_gg(X, Y)) → notEq_out_gg(s(X), s(Y))

The set Q consists of the following terms:

remove_in_gga(x0, x1)
U9_gga(x0, x1, x2, x3)
U4_ag(x0, x1, x2)
notEq_in_gg(x0, x1)
U10_gga(x0, x1, x2, x3)
min2_in_gag(x0, x1)
U13_gg(x0, x1, x2)
U5_gag(x0, x1, x2, x3)
min_in_gga(x0, x1)
U6_gag(x0, x1, x2, x3)
U7_gga(x0, x1, x2)
U8_gga(x0, x1, x2)
le_in_gg(x0, x1)
gt_in_gg(x0, x1)
U12_gg(x0, x1, x2)
U11_gg(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(65) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U1_GA(.(x0, .(y_1, y_2)), min1_out_ag(x0, .(x0, .(y_1, y_2)))) → U2_GA(.(x0, .(y_1, y_2)), x0, remove_out_gga(x0, .(x0, .(y_1, y_2)), .(y_1, y_2)))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(.(x1, x2)) = 1 + x2   
POL(0) = 0   
POL(MINSORT_IN_GA(x1)) = 1 + x1   
POL(U10_gga(x1, x2, x3, x4)) = 1 + x4   
POL(U11_gg(x1, x2, x3)) = 0   
POL(U12_gg(x1, x2, x3)) = 0   
POL(U13_gg(x1, x2, x3)) = 1   
POL(U1_GA(x1, x2)) = 1 + x1   
POL(U2_GA(x1, x2, x3)) = x3   
POL(U4_ag(x1, x2, x3)) = 0   
POL(U5_gag(x1, x2, x3, x4)) = 0   
POL(U6_gag(x1, x2, x3, x4)) = 0   
POL(U7_gga(x1, x2, x3)) = 0   
POL(U8_gga(x1, x2, x3)) = 0   
POL(U9_gga(x1, x2, x3, x4)) = 1 + x3 + x4   
POL([]) = 0   
POL(gt_in_gg(x1, x2)) = 0   
POL(gt_out_gg(x1, x2)) = 0   
POL(le_in_gg(x1, x2)) = 0   
POL(le_out_gg(x1, x2)) = 0   
POL(min1_out_ag(x1, x2)) = 0   
POL(min2_in_gag(x1, x2)) = 0   
POL(min2_out_gag(x1, x2, x3)) = 0   
POL(min_in_gga(x1, x2)) = 0   
POL(min_out_gga(x1, x2, x3)) = 0   
POL(notEq_in_gg(x1, x2)) = 1   
POL(notEq_out_gg(x1, x2)) = 1   
POL(remove_in_gga(x1, x2)) = 1 + x2   
POL(remove_out_gga(x1, x2, x3)) = 1 + x3   
POL(s(x1)) = 0   

The following usable rules [FROCOS05] were oriented:

notEq_in_gg(s(X), s(Y)) → U13_gg(X, Y, notEq_in_gg(X, Y))
notEq_in_gg(s(X), 0) → notEq_out_gg(s(X), 0)
notEq_in_gg(0, s(X)) → notEq_out_gg(0, s(X))
U9_gga(N, M, L, notEq_out_gg(N, M)) → U10_gga(N, M, L, remove_in_gga(N, L))
remove_in_gga(N, []) → remove_out_gga(N, [], [])
remove_in_gga(N, .(N, L)) → remove_out_gga(N, .(N, L), L)
U10_gga(N, M, L, remove_out_gga(N, L, L1)) → remove_out_gga(N, .(M, L), .(M, L1))
remove_in_gga(N, .(M, L)) → U9_gga(N, M, L, notEq_in_gg(N, M))
U13_gg(X, Y, notEq_out_gg(X, Y)) → notEq_out_gg(s(X), s(Y))

(66) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U1_GA(.(x1, x2), min1_out_ag(x0, .(x1, x2))) → U2_GA(.(x1, x2), x0, U9_gga(x0, x1, x2, notEq_in_gg(x0, x1)))
MINSORT_IN_GA(.(x0, x1)) → U1_GA(.(x0, x1), U4_ag(x0, x1, min2_in_gag(x0, x1)))
U2_GA(.(x0, .(y_0, y_1)), x0, remove_out_gga(x0, .(x0, .(y_0, y_1)), .(y_0, y_1))) → MINSORT_IN_GA(.(y_0, y_1))
U2_GA(.(x0, x1), x2, remove_out_gga(x2, .(x0, x1), .(y_0, y_1))) → MINSORT_IN_GA(.(y_0, y_1))

The TRS R consists of the following rules:

min2_in_gag(X, []) → min2_out_gag(X, X, [])
min2_in_gag(X, .(M, L)) → U5_gag(X, M, L, min_in_gga(X, M))
U4_ag(X, L, min2_out_gag(X, M, L)) → min1_out_ag(M, .(X, L))
min_in_gga(X, Y) → U7_gga(X, Y, le_in_gg(X, Y))
min_in_gga(X, Y) → U8_gga(X, Y, gt_in_gg(X, Y))
U5_gag(X, M, L, min_out_gga(X, M, B)) → U6_gag(X, M, L, min2_in_gag(B, L))
U6_gag(X, M, L, min2_out_gag(B, A, L)) → min2_out_gag(X, A, .(M, L))
gt_in_gg(s(X), s(Y)) → U11_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg(s(X), 0)
U8_gga(X, Y, gt_out_gg(X, Y)) → min_out_gga(X, Y, Y)
U11_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))
le_in_gg(s(X), s(Y)) → U12_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg(0, s(Y))
le_in_gg(0, 0) → le_out_gg(0, 0)
U7_gga(X, Y, le_out_gg(X, Y)) → min_out_gga(X, Y, X)
U12_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
notEq_in_gg(s(X), s(Y)) → U13_gg(X, Y, notEq_in_gg(X, Y))
notEq_in_gg(s(X), 0) → notEq_out_gg(s(X), 0)
notEq_in_gg(0, s(X)) → notEq_out_gg(0, s(X))
U9_gga(N, M, L, notEq_out_gg(N, M)) → U10_gga(N, M, L, remove_in_gga(N, L))
remove_in_gga(N, []) → remove_out_gga(N, [], [])
remove_in_gga(N, .(N, L)) → remove_out_gga(N, .(N, L), L)
remove_in_gga(N, .(M, L)) → U9_gga(N, M, L, notEq_in_gg(N, M))
U10_gga(N, M, L, remove_out_gga(N, L, L1)) → remove_out_gga(N, .(M, L), .(M, L1))
U13_gg(X, Y, notEq_out_gg(X, Y)) → notEq_out_gg(s(X), s(Y))

The set Q consists of the following terms:

remove_in_gga(x0, x1)
U9_gga(x0, x1, x2, x3)
U4_ag(x0, x1, x2)
notEq_in_gg(x0, x1)
U10_gga(x0, x1, x2, x3)
min2_in_gag(x0, x1)
U13_gg(x0, x1, x2)
U5_gag(x0, x1, x2, x3)
min_in_gga(x0, x1)
U6_gag(x0, x1, x2, x3)
U7_gga(x0, x1, x2)
U8_gga(x0, x1, x2)
le_in_gg(x0, x1)
gt_in_gg(x0, x1)
U12_gg(x0, x1, x2)
U11_gg(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(67) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U2_GA(.(x0, .(y_0, y_1)), x0, remove_out_gga(x0, .(x0, .(y_0, y_1)), .(y_0, y_1))) → MINSORT_IN_GA(.(y_0, y_1))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]:

POL(U1_GA(x1, x2)) = -I + 0A·x1 + -I·x2

POL(.(x1, x2)) = 0A + 0A·x1 + 1A·x2

POL(min1_out_ag(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(U2_GA(x1, x2, x3)) = -I + 0A·x1 + -I·x2 + 0A·x3

POL(U9_gga(x1, x2, x3, x4)) = 0A + -I·x1 + 0A·x2 + 1A·x3 + -I·x4

POL(notEq_in_gg(x1, x2)) = 0A + -I·x1 + -I·x2

POL(MINSORT_IN_GA(x1)) = -I + 0A·x1

POL(U4_ag(x1, x2, x3)) = -I + 0A·x1 + -I·x2 + -I·x3

POL(min2_in_gag(x1, x2)) = -I + -I·x1 + 0A·x2

POL(remove_out_gga(x1, x2, x3)) = -I + -I·x1 + -I·x2 + 0A·x3

POL(s(x1)) = -I + 2A·x1

POL(U13_gg(x1, x2, x3)) = 5A + -I·x1 + -I·x2 + 0A·x3

POL(0) = 1A

POL(notEq_out_gg(x1, x2)) = -I + 0A·x1 + 0A·x2

POL(U10_gga(x1, x2, x3, x4)) = 0A + -I·x1 + 0A·x2 + -I·x3 + 1A·x4

POL(remove_in_gga(x1, x2)) = -I + -I·x1 + 0A·x2

POL([]) = 0A

POL(min2_out_gag(x1, x2, x3)) = -I + 5A·x1 + 0A·x2 + 4A·x3

POL(U5_gag(x1, x2, x3, x4)) = -I + 2A·x1 + -I·x2 + 5A·x3 + -I·x4

POL(min_in_gga(x1, x2)) = 0A + -I·x1 + -I·x2

POL(U7_gga(x1, x2, x3)) = 5A + 1A·x1 + 4A·x2 + -I·x3

POL(le_in_gg(x1, x2)) = -I + -I·x1 + 0A·x2

POL(U8_gga(x1, x2, x3)) = 5A + -I·x1 + -I·x2 + -I·x3

POL(gt_in_gg(x1, x2)) = 4A + -I·x1 + -I·x2

POL(min_out_gga(x1, x2, x3)) = -I + -I·x1 + -I·x2 + 5A·x3

POL(U6_gag(x1, x2, x3, x4)) = -I + -I·x1 + 1A·x2 + -I·x3 + -I·x4

POL(U12_gg(x1, x2, x3)) = 0A + -I·x1 + -I·x2 + -I·x3

POL(le_out_gg(x1, x2)) = 0A + 0A·x1 + -I·x2

POL(U11_gg(x1, x2, x3)) = 4A + -I·x1 + 0A·x2 + 0A·x3

POL(gt_out_gg(x1, x2)) = -I + 1A·x1 + 0A·x2

The following usable rules [FROCOS05] were oriented:

U9_gga(N, M, L, notEq_out_gg(N, M)) → U10_gga(N, M, L, remove_in_gga(N, L))
remove_in_gga(N, []) → remove_out_gga(N, [], [])
remove_in_gga(N, .(N, L)) → remove_out_gga(N, .(N, L), L)
U10_gga(N, M, L, remove_out_gga(N, L, L1)) → remove_out_gga(N, .(M, L), .(M, L1))
remove_in_gga(N, .(M, L)) → U9_gga(N, M, L, notEq_in_gg(N, M))

(68) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U1_GA(.(x1, x2), min1_out_ag(x0, .(x1, x2))) → U2_GA(.(x1, x2), x0, U9_gga(x0, x1, x2, notEq_in_gg(x0, x1)))
MINSORT_IN_GA(.(x0, x1)) → U1_GA(.(x0, x1), U4_ag(x0, x1, min2_in_gag(x0, x1)))
U2_GA(.(x0, x1), x2, remove_out_gga(x2, .(x0, x1), .(y_0, y_1))) → MINSORT_IN_GA(.(y_0, y_1))

The TRS R consists of the following rules:

min2_in_gag(X, []) → min2_out_gag(X, X, [])
min2_in_gag(X, .(M, L)) → U5_gag(X, M, L, min_in_gga(X, M))
U4_ag(X, L, min2_out_gag(X, M, L)) → min1_out_ag(M, .(X, L))
min_in_gga(X, Y) → U7_gga(X, Y, le_in_gg(X, Y))
min_in_gga(X, Y) → U8_gga(X, Y, gt_in_gg(X, Y))
U5_gag(X, M, L, min_out_gga(X, M, B)) → U6_gag(X, M, L, min2_in_gag(B, L))
U6_gag(X, M, L, min2_out_gag(B, A, L)) → min2_out_gag(X, A, .(M, L))
gt_in_gg(s(X), s(Y)) → U11_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg(s(X), 0)
U8_gga(X, Y, gt_out_gg(X, Y)) → min_out_gga(X, Y, Y)
U11_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))
le_in_gg(s(X), s(Y)) → U12_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg(0, s(Y))
le_in_gg(0, 0) → le_out_gg(0, 0)
U7_gga(X, Y, le_out_gg(X, Y)) → min_out_gga(X, Y, X)
U12_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
notEq_in_gg(s(X), s(Y)) → U13_gg(X, Y, notEq_in_gg(X, Y))
notEq_in_gg(s(X), 0) → notEq_out_gg(s(X), 0)
notEq_in_gg(0, s(X)) → notEq_out_gg(0, s(X))
U9_gga(N, M, L, notEq_out_gg(N, M)) → U10_gga(N, M, L, remove_in_gga(N, L))
remove_in_gga(N, []) → remove_out_gga(N, [], [])
remove_in_gga(N, .(N, L)) → remove_out_gga(N, .(N, L), L)
remove_in_gga(N, .(M, L)) → U9_gga(N, M, L, notEq_in_gg(N, M))
U10_gga(N, M, L, remove_out_gga(N, L, L1)) → remove_out_gga(N, .(M, L), .(M, L1))
U13_gg(X, Y, notEq_out_gg(X, Y)) → notEq_out_gg(s(X), s(Y))

The set Q consists of the following terms:

remove_in_gga(x0, x1)
U9_gga(x0, x1, x2, x3)
U4_ag(x0, x1, x2)
notEq_in_gg(x0, x1)
U10_gga(x0, x1, x2, x3)
min2_in_gag(x0, x1)
U13_gg(x0, x1, x2)
U5_gag(x0, x1, x2, x3)
min_in_gga(x0, x1)
U6_gag(x0, x1, x2, x3)
U7_gga(x0, x1, x2)
U8_gga(x0, x1, x2)
le_in_gg(x0, x1)
gt_in_gg(x0, x1)
U12_gg(x0, x1, x2)
U11_gg(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(69) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
minsort_in: (b,f)
min1_in: (f,b)
min2_in: (b,f,b)
min_in: (b,b,f)
le_in: (b,b)
gt_in: (b,b)
remove_in: (b,b,f)
notEq_in: (b,b)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

minsort_in_ga([], []) → minsort_out_ga([], [])
minsort_in_ga(L, .(X, L1)) → U1_ga(L, X, L1, min1_in_ag(X, L))
min1_in_ag(M, .(X, L)) → U4_ag(M, X, L, min2_in_gag(X, M, L))
min2_in_gag(X, X, []) → min2_out_gag(X, X, [])
min2_in_gag(X, A, .(M, L)) → U5_gag(X, A, M, L, min_in_gga(X, M, B))
min_in_gga(X, Y, X) → U7_gga(X, Y, le_in_gg(X, Y))
le_in_gg(s(X), s(Y)) → U12_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg(0, s(Y))
le_in_gg(0, 0) → le_out_gg(0, 0)
U12_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U7_gga(X, Y, le_out_gg(X, Y)) → min_out_gga(X, Y, X)
min_in_gga(X, Y, Y) → U8_gga(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), s(Y)) → U11_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg(s(X), 0)
U11_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))
U8_gga(X, Y, gt_out_gg(X, Y)) → min_out_gga(X, Y, Y)
U5_gag(X, A, M, L, min_out_gga(X, M, B)) → U6_gag(X, A, M, L, min2_in_gag(B, A, L))
U6_gag(X, A, M, L, min2_out_gag(B, A, L)) → min2_out_gag(X, A, .(M, L))
U4_ag(M, X, L, min2_out_gag(X, M, L)) → min1_out_ag(M, .(X, L))
U1_ga(L, X, L1, min1_out_ag(X, L)) → U2_ga(L, X, L1, remove_in_gga(X, L, L2))
remove_in_gga(N, [], []) → remove_out_gga(N, [], [])
remove_in_gga(N, .(N, L), L) → remove_out_gga(N, .(N, L), L)
remove_in_gga(N, .(M, L), .(M, L1)) → U9_gga(N, M, L, L1, notEq_in_gg(N, M))
notEq_in_gg(s(X), s(Y)) → U13_gg(X, Y, notEq_in_gg(X, Y))
notEq_in_gg(s(X), 0) → notEq_out_gg(s(X), 0)
notEq_in_gg(0, s(X)) → notEq_out_gg(0, s(X))
U13_gg(X, Y, notEq_out_gg(X, Y)) → notEq_out_gg(s(X), s(Y))
U9_gga(N, M, L, L1, notEq_out_gg(N, M)) → U10_gga(N, M, L, L1, remove_in_gga(N, L, L1))
U10_gga(N, M, L, L1, remove_out_gga(N, L, L1)) → remove_out_gga(N, .(M, L), .(M, L1))
U2_ga(L, X, L1, remove_out_gga(X, L, L2)) → U3_ga(L, X, L1, minsort_in_ga(L2, L1))
U3_ga(L, X, L1, minsort_out_ga(L2, L1)) → minsort_out_ga(L, .(X, L1))

The argument filtering Pi contains the following mapping:
minsort_in_ga(x1, x2)  =  minsort_in_ga(x1)
[]  =  []
minsort_out_ga(x1, x2)  =  minsort_out_ga(x2)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x1, x4)
min1_in_ag(x1, x2)  =  min1_in_ag(x2)
.(x1, x2)  =  .(x1, x2)
U4_ag(x1, x2, x3, x4)  =  U4_ag(x4)
min2_in_gag(x1, x2, x3)  =  min2_in_gag(x1, x3)
min2_out_gag(x1, x2, x3)  =  min2_out_gag(x2)
U5_gag(x1, x2, x3, x4, x5)  =  U5_gag(x4, x5)
min_in_gga(x1, x2, x3)  =  min_in_gga(x1, x2)
U7_gga(x1, x2, x3)  =  U7_gga(x1, x3)
le_in_gg(x1, x2)  =  le_in_gg(x1, x2)
s(x1)  =  s(x1)
U12_gg(x1, x2, x3)  =  U12_gg(x3)
0  =  0
le_out_gg(x1, x2)  =  le_out_gg
min_out_gga(x1, x2, x3)  =  min_out_gga(x3)
U8_gga(x1, x2, x3)  =  U8_gga(x2, x3)
gt_in_gg(x1, x2)  =  gt_in_gg(x1, x2)
U11_gg(x1, x2, x3)  =  U11_gg(x3)
gt_out_gg(x1, x2)  =  gt_out_gg
U6_gag(x1, x2, x3, x4, x5)  =  U6_gag(x5)
min1_out_ag(x1, x2)  =  min1_out_ag(x1)
U2_ga(x1, x2, x3, x4)  =  U2_ga(x2, x4)
remove_in_gga(x1, x2, x3)  =  remove_in_gga(x1, x2)
remove_out_gga(x1, x2, x3)  =  remove_out_gga(x3)
U9_gga(x1, x2, x3, x4, x5)  =  U9_gga(x1, x2, x3, x5)
notEq_in_gg(x1, x2)  =  notEq_in_gg(x1, x2)
U13_gg(x1, x2, x3)  =  U13_gg(x3)
notEq_out_gg(x1, x2)  =  notEq_out_gg
U10_gga(x1, x2, x3, x4, x5)  =  U10_gga(x2, x5)
U3_ga(x1, x2, x3, x4)  =  U3_ga(x2, x4)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(70) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

minsort_in_ga([], []) → minsort_out_ga([], [])
minsort_in_ga(L, .(X, L1)) → U1_ga(L, X, L1, min1_in_ag(X, L))
min1_in_ag(M, .(X, L)) → U4_ag(M, X, L, min2_in_gag(X, M, L))
min2_in_gag(X, X, []) → min2_out_gag(X, X, [])
min2_in_gag(X, A, .(M, L)) → U5_gag(X, A, M, L, min_in_gga(X, M, B))
min_in_gga(X, Y, X) → U7_gga(X, Y, le_in_gg(X, Y))
le_in_gg(s(X), s(Y)) → U12_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg(0, s(Y))
le_in_gg(0, 0) → le_out_gg(0, 0)
U12_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U7_gga(X, Y, le_out_gg(X, Y)) → min_out_gga(X, Y, X)
min_in_gga(X, Y, Y) → U8_gga(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), s(Y)) → U11_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg(s(X), 0)
U11_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))
U8_gga(X, Y, gt_out_gg(X, Y)) → min_out_gga(X, Y, Y)
U5_gag(X, A, M, L, min_out_gga(X, M, B)) → U6_gag(X, A, M, L, min2_in_gag(B, A, L))
U6_gag(X, A, M, L, min2_out_gag(B, A, L)) → min2_out_gag(X, A, .(M, L))
U4_ag(M, X, L, min2_out_gag(X, M, L)) → min1_out_ag(M, .(X, L))
U1_ga(L, X, L1, min1_out_ag(X, L)) → U2_ga(L, X, L1, remove_in_gga(X, L, L2))
remove_in_gga(N, [], []) → remove_out_gga(N, [], [])
remove_in_gga(N, .(N, L), L) → remove_out_gga(N, .(N, L), L)
remove_in_gga(N, .(M, L), .(M, L1)) → U9_gga(N, M, L, L1, notEq_in_gg(N, M))
notEq_in_gg(s(X), s(Y)) → U13_gg(X, Y, notEq_in_gg(X, Y))
notEq_in_gg(s(X), 0) → notEq_out_gg(s(X), 0)
notEq_in_gg(0, s(X)) → notEq_out_gg(0, s(X))
U13_gg(X, Y, notEq_out_gg(X, Y)) → notEq_out_gg(s(X), s(Y))
U9_gga(N, M, L, L1, notEq_out_gg(N, M)) → U10_gga(N, M, L, L1, remove_in_gga(N, L, L1))
U10_gga(N, M, L, L1, remove_out_gga(N, L, L1)) → remove_out_gga(N, .(M, L), .(M, L1))
U2_ga(L, X, L1, remove_out_gga(X, L, L2)) → U3_ga(L, X, L1, minsort_in_ga(L2, L1))
U3_ga(L, X, L1, minsort_out_ga(L2, L1)) → minsort_out_ga(L, .(X, L1))

The argument filtering Pi contains the following mapping:
minsort_in_ga(x1, x2)  =  minsort_in_ga(x1)
[]  =  []
minsort_out_ga(x1, x2)  =  minsort_out_ga(x2)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x1, x4)
min1_in_ag(x1, x2)  =  min1_in_ag(x2)
.(x1, x2)  =  .(x1, x2)
U4_ag(x1, x2, x3, x4)  =  U4_ag(x4)
min2_in_gag(x1, x2, x3)  =  min2_in_gag(x1, x3)
min2_out_gag(x1, x2, x3)  =  min2_out_gag(x2)
U5_gag(x1, x2, x3, x4, x5)  =  U5_gag(x4, x5)
min_in_gga(x1, x2, x3)  =  min_in_gga(x1, x2)
U7_gga(x1, x2, x3)  =  U7_gga(x1, x3)
le_in_gg(x1, x2)  =  le_in_gg(x1, x2)
s(x1)  =  s(x1)
U12_gg(x1, x2, x3)  =  U12_gg(x3)
0  =  0
le_out_gg(x1, x2)  =  le_out_gg
min_out_gga(x1, x2, x3)  =  min_out_gga(x3)
U8_gga(x1, x2, x3)  =  U8_gga(x2, x3)
gt_in_gg(x1, x2)  =  gt_in_gg(x1, x2)
U11_gg(x1, x2, x3)  =  U11_gg(x3)
gt_out_gg(x1, x2)  =  gt_out_gg
U6_gag(x1, x2, x3, x4, x5)  =  U6_gag(x5)
min1_out_ag(x1, x2)  =  min1_out_ag(x1)
U2_ga(x1, x2, x3, x4)  =  U2_ga(x2, x4)
remove_in_gga(x1, x2, x3)  =  remove_in_gga(x1, x2)
remove_out_gga(x1, x2, x3)  =  remove_out_gga(x3)
U9_gga(x1, x2, x3, x4, x5)  =  U9_gga(x1, x2, x3, x5)
notEq_in_gg(x1, x2)  =  notEq_in_gg(x1, x2)
U13_gg(x1, x2, x3)  =  U13_gg(x3)
notEq_out_gg(x1, x2)  =  notEq_out_gg
U10_gga(x1, x2, x3, x4, x5)  =  U10_gga(x2, x5)
U3_ga(x1, x2, x3, x4)  =  U3_ga(x2, x4)

(71) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

MINSORT_IN_GA(L, .(X, L1)) → U1_GA(L, X, L1, min1_in_ag(X, L))
MINSORT_IN_GA(L, .(X, L1)) → MIN1_IN_AG(X, L)
MIN1_IN_AG(M, .(X, L)) → U4_AG(M, X, L, min2_in_gag(X, M, L))
MIN1_IN_AG(M, .(X, L)) → MIN2_IN_GAG(X, M, L)
MIN2_IN_GAG(X, A, .(M, L)) → U5_GAG(X, A, M, L, min_in_gga(X, M, B))
MIN2_IN_GAG(X, A, .(M, L)) → MIN_IN_GGA(X, M, B)
MIN_IN_GGA(X, Y, X) → U7_GGA(X, Y, le_in_gg(X, Y))
MIN_IN_GGA(X, Y, X) → LE_IN_GG(X, Y)
LE_IN_GG(s(X), s(Y)) → U12_GG(X, Y, le_in_gg(X, Y))
LE_IN_GG(s(X), s(Y)) → LE_IN_GG(X, Y)
MIN_IN_GGA(X, Y, Y) → U8_GGA(X, Y, gt_in_gg(X, Y))
MIN_IN_GGA(X, Y, Y) → GT_IN_GG(X, Y)
GT_IN_GG(s(X), s(Y)) → U11_GG(X, Y, gt_in_gg(X, Y))
GT_IN_GG(s(X), s(Y)) → GT_IN_GG(X, Y)
U5_GAG(X, A, M, L, min_out_gga(X, M, B)) → U6_GAG(X, A, M, L, min2_in_gag(B, A, L))
U5_GAG(X, A, M, L, min_out_gga(X, M, B)) → MIN2_IN_GAG(B, A, L)
U1_GA(L, X, L1, min1_out_ag(X, L)) → U2_GA(L, X, L1, remove_in_gga(X, L, L2))
U1_GA(L, X, L1, min1_out_ag(X, L)) → REMOVE_IN_GGA(X, L, L2)
REMOVE_IN_GGA(N, .(M, L), .(M, L1)) → U9_GGA(N, M, L, L1, notEq_in_gg(N, M))
REMOVE_IN_GGA(N, .(M, L), .(M, L1)) → NOTEQ_IN_GG(N, M)
NOTEQ_IN_GG(s(X), s(Y)) → U13_GG(X, Y, notEq_in_gg(X, Y))
NOTEQ_IN_GG(s(X), s(Y)) → NOTEQ_IN_GG(X, Y)
U9_GGA(N, M, L, L1, notEq_out_gg(N, M)) → U10_GGA(N, M, L, L1, remove_in_gga(N, L, L1))
U9_GGA(N, M, L, L1, notEq_out_gg(N, M)) → REMOVE_IN_GGA(N, L, L1)
U2_GA(L, X, L1, remove_out_gga(X, L, L2)) → U3_GA(L, X, L1, minsort_in_ga(L2, L1))
U2_GA(L, X, L1, remove_out_gga(X, L, L2)) → MINSORT_IN_GA(L2, L1)

The TRS R consists of the following rules:

minsort_in_ga([], []) → minsort_out_ga([], [])
minsort_in_ga(L, .(X, L1)) → U1_ga(L, X, L1, min1_in_ag(X, L))
min1_in_ag(M, .(X, L)) → U4_ag(M, X, L, min2_in_gag(X, M, L))
min2_in_gag(X, X, []) → min2_out_gag(X, X, [])
min2_in_gag(X, A, .(M, L)) → U5_gag(X, A, M, L, min_in_gga(X, M, B))
min_in_gga(X, Y, X) → U7_gga(X, Y, le_in_gg(X, Y))
le_in_gg(s(X), s(Y)) → U12_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg(0, s(Y))
le_in_gg(0, 0) → le_out_gg(0, 0)
U12_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U7_gga(X, Y, le_out_gg(X, Y)) → min_out_gga(X, Y, X)
min_in_gga(X, Y, Y) → U8_gga(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), s(Y)) → U11_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg(s(X), 0)
U11_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))
U8_gga(X, Y, gt_out_gg(X, Y)) → min_out_gga(X, Y, Y)
U5_gag(X, A, M, L, min_out_gga(X, M, B)) → U6_gag(X, A, M, L, min2_in_gag(B, A, L))
U6_gag(X, A, M, L, min2_out_gag(B, A, L)) → min2_out_gag(X, A, .(M, L))
U4_ag(M, X, L, min2_out_gag(X, M, L)) → min1_out_ag(M, .(X, L))
U1_ga(L, X, L1, min1_out_ag(X, L)) → U2_ga(L, X, L1, remove_in_gga(X, L, L2))
remove_in_gga(N, [], []) → remove_out_gga(N, [], [])
remove_in_gga(N, .(N, L), L) → remove_out_gga(N, .(N, L), L)
remove_in_gga(N, .(M, L), .(M, L1)) → U9_gga(N, M, L, L1, notEq_in_gg(N, M))
notEq_in_gg(s(X), s(Y)) → U13_gg(X, Y, notEq_in_gg(X, Y))
notEq_in_gg(s(X), 0) → notEq_out_gg(s(X), 0)
notEq_in_gg(0, s(X)) → notEq_out_gg(0, s(X))
U13_gg(X, Y, notEq_out_gg(X, Y)) → notEq_out_gg(s(X), s(Y))
U9_gga(N, M, L, L1, notEq_out_gg(N, M)) → U10_gga(N, M, L, L1, remove_in_gga(N, L, L1))
U10_gga(N, M, L, L1, remove_out_gga(N, L, L1)) → remove_out_gga(N, .(M, L), .(M, L1))
U2_ga(L, X, L1, remove_out_gga(X, L, L2)) → U3_ga(L, X, L1, minsort_in_ga(L2, L1))
U3_ga(L, X, L1, minsort_out_ga(L2, L1)) → minsort_out_ga(L, .(X, L1))

The argument filtering Pi contains the following mapping:
minsort_in_ga(x1, x2)  =  minsort_in_ga(x1)
[]  =  []
minsort_out_ga(x1, x2)  =  minsort_out_ga(x2)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x1, x4)
min1_in_ag(x1, x2)  =  min1_in_ag(x2)
.(x1, x2)  =  .(x1, x2)
U4_ag(x1, x2, x3, x4)  =  U4_ag(x4)
min2_in_gag(x1, x2, x3)  =  min2_in_gag(x1, x3)
min2_out_gag(x1, x2, x3)  =  min2_out_gag(x2)
U5_gag(x1, x2, x3, x4, x5)  =  U5_gag(x4, x5)
min_in_gga(x1, x2, x3)  =  min_in_gga(x1, x2)
U7_gga(x1, x2, x3)  =  U7_gga(x1, x3)
le_in_gg(x1, x2)  =  le_in_gg(x1, x2)
s(x1)  =  s(x1)
U12_gg(x1, x2, x3)  =  U12_gg(x3)
0  =  0
le_out_gg(x1, x2)  =  le_out_gg
min_out_gga(x1, x2, x3)  =  min_out_gga(x3)
U8_gga(x1, x2, x3)  =  U8_gga(x2, x3)
gt_in_gg(x1, x2)  =  gt_in_gg(x1, x2)
U11_gg(x1, x2, x3)  =  U11_gg(x3)
gt_out_gg(x1, x2)  =  gt_out_gg
U6_gag(x1, x2, x3, x4, x5)  =  U6_gag(x5)
min1_out_ag(x1, x2)  =  min1_out_ag(x1)
U2_ga(x1, x2, x3, x4)  =  U2_ga(x2, x4)
remove_in_gga(x1, x2, x3)  =  remove_in_gga(x1, x2)
remove_out_gga(x1, x2, x3)  =  remove_out_gga(x3)
U9_gga(x1, x2, x3, x4, x5)  =  U9_gga(x1, x2, x3, x5)
notEq_in_gg(x1, x2)  =  notEq_in_gg(x1, x2)
U13_gg(x1, x2, x3)  =  U13_gg(x3)
notEq_out_gg(x1, x2)  =  notEq_out_gg
U10_gga(x1, x2, x3, x4, x5)  =  U10_gga(x2, x5)
U3_ga(x1, x2, x3, x4)  =  U3_ga(x2, x4)
MINSORT_IN_GA(x1, x2)  =  MINSORT_IN_GA(x1)
U1_GA(x1, x2, x3, x4)  =  U1_GA(x1, x4)
MIN1_IN_AG(x1, x2)  =  MIN1_IN_AG(x2)
U4_AG(x1, x2, x3, x4)  =  U4_AG(x4)
MIN2_IN_GAG(x1, x2, x3)  =  MIN2_IN_GAG(x1, x3)
U5_GAG(x1, x2, x3, x4, x5)  =  U5_GAG(x4, x5)
MIN_IN_GGA(x1, x2, x3)  =  MIN_IN_GGA(x1, x2)
U7_GGA(x1, x2, x3)  =  U7_GGA(x1, x3)
LE_IN_GG(x1, x2)  =  LE_IN_GG(x1, x2)
U12_GG(x1, x2, x3)  =  U12_GG(x3)
U8_GGA(x1, x2, x3)  =  U8_GGA(x2, x3)
GT_IN_GG(x1, x2)  =  GT_IN_GG(x1, x2)
U11_GG(x1, x2, x3)  =  U11_GG(x3)
U6_GAG(x1, x2, x3, x4, x5)  =  U6_GAG(x5)
U2_GA(x1, x2, x3, x4)  =  U2_GA(x2, x4)
REMOVE_IN_GGA(x1, x2, x3)  =  REMOVE_IN_GGA(x1, x2)
U9_GGA(x1, x2, x3, x4, x5)  =  U9_GGA(x1, x2, x3, x5)
NOTEQ_IN_GG(x1, x2)  =  NOTEQ_IN_GG(x1, x2)
U13_GG(x1, x2, x3)  =  U13_GG(x3)
U10_GGA(x1, x2, x3, x4, x5)  =  U10_GGA(x2, x5)
U3_GA(x1, x2, x3, x4)  =  U3_GA(x2, x4)

We have to consider all (P,R,Pi)-chains

(72) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MINSORT_IN_GA(L, .(X, L1)) → U1_GA(L, X, L1, min1_in_ag(X, L))
MINSORT_IN_GA(L, .(X, L1)) → MIN1_IN_AG(X, L)
MIN1_IN_AG(M, .(X, L)) → U4_AG(M, X, L, min2_in_gag(X, M, L))
MIN1_IN_AG(M, .(X, L)) → MIN2_IN_GAG(X, M, L)
MIN2_IN_GAG(X, A, .(M, L)) → U5_GAG(X, A, M, L, min_in_gga(X, M, B))
MIN2_IN_GAG(X, A, .(M, L)) → MIN_IN_GGA(X, M, B)
MIN_IN_GGA(X, Y, X) → U7_GGA(X, Y, le_in_gg(X, Y))
MIN_IN_GGA(X, Y, X) → LE_IN_GG(X, Y)
LE_IN_GG(s(X), s(Y)) → U12_GG(X, Y, le_in_gg(X, Y))
LE_IN_GG(s(X), s(Y)) → LE_IN_GG(X, Y)
MIN_IN_GGA(X, Y, Y) → U8_GGA(X, Y, gt_in_gg(X, Y))
MIN_IN_GGA(X, Y, Y) → GT_IN_GG(X, Y)
GT_IN_GG(s(X), s(Y)) → U11_GG(X, Y, gt_in_gg(X, Y))
GT_IN_GG(s(X), s(Y)) → GT_IN_GG(X, Y)
U5_GAG(X, A, M, L, min_out_gga(X, M, B)) → U6_GAG(X, A, M, L, min2_in_gag(B, A, L))
U5_GAG(X, A, M, L, min_out_gga(X, M, B)) → MIN2_IN_GAG(B, A, L)
U1_GA(L, X, L1, min1_out_ag(X, L)) → U2_GA(L, X, L1, remove_in_gga(X, L, L2))
U1_GA(L, X, L1, min1_out_ag(X, L)) → REMOVE_IN_GGA(X, L, L2)
REMOVE_IN_GGA(N, .(M, L), .(M, L1)) → U9_GGA(N, M, L, L1, notEq_in_gg(N, M))
REMOVE_IN_GGA(N, .(M, L), .(M, L1)) → NOTEQ_IN_GG(N, M)
NOTEQ_IN_GG(s(X), s(Y)) → U13_GG(X, Y, notEq_in_gg(X, Y))
NOTEQ_IN_GG(s(X), s(Y)) → NOTEQ_IN_GG(X, Y)
U9_GGA(N, M, L, L1, notEq_out_gg(N, M)) → U10_GGA(N, M, L, L1, remove_in_gga(N, L, L1))
U9_GGA(N, M, L, L1, notEq_out_gg(N, M)) → REMOVE_IN_GGA(N, L, L1)
U2_GA(L, X, L1, remove_out_gga(X, L, L2)) → U3_GA(L, X, L1, minsort_in_ga(L2, L1))
U2_GA(L, X, L1, remove_out_gga(X, L, L2)) → MINSORT_IN_GA(L2, L1)

The TRS R consists of the following rules:

minsort_in_ga([], []) → minsort_out_ga([], [])
minsort_in_ga(L, .(X, L1)) → U1_ga(L, X, L1, min1_in_ag(X, L))
min1_in_ag(M, .(X, L)) → U4_ag(M, X, L, min2_in_gag(X, M, L))
min2_in_gag(X, X, []) → min2_out_gag(X, X, [])
min2_in_gag(X, A, .(M, L)) → U5_gag(X, A, M, L, min_in_gga(X, M, B))
min_in_gga(X, Y, X) → U7_gga(X, Y, le_in_gg(X, Y))
le_in_gg(s(X), s(Y)) → U12_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg(0, s(Y))
le_in_gg(0, 0) → le_out_gg(0, 0)
U12_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U7_gga(X, Y, le_out_gg(X, Y)) → min_out_gga(X, Y, X)
min_in_gga(X, Y, Y) → U8_gga(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), s(Y)) → U11_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg(s(X), 0)
U11_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))
U8_gga(X, Y, gt_out_gg(X, Y)) → min_out_gga(X, Y, Y)
U5_gag(X, A, M, L, min_out_gga(X, M, B)) → U6_gag(X, A, M, L, min2_in_gag(B, A, L))
U6_gag(X, A, M, L, min2_out_gag(B, A, L)) → min2_out_gag(X, A, .(M, L))
U4_ag(M, X, L, min2_out_gag(X, M, L)) → min1_out_ag(M, .(X, L))
U1_ga(L, X, L1, min1_out_ag(X, L)) → U2_ga(L, X, L1, remove_in_gga(X, L, L2))
remove_in_gga(N, [], []) → remove_out_gga(N, [], [])
remove_in_gga(N, .(N, L), L) → remove_out_gga(N, .(N, L), L)
remove_in_gga(N, .(M, L), .(M, L1)) → U9_gga(N, M, L, L1, notEq_in_gg(N, M))
notEq_in_gg(s(X), s(Y)) → U13_gg(X, Y, notEq_in_gg(X, Y))
notEq_in_gg(s(X), 0) → notEq_out_gg(s(X), 0)
notEq_in_gg(0, s(X)) → notEq_out_gg(0, s(X))
U13_gg(X, Y, notEq_out_gg(X, Y)) → notEq_out_gg(s(X), s(Y))
U9_gga(N, M, L, L1, notEq_out_gg(N, M)) → U10_gga(N, M, L, L1, remove_in_gga(N, L, L1))
U10_gga(N, M, L, L1, remove_out_gga(N, L, L1)) → remove_out_gga(N, .(M, L), .(M, L1))
U2_ga(L, X, L1, remove_out_gga(X, L, L2)) → U3_ga(L, X, L1, minsort_in_ga(L2, L1))
U3_ga(L, X, L1, minsort_out_ga(L2, L1)) → minsort_out_ga(L, .(X, L1))

The argument filtering Pi contains the following mapping:
minsort_in_ga(x1, x2)  =  minsort_in_ga(x1)
[]  =  []
minsort_out_ga(x1, x2)  =  minsort_out_ga(x2)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x1, x4)
min1_in_ag(x1, x2)  =  min1_in_ag(x2)
.(x1, x2)  =  .(x1, x2)
U4_ag(x1, x2, x3, x4)  =  U4_ag(x4)
min2_in_gag(x1, x2, x3)  =  min2_in_gag(x1, x3)
min2_out_gag(x1, x2, x3)  =  min2_out_gag(x2)
U5_gag(x1, x2, x3, x4, x5)  =  U5_gag(x4, x5)
min_in_gga(x1, x2, x3)  =  min_in_gga(x1, x2)
U7_gga(x1, x2, x3)  =  U7_gga(x1, x3)
le_in_gg(x1, x2)  =  le_in_gg(x1, x2)
s(x1)  =  s(x1)
U12_gg(x1, x2, x3)  =  U12_gg(x3)
0  =  0
le_out_gg(x1, x2)  =  le_out_gg
min_out_gga(x1, x2, x3)  =  min_out_gga(x3)
U8_gga(x1, x2, x3)  =  U8_gga(x2, x3)
gt_in_gg(x1, x2)  =  gt_in_gg(x1, x2)
U11_gg(x1, x2, x3)  =  U11_gg(x3)
gt_out_gg(x1, x2)  =  gt_out_gg
U6_gag(x1, x2, x3, x4, x5)  =  U6_gag(x5)
min1_out_ag(x1, x2)  =  min1_out_ag(x1)
U2_ga(x1, x2, x3, x4)  =  U2_ga(x2, x4)
remove_in_gga(x1, x2, x3)  =  remove_in_gga(x1, x2)
remove_out_gga(x1, x2, x3)  =  remove_out_gga(x3)
U9_gga(x1, x2, x3, x4, x5)  =  U9_gga(x1, x2, x3, x5)
notEq_in_gg(x1, x2)  =  notEq_in_gg(x1, x2)
U13_gg(x1, x2, x3)  =  U13_gg(x3)
notEq_out_gg(x1, x2)  =  notEq_out_gg
U10_gga(x1, x2, x3, x4, x5)  =  U10_gga(x2, x5)
U3_ga(x1, x2, x3, x4)  =  U3_ga(x2, x4)
MINSORT_IN_GA(x1, x2)  =  MINSORT_IN_GA(x1)
U1_GA(x1, x2, x3, x4)  =  U1_GA(x1, x4)
MIN1_IN_AG(x1, x2)  =  MIN1_IN_AG(x2)
U4_AG(x1, x2, x3, x4)  =  U4_AG(x4)
MIN2_IN_GAG(x1, x2, x3)  =  MIN2_IN_GAG(x1, x3)
U5_GAG(x1, x2, x3, x4, x5)  =  U5_GAG(x4, x5)
MIN_IN_GGA(x1, x2, x3)  =  MIN_IN_GGA(x1, x2)
U7_GGA(x1, x2, x3)  =  U7_GGA(x1, x3)
LE_IN_GG(x1, x2)  =  LE_IN_GG(x1, x2)
U12_GG(x1, x2, x3)  =  U12_GG(x3)
U8_GGA(x1, x2, x3)  =  U8_GGA(x2, x3)
GT_IN_GG(x1, x2)  =  GT_IN_GG(x1, x2)
U11_GG(x1, x2, x3)  =  U11_GG(x3)
U6_GAG(x1, x2, x3, x4, x5)  =  U6_GAG(x5)
U2_GA(x1, x2, x3, x4)  =  U2_GA(x2, x4)
REMOVE_IN_GGA(x1, x2, x3)  =  REMOVE_IN_GGA(x1, x2)
U9_GGA(x1, x2, x3, x4, x5)  =  U9_GGA(x1, x2, x3, x5)
NOTEQ_IN_GG(x1, x2)  =  NOTEQ_IN_GG(x1, x2)
U13_GG(x1, x2, x3)  =  U13_GG(x3)
U10_GGA(x1, x2, x3, x4, x5)  =  U10_GGA(x2, x5)
U3_GA(x1, x2, x3, x4)  =  U3_GA(x2, x4)

We have to consider all (P,R,Pi)-chains

(73) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 6 SCCs with 16 less nodes.

(74) Complex Obligation (AND)

(75) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

NOTEQ_IN_GG(s(X), s(Y)) → NOTEQ_IN_GG(X, Y)

The TRS R consists of the following rules:

minsort_in_ga([], []) → minsort_out_ga([], [])
minsort_in_ga(L, .(X, L1)) → U1_ga(L, X, L1, min1_in_ag(X, L))
min1_in_ag(M, .(X, L)) → U4_ag(M, X, L, min2_in_gag(X, M, L))
min2_in_gag(X, X, []) → min2_out_gag(X, X, [])
min2_in_gag(X, A, .(M, L)) → U5_gag(X, A, M, L, min_in_gga(X, M, B))
min_in_gga(X, Y, X) → U7_gga(X, Y, le_in_gg(X, Y))
le_in_gg(s(X), s(Y)) → U12_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg(0, s(Y))
le_in_gg(0, 0) → le_out_gg(0, 0)
U12_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U7_gga(X, Y, le_out_gg(X, Y)) → min_out_gga(X, Y, X)
min_in_gga(X, Y, Y) → U8_gga(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), s(Y)) → U11_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg(s(X), 0)
U11_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))
U8_gga(X, Y, gt_out_gg(X, Y)) → min_out_gga(X, Y, Y)
U5_gag(X, A, M, L, min_out_gga(X, M, B)) → U6_gag(X, A, M, L, min2_in_gag(B, A, L))
U6_gag(X, A, M, L, min2_out_gag(B, A, L)) → min2_out_gag(X, A, .(M, L))
U4_ag(M, X, L, min2_out_gag(X, M, L)) → min1_out_ag(M, .(X, L))
U1_ga(L, X, L1, min1_out_ag(X, L)) → U2_ga(L, X, L1, remove_in_gga(X, L, L2))
remove_in_gga(N, [], []) → remove_out_gga(N, [], [])
remove_in_gga(N, .(N, L), L) → remove_out_gga(N, .(N, L), L)
remove_in_gga(N, .(M, L), .(M, L1)) → U9_gga(N, M, L, L1, notEq_in_gg(N, M))
notEq_in_gg(s(X), s(Y)) → U13_gg(X, Y, notEq_in_gg(X, Y))
notEq_in_gg(s(X), 0) → notEq_out_gg(s(X), 0)
notEq_in_gg(0, s(X)) → notEq_out_gg(0, s(X))
U13_gg(X, Y, notEq_out_gg(X, Y)) → notEq_out_gg(s(X), s(Y))
U9_gga(N, M, L, L1, notEq_out_gg(N, M)) → U10_gga(N, M, L, L1, remove_in_gga(N, L, L1))
U10_gga(N, M, L, L1, remove_out_gga(N, L, L1)) → remove_out_gga(N, .(M, L), .(M, L1))
U2_ga(L, X, L1, remove_out_gga(X, L, L2)) → U3_ga(L, X, L1, minsort_in_ga(L2, L1))
U3_ga(L, X, L1, minsort_out_ga(L2, L1)) → minsort_out_ga(L, .(X, L1))

The argument filtering Pi contains the following mapping:
minsort_in_ga(x1, x2)  =  minsort_in_ga(x1)
[]  =  []
minsort_out_ga(x1, x2)  =  minsort_out_ga(x2)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x1, x4)
min1_in_ag(x1, x2)  =  min1_in_ag(x2)
.(x1, x2)  =  .(x1, x2)
U4_ag(x1, x2, x3, x4)  =  U4_ag(x4)
min2_in_gag(x1, x2, x3)  =  min2_in_gag(x1, x3)
min2_out_gag(x1, x2, x3)  =  min2_out_gag(x2)
U5_gag(x1, x2, x3, x4, x5)  =  U5_gag(x4, x5)
min_in_gga(x1, x2, x3)  =  min_in_gga(x1, x2)
U7_gga(x1, x2, x3)  =  U7_gga(x1, x3)
le_in_gg(x1, x2)  =  le_in_gg(x1, x2)
s(x1)  =  s(x1)
U12_gg(x1, x2, x3)  =  U12_gg(x3)
0  =  0
le_out_gg(x1, x2)  =  le_out_gg
min_out_gga(x1, x2, x3)  =  min_out_gga(x3)
U8_gga(x1, x2, x3)  =  U8_gga(x2, x3)
gt_in_gg(x1, x2)  =  gt_in_gg(x1, x2)
U11_gg(x1, x2, x3)  =  U11_gg(x3)
gt_out_gg(x1, x2)  =  gt_out_gg
U6_gag(x1, x2, x3, x4, x5)  =  U6_gag(x5)
min1_out_ag(x1, x2)  =  min1_out_ag(x1)
U2_ga(x1, x2, x3, x4)  =  U2_ga(x2, x4)
remove_in_gga(x1, x2, x3)  =  remove_in_gga(x1, x2)
remove_out_gga(x1, x2, x3)  =  remove_out_gga(x3)
U9_gga(x1, x2, x3, x4, x5)  =  U9_gga(x1, x2, x3, x5)
notEq_in_gg(x1, x2)  =  notEq_in_gg(x1, x2)
U13_gg(x1, x2, x3)  =  U13_gg(x3)
notEq_out_gg(x1, x2)  =  notEq_out_gg
U10_gga(x1, x2, x3, x4, x5)  =  U10_gga(x2, x5)
U3_ga(x1, x2, x3, x4)  =  U3_ga(x2, x4)
NOTEQ_IN_GG(x1, x2)  =  NOTEQ_IN_GG(x1, x2)

We have to consider all (P,R,Pi)-chains

(76) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(77) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

NOTEQ_IN_GG(s(X), s(Y)) → NOTEQ_IN_GG(X, Y)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains

(78) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(79) Obligation:

Q DP problem:
The TRS P consists of the following rules:

NOTEQ_IN_GG(s(X), s(Y)) → NOTEQ_IN_GG(X, Y)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(80) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • NOTEQ_IN_GG(s(X), s(Y)) → NOTEQ_IN_GG(X, Y)
    The graph contains the following edges 1 > 1, 2 > 2

(81) TRUE

(82) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

U9_GGA(N, M, L, L1, notEq_out_gg(N, M)) → REMOVE_IN_GGA(N, L, L1)
REMOVE_IN_GGA(N, .(M, L), .(M, L1)) → U9_GGA(N, M, L, L1, notEq_in_gg(N, M))

The TRS R consists of the following rules:

minsort_in_ga([], []) → minsort_out_ga([], [])
minsort_in_ga(L, .(X, L1)) → U1_ga(L, X, L1, min1_in_ag(X, L))
min1_in_ag(M, .(X, L)) → U4_ag(M, X, L, min2_in_gag(X, M, L))
min2_in_gag(X, X, []) → min2_out_gag(X, X, [])
min2_in_gag(X, A, .(M, L)) → U5_gag(X, A, M, L, min_in_gga(X, M, B))
min_in_gga(X, Y, X) → U7_gga(X, Y, le_in_gg(X, Y))
le_in_gg(s(X), s(Y)) → U12_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg(0, s(Y))
le_in_gg(0, 0) → le_out_gg(0, 0)
U12_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U7_gga(X, Y, le_out_gg(X, Y)) → min_out_gga(X, Y, X)
min_in_gga(X, Y, Y) → U8_gga(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), s(Y)) → U11_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg(s(X), 0)
U11_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))
U8_gga(X, Y, gt_out_gg(X, Y)) → min_out_gga(X, Y, Y)
U5_gag(X, A, M, L, min_out_gga(X, M, B)) → U6_gag(X, A, M, L, min2_in_gag(B, A, L))
U6_gag(X, A, M, L, min2_out_gag(B, A, L)) → min2_out_gag(X, A, .(M, L))
U4_ag(M, X, L, min2_out_gag(X, M, L)) → min1_out_ag(M, .(X, L))
U1_ga(L, X, L1, min1_out_ag(X, L)) → U2_ga(L, X, L1, remove_in_gga(X, L, L2))
remove_in_gga(N, [], []) → remove_out_gga(N, [], [])
remove_in_gga(N, .(N, L), L) → remove_out_gga(N, .(N, L), L)
remove_in_gga(N, .(M, L), .(M, L1)) → U9_gga(N, M, L, L1, notEq_in_gg(N, M))
notEq_in_gg(s(X), s(Y)) → U13_gg(X, Y, notEq_in_gg(X, Y))
notEq_in_gg(s(X), 0) → notEq_out_gg(s(X), 0)
notEq_in_gg(0, s(X)) → notEq_out_gg(0, s(X))
U13_gg(X, Y, notEq_out_gg(X, Y)) → notEq_out_gg(s(X), s(Y))
U9_gga(N, M, L, L1, notEq_out_gg(N, M)) → U10_gga(N, M, L, L1, remove_in_gga(N, L, L1))
U10_gga(N, M, L, L1, remove_out_gga(N, L, L1)) → remove_out_gga(N, .(M, L), .(M, L1))
U2_ga(L, X, L1, remove_out_gga(X, L, L2)) → U3_ga(L, X, L1, minsort_in_ga(L2, L1))
U3_ga(L, X, L1, minsort_out_ga(L2, L1)) → minsort_out_ga(L, .(X, L1))

The argument filtering Pi contains the following mapping:
minsort_in_ga(x1, x2)  =  minsort_in_ga(x1)
[]  =  []
minsort_out_ga(x1, x2)  =  minsort_out_ga(x2)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x1, x4)
min1_in_ag(x1, x2)  =  min1_in_ag(x2)
.(x1, x2)  =  .(x1, x2)
U4_ag(x1, x2, x3, x4)  =  U4_ag(x4)
min2_in_gag(x1, x2, x3)  =  min2_in_gag(x1, x3)
min2_out_gag(x1, x2, x3)  =  min2_out_gag(x2)
U5_gag(x1, x2, x3, x4, x5)  =  U5_gag(x4, x5)
min_in_gga(x1, x2, x3)  =  min_in_gga(x1, x2)
U7_gga(x1, x2, x3)  =  U7_gga(x1, x3)
le_in_gg(x1, x2)  =  le_in_gg(x1, x2)
s(x1)  =  s(x1)
U12_gg(x1, x2, x3)  =  U12_gg(x3)
0  =  0
le_out_gg(x1, x2)  =  le_out_gg
min_out_gga(x1, x2, x3)  =  min_out_gga(x3)
U8_gga(x1, x2, x3)  =  U8_gga(x2, x3)
gt_in_gg(x1, x2)  =  gt_in_gg(x1, x2)
U11_gg(x1, x2, x3)  =  U11_gg(x3)
gt_out_gg(x1, x2)  =  gt_out_gg
U6_gag(x1, x2, x3, x4, x5)  =  U6_gag(x5)
min1_out_ag(x1, x2)  =  min1_out_ag(x1)
U2_ga(x1, x2, x3, x4)  =  U2_ga(x2, x4)
remove_in_gga(x1, x2, x3)  =  remove_in_gga(x1, x2)
remove_out_gga(x1, x2, x3)  =  remove_out_gga(x3)
U9_gga(x1, x2, x3, x4, x5)  =  U9_gga(x1, x2, x3, x5)
notEq_in_gg(x1, x2)  =  notEq_in_gg(x1, x2)
U13_gg(x1, x2, x3)  =  U13_gg(x3)
notEq_out_gg(x1, x2)  =  notEq_out_gg
U10_gga(x1, x2, x3, x4, x5)  =  U10_gga(x2, x5)
U3_ga(x1, x2, x3, x4)  =  U3_ga(x2, x4)
REMOVE_IN_GGA(x1, x2, x3)  =  REMOVE_IN_GGA(x1, x2)
U9_GGA(x1, x2, x3, x4, x5)  =  U9_GGA(x1, x2, x3, x5)

We have to consider all (P,R,Pi)-chains

(83) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(84) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

U9_GGA(N, M, L, L1, notEq_out_gg(N, M)) → REMOVE_IN_GGA(N, L, L1)
REMOVE_IN_GGA(N, .(M, L), .(M, L1)) → U9_GGA(N, M, L, L1, notEq_in_gg(N, M))

The TRS R consists of the following rules:

notEq_in_gg(s(X), s(Y)) → U13_gg(X, Y, notEq_in_gg(X, Y))
notEq_in_gg(s(X), 0) → notEq_out_gg(s(X), 0)
notEq_in_gg(0, s(X)) → notEq_out_gg(0, s(X))
U13_gg(X, Y, notEq_out_gg(X, Y)) → notEq_out_gg(s(X), s(Y))

The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
s(x1)  =  s(x1)
0  =  0
notEq_in_gg(x1, x2)  =  notEq_in_gg(x1, x2)
U13_gg(x1, x2, x3)  =  U13_gg(x3)
notEq_out_gg(x1, x2)  =  notEq_out_gg
REMOVE_IN_GGA(x1, x2, x3)  =  REMOVE_IN_GGA(x1, x2)
U9_GGA(x1, x2, x3, x4, x5)  =  U9_GGA(x1, x2, x3, x5)

We have to consider all (P,R,Pi)-chains

(85) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(86) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U9_GGA(N, M, L, notEq_out_gg) → REMOVE_IN_GGA(N, L)
REMOVE_IN_GGA(N, .(M, L)) → U9_GGA(N, M, L, notEq_in_gg(N, M))

The TRS R consists of the following rules:

notEq_in_gg(s(X), s(Y)) → U13_gg(notEq_in_gg(X, Y))
notEq_in_gg(s(X), 0) → notEq_out_gg
notEq_in_gg(0, s(X)) → notEq_out_gg
U13_gg(notEq_out_gg) → notEq_out_gg

The set Q consists of the following terms:

notEq_in_gg(x0, x1)
U13_gg(x0)

We have to consider all (P,Q,R)-chains.

(87) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • REMOVE_IN_GGA(N, .(M, L)) → U9_GGA(N, M, L, notEq_in_gg(N, M))
    The graph contains the following edges 1 >= 1, 2 > 2, 2 > 3

  • U9_GGA(N, M, L, notEq_out_gg) → REMOVE_IN_GGA(N, L)
    The graph contains the following edges 1 >= 1, 3 >= 2

(88) TRUE

(89) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

GT_IN_GG(s(X), s(Y)) → GT_IN_GG(X, Y)

The TRS R consists of the following rules:

minsort_in_ga([], []) → minsort_out_ga([], [])
minsort_in_ga(L, .(X, L1)) → U1_ga(L, X, L1, min1_in_ag(X, L))
min1_in_ag(M, .(X, L)) → U4_ag(M, X, L, min2_in_gag(X, M, L))
min2_in_gag(X, X, []) → min2_out_gag(X, X, [])
min2_in_gag(X, A, .(M, L)) → U5_gag(X, A, M, L, min_in_gga(X, M, B))
min_in_gga(X, Y, X) → U7_gga(X, Y, le_in_gg(X, Y))
le_in_gg(s(X), s(Y)) → U12_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg(0, s(Y))
le_in_gg(0, 0) → le_out_gg(0, 0)
U12_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U7_gga(X, Y, le_out_gg(X, Y)) → min_out_gga(X, Y, X)
min_in_gga(X, Y, Y) → U8_gga(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), s(Y)) → U11_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg(s(X), 0)
U11_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))
U8_gga(X, Y, gt_out_gg(X, Y)) → min_out_gga(X, Y, Y)
U5_gag(X, A, M, L, min_out_gga(X, M, B)) → U6_gag(X, A, M, L, min2_in_gag(B, A, L))
U6_gag(X, A, M, L, min2_out_gag(B, A, L)) → min2_out_gag(X, A, .(M, L))
U4_ag(M, X, L, min2_out_gag(X, M, L)) → min1_out_ag(M, .(X, L))
U1_ga(L, X, L1, min1_out_ag(X, L)) → U2_ga(L, X, L1, remove_in_gga(X, L, L2))
remove_in_gga(N, [], []) → remove_out_gga(N, [], [])
remove_in_gga(N, .(N, L), L) → remove_out_gga(N, .(N, L), L)
remove_in_gga(N, .(M, L), .(M, L1)) → U9_gga(N, M, L, L1, notEq_in_gg(N, M))
notEq_in_gg(s(X), s(Y)) → U13_gg(X, Y, notEq_in_gg(X, Y))
notEq_in_gg(s(X), 0) → notEq_out_gg(s(X), 0)
notEq_in_gg(0, s(X)) → notEq_out_gg(0, s(X))
U13_gg(X, Y, notEq_out_gg(X, Y)) → notEq_out_gg(s(X), s(Y))
U9_gga(N, M, L, L1, notEq_out_gg(N, M)) → U10_gga(N, M, L, L1, remove_in_gga(N, L, L1))
U10_gga(N, M, L, L1, remove_out_gga(N, L, L1)) → remove_out_gga(N, .(M, L), .(M, L1))
U2_ga(L, X, L1, remove_out_gga(X, L, L2)) → U3_ga(L, X, L1, minsort_in_ga(L2, L1))
U3_ga(L, X, L1, minsort_out_ga(L2, L1)) → minsort_out_ga(L, .(X, L1))

The argument filtering Pi contains the following mapping:
minsort_in_ga(x1, x2)  =  minsort_in_ga(x1)
[]  =  []
minsort_out_ga(x1, x2)  =  minsort_out_ga(x2)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x1, x4)
min1_in_ag(x1, x2)  =  min1_in_ag(x2)
.(x1, x2)  =  .(x1, x2)
U4_ag(x1, x2, x3, x4)  =  U4_ag(x4)
min2_in_gag(x1, x2, x3)  =  min2_in_gag(x1, x3)
min2_out_gag(x1, x2, x3)  =  min2_out_gag(x2)
U5_gag(x1, x2, x3, x4, x5)  =  U5_gag(x4, x5)
min_in_gga(x1, x2, x3)  =  min_in_gga(x1, x2)
U7_gga(x1, x2, x3)  =  U7_gga(x1, x3)
le_in_gg(x1, x2)  =  le_in_gg(x1, x2)
s(x1)  =  s(x1)
U12_gg(x1, x2, x3)  =  U12_gg(x3)
0  =  0
le_out_gg(x1, x2)  =  le_out_gg
min_out_gga(x1, x2, x3)  =  min_out_gga(x3)
U8_gga(x1, x2, x3)  =  U8_gga(x2, x3)
gt_in_gg(x1, x2)  =  gt_in_gg(x1, x2)
U11_gg(x1, x2, x3)  =  U11_gg(x3)
gt_out_gg(x1, x2)  =  gt_out_gg
U6_gag(x1, x2, x3, x4, x5)  =  U6_gag(x5)
min1_out_ag(x1, x2)  =  min1_out_ag(x1)
U2_ga(x1, x2, x3, x4)  =  U2_ga(x2, x4)
remove_in_gga(x1, x2, x3)  =  remove_in_gga(x1, x2)
remove_out_gga(x1, x2, x3)  =  remove_out_gga(x3)
U9_gga(x1, x2, x3, x4, x5)  =  U9_gga(x1, x2, x3, x5)
notEq_in_gg(x1, x2)  =  notEq_in_gg(x1, x2)
U13_gg(x1, x2, x3)  =  U13_gg(x3)
notEq_out_gg(x1, x2)  =  notEq_out_gg
U10_gga(x1, x2, x3, x4, x5)  =  U10_gga(x2, x5)
U3_ga(x1, x2, x3, x4)  =  U3_ga(x2, x4)
GT_IN_GG(x1, x2)  =  GT_IN_GG(x1, x2)

We have to consider all (P,R,Pi)-chains

(90) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(91) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

GT_IN_GG(s(X), s(Y)) → GT_IN_GG(X, Y)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains

(92) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(93) Obligation:

Q DP problem:
The TRS P consists of the following rules:

GT_IN_GG(s(X), s(Y)) → GT_IN_GG(X, Y)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(94) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • GT_IN_GG(s(X), s(Y)) → GT_IN_GG(X, Y)
    The graph contains the following edges 1 > 1, 2 > 2

(95) TRUE

(96) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LE_IN_GG(s(X), s(Y)) → LE_IN_GG(X, Y)

The TRS R consists of the following rules:

minsort_in_ga([], []) → minsort_out_ga([], [])
minsort_in_ga(L, .(X, L1)) → U1_ga(L, X, L1, min1_in_ag(X, L))
min1_in_ag(M, .(X, L)) → U4_ag(M, X, L, min2_in_gag(X, M, L))
min2_in_gag(X, X, []) → min2_out_gag(X, X, [])
min2_in_gag(X, A, .(M, L)) → U5_gag(X, A, M, L, min_in_gga(X, M, B))
min_in_gga(X, Y, X) → U7_gga(X, Y, le_in_gg(X, Y))
le_in_gg(s(X), s(Y)) → U12_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg(0, s(Y))
le_in_gg(0, 0) → le_out_gg(0, 0)
U12_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U7_gga(X, Y, le_out_gg(X, Y)) → min_out_gga(X, Y, X)
min_in_gga(X, Y, Y) → U8_gga(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), s(Y)) → U11_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg(s(X), 0)
U11_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))
U8_gga(X, Y, gt_out_gg(X, Y)) → min_out_gga(X, Y, Y)
U5_gag(X, A, M, L, min_out_gga(X, M, B)) → U6_gag(X, A, M, L, min2_in_gag(B, A, L))
U6_gag(X, A, M, L, min2_out_gag(B, A, L)) → min2_out_gag(X, A, .(M, L))
U4_ag(M, X, L, min2_out_gag(X, M, L)) → min1_out_ag(M, .(X, L))
U1_ga(L, X, L1, min1_out_ag(X, L)) → U2_ga(L, X, L1, remove_in_gga(X, L, L2))
remove_in_gga(N, [], []) → remove_out_gga(N, [], [])
remove_in_gga(N, .(N, L), L) → remove_out_gga(N, .(N, L), L)
remove_in_gga(N, .(M, L), .(M, L1)) → U9_gga(N, M, L, L1, notEq_in_gg(N, M))
notEq_in_gg(s(X), s(Y)) → U13_gg(X, Y, notEq_in_gg(X, Y))
notEq_in_gg(s(X), 0) → notEq_out_gg(s(X), 0)
notEq_in_gg(0, s(X)) → notEq_out_gg(0, s(X))
U13_gg(X, Y, notEq_out_gg(X, Y)) → notEq_out_gg(s(X), s(Y))
U9_gga(N, M, L, L1, notEq_out_gg(N, M)) → U10_gga(N, M, L, L1, remove_in_gga(N, L, L1))
U10_gga(N, M, L, L1, remove_out_gga(N, L, L1)) → remove_out_gga(N, .(M, L), .(M, L1))
U2_ga(L, X, L1, remove_out_gga(X, L, L2)) → U3_ga(L, X, L1, minsort_in_ga(L2, L1))
U3_ga(L, X, L1, minsort_out_ga(L2, L1)) → minsort_out_ga(L, .(X, L1))

The argument filtering Pi contains the following mapping:
minsort_in_ga(x1, x2)  =  minsort_in_ga(x1)
[]  =  []
minsort_out_ga(x1, x2)  =  minsort_out_ga(x2)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x1, x4)
min1_in_ag(x1, x2)  =  min1_in_ag(x2)
.(x1, x2)  =  .(x1, x2)
U4_ag(x1, x2, x3, x4)  =  U4_ag(x4)
min2_in_gag(x1, x2, x3)  =  min2_in_gag(x1, x3)
min2_out_gag(x1, x2, x3)  =  min2_out_gag(x2)
U5_gag(x1, x2, x3, x4, x5)  =  U5_gag(x4, x5)
min_in_gga(x1, x2, x3)  =  min_in_gga(x1, x2)
U7_gga(x1, x2, x3)  =  U7_gga(x1, x3)
le_in_gg(x1, x2)  =  le_in_gg(x1, x2)
s(x1)  =  s(x1)
U12_gg(x1, x2, x3)  =  U12_gg(x3)
0  =  0
le_out_gg(x1, x2)  =  le_out_gg
min_out_gga(x1, x2, x3)  =  min_out_gga(x3)
U8_gga(x1, x2, x3)  =  U8_gga(x2, x3)
gt_in_gg(x1, x2)  =  gt_in_gg(x1, x2)
U11_gg(x1, x2, x3)  =  U11_gg(x3)
gt_out_gg(x1, x2)  =  gt_out_gg
U6_gag(x1, x2, x3, x4, x5)  =  U6_gag(x5)
min1_out_ag(x1, x2)  =  min1_out_ag(x1)
U2_ga(x1, x2, x3, x4)  =  U2_ga(x2, x4)
remove_in_gga(x1, x2, x3)  =  remove_in_gga(x1, x2)
remove_out_gga(x1, x2, x3)  =  remove_out_gga(x3)
U9_gga(x1, x2, x3, x4, x5)  =  U9_gga(x1, x2, x3, x5)
notEq_in_gg(x1, x2)  =  notEq_in_gg(x1, x2)
U13_gg(x1, x2, x3)  =  U13_gg(x3)
notEq_out_gg(x1, x2)  =  notEq_out_gg
U10_gga(x1, x2, x3, x4, x5)  =  U10_gga(x2, x5)
U3_ga(x1, x2, x3, x4)  =  U3_ga(x2, x4)
LE_IN_GG(x1, x2)  =  LE_IN_GG(x1, x2)

We have to consider all (P,R,Pi)-chains

(97) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(98) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LE_IN_GG(s(X), s(Y)) → LE_IN_GG(X, Y)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains

(99) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(100) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LE_IN_GG(s(X), s(Y)) → LE_IN_GG(X, Y)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(101) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LE_IN_GG(s(X), s(Y)) → LE_IN_GG(X, Y)
    The graph contains the following edges 1 > 1, 2 > 2

(102) TRUE

(103) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

U5_GAG(X, A, M, L, min_out_gga(X, M, B)) → MIN2_IN_GAG(B, A, L)
MIN2_IN_GAG(X, A, .(M, L)) → U5_GAG(X, A, M, L, min_in_gga(X, M, B))

The TRS R consists of the following rules:

minsort_in_ga([], []) → minsort_out_ga([], [])
minsort_in_ga(L, .(X, L1)) → U1_ga(L, X, L1, min1_in_ag(X, L))
min1_in_ag(M, .(X, L)) → U4_ag(M, X, L, min2_in_gag(X, M, L))
min2_in_gag(X, X, []) → min2_out_gag(X, X, [])
min2_in_gag(X, A, .(M, L)) → U5_gag(X, A, M, L, min_in_gga(X, M, B))
min_in_gga(X, Y, X) → U7_gga(X, Y, le_in_gg(X, Y))
le_in_gg(s(X), s(Y)) → U12_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg(0, s(Y))
le_in_gg(0, 0) → le_out_gg(0, 0)
U12_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U7_gga(X, Y, le_out_gg(X, Y)) → min_out_gga(X, Y, X)
min_in_gga(X, Y, Y) → U8_gga(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), s(Y)) → U11_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg(s(X), 0)
U11_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))
U8_gga(X, Y, gt_out_gg(X, Y)) → min_out_gga(X, Y, Y)
U5_gag(X, A, M, L, min_out_gga(X, M, B)) → U6_gag(X, A, M, L, min2_in_gag(B, A, L))
U6_gag(X, A, M, L, min2_out_gag(B, A, L)) → min2_out_gag(X, A, .(M, L))
U4_ag(M, X, L, min2_out_gag(X, M, L)) → min1_out_ag(M, .(X, L))
U1_ga(L, X, L1, min1_out_ag(X, L)) → U2_ga(L, X, L1, remove_in_gga(X, L, L2))
remove_in_gga(N, [], []) → remove_out_gga(N, [], [])
remove_in_gga(N, .(N, L), L) → remove_out_gga(N, .(N, L), L)
remove_in_gga(N, .(M, L), .(M, L1)) → U9_gga(N, M, L, L1, notEq_in_gg(N, M))
notEq_in_gg(s(X), s(Y)) → U13_gg(X, Y, notEq_in_gg(X, Y))
notEq_in_gg(s(X), 0) → notEq_out_gg(s(X), 0)
notEq_in_gg(0, s(X)) → notEq_out_gg(0, s(X))
U13_gg(X, Y, notEq_out_gg(X, Y)) → notEq_out_gg(s(X), s(Y))
U9_gga(N, M, L, L1, notEq_out_gg(N, M)) → U10_gga(N, M, L, L1, remove_in_gga(N, L, L1))
U10_gga(N, M, L, L1, remove_out_gga(N, L, L1)) → remove_out_gga(N, .(M, L), .(M, L1))
U2_ga(L, X, L1, remove_out_gga(X, L, L2)) → U3_ga(L, X, L1, minsort_in_ga(L2, L1))
U3_ga(L, X, L1, minsort_out_ga(L2, L1)) → minsort_out_ga(L, .(X, L1))

The argument filtering Pi contains the following mapping:
minsort_in_ga(x1, x2)  =  minsort_in_ga(x1)
[]  =  []
minsort_out_ga(x1, x2)  =  minsort_out_ga(x2)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x1, x4)
min1_in_ag(x1, x2)  =  min1_in_ag(x2)
.(x1, x2)  =  .(x1, x2)
U4_ag(x1, x2, x3, x4)  =  U4_ag(x4)
min2_in_gag(x1, x2, x3)  =  min2_in_gag(x1, x3)
min2_out_gag(x1, x2, x3)  =  min2_out_gag(x2)
U5_gag(x1, x2, x3, x4, x5)  =  U5_gag(x4, x5)
min_in_gga(x1, x2, x3)  =  min_in_gga(x1, x2)
U7_gga(x1, x2, x3)  =  U7_gga(x1, x3)
le_in_gg(x1, x2)  =  le_in_gg(x1, x2)
s(x1)  =  s(x1)
U12_gg(x1, x2, x3)  =  U12_gg(x3)
0  =  0
le_out_gg(x1, x2)  =  le_out_gg
min_out_gga(x1, x2, x3)  =  min_out_gga(x3)
U8_gga(x1, x2, x3)  =  U8_gga(x2, x3)
gt_in_gg(x1, x2)  =  gt_in_gg(x1, x2)
U11_gg(x1, x2, x3)  =  U11_gg(x3)
gt_out_gg(x1, x2)  =  gt_out_gg
U6_gag(x1, x2, x3, x4, x5)  =  U6_gag(x5)
min1_out_ag(x1, x2)  =  min1_out_ag(x1)
U2_ga(x1, x2, x3, x4)  =  U2_ga(x2, x4)
remove_in_gga(x1, x2, x3)  =  remove_in_gga(x1, x2)
remove_out_gga(x1, x2, x3)  =  remove_out_gga(x3)
U9_gga(x1, x2, x3, x4, x5)  =  U9_gga(x1, x2, x3, x5)
notEq_in_gg(x1, x2)  =  notEq_in_gg(x1, x2)
U13_gg(x1, x2, x3)  =  U13_gg(x3)
notEq_out_gg(x1, x2)  =  notEq_out_gg
U10_gga(x1, x2, x3, x4, x5)  =  U10_gga(x2, x5)
U3_ga(x1, x2, x3, x4)  =  U3_ga(x2, x4)
MIN2_IN_GAG(x1, x2, x3)  =  MIN2_IN_GAG(x1, x3)
U5_GAG(x1, x2, x3, x4, x5)  =  U5_GAG(x4, x5)

We have to consider all (P,R,Pi)-chains

(104) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(105) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

U5_GAG(X, A, M, L, min_out_gga(X, M, B)) → MIN2_IN_GAG(B, A, L)
MIN2_IN_GAG(X, A, .(M, L)) → U5_GAG(X, A, M, L, min_in_gga(X, M, B))

The TRS R consists of the following rules:

min_in_gga(X, Y, X) → U7_gga(X, Y, le_in_gg(X, Y))
min_in_gga(X, Y, Y) → U8_gga(X, Y, gt_in_gg(X, Y))
U7_gga(X, Y, le_out_gg(X, Y)) → min_out_gga(X, Y, X)
U8_gga(X, Y, gt_out_gg(X, Y)) → min_out_gga(X, Y, Y)
le_in_gg(s(X), s(Y)) → U12_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg(0, s(Y))
le_in_gg(0, 0) → le_out_gg(0, 0)
gt_in_gg(s(X), s(Y)) → U11_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg(s(X), 0)
U12_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U11_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))

The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
min_in_gga(x1, x2, x3)  =  min_in_gga(x1, x2)
U7_gga(x1, x2, x3)  =  U7_gga(x1, x3)
le_in_gg(x1, x2)  =  le_in_gg(x1, x2)
s(x1)  =  s(x1)
U12_gg(x1, x2, x3)  =  U12_gg(x3)
0  =  0
le_out_gg(x1, x2)  =  le_out_gg
min_out_gga(x1, x2, x3)  =  min_out_gga(x3)
U8_gga(x1, x2, x3)  =  U8_gga(x2, x3)
gt_in_gg(x1, x2)  =  gt_in_gg(x1, x2)
U11_gg(x1, x2, x3)  =  U11_gg(x3)
gt_out_gg(x1, x2)  =  gt_out_gg
MIN2_IN_GAG(x1, x2, x3)  =  MIN2_IN_GAG(x1, x3)
U5_GAG(x1, x2, x3, x4, x5)  =  U5_GAG(x4, x5)

We have to consider all (P,R,Pi)-chains

(106) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(107) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U5_GAG(L, min_out_gga(B)) → MIN2_IN_GAG(B, L)
MIN2_IN_GAG(X, .(M, L)) → U5_GAG(L, min_in_gga(X, M))

The TRS R consists of the following rules:

min_in_gga(X, Y) → U7_gga(X, le_in_gg(X, Y))
min_in_gga(X, Y) → U8_gga(Y, gt_in_gg(X, Y))
U7_gga(X, le_out_gg) → min_out_gga(X)
U8_gga(Y, gt_out_gg) → min_out_gga(Y)
le_in_gg(s(X), s(Y)) → U12_gg(le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg
le_in_gg(0, 0) → le_out_gg
gt_in_gg(s(X), s(Y)) → U11_gg(gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg
U12_gg(le_out_gg) → le_out_gg
U11_gg(gt_out_gg) → gt_out_gg

The set Q consists of the following terms:

min_in_gga(x0, x1)
U7_gga(x0, x1)
U8_gga(x0, x1)
le_in_gg(x0, x1)
gt_in_gg(x0, x1)
U12_gg(x0)
U11_gg(x0)

We have to consider all (P,Q,R)-chains.

(108) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • MIN2_IN_GAG(X, .(M, L)) → U5_GAG(L, min_in_gga(X, M))
    The graph contains the following edges 2 > 1

  • U5_GAG(L, min_out_gga(B)) → MIN2_IN_GAG(B, L)
    The graph contains the following edges 2 > 1, 1 >= 2

(109) TRUE

(110) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

U1_GA(L, X, L1, min1_out_ag(X, L)) → U2_GA(L, X, L1, remove_in_gga(X, L, L2))
U2_GA(L, X, L1, remove_out_gga(X, L, L2)) → MINSORT_IN_GA(L2, L1)
MINSORT_IN_GA(L, .(X, L1)) → U1_GA(L, X, L1, min1_in_ag(X, L))

The TRS R consists of the following rules:

minsort_in_ga([], []) → minsort_out_ga([], [])
minsort_in_ga(L, .(X, L1)) → U1_ga(L, X, L1, min1_in_ag(X, L))
min1_in_ag(M, .(X, L)) → U4_ag(M, X, L, min2_in_gag(X, M, L))
min2_in_gag(X, X, []) → min2_out_gag(X, X, [])
min2_in_gag(X, A, .(M, L)) → U5_gag(X, A, M, L, min_in_gga(X, M, B))
min_in_gga(X, Y, X) → U7_gga(X, Y, le_in_gg(X, Y))
le_in_gg(s(X), s(Y)) → U12_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg(0, s(Y))
le_in_gg(0, 0) → le_out_gg(0, 0)
U12_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U7_gga(X, Y, le_out_gg(X, Y)) → min_out_gga(X, Y, X)
min_in_gga(X, Y, Y) → U8_gga(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), s(Y)) → U11_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg(s(X), 0)
U11_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))
U8_gga(X, Y, gt_out_gg(X, Y)) → min_out_gga(X, Y, Y)
U5_gag(X, A, M, L, min_out_gga(X, M, B)) → U6_gag(X, A, M, L, min2_in_gag(B, A, L))
U6_gag(X, A, M, L, min2_out_gag(B, A, L)) → min2_out_gag(X, A, .(M, L))
U4_ag(M, X, L, min2_out_gag(X, M, L)) → min1_out_ag(M, .(X, L))
U1_ga(L, X, L1, min1_out_ag(X, L)) → U2_ga(L, X, L1, remove_in_gga(X, L, L2))
remove_in_gga(N, [], []) → remove_out_gga(N, [], [])
remove_in_gga(N, .(N, L), L) → remove_out_gga(N, .(N, L), L)
remove_in_gga(N, .(M, L), .(M, L1)) → U9_gga(N, M, L, L1, notEq_in_gg(N, M))
notEq_in_gg(s(X), s(Y)) → U13_gg(X, Y, notEq_in_gg(X, Y))
notEq_in_gg(s(X), 0) → notEq_out_gg(s(X), 0)
notEq_in_gg(0, s(X)) → notEq_out_gg(0, s(X))
U13_gg(X, Y, notEq_out_gg(X, Y)) → notEq_out_gg(s(X), s(Y))
U9_gga(N, M, L, L1, notEq_out_gg(N, M)) → U10_gga(N, M, L, L1, remove_in_gga(N, L, L1))
U10_gga(N, M, L, L1, remove_out_gga(N, L, L1)) → remove_out_gga(N, .(M, L), .(M, L1))
U2_ga(L, X, L1, remove_out_gga(X, L, L2)) → U3_ga(L, X, L1, minsort_in_ga(L2, L1))
U3_ga(L, X, L1, minsort_out_ga(L2, L1)) → minsort_out_ga(L, .(X, L1))

The argument filtering Pi contains the following mapping:
minsort_in_ga(x1, x2)  =  minsort_in_ga(x1)
[]  =  []
minsort_out_ga(x1, x2)  =  minsort_out_ga(x2)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x1, x4)
min1_in_ag(x1, x2)  =  min1_in_ag(x2)
.(x1, x2)  =  .(x1, x2)
U4_ag(x1, x2, x3, x4)  =  U4_ag(x4)
min2_in_gag(x1, x2, x3)  =  min2_in_gag(x1, x3)
min2_out_gag(x1, x2, x3)  =  min2_out_gag(x2)
U5_gag(x1, x2, x3, x4, x5)  =  U5_gag(x4, x5)
min_in_gga(x1, x2, x3)  =  min_in_gga(x1, x2)
U7_gga(x1, x2, x3)  =  U7_gga(x1, x3)
le_in_gg(x1, x2)  =  le_in_gg(x1, x2)
s(x1)  =  s(x1)
U12_gg(x1, x2, x3)  =  U12_gg(x3)
0  =  0
le_out_gg(x1, x2)  =  le_out_gg
min_out_gga(x1, x2, x3)  =  min_out_gga(x3)
U8_gga(x1, x2, x3)  =  U8_gga(x2, x3)
gt_in_gg(x1, x2)  =  gt_in_gg(x1, x2)
U11_gg(x1, x2, x3)  =  U11_gg(x3)
gt_out_gg(x1, x2)  =  gt_out_gg
U6_gag(x1, x2, x3, x4, x5)  =  U6_gag(x5)
min1_out_ag(x1, x2)  =  min1_out_ag(x1)
U2_ga(x1, x2, x3, x4)  =  U2_ga(x2, x4)
remove_in_gga(x1, x2, x3)  =  remove_in_gga(x1, x2)
remove_out_gga(x1, x2, x3)  =  remove_out_gga(x3)
U9_gga(x1, x2, x3, x4, x5)  =  U9_gga(x1, x2, x3, x5)
notEq_in_gg(x1, x2)  =  notEq_in_gg(x1, x2)
U13_gg(x1, x2, x3)  =  U13_gg(x3)
notEq_out_gg(x1, x2)  =  notEq_out_gg
U10_gga(x1, x2, x3, x4, x5)  =  U10_gga(x2, x5)
U3_ga(x1, x2, x3, x4)  =  U3_ga(x2, x4)
MINSORT_IN_GA(x1, x2)  =  MINSORT_IN_GA(x1)
U1_GA(x1, x2, x3, x4)  =  U1_GA(x1, x4)
U2_GA(x1, x2, x3, x4)  =  U2_GA(x2, x4)

We have to consider all (P,R,Pi)-chains

(111) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(112) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

U1_GA(L, X, L1, min1_out_ag(X, L)) → U2_GA(L, X, L1, remove_in_gga(X, L, L2))
U2_GA(L, X, L1, remove_out_gga(X, L, L2)) → MINSORT_IN_GA(L2, L1)
MINSORT_IN_GA(L, .(X, L1)) → U1_GA(L, X, L1, min1_in_ag(X, L))

The TRS R consists of the following rules:

remove_in_gga(N, [], []) → remove_out_gga(N, [], [])
remove_in_gga(N, .(N, L), L) → remove_out_gga(N, .(N, L), L)
remove_in_gga(N, .(M, L), .(M, L1)) → U9_gga(N, M, L, L1, notEq_in_gg(N, M))
min1_in_ag(M, .(X, L)) → U4_ag(M, X, L, min2_in_gag(X, M, L))
U9_gga(N, M, L, L1, notEq_out_gg(N, M)) → U10_gga(N, M, L, L1, remove_in_gga(N, L, L1))
U4_ag(M, X, L, min2_out_gag(X, M, L)) → min1_out_ag(M, .(X, L))
notEq_in_gg(s(X), s(Y)) → U13_gg(X, Y, notEq_in_gg(X, Y))
notEq_in_gg(s(X), 0) → notEq_out_gg(s(X), 0)
notEq_in_gg(0, s(X)) → notEq_out_gg(0, s(X))
U10_gga(N, M, L, L1, remove_out_gga(N, L, L1)) → remove_out_gga(N, .(M, L), .(M, L1))
min2_in_gag(X, X, []) → min2_out_gag(X, X, [])
min2_in_gag(X, A, .(M, L)) → U5_gag(X, A, M, L, min_in_gga(X, M, B))
U13_gg(X, Y, notEq_out_gg(X, Y)) → notEq_out_gg(s(X), s(Y))
U5_gag(X, A, M, L, min_out_gga(X, M, B)) → U6_gag(X, A, M, L, min2_in_gag(B, A, L))
min_in_gga(X, Y, X) → U7_gga(X, Y, le_in_gg(X, Y))
min_in_gga(X, Y, Y) → U8_gga(X, Y, gt_in_gg(X, Y))
U6_gag(X, A, M, L, min2_out_gag(B, A, L)) → min2_out_gag(X, A, .(M, L))
U7_gga(X, Y, le_out_gg(X, Y)) → min_out_gga(X, Y, X)
U8_gga(X, Y, gt_out_gg(X, Y)) → min_out_gga(X, Y, Y)
le_in_gg(s(X), s(Y)) → U12_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg(0, s(Y))
le_in_gg(0, 0) → le_out_gg(0, 0)
gt_in_gg(s(X), s(Y)) → U11_gg(X, Y, gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg(s(X), 0)
U12_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U11_gg(X, Y, gt_out_gg(X, Y)) → gt_out_gg(s(X), s(Y))

The argument filtering Pi contains the following mapping:
[]  =  []
min1_in_ag(x1, x2)  =  min1_in_ag(x2)
.(x1, x2)  =  .(x1, x2)
U4_ag(x1, x2, x3, x4)  =  U4_ag(x4)
min2_in_gag(x1, x2, x3)  =  min2_in_gag(x1, x3)
min2_out_gag(x1, x2, x3)  =  min2_out_gag(x2)
U5_gag(x1, x2, x3, x4, x5)  =  U5_gag(x4, x5)
min_in_gga(x1, x2, x3)  =  min_in_gga(x1, x2)
U7_gga(x1, x2, x3)  =  U7_gga(x1, x3)
le_in_gg(x1, x2)  =  le_in_gg(x1, x2)
s(x1)  =  s(x1)
U12_gg(x1, x2, x3)  =  U12_gg(x3)
0  =  0
le_out_gg(x1, x2)  =  le_out_gg
min_out_gga(x1, x2, x3)  =  min_out_gga(x3)
U8_gga(x1, x2, x3)  =  U8_gga(x2, x3)
gt_in_gg(x1, x2)  =  gt_in_gg(x1, x2)
U11_gg(x1, x2, x3)  =  U11_gg(x3)
gt_out_gg(x1, x2)  =  gt_out_gg
U6_gag(x1, x2, x3, x4, x5)  =  U6_gag(x5)
min1_out_ag(x1, x2)  =  min1_out_ag(x1)
remove_in_gga(x1, x2, x3)  =  remove_in_gga(x1, x2)
remove_out_gga(x1, x2, x3)  =  remove_out_gga(x3)
U9_gga(x1, x2, x3, x4, x5)  =  U9_gga(x1, x2, x3, x5)
notEq_in_gg(x1, x2)  =  notEq_in_gg(x1, x2)
U13_gg(x1, x2, x3)  =  U13_gg(x3)
notEq_out_gg(x1, x2)  =  notEq_out_gg
U10_gga(x1, x2, x3, x4, x5)  =  U10_gga(x2, x5)
MINSORT_IN_GA(x1, x2)  =  MINSORT_IN_GA(x1)
U1_GA(x1, x2, x3, x4)  =  U1_GA(x1, x4)
U2_GA(x1, x2, x3, x4)  =  U2_GA(x2, x4)

We have to consider all (P,R,Pi)-chains

(113) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(114) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U1_GA(L, min1_out_ag(X)) → U2_GA(X, remove_in_gga(X, L))
U2_GA(X, remove_out_gga(L2)) → MINSORT_IN_GA(L2)
MINSORT_IN_GA(L) → U1_GA(L, min1_in_ag(L))

The TRS R consists of the following rules:

remove_in_gga(N, []) → remove_out_gga([])
remove_in_gga(N, .(N, L)) → remove_out_gga(L)
remove_in_gga(N, .(M, L)) → U9_gga(N, M, L, notEq_in_gg(N, M))
min1_in_ag(.(X, L)) → U4_ag(min2_in_gag(X, L))
U9_gga(N, M, L, notEq_out_gg) → U10_gga(M, remove_in_gga(N, L))
U4_ag(min2_out_gag(M)) → min1_out_ag(M)
notEq_in_gg(s(X), s(Y)) → U13_gg(notEq_in_gg(X, Y))
notEq_in_gg(s(X), 0) → notEq_out_gg
notEq_in_gg(0, s(X)) → notEq_out_gg
U10_gga(M, remove_out_gga(L1)) → remove_out_gga(.(M, L1))
min2_in_gag(X, []) → min2_out_gag(X)
min2_in_gag(X, .(M, L)) → U5_gag(L, min_in_gga(X, M))
U13_gg(notEq_out_gg) → notEq_out_gg
U5_gag(L, min_out_gga(B)) → U6_gag(min2_in_gag(B, L))
min_in_gga(X, Y) → U7_gga(X, le_in_gg(X, Y))
min_in_gga(X, Y) → U8_gga(Y, gt_in_gg(X, Y))
U6_gag(min2_out_gag(A)) → min2_out_gag(A)
U7_gga(X, le_out_gg) → min_out_gga(X)
U8_gga(Y, gt_out_gg) → min_out_gga(Y)
le_in_gg(s(X), s(Y)) → U12_gg(le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg
le_in_gg(0, 0) → le_out_gg
gt_in_gg(s(X), s(Y)) → U11_gg(gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg
U12_gg(le_out_gg) → le_out_gg
U11_gg(gt_out_gg) → gt_out_gg

The set Q consists of the following terms:

remove_in_gga(x0, x1)
min1_in_ag(x0)
U9_gga(x0, x1, x2, x3)
U4_ag(x0)
notEq_in_gg(x0, x1)
U10_gga(x0, x1)
min2_in_gag(x0, x1)
U13_gg(x0)
U5_gag(x0, x1)
min_in_gga(x0, x1)
U6_gag(x0)
U7_gga(x0, x1)
U8_gga(x0, x1)
le_in_gg(x0, x1)
gt_in_gg(x0, x1)
U12_gg(x0)
U11_gg(x0)

We have to consider all (P,Q,R)-chains.

(115) Narrowing (SOUND transformation)

By narrowing [LPAR04] the rule U1_GA(L, min1_out_ag(X)) → U2_GA(X, remove_in_gga(X, L)) at position [1] we obtained the following new rules [LPAR04]:

U1_GA([], min1_out_ag(x0)) → U2_GA(x0, remove_out_gga([]))
U1_GA(.(x0, x1), min1_out_ag(x0)) → U2_GA(x0, remove_out_gga(x1))
U1_GA(.(x1, x2), min1_out_ag(x0)) → U2_GA(x0, U9_gga(x0, x1, x2, notEq_in_gg(x0, x1)))

(116) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U2_GA(X, remove_out_gga(L2)) → MINSORT_IN_GA(L2)
MINSORT_IN_GA(L) → U1_GA(L, min1_in_ag(L))
U1_GA([], min1_out_ag(x0)) → U2_GA(x0, remove_out_gga([]))
U1_GA(.(x0, x1), min1_out_ag(x0)) → U2_GA(x0, remove_out_gga(x1))
U1_GA(.(x1, x2), min1_out_ag(x0)) → U2_GA(x0, U9_gga(x0, x1, x2, notEq_in_gg(x0, x1)))

The TRS R consists of the following rules:

remove_in_gga(N, []) → remove_out_gga([])
remove_in_gga(N, .(N, L)) → remove_out_gga(L)
remove_in_gga(N, .(M, L)) → U9_gga(N, M, L, notEq_in_gg(N, M))
min1_in_ag(.(X, L)) → U4_ag(min2_in_gag(X, L))
U9_gga(N, M, L, notEq_out_gg) → U10_gga(M, remove_in_gga(N, L))
U4_ag(min2_out_gag(M)) → min1_out_ag(M)
notEq_in_gg(s(X), s(Y)) → U13_gg(notEq_in_gg(X, Y))
notEq_in_gg(s(X), 0) → notEq_out_gg
notEq_in_gg(0, s(X)) → notEq_out_gg
U10_gga(M, remove_out_gga(L1)) → remove_out_gga(.(M, L1))
min2_in_gag(X, []) → min2_out_gag(X)
min2_in_gag(X, .(M, L)) → U5_gag(L, min_in_gga(X, M))
U13_gg(notEq_out_gg) → notEq_out_gg
U5_gag(L, min_out_gga(B)) → U6_gag(min2_in_gag(B, L))
min_in_gga(X, Y) → U7_gga(X, le_in_gg(X, Y))
min_in_gga(X, Y) → U8_gga(Y, gt_in_gg(X, Y))
U6_gag(min2_out_gag(A)) → min2_out_gag(A)
U7_gga(X, le_out_gg) → min_out_gga(X)
U8_gga(Y, gt_out_gg) → min_out_gga(Y)
le_in_gg(s(X), s(Y)) → U12_gg(le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg
le_in_gg(0, 0) → le_out_gg
gt_in_gg(s(X), s(Y)) → U11_gg(gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg
U12_gg(le_out_gg) → le_out_gg
U11_gg(gt_out_gg) → gt_out_gg

The set Q consists of the following terms:

remove_in_gga(x0, x1)
min1_in_ag(x0)
U9_gga(x0, x1, x2, x3)
U4_ag(x0)
notEq_in_gg(x0, x1)
U10_gga(x0, x1)
min2_in_gag(x0, x1)
U13_gg(x0)
U5_gag(x0, x1)
min_in_gga(x0, x1)
U6_gag(x0)
U7_gga(x0, x1)
U8_gga(x0, x1)
le_in_gg(x0, x1)
gt_in_gg(x0, x1)
U12_gg(x0)
U11_gg(x0)

We have to consider all (P,Q,R)-chains.

(117) Narrowing (SOUND transformation)

By narrowing [LPAR04] the rule MINSORT_IN_GA(L) → U1_GA(L, min1_in_ag(L)) at position [1] we obtained the following new rules [LPAR04]:

MINSORT_IN_GA(.(x0, x1)) → U1_GA(.(x0, x1), U4_ag(min2_in_gag(x0, x1)))

(118) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U2_GA(X, remove_out_gga(L2)) → MINSORT_IN_GA(L2)
U1_GA([], min1_out_ag(x0)) → U2_GA(x0, remove_out_gga([]))
U1_GA(.(x0, x1), min1_out_ag(x0)) → U2_GA(x0, remove_out_gga(x1))
U1_GA(.(x1, x2), min1_out_ag(x0)) → U2_GA(x0, U9_gga(x0, x1, x2, notEq_in_gg(x0, x1)))
MINSORT_IN_GA(.(x0, x1)) → U1_GA(.(x0, x1), U4_ag(min2_in_gag(x0, x1)))

The TRS R consists of the following rules:

remove_in_gga(N, []) → remove_out_gga([])
remove_in_gga(N, .(N, L)) → remove_out_gga(L)
remove_in_gga(N, .(M, L)) → U9_gga(N, M, L, notEq_in_gg(N, M))
min1_in_ag(.(X, L)) → U4_ag(min2_in_gag(X, L))
U9_gga(N, M, L, notEq_out_gg) → U10_gga(M, remove_in_gga(N, L))
U4_ag(min2_out_gag(M)) → min1_out_ag(M)
notEq_in_gg(s(X), s(Y)) → U13_gg(notEq_in_gg(X, Y))
notEq_in_gg(s(X), 0) → notEq_out_gg
notEq_in_gg(0, s(X)) → notEq_out_gg
U10_gga(M, remove_out_gga(L1)) → remove_out_gga(.(M, L1))
min2_in_gag(X, []) → min2_out_gag(X)
min2_in_gag(X, .(M, L)) → U5_gag(L, min_in_gga(X, M))
U13_gg(notEq_out_gg) → notEq_out_gg
U5_gag(L, min_out_gga(B)) → U6_gag(min2_in_gag(B, L))
min_in_gga(X, Y) → U7_gga(X, le_in_gg(X, Y))
min_in_gga(X, Y) → U8_gga(Y, gt_in_gg(X, Y))
U6_gag(min2_out_gag(A)) → min2_out_gag(A)
U7_gga(X, le_out_gg) → min_out_gga(X)
U8_gga(Y, gt_out_gg) → min_out_gga(Y)
le_in_gg(s(X), s(Y)) → U12_gg(le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg
le_in_gg(0, 0) → le_out_gg
gt_in_gg(s(X), s(Y)) → U11_gg(gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg
U12_gg(le_out_gg) → le_out_gg
U11_gg(gt_out_gg) → gt_out_gg

The set Q consists of the following terms:

remove_in_gga(x0, x1)
min1_in_ag(x0)
U9_gga(x0, x1, x2, x3)
U4_ag(x0)
notEq_in_gg(x0, x1)
U10_gga(x0, x1)
min2_in_gag(x0, x1)
U13_gg(x0)
U5_gag(x0, x1)
min_in_gga(x0, x1)
U6_gag(x0)
U7_gga(x0, x1)
U8_gga(x0, x1)
le_in_gg(x0, x1)
gt_in_gg(x0, x1)
U12_gg(x0)
U11_gg(x0)

We have to consider all (P,Q,R)-chains.

(119) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(120) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINSORT_IN_GA(.(x0, x1)) → U1_GA(.(x0, x1), U4_ag(min2_in_gag(x0, x1)))
U1_GA(.(x0, x1), min1_out_ag(x0)) → U2_GA(x0, remove_out_gga(x1))
U2_GA(X, remove_out_gga(L2)) → MINSORT_IN_GA(L2)
U1_GA(.(x1, x2), min1_out_ag(x0)) → U2_GA(x0, U9_gga(x0, x1, x2, notEq_in_gg(x0, x1)))

The TRS R consists of the following rules:

remove_in_gga(N, []) → remove_out_gga([])
remove_in_gga(N, .(N, L)) → remove_out_gga(L)
remove_in_gga(N, .(M, L)) → U9_gga(N, M, L, notEq_in_gg(N, M))
min1_in_ag(.(X, L)) → U4_ag(min2_in_gag(X, L))
U9_gga(N, M, L, notEq_out_gg) → U10_gga(M, remove_in_gga(N, L))
U4_ag(min2_out_gag(M)) → min1_out_ag(M)
notEq_in_gg(s(X), s(Y)) → U13_gg(notEq_in_gg(X, Y))
notEq_in_gg(s(X), 0) → notEq_out_gg
notEq_in_gg(0, s(X)) → notEq_out_gg
U10_gga(M, remove_out_gga(L1)) → remove_out_gga(.(M, L1))
min2_in_gag(X, []) → min2_out_gag(X)
min2_in_gag(X, .(M, L)) → U5_gag(L, min_in_gga(X, M))
U13_gg(notEq_out_gg) → notEq_out_gg
U5_gag(L, min_out_gga(B)) → U6_gag(min2_in_gag(B, L))
min_in_gga(X, Y) → U7_gga(X, le_in_gg(X, Y))
min_in_gga(X, Y) → U8_gga(Y, gt_in_gg(X, Y))
U6_gag(min2_out_gag(A)) → min2_out_gag(A)
U7_gga(X, le_out_gg) → min_out_gga(X)
U8_gga(Y, gt_out_gg) → min_out_gga(Y)
le_in_gg(s(X), s(Y)) → U12_gg(le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg
le_in_gg(0, 0) → le_out_gg
gt_in_gg(s(X), s(Y)) → U11_gg(gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg
U12_gg(le_out_gg) → le_out_gg
U11_gg(gt_out_gg) → gt_out_gg

The set Q consists of the following terms:

remove_in_gga(x0, x1)
min1_in_ag(x0)
U9_gga(x0, x1, x2, x3)
U4_ag(x0)
notEq_in_gg(x0, x1)
U10_gga(x0, x1)
min2_in_gag(x0, x1)
U13_gg(x0)
U5_gag(x0, x1)
min_in_gga(x0, x1)
U6_gag(x0)
U7_gga(x0, x1)
U8_gga(x0, x1)
le_in_gg(x0, x1)
gt_in_gg(x0, x1)
U12_gg(x0)
U11_gg(x0)

We have to consider all (P,Q,R)-chains.

(121) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(122) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINSORT_IN_GA(.(x0, x1)) → U1_GA(.(x0, x1), U4_ag(min2_in_gag(x0, x1)))
U1_GA(.(x0, x1), min1_out_ag(x0)) → U2_GA(x0, remove_out_gga(x1))
U2_GA(X, remove_out_gga(L2)) → MINSORT_IN_GA(L2)
U1_GA(.(x1, x2), min1_out_ag(x0)) → U2_GA(x0, U9_gga(x0, x1, x2, notEq_in_gg(x0, x1)))

The TRS R consists of the following rules:

notEq_in_gg(s(X), s(Y)) → U13_gg(notEq_in_gg(X, Y))
notEq_in_gg(s(X), 0) → notEq_out_gg
notEq_in_gg(0, s(X)) → notEq_out_gg
U9_gga(N, M, L, notEq_out_gg) → U10_gga(M, remove_in_gga(N, L))
remove_in_gga(N, []) → remove_out_gga([])
remove_in_gga(N, .(N, L)) → remove_out_gga(L)
remove_in_gga(N, .(M, L)) → U9_gga(N, M, L, notEq_in_gg(N, M))
U10_gga(M, remove_out_gga(L1)) → remove_out_gga(.(M, L1))
U13_gg(notEq_out_gg) → notEq_out_gg
min2_in_gag(X, []) → min2_out_gag(X)
min2_in_gag(X, .(M, L)) → U5_gag(L, min_in_gga(X, M))
U4_ag(min2_out_gag(M)) → min1_out_ag(M)
min_in_gga(X, Y) → U7_gga(X, le_in_gg(X, Y))
min_in_gga(X, Y) → U8_gga(Y, gt_in_gg(X, Y))
U5_gag(L, min_out_gga(B)) → U6_gag(min2_in_gag(B, L))
U6_gag(min2_out_gag(A)) → min2_out_gag(A)
gt_in_gg(s(X), s(Y)) → U11_gg(gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg
U8_gga(Y, gt_out_gg) → min_out_gga(Y)
U11_gg(gt_out_gg) → gt_out_gg
le_in_gg(s(X), s(Y)) → U12_gg(le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg
le_in_gg(0, 0) → le_out_gg
U7_gga(X, le_out_gg) → min_out_gga(X)
U12_gg(le_out_gg) → le_out_gg

The set Q consists of the following terms:

remove_in_gga(x0, x1)
min1_in_ag(x0)
U9_gga(x0, x1, x2, x3)
U4_ag(x0)
notEq_in_gg(x0, x1)
U10_gga(x0, x1)
min2_in_gag(x0, x1)
U13_gg(x0)
U5_gag(x0, x1)
min_in_gga(x0, x1)
U6_gag(x0)
U7_gga(x0, x1)
U8_gga(x0, x1)
le_in_gg(x0, x1)
gt_in_gg(x0, x1)
U12_gg(x0)
U11_gg(x0)

We have to consider all (P,Q,R)-chains.

(123) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

min1_in_ag(x0)

(124) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINSORT_IN_GA(.(x0, x1)) → U1_GA(.(x0, x1), U4_ag(min2_in_gag(x0, x1)))
U1_GA(.(x0, x1), min1_out_ag(x0)) → U2_GA(x0, remove_out_gga(x1))
U2_GA(X, remove_out_gga(L2)) → MINSORT_IN_GA(L2)
U1_GA(.(x1, x2), min1_out_ag(x0)) → U2_GA(x0, U9_gga(x0, x1, x2, notEq_in_gg(x0, x1)))

The TRS R consists of the following rules:

notEq_in_gg(s(X), s(Y)) → U13_gg(notEq_in_gg(X, Y))
notEq_in_gg(s(X), 0) → notEq_out_gg
notEq_in_gg(0, s(X)) → notEq_out_gg
U9_gga(N, M, L, notEq_out_gg) → U10_gga(M, remove_in_gga(N, L))
remove_in_gga(N, []) → remove_out_gga([])
remove_in_gga(N, .(N, L)) → remove_out_gga(L)
remove_in_gga(N, .(M, L)) → U9_gga(N, M, L, notEq_in_gg(N, M))
U10_gga(M, remove_out_gga(L1)) → remove_out_gga(.(M, L1))
U13_gg(notEq_out_gg) → notEq_out_gg
min2_in_gag(X, []) → min2_out_gag(X)
min2_in_gag(X, .(M, L)) → U5_gag(L, min_in_gga(X, M))
U4_ag(min2_out_gag(M)) → min1_out_ag(M)
min_in_gga(X, Y) → U7_gga(X, le_in_gg(X, Y))
min_in_gga(X, Y) → U8_gga(Y, gt_in_gg(X, Y))
U5_gag(L, min_out_gga(B)) → U6_gag(min2_in_gag(B, L))
U6_gag(min2_out_gag(A)) → min2_out_gag(A)
gt_in_gg(s(X), s(Y)) → U11_gg(gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg
U8_gga(Y, gt_out_gg) → min_out_gga(Y)
U11_gg(gt_out_gg) → gt_out_gg
le_in_gg(s(X), s(Y)) → U12_gg(le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg
le_in_gg(0, 0) → le_out_gg
U7_gga(X, le_out_gg) → min_out_gga(X)
U12_gg(le_out_gg) → le_out_gg

The set Q consists of the following terms:

remove_in_gga(x0, x1)
U9_gga(x0, x1, x2, x3)
U4_ag(x0)
notEq_in_gg(x0, x1)
U10_gga(x0, x1)
min2_in_gag(x0, x1)
U13_gg(x0)
U5_gag(x0, x1)
min_in_gga(x0, x1)
U6_gag(x0)
U7_gga(x0, x1)
U8_gga(x0, x1)
le_in_gg(x0, x1)
gt_in_gg(x0, x1)
U12_gg(x0)
U11_gg(x0)

We have to consider all (P,Q,R)-chains.

(125) ForwardInstantiation (EQUIVALENT transformation)

By forward instantiating [JAR06] the rule U2_GA(X, remove_out_gga(L2)) → MINSORT_IN_GA(L2) we obtained the following new rules [LPAR04]:

U2_GA(x0, remove_out_gga(.(y_0, y_1))) → MINSORT_IN_GA(.(y_0, y_1))

(126) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINSORT_IN_GA(.(x0, x1)) → U1_GA(.(x0, x1), U4_ag(min2_in_gag(x0, x1)))
U1_GA(.(x0, x1), min1_out_ag(x0)) → U2_GA(x0, remove_out_gga(x1))
U1_GA(.(x1, x2), min1_out_ag(x0)) → U2_GA(x0, U9_gga(x0, x1, x2, notEq_in_gg(x0, x1)))
U2_GA(x0, remove_out_gga(.(y_0, y_1))) → MINSORT_IN_GA(.(y_0, y_1))

The TRS R consists of the following rules:

notEq_in_gg(s(X), s(Y)) → U13_gg(notEq_in_gg(X, Y))
notEq_in_gg(s(X), 0) → notEq_out_gg
notEq_in_gg(0, s(X)) → notEq_out_gg
U9_gga(N, M, L, notEq_out_gg) → U10_gga(M, remove_in_gga(N, L))
remove_in_gga(N, []) → remove_out_gga([])
remove_in_gga(N, .(N, L)) → remove_out_gga(L)
remove_in_gga(N, .(M, L)) → U9_gga(N, M, L, notEq_in_gg(N, M))
U10_gga(M, remove_out_gga(L1)) → remove_out_gga(.(M, L1))
U13_gg(notEq_out_gg) → notEq_out_gg
min2_in_gag(X, []) → min2_out_gag(X)
min2_in_gag(X, .(M, L)) → U5_gag(L, min_in_gga(X, M))
U4_ag(min2_out_gag(M)) → min1_out_ag(M)
min_in_gga(X, Y) → U7_gga(X, le_in_gg(X, Y))
min_in_gga(X, Y) → U8_gga(Y, gt_in_gg(X, Y))
U5_gag(L, min_out_gga(B)) → U6_gag(min2_in_gag(B, L))
U6_gag(min2_out_gag(A)) → min2_out_gag(A)
gt_in_gg(s(X), s(Y)) → U11_gg(gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg
U8_gga(Y, gt_out_gg) → min_out_gga(Y)
U11_gg(gt_out_gg) → gt_out_gg
le_in_gg(s(X), s(Y)) → U12_gg(le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg
le_in_gg(0, 0) → le_out_gg
U7_gga(X, le_out_gg) → min_out_gga(X)
U12_gg(le_out_gg) → le_out_gg

The set Q consists of the following terms:

remove_in_gga(x0, x1)
U9_gga(x0, x1, x2, x3)
U4_ag(x0)
notEq_in_gg(x0, x1)
U10_gga(x0, x1)
min2_in_gag(x0, x1)
U13_gg(x0)
U5_gag(x0, x1)
min_in_gga(x0, x1)
U6_gag(x0)
U7_gga(x0, x1)
U8_gga(x0, x1)
le_in_gg(x0, x1)
gt_in_gg(x0, x1)
U12_gg(x0)
U11_gg(x0)

We have to consider all (P,Q,R)-chains.

(127) ForwardInstantiation (EQUIVALENT transformation)

By forward instantiating [JAR06] the rule U1_GA(.(x0, x1), min1_out_ag(x0)) → U2_GA(x0, remove_out_gga(x1)) we obtained the following new rules [LPAR04]:

U1_GA(.(x0, .(y_1, y_2)), min1_out_ag(x0)) → U2_GA(x0, remove_out_gga(.(y_1, y_2)))

(128) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINSORT_IN_GA(.(x0, x1)) → U1_GA(.(x0, x1), U4_ag(min2_in_gag(x0, x1)))
U1_GA(.(x1, x2), min1_out_ag(x0)) → U2_GA(x0, U9_gga(x0, x1, x2, notEq_in_gg(x0, x1)))
U2_GA(x0, remove_out_gga(.(y_0, y_1))) → MINSORT_IN_GA(.(y_0, y_1))
U1_GA(.(x0, .(y_1, y_2)), min1_out_ag(x0)) → U2_GA(x0, remove_out_gga(.(y_1, y_2)))

The TRS R consists of the following rules:

notEq_in_gg(s(X), s(Y)) → U13_gg(notEq_in_gg(X, Y))
notEq_in_gg(s(X), 0) → notEq_out_gg
notEq_in_gg(0, s(X)) → notEq_out_gg
U9_gga(N, M, L, notEq_out_gg) → U10_gga(M, remove_in_gga(N, L))
remove_in_gga(N, []) → remove_out_gga([])
remove_in_gga(N, .(N, L)) → remove_out_gga(L)
remove_in_gga(N, .(M, L)) → U9_gga(N, M, L, notEq_in_gg(N, M))
U10_gga(M, remove_out_gga(L1)) → remove_out_gga(.(M, L1))
U13_gg(notEq_out_gg) → notEq_out_gg
min2_in_gag(X, []) → min2_out_gag(X)
min2_in_gag(X, .(M, L)) → U5_gag(L, min_in_gga(X, M))
U4_ag(min2_out_gag(M)) → min1_out_ag(M)
min_in_gga(X, Y) → U7_gga(X, le_in_gg(X, Y))
min_in_gga(X, Y) → U8_gga(Y, gt_in_gg(X, Y))
U5_gag(L, min_out_gga(B)) → U6_gag(min2_in_gag(B, L))
U6_gag(min2_out_gag(A)) → min2_out_gag(A)
gt_in_gg(s(X), s(Y)) → U11_gg(gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg
U8_gga(Y, gt_out_gg) → min_out_gga(Y)
U11_gg(gt_out_gg) → gt_out_gg
le_in_gg(s(X), s(Y)) → U12_gg(le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg
le_in_gg(0, 0) → le_out_gg
U7_gga(X, le_out_gg) → min_out_gga(X)
U12_gg(le_out_gg) → le_out_gg

The set Q consists of the following terms:

remove_in_gga(x0, x1)
U9_gga(x0, x1, x2, x3)
U4_ag(x0)
notEq_in_gg(x0, x1)
U10_gga(x0, x1)
min2_in_gag(x0, x1)
U13_gg(x0)
U5_gag(x0, x1)
min_in_gga(x0, x1)
U6_gag(x0)
U7_gga(x0, x1)
U8_gga(x0, x1)
le_in_gg(x0, x1)
gt_in_gg(x0, x1)
U12_gg(x0)
U11_gg(x0)

We have to consider all (P,Q,R)-chains.

(129) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U1_GA(.(x0, .(y_1, y_2)), min1_out_ag(x0)) → U2_GA(x0, remove_out_gga(.(y_1, y_2)))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(.(x1, x2)) = 1 + x2   
POL(0) = 0   
POL(MINSORT_IN_GA(x1)) = x1   
POL(U10_gga(x1, x2)) = 1 + x2   
POL(U11_gg(x1)) = 0   
POL(U12_gg(x1)) = 0   
POL(U13_gg(x1)) = 0   
POL(U1_GA(x1, x2)) = x1   
POL(U2_GA(x1, x2)) = x2   
POL(U4_ag(x1)) = 0   
POL(U5_gag(x1, x2)) = 0   
POL(U6_gag(x1)) = 0   
POL(U7_gga(x1, x2)) = 0   
POL(U8_gga(x1, x2)) = 1   
POL(U9_gga(x1, x2, x3, x4)) = 1 + x3   
POL([]) = 0   
POL(gt_in_gg(x1, x2)) = 0   
POL(gt_out_gg) = 0   
POL(le_in_gg(x1, x2)) = 0   
POL(le_out_gg) = 0   
POL(min1_out_ag(x1)) = 0   
POL(min2_in_gag(x1, x2)) = 0   
POL(min2_out_gag(x1)) = 0   
POL(min_in_gga(x1, x2)) = 1 + x1   
POL(min_out_gga(x1)) = 0   
POL(notEq_in_gg(x1, x2)) = 0   
POL(notEq_out_gg) = 0   
POL(remove_in_gga(x1, x2)) = x2   
POL(remove_out_gga(x1)) = x1   
POL(s(x1)) = 0   

The following usable rules [FROCOS05] were oriented:

U9_gga(N, M, L, notEq_out_gg) → U10_gga(M, remove_in_gga(N, L))
remove_in_gga(N, []) → remove_out_gga([])
remove_in_gga(N, .(N, L)) → remove_out_gga(L)
U10_gga(M, remove_out_gga(L1)) → remove_out_gga(.(M, L1))
remove_in_gga(N, .(M, L)) → U9_gga(N, M, L, notEq_in_gg(N, M))

(130) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINSORT_IN_GA(.(x0, x1)) → U1_GA(.(x0, x1), U4_ag(min2_in_gag(x0, x1)))
U1_GA(.(x1, x2), min1_out_ag(x0)) → U2_GA(x0, U9_gga(x0, x1, x2, notEq_in_gg(x0, x1)))
U2_GA(x0, remove_out_gga(.(y_0, y_1))) → MINSORT_IN_GA(.(y_0, y_1))

The TRS R consists of the following rules:

notEq_in_gg(s(X), s(Y)) → U13_gg(notEq_in_gg(X, Y))
notEq_in_gg(s(X), 0) → notEq_out_gg
notEq_in_gg(0, s(X)) → notEq_out_gg
U9_gga(N, M, L, notEq_out_gg) → U10_gga(M, remove_in_gga(N, L))
remove_in_gga(N, []) → remove_out_gga([])
remove_in_gga(N, .(N, L)) → remove_out_gga(L)
remove_in_gga(N, .(M, L)) → U9_gga(N, M, L, notEq_in_gg(N, M))
U10_gga(M, remove_out_gga(L1)) → remove_out_gga(.(M, L1))
U13_gg(notEq_out_gg) → notEq_out_gg
min2_in_gag(X, []) → min2_out_gag(X)
min2_in_gag(X, .(M, L)) → U5_gag(L, min_in_gga(X, M))
U4_ag(min2_out_gag(M)) → min1_out_ag(M)
min_in_gga(X, Y) → U7_gga(X, le_in_gg(X, Y))
min_in_gga(X, Y) → U8_gga(Y, gt_in_gg(X, Y))
U5_gag(L, min_out_gga(B)) → U6_gag(min2_in_gag(B, L))
U6_gag(min2_out_gag(A)) → min2_out_gag(A)
gt_in_gg(s(X), s(Y)) → U11_gg(gt_in_gg(X, Y))
gt_in_gg(s(X), 0) → gt_out_gg
U8_gga(Y, gt_out_gg) → min_out_gga(Y)
U11_gg(gt_out_gg) → gt_out_gg
le_in_gg(s(X), s(Y)) → U12_gg(le_in_gg(X, Y))
le_in_gg(0, s(Y)) → le_out_gg
le_in_gg(0, 0) → le_out_gg
U7_gga(X, le_out_gg) → min_out_gga(X)
U12_gg(le_out_gg) → le_out_gg

The set Q consists of the following terms:

remove_in_gga(x0, x1)
U9_gga(x0, x1, x2, x3)
U4_ag(x0)
notEq_in_gg(x0, x1)
U10_gga(x0, x1)
min2_in_gag(x0, x1)
U13_gg(x0)
U5_gag(x0, x1)
min_in_gga(x0, x1)
U6_gag(x0)
U7_gga(x0, x1)
U8_gga(x0, x1)
le_in_gg(x0, x1)
gt_in_gg(x0, x1)
U12_gg(x0)
U11_gg(x0)

We have to consider all (P,Q,R)-chains.