(0) Obligation:

Clauses:

reach(X, Y, Edges, Visited) :- member(.(X, .(Y, [])), Edges).
reach(X, Z, Edges, Visited) :- ','(member1(.(X, .(Y, [])), Edges), ','(member(Y, Visited), reach(Y, Z, Edges, .(Y, Visited)))).
member(H, .(H, L)).
member(X, .(H, L)) :- member(X, L).
member1(H, .(H, L)).
member1(X, .(H, L)) :- member1(X, L).

Queries:

reach(g,g,g,g).

(1) PrologToPrologProblemTransformerProof (SOUND transformation)

Built Prolog problem from termination graph.

(2) Obligation:

Clauses:

member12(T66, T67, .(.(T66, .(T67, [])), T68)).
member12(T77, T78, .(T79, T80)) :- member12(T77, T78, T80).
member124(T120, X117, .(.(T120, .(X117, [])), T121)).
member124(T128, X131, .(T129, T130)) :- member124(T128, X131, T130).
member34(T151, .(T151, T152)).
member34(T159, .(T160, T161)) :- member34(T159, T161).
reach1(T25, T26, .(.(T25, .(T26, [])), T27), T12).
reach1(T44, T45, .(T46, T47), T12) :- member12(T44, T45, T47).
reach1(T99, T100, T101, T102) :- member124(T99, X90, T101).
reach1(T99, T100, T101, T102) :- ','(member124(T99, T107, T101), member34(T107, T102)).
reach1(T99, T100, T101, T102) :- ','(member124(T99, T107, T101), ','(member34(T107, T102), reach1(T107, T100, T101, .(T107, T102)))).

Queries:

reach1(g,g,g,g).

(3) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
reach1_in: (b,b,b,b)
member12_in: (b,b,b)
member124_in: (b,f,b)
member34_in: (b,b)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

reach1_in_gggg(T25, T26, .(.(T25, .(T26, [])), T27), T12) → reach1_out_gggg(T25, T26, .(.(T25, .(T26, [])), T27), T12)
reach1_in_gggg(T44, T45, .(T46, T47), T12) → U4_gggg(T44, T45, T46, T47, T12, member12_in_ggg(T44, T45, T47))
member12_in_ggg(T66, T67, .(.(T66, .(T67, [])), T68)) → member12_out_ggg(T66, T67, .(.(T66, .(T67, [])), T68))
member12_in_ggg(T77, T78, .(T79, T80)) → U1_ggg(T77, T78, T79, T80, member12_in_ggg(T77, T78, T80))
U1_ggg(T77, T78, T79, T80, member12_out_ggg(T77, T78, T80)) → member12_out_ggg(T77, T78, .(T79, T80))
U4_gggg(T44, T45, T46, T47, T12, member12_out_ggg(T44, T45, T47)) → reach1_out_gggg(T44, T45, .(T46, T47), T12)
reach1_in_gggg(T99, T100, T101, T102) → U5_gggg(T99, T100, T101, T102, member124_in_gag(T99, X90, T101))
member124_in_gag(T120, X117, .(.(T120, .(X117, [])), T121)) → member124_out_gag(T120, X117, .(.(T120, .(X117, [])), T121))
member124_in_gag(T128, X131, .(T129, T130)) → U2_gag(T128, X131, T129, T130, member124_in_gag(T128, X131, T130))
U2_gag(T128, X131, T129, T130, member124_out_gag(T128, X131, T130)) → member124_out_gag(T128, X131, .(T129, T130))
U5_gggg(T99, T100, T101, T102, member124_out_gag(T99, X90, T101)) → reach1_out_gggg(T99, T100, T101, T102)
reach1_in_gggg(T99, T100, T101, T102) → U6_gggg(T99, T100, T101, T102, member124_in_gag(T99, T107, T101))
U6_gggg(T99, T100, T101, T102, member124_out_gag(T99, T107, T101)) → U7_gggg(T99, T100, T101, T102, T107, member34_in_gg(T107, T102))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg(T151, .(T151, T152))
member34_in_gg(T159, .(T160, T161)) → U3_gg(T159, T160, T161, member34_in_gg(T159, T161))
U3_gg(T159, T160, T161, member34_out_gg(T159, T161)) → member34_out_gg(T159, .(T160, T161))
U7_gggg(T99, T100, T101, T102, T107, member34_out_gg(T107, T102)) → reach1_out_gggg(T99, T100, T101, T102)
U7_gggg(T99, T100, T101, T102, T107, member34_out_gg(T107, T102)) → U8_gggg(T99, T100, T101, T102, reach1_in_gggg(T107, T100, T101, .(T107, T102)))
U8_gggg(T99, T100, T101, T102, reach1_out_gggg(T107, T100, T101, .(T107, T102))) → reach1_out_gggg(T99, T100, T101, T102)

The argument filtering Pi contains the following mapping:
reach1_in_gggg(x1, x2, x3, x4)  =  reach1_in_gggg(x1, x2, x3, x4)
.(x1, x2)  =  .(x1, x2)
[]  =  []
reach1_out_gggg(x1, x2, x3, x4)  =  reach1_out_gggg
U4_gggg(x1, x2, x3, x4, x5, x6)  =  U4_gggg(x6)
member12_in_ggg(x1, x2, x3)  =  member12_in_ggg(x1, x2, x3)
member12_out_ggg(x1, x2, x3)  =  member12_out_ggg
U1_ggg(x1, x2, x3, x4, x5)  =  U1_ggg(x5)
U5_gggg(x1, x2, x3, x4, x5)  =  U5_gggg(x5)
member124_in_gag(x1, x2, x3)  =  member124_in_gag(x1, x3)
member124_out_gag(x1, x2, x3)  =  member124_out_gag(x2)
U2_gag(x1, x2, x3, x4, x5)  =  U2_gag(x5)
U6_gggg(x1, x2, x3, x4, x5)  =  U6_gggg(x2, x3, x4, x5)
U7_gggg(x1, x2, x3, x4, x5, x6)  =  U7_gggg(x2, x3, x4, x5, x6)
member34_in_gg(x1, x2)  =  member34_in_gg(x1, x2)
member34_out_gg(x1, x2)  =  member34_out_gg
U3_gg(x1, x2, x3, x4)  =  U3_gg(x4)
U8_gggg(x1, x2, x3, x4, x5)  =  U8_gggg(x5)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(4) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

reach1_in_gggg(T25, T26, .(.(T25, .(T26, [])), T27), T12) → reach1_out_gggg(T25, T26, .(.(T25, .(T26, [])), T27), T12)
reach1_in_gggg(T44, T45, .(T46, T47), T12) → U4_gggg(T44, T45, T46, T47, T12, member12_in_ggg(T44, T45, T47))
member12_in_ggg(T66, T67, .(.(T66, .(T67, [])), T68)) → member12_out_ggg(T66, T67, .(.(T66, .(T67, [])), T68))
member12_in_ggg(T77, T78, .(T79, T80)) → U1_ggg(T77, T78, T79, T80, member12_in_ggg(T77, T78, T80))
U1_ggg(T77, T78, T79, T80, member12_out_ggg(T77, T78, T80)) → member12_out_ggg(T77, T78, .(T79, T80))
U4_gggg(T44, T45, T46, T47, T12, member12_out_ggg(T44, T45, T47)) → reach1_out_gggg(T44, T45, .(T46, T47), T12)
reach1_in_gggg(T99, T100, T101, T102) → U5_gggg(T99, T100, T101, T102, member124_in_gag(T99, X90, T101))
member124_in_gag(T120, X117, .(.(T120, .(X117, [])), T121)) → member124_out_gag(T120, X117, .(.(T120, .(X117, [])), T121))
member124_in_gag(T128, X131, .(T129, T130)) → U2_gag(T128, X131, T129, T130, member124_in_gag(T128, X131, T130))
U2_gag(T128, X131, T129, T130, member124_out_gag(T128, X131, T130)) → member124_out_gag(T128, X131, .(T129, T130))
U5_gggg(T99, T100, T101, T102, member124_out_gag(T99, X90, T101)) → reach1_out_gggg(T99, T100, T101, T102)
reach1_in_gggg(T99, T100, T101, T102) → U6_gggg(T99, T100, T101, T102, member124_in_gag(T99, T107, T101))
U6_gggg(T99, T100, T101, T102, member124_out_gag(T99, T107, T101)) → U7_gggg(T99, T100, T101, T102, T107, member34_in_gg(T107, T102))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg(T151, .(T151, T152))
member34_in_gg(T159, .(T160, T161)) → U3_gg(T159, T160, T161, member34_in_gg(T159, T161))
U3_gg(T159, T160, T161, member34_out_gg(T159, T161)) → member34_out_gg(T159, .(T160, T161))
U7_gggg(T99, T100, T101, T102, T107, member34_out_gg(T107, T102)) → reach1_out_gggg(T99, T100, T101, T102)
U7_gggg(T99, T100, T101, T102, T107, member34_out_gg(T107, T102)) → U8_gggg(T99, T100, T101, T102, reach1_in_gggg(T107, T100, T101, .(T107, T102)))
U8_gggg(T99, T100, T101, T102, reach1_out_gggg(T107, T100, T101, .(T107, T102))) → reach1_out_gggg(T99, T100, T101, T102)

The argument filtering Pi contains the following mapping:
reach1_in_gggg(x1, x2, x3, x4)  =  reach1_in_gggg(x1, x2, x3, x4)
.(x1, x2)  =  .(x1, x2)
[]  =  []
reach1_out_gggg(x1, x2, x3, x4)  =  reach1_out_gggg
U4_gggg(x1, x2, x3, x4, x5, x6)  =  U4_gggg(x6)
member12_in_ggg(x1, x2, x3)  =  member12_in_ggg(x1, x2, x3)
member12_out_ggg(x1, x2, x3)  =  member12_out_ggg
U1_ggg(x1, x2, x3, x4, x5)  =  U1_ggg(x5)
U5_gggg(x1, x2, x3, x4, x5)  =  U5_gggg(x5)
member124_in_gag(x1, x2, x3)  =  member124_in_gag(x1, x3)
member124_out_gag(x1, x2, x3)  =  member124_out_gag(x2)
U2_gag(x1, x2, x3, x4, x5)  =  U2_gag(x5)
U6_gggg(x1, x2, x3, x4, x5)  =  U6_gggg(x2, x3, x4, x5)
U7_gggg(x1, x2, x3, x4, x5, x6)  =  U7_gggg(x2, x3, x4, x5, x6)
member34_in_gg(x1, x2)  =  member34_in_gg(x1, x2)
member34_out_gg(x1, x2)  =  member34_out_gg
U3_gg(x1, x2, x3, x4)  =  U3_gg(x4)
U8_gggg(x1, x2, x3, x4, x5)  =  U8_gggg(x5)

(5) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

REACH1_IN_GGGG(T44, T45, .(T46, T47), T12) → U4_GGGG(T44, T45, T46, T47, T12, member12_in_ggg(T44, T45, T47))
REACH1_IN_GGGG(T44, T45, .(T46, T47), T12) → MEMBER12_IN_GGG(T44, T45, T47)
MEMBER12_IN_GGG(T77, T78, .(T79, T80)) → U1_GGG(T77, T78, T79, T80, member12_in_ggg(T77, T78, T80))
MEMBER12_IN_GGG(T77, T78, .(T79, T80)) → MEMBER12_IN_GGG(T77, T78, T80)
REACH1_IN_GGGG(T99, T100, T101, T102) → U5_GGGG(T99, T100, T101, T102, member124_in_gag(T99, X90, T101))
REACH1_IN_GGGG(T99, T100, T101, T102) → MEMBER124_IN_GAG(T99, X90, T101)
MEMBER124_IN_GAG(T128, X131, .(T129, T130)) → U2_GAG(T128, X131, T129, T130, member124_in_gag(T128, X131, T130))
MEMBER124_IN_GAG(T128, X131, .(T129, T130)) → MEMBER124_IN_GAG(T128, X131, T130)
REACH1_IN_GGGG(T99, T100, T101, T102) → U6_GGGG(T99, T100, T101, T102, member124_in_gag(T99, T107, T101))
U6_GGGG(T99, T100, T101, T102, member124_out_gag(T99, T107, T101)) → U7_GGGG(T99, T100, T101, T102, T107, member34_in_gg(T107, T102))
U6_GGGG(T99, T100, T101, T102, member124_out_gag(T99, T107, T101)) → MEMBER34_IN_GG(T107, T102)
MEMBER34_IN_GG(T159, .(T160, T161)) → U3_GG(T159, T160, T161, member34_in_gg(T159, T161))
MEMBER34_IN_GG(T159, .(T160, T161)) → MEMBER34_IN_GG(T159, T161)
U7_GGGG(T99, T100, T101, T102, T107, member34_out_gg(T107, T102)) → U8_GGGG(T99, T100, T101, T102, reach1_in_gggg(T107, T100, T101, .(T107, T102)))
U7_GGGG(T99, T100, T101, T102, T107, member34_out_gg(T107, T102)) → REACH1_IN_GGGG(T107, T100, T101, .(T107, T102))

The TRS R consists of the following rules:

reach1_in_gggg(T25, T26, .(.(T25, .(T26, [])), T27), T12) → reach1_out_gggg(T25, T26, .(.(T25, .(T26, [])), T27), T12)
reach1_in_gggg(T44, T45, .(T46, T47), T12) → U4_gggg(T44, T45, T46, T47, T12, member12_in_ggg(T44, T45, T47))
member12_in_ggg(T66, T67, .(.(T66, .(T67, [])), T68)) → member12_out_ggg(T66, T67, .(.(T66, .(T67, [])), T68))
member12_in_ggg(T77, T78, .(T79, T80)) → U1_ggg(T77, T78, T79, T80, member12_in_ggg(T77, T78, T80))
U1_ggg(T77, T78, T79, T80, member12_out_ggg(T77, T78, T80)) → member12_out_ggg(T77, T78, .(T79, T80))
U4_gggg(T44, T45, T46, T47, T12, member12_out_ggg(T44, T45, T47)) → reach1_out_gggg(T44, T45, .(T46, T47), T12)
reach1_in_gggg(T99, T100, T101, T102) → U5_gggg(T99, T100, T101, T102, member124_in_gag(T99, X90, T101))
member124_in_gag(T120, X117, .(.(T120, .(X117, [])), T121)) → member124_out_gag(T120, X117, .(.(T120, .(X117, [])), T121))
member124_in_gag(T128, X131, .(T129, T130)) → U2_gag(T128, X131, T129, T130, member124_in_gag(T128, X131, T130))
U2_gag(T128, X131, T129, T130, member124_out_gag(T128, X131, T130)) → member124_out_gag(T128, X131, .(T129, T130))
U5_gggg(T99, T100, T101, T102, member124_out_gag(T99, X90, T101)) → reach1_out_gggg(T99, T100, T101, T102)
reach1_in_gggg(T99, T100, T101, T102) → U6_gggg(T99, T100, T101, T102, member124_in_gag(T99, T107, T101))
U6_gggg(T99, T100, T101, T102, member124_out_gag(T99, T107, T101)) → U7_gggg(T99, T100, T101, T102, T107, member34_in_gg(T107, T102))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg(T151, .(T151, T152))
member34_in_gg(T159, .(T160, T161)) → U3_gg(T159, T160, T161, member34_in_gg(T159, T161))
U3_gg(T159, T160, T161, member34_out_gg(T159, T161)) → member34_out_gg(T159, .(T160, T161))
U7_gggg(T99, T100, T101, T102, T107, member34_out_gg(T107, T102)) → reach1_out_gggg(T99, T100, T101, T102)
U7_gggg(T99, T100, T101, T102, T107, member34_out_gg(T107, T102)) → U8_gggg(T99, T100, T101, T102, reach1_in_gggg(T107, T100, T101, .(T107, T102)))
U8_gggg(T99, T100, T101, T102, reach1_out_gggg(T107, T100, T101, .(T107, T102))) → reach1_out_gggg(T99, T100, T101, T102)

The argument filtering Pi contains the following mapping:
reach1_in_gggg(x1, x2, x3, x4)  =  reach1_in_gggg(x1, x2, x3, x4)
.(x1, x2)  =  .(x1, x2)
[]  =  []
reach1_out_gggg(x1, x2, x3, x4)  =  reach1_out_gggg
U4_gggg(x1, x2, x3, x4, x5, x6)  =  U4_gggg(x6)
member12_in_ggg(x1, x2, x3)  =  member12_in_ggg(x1, x2, x3)
member12_out_ggg(x1, x2, x3)  =  member12_out_ggg
U1_ggg(x1, x2, x3, x4, x5)  =  U1_ggg(x5)
U5_gggg(x1, x2, x3, x4, x5)  =  U5_gggg(x5)
member124_in_gag(x1, x2, x3)  =  member124_in_gag(x1, x3)
member124_out_gag(x1, x2, x3)  =  member124_out_gag(x2)
U2_gag(x1, x2, x3, x4, x5)  =  U2_gag(x5)
U6_gggg(x1, x2, x3, x4, x5)  =  U6_gggg(x2, x3, x4, x5)
U7_gggg(x1, x2, x3, x4, x5, x6)  =  U7_gggg(x2, x3, x4, x5, x6)
member34_in_gg(x1, x2)  =  member34_in_gg(x1, x2)
member34_out_gg(x1, x2)  =  member34_out_gg
U3_gg(x1, x2, x3, x4)  =  U3_gg(x4)
U8_gggg(x1, x2, x3, x4, x5)  =  U8_gggg(x5)
REACH1_IN_GGGG(x1, x2, x3, x4)  =  REACH1_IN_GGGG(x1, x2, x3, x4)
U4_GGGG(x1, x2, x3, x4, x5, x6)  =  U4_GGGG(x6)
MEMBER12_IN_GGG(x1, x2, x3)  =  MEMBER12_IN_GGG(x1, x2, x3)
U1_GGG(x1, x2, x3, x4, x5)  =  U1_GGG(x5)
U5_GGGG(x1, x2, x3, x4, x5)  =  U5_GGGG(x5)
MEMBER124_IN_GAG(x1, x2, x3)  =  MEMBER124_IN_GAG(x1, x3)
U2_GAG(x1, x2, x3, x4, x5)  =  U2_GAG(x5)
U6_GGGG(x1, x2, x3, x4, x5)  =  U6_GGGG(x2, x3, x4, x5)
U7_GGGG(x1, x2, x3, x4, x5, x6)  =  U7_GGGG(x2, x3, x4, x5, x6)
MEMBER34_IN_GG(x1, x2)  =  MEMBER34_IN_GG(x1, x2)
U3_GG(x1, x2, x3, x4)  =  U3_GG(x4)
U8_GGGG(x1, x2, x3, x4, x5)  =  U8_GGGG(x5)

We have to consider all (P,R,Pi)-chains

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

REACH1_IN_GGGG(T44, T45, .(T46, T47), T12) → U4_GGGG(T44, T45, T46, T47, T12, member12_in_ggg(T44, T45, T47))
REACH1_IN_GGGG(T44, T45, .(T46, T47), T12) → MEMBER12_IN_GGG(T44, T45, T47)
MEMBER12_IN_GGG(T77, T78, .(T79, T80)) → U1_GGG(T77, T78, T79, T80, member12_in_ggg(T77, T78, T80))
MEMBER12_IN_GGG(T77, T78, .(T79, T80)) → MEMBER12_IN_GGG(T77, T78, T80)
REACH1_IN_GGGG(T99, T100, T101, T102) → U5_GGGG(T99, T100, T101, T102, member124_in_gag(T99, X90, T101))
REACH1_IN_GGGG(T99, T100, T101, T102) → MEMBER124_IN_GAG(T99, X90, T101)
MEMBER124_IN_GAG(T128, X131, .(T129, T130)) → U2_GAG(T128, X131, T129, T130, member124_in_gag(T128, X131, T130))
MEMBER124_IN_GAG(T128, X131, .(T129, T130)) → MEMBER124_IN_GAG(T128, X131, T130)
REACH1_IN_GGGG(T99, T100, T101, T102) → U6_GGGG(T99, T100, T101, T102, member124_in_gag(T99, T107, T101))
U6_GGGG(T99, T100, T101, T102, member124_out_gag(T99, T107, T101)) → U7_GGGG(T99, T100, T101, T102, T107, member34_in_gg(T107, T102))
U6_GGGG(T99, T100, T101, T102, member124_out_gag(T99, T107, T101)) → MEMBER34_IN_GG(T107, T102)
MEMBER34_IN_GG(T159, .(T160, T161)) → U3_GG(T159, T160, T161, member34_in_gg(T159, T161))
MEMBER34_IN_GG(T159, .(T160, T161)) → MEMBER34_IN_GG(T159, T161)
U7_GGGG(T99, T100, T101, T102, T107, member34_out_gg(T107, T102)) → U8_GGGG(T99, T100, T101, T102, reach1_in_gggg(T107, T100, T101, .(T107, T102)))
U7_GGGG(T99, T100, T101, T102, T107, member34_out_gg(T107, T102)) → REACH1_IN_GGGG(T107, T100, T101, .(T107, T102))

The TRS R consists of the following rules:

reach1_in_gggg(T25, T26, .(.(T25, .(T26, [])), T27), T12) → reach1_out_gggg(T25, T26, .(.(T25, .(T26, [])), T27), T12)
reach1_in_gggg(T44, T45, .(T46, T47), T12) → U4_gggg(T44, T45, T46, T47, T12, member12_in_ggg(T44, T45, T47))
member12_in_ggg(T66, T67, .(.(T66, .(T67, [])), T68)) → member12_out_ggg(T66, T67, .(.(T66, .(T67, [])), T68))
member12_in_ggg(T77, T78, .(T79, T80)) → U1_ggg(T77, T78, T79, T80, member12_in_ggg(T77, T78, T80))
U1_ggg(T77, T78, T79, T80, member12_out_ggg(T77, T78, T80)) → member12_out_ggg(T77, T78, .(T79, T80))
U4_gggg(T44, T45, T46, T47, T12, member12_out_ggg(T44, T45, T47)) → reach1_out_gggg(T44, T45, .(T46, T47), T12)
reach1_in_gggg(T99, T100, T101, T102) → U5_gggg(T99, T100, T101, T102, member124_in_gag(T99, X90, T101))
member124_in_gag(T120, X117, .(.(T120, .(X117, [])), T121)) → member124_out_gag(T120, X117, .(.(T120, .(X117, [])), T121))
member124_in_gag(T128, X131, .(T129, T130)) → U2_gag(T128, X131, T129, T130, member124_in_gag(T128, X131, T130))
U2_gag(T128, X131, T129, T130, member124_out_gag(T128, X131, T130)) → member124_out_gag(T128, X131, .(T129, T130))
U5_gggg(T99, T100, T101, T102, member124_out_gag(T99, X90, T101)) → reach1_out_gggg(T99, T100, T101, T102)
reach1_in_gggg(T99, T100, T101, T102) → U6_gggg(T99, T100, T101, T102, member124_in_gag(T99, T107, T101))
U6_gggg(T99, T100, T101, T102, member124_out_gag(T99, T107, T101)) → U7_gggg(T99, T100, T101, T102, T107, member34_in_gg(T107, T102))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg(T151, .(T151, T152))
member34_in_gg(T159, .(T160, T161)) → U3_gg(T159, T160, T161, member34_in_gg(T159, T161))
U3_gg(T159, T160, T161, member34_out_gg(T159, T161)) → member34_out_gg(T159, .(T160, T161))
U7_gggg(T99, T100, T101, T102, T107, member34_out_gg(T107, T102)) → reach1_out_gggg(T99, T100, T101, T102)
U7_gggg(T99, T100, T101, T102, T107, member34_out_gg(T107, T102)) → U8_gggg(T99, T100, T101, T102, reach1_in_gggg(T107, T100, T101, .(T107, T102)))
U8_gggg(T99, T100, T101, T102, reach1_out_gggg(T107, T100, T101, .(T107, T102))) → reach1_out_gggg(T99, T100, T101, T102)

The argument filtering Pi contains the following mapping:
reach1_in_gggg(x1, x2, x3, x4)  =  reach1_in_gggg(x1, x2, x3, x4)
.(x1, x2)  =  .(x1, x2)
[]  =  []
reach1_out_gggg(x1, x2, x3, x4)  =  reach1_out_gggg
U4_gggg(x1, x2, x3, x4, x5, x6)  =  U4_gggg(x6)
member12_in_ggg(x1, x2, x3)  =  member12_in_ggg(x1, x2, x3)
member12_out_ggg(x1, x2, x3)  =  member12_out_ggg
U1_ggg(x1, x2, x3, x4, x5)  =  U1_ggg(x5)
U5_gggg(x1, x2, x3, x4, x5)  =  U5_gggg(x5)
member124_in_gag(x1, x2, x3)  =  member124_in_gag(x1, x3)
member124_out_gag(x1, x2, x3)  =  member124_out_gag(x2)
U2_gag(x1, x2, x3, x4, x5)  =  U2_gag(x5)
U6_gggg(x1, x2, x3, x4, x5)  =  U6_gggg(x2, x3, x4, x5)
U7_gggg(x1, x2, x3, x4, x5, x6)  =  U7_gggg(x2, x3, x4, x5, x6)
member34_in_gg(x1, x2)  =  member34_in_gg(x1, x2)
member34_out_gg(x1, x2)  =  member34_out_gg
U3_gg(x1, x2, x3, x4)  =  U3_gg(x4)
U8_gggg(x1, x2, x3, x4, x5)  =  U8_gggg(x5)
REACH1_IN_GGGG(x1, x2, x3, x4)  =  REACH1_IN_GGGG(x1, x2, x3, x4)
U4_GGGG(x1, x2, x3, x4, x5, x6)  =  U4_GGGG(x6)
MEMBER12_IN_GGG(x1, x2, x3)  =  MEMBER12_IN_GGG(x1, x2, x3)
U1_GGG(x1, x2, x3, x4, x5)  =  U1_GGG(x5)
U5_GGGG(x1, x2, x3, x4, x5)  =  U5_GGGG(x5)
MEMBER124_IN_GAG(x1, x2, x3)  =  MEMBER124_IN_GAG(x1, x3)
U2_GAG(x1, x2, x3, x4, x5)  =  U2_GAG(x5)
U6_GGGG(x1, x2, x3, x4, x5)  =  U6_GGGG(x2, x3, x4, x5)
U7_GGGG(x1, x2, x3, x4, x5, x6)  =  U7_GGGG(x2, x3, x4, x5, x6)
MEMBER34_IN_GG(x1, x2)  =  MEMBER34_IN_GG(x1, x2)
U3_GG(x1, x2, x3, x4)  =  U3_GG(x4)
U8_GGGG(x1, x2, x3, x4, x5)  =  U8_GGGG(x5)

We have to consider all (P,R,Pi)-chains

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 4 SCCs with 9 less nodes.

(8) Complex Obligation (AND)

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MEMBER34_IN_GG(T159, .(T160, T161)) → MEMBER34_IN_GG(T159, T161)

The TRS R consists of the following rules:

reach1_in_gggg(T25, T26, .(.(T25, .(T26, [])), T27), T12) → reach1_out_gggg(T25, T26, .(.(T25, .(T26, [])), T27), T12)
reach1_in_gggg(T44, T45, .(T46, T47), T12) → U4_gggg(T44, T45, T46, T47, T12, member12_in_ggg(T44, T45, T47))
member12_in_ggg(T66, T67, .(.(T66, .(T67, [])), T68)) → member12_out_ggg(T66, T67, .(.(T66, .(T67, [])), T68))
member12_in_ggg(T77, T78, .(T79, T80)) → U1_ggg(T77, T78, T79, T80, member12_in_ggg(T77, T78, T80))
U1_ggg(T77, T78, T79, T80, member12_out_ggg(T77, T78, T80)) → member12_out_ggg(T77, T78, .(T79, T80))
U4_gggg(T44, T45, T46, T47, T12, member12_out_ggg(T44, T45, T47)) → reach1_out_gggg(T44, T45, .(T46, T47), T12)
reach1_in_gggg(T99, T100, T101, T102) → U5_gggg(T99, T100, T101, T102, member124_in_gag(T99, X90, T101))
member124_in_gag(T120, X117, .(.(T120, .(X117, [])), T121)) → member124_out_gag(T120, X117, .(.(T120, .(X117, [])), T121))
member124_in_gag(T128, X131, .(T129, T130)) → U2_gag(T128, X131, T129, T130, member124_in_gag(T128, X131, T130))
U2_gag(T128, X131, T129, T130, member124_out_gag(T128, X131, T130)) → member124_out_gag(T128, X131, .(T129, T130))
U5_gggg(T99, T100, T101, T102, member124_out_gag(T99, X90, T101)) → reach1_out_gggg(T99, T100, T101, T102)
reach1_in_gggg(T99, T100, T101, T102) → U6_gggg(T99, T100, T101, T102, member124_in_gag(T99, T107, T101))
U6_gggg(T99, T100, T101, T102, member124_out_gag(T99, T107, T101)) → U7_gggg(T99, T100, T101, T102, T107, member34_in_gg(T107, T102))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg(T151, .(T151, T152))
member34_in_gg(T159, .(T160, T161)) → U3_gg(T159, T160, T161, member34_in_gg(T159, T161))
U3_gg(T159, T160, T161, member34_out_gg(T159, T161)) → member34_out_gg(T159, .(T160, T161))
U7_gggg(T99, T100, T101, T102, T107, member34_out_gg(T107, T102)) → reach1_out_gggg(T99, T100, T101, T102)
U7_gggg(T99, T100, T101, T102, T107, member34_out_gg(T107, T102)) → U8_gggg(T99, T100, T101, T102, reach1_in_gggg(T107, T100, T101, .(T107, T102)))
U8_gggg(T99, T100, T101, T102, reach1_out_gggg(T107, T100, T101, .(T107, T102))) → reach1_out_gggg(T99, T100, T101, T102)

The argument filtering Pi contains the following mapping:
reach1_in_gggg(x1, x2, x3, x4)  =  reach1_in_gggg(x1, x2, x3, x4)
.(x1, x2)  =  .(x1, x2)
[]  =  []
reach1_out_gggg(x1, x2, x3, x4)  =  reach1_out_gggg
U4_gggg(x1, x2, x3, x4, x5, x6)  =  U4_gggg(x6)
member12_in_ggg(x1, x2, x3)  =  member12_in_ggg(x1, x2, x3)
member12_out_ggg(x1, x2, x3)  =  member12_out_ggg
U1_ggg(x1, x2, x3, x4, x5)  =  U1_ggg(x5)
U5_gggg(x1, x2, x3, x4, x5)  =  U5_gggg(x5)
member124_in_gag(x1, x2, x3)  =  member124_in_gag(x1, x3)
member124_out_gag(x1, x2, x3)  =  member124_out_gag(x2)
U2_gag(x1, x2, x3, x4, x5)  =  U2_gag(x5)
U6_gggg(x1, x2, x3, x4, x5)  =  U6_gggg(x2, x3, x4, x5)
U7_gggg(x1, x2, x3, x4, x5, x6)  =  U7_gggg(x2, x3, x4, x5, x6)
member34_in_gg(x1, x2)  =  member34_in_gg(x1, x2)
member34_out_gg(x1, x2)  =  member34_out_gg
U3_gg(x1, x2, x3, x4)  =  U3_gg(x4)
U8_gggg(x1, x2, x3, x4, x5)  =  U8_gggg(x5)
MEMBER34_IN_GG(x1, x2)  =  MEMBER34_IN_GG(x1, x2)

We have to consider all (P,R,Pi)-chains

(10) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(11) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MEMBER34_IN_GG(T159, .(T160, T161)) → MEMBER34_IN_GG(T159, T161)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains

(12) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MEMBER34_IN_GG(T159, .(T160, T161)) → MEMBER34_IN_GG(T159, T161)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(14) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • MEMBER34_IN_GG(T159, .(T160, T161)) → MEMBER34_IN_GG(T159, T161)
    The graph contains the following edges 1 >= 1, 2 > 2

(15) YES

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MEMBER124_IN_GAG(T128, X131, .(T129, T130)) → MEMBER124_IN_GAG(T128, X131, T130)

The TRS R consists of the following rules:

reach1_in_gggg(T25, T26, .(.(T25, .(T26, [])), T27), T12) → reach1_out_gggg(T25, T26, .(.(T25, .(T26, [])), T27), T12)
reach1_in_gggg(T44, T45, .(T46, T47), T12) → U4_gggg(T44, T45, T46, T47, T12, member12_in_ggg(T44, T45, T47))
member12_in_ggg(T66, T67, .(.(T66, .(T67, [])), T68)) → member12_out_ggg(T66, T67, .(.(T66, .(T67, [])), T68))
member12_in_ggg(T77, T78, .(T79, T80)) → U1_ggg(T77, T78, T79, T80, member12_in_ggg(T77, T78, T80))
U1_ggg(T77, T78, T79, T80, member12_out_ggg(T77, T78, T80)) → member12_out_ggg(T77, T78, .(T79, T80))
U4_gggg(T44, T45, T46, T47, T12, member12_out_ggg(T44, T45, T47)) → reach1_out_gggg(T44, T45, .(T46, T47), T12)
reach1_in_gggg(T99, T100, T101, T102) → U5_gggg(T99, T100, T101, T102, member124_in_gag(T99, X90, T101))
member124_in_gag(T120, X117, .(.(T120, .(X117, [])), T121)) → member124_out_gag(T120, X117, .(.(T120, .(X117, [])), T121))
member124_in_gag(T128, X131, .(T129, T130)) → U2_gag(T128, X131, T129, T130, member124_in_gag(T128, X131, T130))
U2_gag(T128, X131, T129, T130, member124_out_gag(T128, X131, T130)) → member124_out_gag(T128, X131, .(T129, T130))
U5_gggg(T99, T100, T101, T102, member124_out_gag(T99, X90, T101)) → reach1_out_gggg(T99, T100, T101, T102)
reach1_in_gggg(T99, T100, T101, T102) → U6_gggg(T99, T100, T101, T102, member124_in_gag(T99, T107, T101))
U6_gggg(T99, T100, T101, T102, member124_out_gag(T99, T107, T101)) → U7_gggg(T99, T100, T101, T102, T107, member34_in_gg(T107, T102))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg(T151, .(T151, T152))
member34_in_gg(T159, .(T160, T161)) → U3_gg(T159, T160, T161, member34_in_gg(T159, T161))
U3_gg(T159, T160, T161, member34_out_gg(T159, T161)) → member34_out_gg(T159, .(T160, T161))
U7_gggg(T99, T100, T101, T102, T107, member34_out_gg(T107, T102)) → reach1_out_gggg(T99, T100, T101, T102)
U7_gggg(T99, T100, T101, T102, T107, member34_out_gg(T107, T102)) → U8_gggg(T99, T100, T101, T102, reach1_in_gggg(T107, T100, T101, .(T107, T102)))
U8_gggg(T99, T100, T101, T102, reach1_out_gggg(T107, T100, T101, .(T107, T102))) → reach1_out_gggg(T99, T100, T101, T102)

The argument filtering Pi contains the following mapping:
reach1_in_gggg(x1, x2, x3, x4)  =  reach1_in_gggg(x1, x2, x3, x4)
.(x1, x2)  =  .(x1, x2)
[]  =  []
reach1_out_gggg(x1, x2, x3, x4)  =  reach1_out_gggg
U4_gggg(x1, x2, x3, x4, x5, x6)  =  U4_gggg(x6)
member12_in_ggg(x1, x2, x3)  =  member12_in_ggg(x1, x2, x3)
member12_out_ggg(x1, x2, x3)  =  member12_out_ggg
U1_ggg(x1, x2, x3, x4, x5)  =  U1_ggg(x5)
U5_gggg(x1, x2, x3, x4, x5)  =  U5_gggg(x5)
member124_in_gag(x1, x2, x3)  =  member124_in_gag(x1, x3)
member124_out_gag(x1, x2, x3)  =  member124_out_gag(x2)
U2_gag(x1, x2, x3, x4, x5)  =  U2_gag(x5)
U6_gggg(x1, x2, x3, x4, x5)  =  U6_gggg(x2, x3, x4, x5)
U7_gggg(x1, x2, x3, x4, x5, x6)  =  U7_gggg(x2, x3, x4, x5, x6)
member34_in_gg(x1, x2)  =  member34_in_gg(x1, x2)
member34_out_gg(x1, x2)  =  member34_out_gg
U3_gg(x1, x2, x3, x4)  =  U3_gg(x4)
U8_gggg(x1, x2, x3, x4, x5)  =  U8_gggg(x5)
MEMBER124_IN_GAG(x1, x2, x3)  =  MEMBER124_IN_GAG(x1, x3)

We have to consider all (P,R,Pi)-chains

(17) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(18) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MEMBER124_IN_GAG(T128, X131, .(T129, T130)) → MEMBER124_IN_GAG(T128, X131, T130)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
MEMBER124_IN_GAG(x1, x2, x3)  =  MEMBER124_IN_GAG(x1, x3)

We have to consider all (P,R,Pi)-chains

(19) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MEMBER124_IN_GAG(T128, .(T129, T130)) → MEMBER124_IN_GAG(T128, T130)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(21) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • MEMBER124_IN_GAG(T128, .(T129, T130)) → MEMBER124_IN_GAG(T128, T130)
    The graph contains the following edges 1 >= 1, 2 > 2

(22) YES

(23) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MEMBER12_IN_GGG(T77, T78, .(T79, T80)) → MEMBER12_IN_GGG(T77, T78, T80)

The TRS R consists of the following rules:

reach1_in_gggg(T25, T26, .(.(T25, .(T26, [])), T27), T12) → reach1_out_gggg(T25, T26, .(.(T25, .(T26, [])), T27), T12)
reach1_in_gggg(T44, T45, .(T46, T47), T12) → U4_gggg(T44, T45, T46, T47, T12, member12_in_ggg(T44, T45, T47))
member12_in_ggg(T66, T67, .(.(T66, .(T67, [])), T68)) → member12_out_ggg(T66, T67, .(.(T66, .(T67, [])), T68))
member12_in_ggg(T77, T78, .(T79, T80)) → U1_ggg(T77, T78, T79, T80, member12_in_ggg(T77, T78, T80))
U1_ggg(T77, T78, T79, T80, member12_out_ggg(T77, T78, T80)) → member12_out_ggg(T77, T78, .(T79, T80))
U4_gggg(T44, T45, T46, T47, T12, member12_out_ggg(T44, T45, T47)) → reach1_out_gggg(T44, T45, .(T46, T47), T12)
reach1_in_gggg(T99, T100, T101, T102) → U5_gggg(T99, T100, T101, T102, member124_in_gag(T99, X90, T101))
member124_in_gag(T120, X117, .(.(T120, .(X117, [])), T121)) → member124_out_gag(T120, X117, .(.(T120, .(X117, [])), T121))
member124_in_gag(T128, X131, .(T129, T130)) → U2_gag(T128, X131, T129, T130, member124_in_gag(T128, X131, T130))
U2_gag(T128, X131, T129, T130, member124_out_gag(T128, X131, T130)) → member124_out_gag(T128, X131, .(T129, T130))
U5_gggg(T99, T100, T101, T102, member124_out_gag(T99, X90, T101)) → reach1_out_gggg(T99, T100, T101, T102)
reach1_in_gggg(T99, T100, T101, T102) → U6_gggg(T99, T100, T101, T102, member124_in_gag(T99, T107, T101))
U6_gggg(T99, T100, T101, T102, member124_out_gag(T99, T107, T101)) → U7_gggg(T99, T100, T101, T102, T107, member34_in_gg(T107, T102))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg(T151, .(T151, T152))
member34_in_gg(T159, .(T160, T161)) → U3_gg(T159, T160, T161, member34_in_gg(T159, T161))
U3_gg(T159, T160, T161, member34_out_gg(T159, T161)) → member34_out_gg(T159, .(T160, T161))
U7_gggg(T99, T100, T101, T102, T107, member34_out_gg(T107, T102)) → reach1_out_gggg(T99, T100, T101, T102)
U7_gggg(T99, T100, T101, T102, T107, member34_out_gg(T107, T102)) → U8_gggg(T99, T100, T101, T102, reach1_in_gggg(T107, T100, T101, .(T107, T102)))
U8_gggg(T99, T100, T101, T102, reach1_out_gggg(T107, T100, T101, .(T107, T102))) → reach1_out_gggg(T99, T100, T101, T102)

The argument filtering Pi contains the following mapping:
reach1_in_gggg(x1, x2, x3, x4)  =  reach1_in_gggg(x1, x2, x3, x4)
.(x1, x2)  =  .(x1, x2)
[]  =  []
reach1_out_gggg(x1, x2, x3, x4)  =  reach1_out_gggg
U4_gggg(x1, x2, x3, x4, x5, x6)  =  U4_gggg(x6)
member12_in_ggg(x1, x2, x3)  =  member12_in_ggg(x1, x2, x3)
member12_out_ggg(x1, x2, x3)  =  member12_out_ggg
U1_ggg(x1, x2, x3, x4, x5)  =  U1_ggg(x5)
U5_gggg(x1, x2, x3, x4, x5)  =  U5_gggg(x5)
member124_in_gag(x1, x2, x3)  =  member124_in_gag(x1, x3)
member124_out_gag(x1, x2, x3)  =  member124_out_gag(x2)
U2_gag(x1, x2, x3, x4, x5)  =  U2_gag(x5)
U6_gggg(x1, x2, x3, x4, x5)  =  U6_gggg(x2, x3, x4, x5)
U7_gggg(x1, x2, x3, x4, x5, x6)  =  U7_gggg(x2, x3, x4, x5, x6)
member34_in_gg(x1, x2)  =  member34_in_gg(x1, x2)
member34_out_gg(x1, x2)  =  member34_out_gg
U3_gg(x1, x2, x3, x4)  =  U3_gg(x4)
U8_gggg(x1, x2, x3, x4, x5)  =  U8_gggg(x5)
MEMBER12_IN_GGG(x1, x2, x3)  =  MEMBER12_IN_GGG(x1, x2, x3)

We have to consider all (P,R,Pi)-chains

(24) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(25) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MEMBER12_IN_GGG(T77, T78, .(T79, T80)) → MEMBER12_IN_GGG(T77, T78, T80)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains

(26) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MEMBER12_IN_GGG(T77, T78, .(T79, T80)) → MEMBER12_IN_GGG(T77, T78, T80)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(28) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • MEMBER12_IN_GGG(T77, T78, .(T79, T80)) → MEMBER12_IN_GGG(T77, T78, T80)
    The graph contains the following edges 1 >= 1, 2 >= 2, 3 > 3

(29) YES

(30) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

REACH1_IN_GGGG(T99, T100, T101, T102) → U6_GGGG(T99, T100, T101, T102, member124_in_gag(T99, T107, T101))
U6_GGGG(T99, T100, T101, T102, member124_out_gag(T99, T107, T101)) → U7_GGGG(T99, T100, T101, T102, T107, member34_in_gg(T107, T102))
U7_GGGG(T99, T100, T101, T102, T107, member34_out_gg(T107, T102)) → REACH1_IN_GGGG(T107, T100, T101, .(T107, T102))

The TRS R consists of the following rules:

reach1_in_gggg(T25, T26, .(.(T25, .(T26, [])), T27), T12) → reach1_out_gggg(T25, T26, .(.(T25, .(T26, [])), T27), T12)
reach1_in_gggg(T44, T45, .(T46, T47), T12) → U4_gggg(T44, T45, T46, T47, T12, member12_in_ggg(T44, T45, T47))
member12_in_ggg(T66, T67, .(.(T66, .(T67, [])), T68)) → member12_out_ggg(T66, T67, .(.(T66, .(T67, [])), T68))
member12_in_ggg(T77, T78, .(T79, T80)) → U1_ggg(T77, T78, T79, T80, member12_in_ggg(T77, T78, T80))
U1_ggg(T77, T78, T79, T80, member12_out_ggg(T77, T78, T80)) → member12_out_ggg(T77, T78, .(T79, T80))
U4_gggg(T44, T45, T46, T47, T12, member12_out_ggg(T44, T45, T47)) → reach1_out_gggg(T44, T45, .(T46, T47), T12)
reach1_in_gggg(T99, T100, T101, T102) → U5_gggg(T99, T100, T101, T102, member124_in_gag(T99, X90, T101))
member124_in_gag(T120, X117, .(.(T120, .(X117, [])), T121)) → member124_out_gag(T120, X117, .(.(T120, .(X117, [])), T121))
member124_in_gag(T128, X131, .(T129, T130)) → U2_gag(T128, X131, T129, T130, member124_in_gag(T128, X131, T130))
U2_gag(T128, X131, T129, T130, member124_out_gag(T128, X131, T130)) → member124_out_gag(T128, X131, .(T129, T130))
U5_gggg(T99, T100, T101, T102, member124_out_gag(T99, X90, T101)) → reach1_out_gggg(T99, T100, T101, T102)
reach1_in_gggg(T99, T100, T101, T102) → U6_gggg(T99, T100, T101, T102, member124_in_gag(T99, T107, T101))
U6_gggg(T99, T100, T101, T102, member124_out_gag(T99, T107, T101)) → U7_gggg(T99, T100, T101, T102, T107, member34_in_gg(T107, T102))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg(T151, .(T151, T152))
member34_in_gg(T159, .(T160, T161)) → U3_gg(T159, T160, T161, member34_in_gg(T159, T161))
U3_gg(T159, T160, T161, member34_out_gg(T159, T161)) → member34_out_gg(T159, .(T160, T161))
U7_gggg(T99, T100, T101, T102, T107, member34_out_gg(T107, T102)) → reach1_out_gggg(T99, T100, T101, T102)
U7_gggg(T99, T100, T101, T102, T107, member34_out_gg(T107, T102)) → U8_gggg(T99, T100, T101, T102, reach1_in_gggg(T107, T100, T101, .(T107, T102)))
U8_gggg(T99, T100, T101, T102, reach1_out_gggg(T107, T100, T101, .(T107, T102))) → reach1_out_gggg(T99, T100, T101, T102)

The argument filtering Pi contains the following mapping:
reach1_in_gggg(x1, x2, x3, x4)  =  reach1_in_gggg(x1, x2, x3, x4)
.(x1, x2)  =  .(x1, x2)
[]  =  []
reach1_out_gggg(x1, x2, x3, x4)  =  reach1_out_gggg
U4_gggg(x1, x2, x3, x4, x5, x6)  =  U4_gggg(x6)
member12_in_ggg(x1, x2, x3)  =  member12_in_ggg(x1, x2, x3)
member12_out_ggg(x1, x2, x3)  =  member12_out_ggg
U1_ggg(x1, x2, x3, x4, x5)  =  U1_ggg(x5)
U5_gggg(x1, x2, x3, x4, x5)  =  U5_gggg(x5)
member124_in_gag(x1, x2, x3)  =  member124_in_gag(x1, x3)
member124_out_gag(x1, x2, x3)  =  member124_out_gag(x2)
U2_gag(x1, x2, x3, x4, x5)  =  U2_gag(x5)
U6_gggg(x1, x2, x3, x4, x5)  =  U6_gggg(x2, x3, x4, x5)
U7_gggg(x1, x2, x3, x4, x5, x6)  =  U7_gggg(x2, x3, x4, x5, x6)
member34_in_gg(x1, x2)  =  member34_in_gg(x1, x2)
member34_out_gg(x1, x2)  =  member34_out_gg
U3_gg(x1, x2, x3, x4)  =  U3_gg(x4)
U8_gggg(x1, x2, x3, x4, x5)  =  U8_gggg(x5)
REACH1_IN_GGGG(x1, x2, x3, x4)  =  REACH1_IN_GGGG(x1, x2, x3, x4)
U6_GGGG(x1, x2, x3, x4, x5)  =  U6_GGGG(x2, x3, x4, x5)
U7_GGGG(x1, x2, x3, x4, x5, x6)  =  U7_GGGG(x2, x3, x4, x5, x6)

We have to consider all (P,R,Pi)-chains

(31) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(32) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

REACH1_IN_GGGG(T99, T100, T101, T102) → U6_GGGG(T99, T100, T101, T102, member124_in_gag(T99, T107, T101))
U6_GGGG(T99, T100, T101, T102, member124_out_gag(T99, T107, T101)) → U7_GGGG(T99, T100, T101, T102, T107, member34_in_gg(T107, T102))
U7_GGGG(T99, T100, T101, T102, T107, member34_out_gg(T107, T102)) → REACH1_IN_GGGG(T107, T100, T101, .(T107, T102))

The TRS R consists of the following rules:

member124_in_gag(T120, X117, .(.(T120, .(X117, [])), T121)) → member124_out_gag(T120, X117, .(.(T120, .(X117, [])), T121))
member124_in_gag(T128, X131, .(T129, T130)) → U2_gag(T128, X131, T129, T130, member124_in_gag(T128, X131, T130))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg(T151, .(T151, T152))
member34_in_gg(T159, .(T160, T161)) → U3_gg(T159, T160, T161, member34_in_gg(T159, T161))
U2_gag(T128, X131, T129, T130, member124_out_gag(T128, X131, T130)) → member124_out_gag(T128, X131, .(T129, T130))
U3_gg(T159, T160, T161, member34_out_gg(T159, T161)) → member34_out_gg(T159, .(T160, T161))

The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
[]  =  []
member124_in_gag(x1, x2, x3)  =  member124_in_gag(x1, x3)
member124_out_gag(x1, x2, x3)  =  member124_out_gag(x2)
U2_gag(x1, x2, x3, x4, x5)  =  U2_gag(x5)
member34_in_gg(x1, x2)  =  member34_in_gg(x1, x2)
member34_out_gg(x1, x2)  =  member34_out_gg
U3_gg(x1, x2, x3, x4)  =  U3_gg(x4)
REACH1_IN_GGGG(x1, x2, x3, x4)  =  REACH1_IN_GGGG(x1, x2, x3, x4)
U6_GGGG(x1, x2, x3, x4, x5)  =  U6_GGGG(x2, x3, x4, x5)
U7_GGGG(x1, x2, x3, x4, x5, x6)  =  U7_GGGG(x2, x3, x4, x5, x6)

We have to consider all (P,R,Pi)-chains

(33) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(34) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REACH1_IN_GGGG(T99, T100, T101, T102) → U6_GGGG(T100, T101, T102, member124_in_gag(T99, T101))
U6_GGGG(T100, T101, T102, member124_out_gag(T107)) → U7_GGGG(T100, T101, T102, T107, member34_in_gg(T107, T102))
U7_GGGG(T100, T101, T102, T107, member34_out_gg) → REACH1_IN_GGGG(T107, T100, T101, .(T107, T102))

The TRS R consists of the following rules:

member124_in_gag(T120, .(.(T120, .(X117, [])), T121)) → member124_out_gag(X117)
member124_in_gag(T128, .(T129, T130)) → U2_gag(member124_in_gag(T128, T130))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg
member34_in_gg(T159, .(T160, T161)) → U3_gg(member34_in_gg(T159, T161))
U2_gag(member124_out_gag(X131)) → member124_out_gag(X131)
U3_gg(member34_out_gg) → member34_out_gg

The set Q consists of the following terms:

member124_in_gag(x0, x1)
member34_in_gg(x0, x1)
U2_gag(x0)
U3_gg(x0)

We have to consider all (P,Q,R)-chains.

(35) Narrowing (SOUND transformation)

By narrowing [LPAR04] the rule REACH1_IN_GGGG(T99, T100, T101, T102) → U6_GGGG(T100, T101, T102, member124_in_gag(T99, T101)) at position [3] we obtained the following new rules [LPAR04]:

REACH1_IN_GGGG(x0, y1, .(.(x0, .(x1, [])), x2), y3) → U6_GGGG(y1, .(.(x0, .(x1, [])), x2), y3, member124_out_gag(x1))
REACH1_IN_GGGG(x0, y1, .(x1, x2), y3) → U6_GGGG(y1, .(x1, x2), y3, U2_gag(member124_in_gag(x0, x2)))

(36) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U6_GGGG(T100, T101, T102, member124_out_gag(T107)) → U7_GGGG(T100, T101, T102, T107, member34_in_gg(T107, T102))
U7_GGGG(T100, T101, T102, T107, member34_out_gg) → REACH1_IN_GGGG(T107, T100, T101, .(T107, T102))
REACH1_IN_GGGG(x0, y1, .(.(x0, .(x1, [])), x2), y3) → U6_GGGG(y1, .(.(x0, .(x1, [])), x2), y3, member124_out_gag(x1))
REACH1_IN_GGGG(x0, y1, .(x1, x2), y3) → U6_GGGG(y1, .(x1, x2), y3, U2_gag(member124_in_gag(x0, x2)))

The TRS R consists of the following rules:

member124_in_gag(T120, .(.(T120, .(X117, [])), T121)) → member124_out_gag(X117)
member124_in_gag(T128, .(T129, T130)) → U2_gag(member124_in_gag(T128, T130))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg
member34_in_gg(T159, .(T160, T161)) → U3_gg(member34_in_gg(T159, T161))
U2_gag(member124_out_gag(X131)) → member124_out_gag(X131)
U3_gg(member34_out_gg) → member34_out_gg

The set Q consists of the following terms:

member124_in_gag(x0, x1)
member34_in_gg(x0, x1)
U2_gag(x0)
U3_gg(x0)

We have to consider all (P,Q,R)-chains.

(37) Narrowing (SOUND transformation)

By narrowing [LPAR04] the rule U6_GGGG(T100, T101, T102, member124_out_gag(T107)) → U7_GGGG(T100, T101, T102, T107, member34_in_gg(T107, T102)) at position [4] we obtained the following new rules [LPAR04]:

U6_GGGG(y0, y1, .(x0, x1), member124_out_gag(x0)) → U7_GGGG(y0, y1, .(x0, x1), x0, member34_out_gg)
U6_GGGG(y0, y1, .(x1, x2), member124_out_gag(x0)) → U7_GGGG(y0, y1, .(x1, x2), x0, U3_gg(member34_in_gg(x0, x2)))

(38) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U7_GGGG(T100, T101, T102, T107, member34_out_gg) → REACH1_IN_GGGG(T107, T100, T101, .(T107, T102))
REACH1_IN_GGGG(x0, y1, .(.(x0, .(x1, [])), x2), y3) → U6_GGGG(y1, .(.(x0, .(x1, [])), x2), y3, member124_out_gag(x1))
REACH1_IN_GGGG(x0, y1, .(x1, x2), y3) → U6_GGGG(y1, .(x1, x2), y3, U2_gag(member124_in_gag(x0, x2)))
U6_GGGG(y0, y1, .(x0, x1), member124_out_gag(x0)) → U7_GGGG(y0, y1, .(x0, x1), x0, member34_out_gg)
U6_GGGG(y0, y1, .(x1, x2), member124_out_gag(x0)) → U7_GGGG(y0, y1, .(x1, x2), x0, U3_gg(member34_in_gg(x0, x2)))

The TRS R consists of the following rules:

member124_in_gag(T120, .(.(T120, .(X117, [])), T121)) → member124_out_gag(X117)
member124_in_gag(T128, .(T129, T130)) → U2_gag(member124_in_gag(T128, T130))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg
member34_in_gg(T159, .(T160, T161)) → U3_gg(member34_in_gg(T159, T161))
U2_gag(member124_out_gag(X131)) → member124_out_gag(X131)
U3_gg(member34_out_gg) → member34_out_gg

The set Q consists of the following terms:

member124_in_gag(x0, x1)
member34_in_gg(x0, x1)
U2_gag(x0)
U3_gg(x0)

We have to consider all (P,Q,R)-chains.

(39) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U7_GGGG(T100, T101, T102, T107, member34_out_gg) → REACH1_IN_GGGG(T107, T100, T101, .(T107, T102)) we obtained the following new rules [LPAR04]:

U7_GGGG(z0, z1, .(z2, z3), z2, member34_out_gg) → REACH1_IN_GGGG(z2, z0, z1, .(z2, .(z2, z3)))
U7_GGGG(z0, z1, .(z2, z3), z4, member34_out_gg) → REACH1_IN_GGGG(z4, z0, z1, .(z4, .(z2, z3)))

(40) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REACH1_IN_GGGG(x0, y1, .(.(x0, .(x1, [])), x2), y3) → U6_GGGG(y1, .(.(x0, .(x1, [])), x2), y3, member124_out_gag(x1))
REACH1_IN_GGGG(x0, y1, .(x1, x2), y3) → U6_GGGG(y1, .(x1, x2), y3, U2_gag(member124_in_gag(x0, x2)))
U6_GGGG(y0, y1, .(x0, x1), member124_out_gag(x0)) → U7_GGGG(y0, y1, .(x0, x1), x0, member34_out_gg)
U6_GGGG(y0, y1, .(x1, x2), member124_out_gag(x0)) → U7_GGGG(y0, y1, .(x1, x2), x0, U3_gg(member34_in_gg(x0, x2)))
U7_GGGG(z0, z1, .(z2, z3), z2, member34_out_gg) → REACH1_IN_GGGG(z2, z0, z1, .(z2, .(z2, z3)))
U7_GGGG(z0, z1, .(z2, z3), z4, member34_out_gg) → REACH1_IN_GGGG(z4, z0, z1, .(z4, .(z2, z3)))

The TRS R consists of the following rules:

member124_in_gag(T120, .(.(T120, .(X117, [])), T121)) → member124_out_gag(X117)
member124_in_gag(T128, .(T129, T130)) → U2_gag(member124_in_gag(T128, T130))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg
member34_in_gg(T159, .(T160, T161)) → U3_gg(member34_in_gg(T159, T161))
U2_gag(member124_out_gag(X131)) → member124_out_gag(X131)
U3_gg(member34_out_gg) → member34_out_gg

The set Q consists of the following terms:

member124_in_gag(x0, x1)
member34_in_gg(x0, x1)
U2_gag(x0)
U3_gg(x0)

We have to consider all (P,Q,R)-chains.

(41) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule REACH1_IN_GGGG(x0, y1, .(.(x0, .(x1, [])), x2), y3) → U6_GGGG(y1, .(.(x0, .(x1, [])), x2), y3, member124_out_gag(x1)) we obtained the following new rules [LPAR04]:

REACH1_IN_GGGG(z2, z0, .(.(z2, .(x2, [])), x3), .(z2, .(z2, z3))) → U6_GGGG(z0, .(.(z2, .(x2, [])), x3), .(z2, .(z2, z3)), member124_out_gag(x2))
REACH1_IN_GGGG(z4, z0, .(.(z4, .(x2, [])), x3), .(z4, .(z2, z3))) → U6_GGGG(z0, .(.(z4, .(x2, [])), x3), .(z4, .(z2, z3)), member124_out_gag(x2))

(42) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REACH1_IN_GGGG(x0, y1, .(x1, x2), y3) → U6_GGGG(y1, .(x1, x2), y3, U2_gag(member124_in_gag(x0, x2)))
U6_GGGG(y0, y1, .(x0, x1), member124_out_gag(x0)) → U7_GGGG(y0, y1, .(x0, x1), x0, member34_out_gg)
U6_GGGG(y0, y1, .(x1, x2), member124_out_gag(x0)) → U7_GGGG(y0, y1, .(x1, x2), x0, U3_gg(member34_in_gg(x0, x2)))
U7_GGGG(z0, z1, .(z2, z3), z2, member34_out_gg) → REACH1_IN_GGGG(z2, z0, z1, .(z2, .(z2, z3)))
U7_GGGG(z0, z1, .(z2, z3), z4, member34_out_gg) → REACH1_IN_GGGG(z4, z0, z1, .(z4, .(z2, z3)))
REACH1_IN_GGGG(z2, z0, .(.(z2, .(x2, [])), x3), .(z2, .(z2, z3))) → U6_GGGG(z0, .(.(z2, .(x2, [])), x3), .(z2, .(z2, z3)), member124_out_gag(x2))
REACH1_IN_GGGG(z4, z0, .(.(z4, .(x2, [])), x3), .(z4, .(z2, z3))) → U6_GGGG(z0, .(.(z4, .(x2, [])), x3), .(z4, .(z2, z3)), member124_out_gag(x2))

The TRS R consists of the following rules:

member124_in_gag(T120, .(.(T120, .(X117, [])), T121)) → member124_out_gag(X117)
member124_in_gag(T128, .(T129, T130)) → U2_gag(member124_in_gag(T128, T130))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg
member34_in_gg(T159, .(T160, T161)) → U3_gg(member34_in_gg(T159, T161))
U2_gag(member124_out_gag(X131)) → member124_out_gag(X131)
U3_gg(member34_out_gg) → member34_out_gg

The set Q consists of the following terms:

member124_in_gag(x0, x1)
member34_in_gg(x0, x1)
U2_gag(x0)
U3_gg(x0)

We have to consider all (P,Q,R)-chains.

(43) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule REACH1_IN_GGGG(x0, y1, .(x1, x2), y3) → U6_GGGG(y1, .(x1, x2), y3, U2_gag(member124_in_gag(x0, x2))) we obtained the following new rules [LPAR04]:

REACH1_IN_GGGG(z2, z0, .(x2, x3), .(z2, .(z2, z3))) → U6_GGGG(z0, .(x2, x3), .(z2, .(z2, z3)), U2_gag(member124_in_gag(z2, x3)))
REACH1_IN_GGGG(z4, z0, .(x2, x3), .(z4, .(z2, z3))) → U6_GGGG(z0, .(x2, x3), .(z4, .(z2, z3)), U2_gag(member124_in_gag(z4, x3)))

(44) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U6_GGGG(y0, y1, .(x0, x1), member124_out_gag(x0)) → U7_GGGG(y0, y1, .(x0, x1), x0, member34_out_gg)
U6_GGGG(y0, y1, .(x1, x2), member124_out_gag(x0)) → U7_GGGG(y0, y1, .(x1, x2), x0, U3_gg(member34_in_gg(x0, x2)))
U7_GGGG(z0, z1, .(z2, z3), z2, member34_out_gg) → REACH1_IN_GGGG(z2, z0, z1, .(z2, .(z2, z3)))
U7_GGGG(z0, z1, .(z2, z3), z4, member34_out_gg) → REACH1_IN_GGGG(z4, z0, z1, .(z4, .(z2, z3)))
REACH1_IN_GGGG(z2, z0, .(.(z2, .(x2, [])), x3), .(z2, .(z2, z3))) → U6_GGGG(z0, .(.(z2, .(x2, [])), x3), .(z2, .(z2, z3)), member124_out_gag(x2))
REACH1_IN_GGGG(z4, z0, .(.(z4, .(x2, [])), x3), .(z4, .(z2, z3))) → U6_GGGG(z0, .(.(z4, .(x2, [])), x3), .(z4, .(z2, z3)), member124_out_gag(x2))
REACH1_IN_GGGG(z2, z0, .(x2, x3), .(z2, .(z2, z3))) → U6_GGGG(z0, .(x2, x3), .(z2, .(z2, z3)), U2_gag(member124_in_gag(z2, x3)))
REACH1_IN_GGGG(z4, z0, .(x2, x3), .(z4, .(z2, z3))) → U6_GGGG(z0, .(x2, x3), .(z4, .(z2, z3)), U2_gag(member124_in_gag(z4, x3)))

The TRS R consists of the following rules:

member124_in_gag(T120, .(.(T120, .(X117, [])), T121)) → member124_out_gag(X117)
member124_in_gag(T128, .(T129, T130)) → U2_gag(member124_in_gag(T128, T130))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg
member34_in_gg(T159, .(T160, T161)) → U3_gg(member34_in_gg(T159, T161))
U2_gag(member124_out_gag(X131)) → member124_out_gag(X131)
U3_gg(member34_out_gg) → member34_out_gg

The set Q consists of the following terms:

member124_in_gag(x0, x1)
member34_in_gg(x0, x1)
U2_gag(x0)
U3_gg(x0)

We have to consider all (P,Q,R)-chains.

(45) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U6_GGGG(y0, y1, .(x0, x1), member124_out_gag(x0)) → U7_GGGG(y0, y1, .(x0, x1), x0, member34_out_gg) we obtained the following new rules [LPAR04]:

U6_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z0, z4)), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z0, z4)), z0, member34_out_gg)
U6_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, z5)), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, z5)), z0, member34_out_gg)
U6_GGGG(z1, .(z2, z3), .(z0, .(z0, z4)), member124_out_gag(z0)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z0, z4)), z0, member34_out_gg)
U6_GGGG(z1, .(z2, z3), .(z0, .(z4, z5)), member124_out_gag(z0)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z4, z5)), z0, member34_out_gg)

(46) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U6_GGGG(y0, y1, .(x1, x2), member124_out_gag(x0)) → U7_GGGG(y0, y1, .(x1, x2), x0, U3_gg(member34_in_gg(x0, x2)))
U7_GGGG(z0, z1, .(z2, z3), z2, member34_out_gg) → REACH1_IN_GGGG(z2, z0, z1, .(z2, .(z2, z3)))
U7_GGGG(z0, z1, .(z2, z3), z4, member34_out_gg) → REACH1_IN_GGGG(z4, z0, z1, .(z4, .(z2, z3)))
REACH1_IN_GGGG(z2, z0, .(.(z2, .(x2, [])), x3), .(z2, .(z2, z3))) → U6_GGGG(z0, .(.(z2, .(x2, [])), x3), .(z2, .(z2, z3)), member124_out_gag(x2))
REACH1_IN_GGGG(z4, z0, .(.(z4, .(x2, [])), x3), .(z4, .(z2, z3))) → U6_GGGG(z0, .(.(z4, .(x2, [])), x3), .(z4, .(z2, z3)), member124_out_gag(x2))
REACH1_IN_GGGG(z2, z0, .(x2, x3), .(z2, .(z2, z3))) → U6_GGGG(z0, .(x2, x3), .(z2, .(z2, z3)), U2_gag(member124_in_gag(z2, x3)))
REACH1_IN_GGGG(z4, z0, .(x2, x3), .(z4, .(z2, z3))) → U6_GGGG(z0, .(x2, x3), .(z4, .(z2, z3)), U2_gag(member124_in_gag(z4, x3)))
U6_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z0, z4)), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z0, z4)), z0, member34_out_gg)
U6_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, z5)), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, z5)), z0, member34_out_gg)
U6_GGGG(z1, .(z2, z3), .(z0, .(z0, z4)), member124_out_gag(z0)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z0, z4)), z0, member34_out_gg)
U6_GGGG(z1, .(z2, z3), .(z0, .(z4, z5)), member124_out_gag(z0)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z4, z5)), z0, member34_out_gg)

The TRS R consists of the following rules:

member124_in_gag(T120, .(.(T120, .(X117, [])), T121)) → member124_out_gag(X117)
member124_in_gag(T128, .(T129, T130)) → U2_gag(member124_in_gag(T128, T130))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg
member34_in_gg(T159, .(T160, T161)) → U3_gg(member34_in_gg(T159, T161))
U2_gag(member124_out_gag(X131)) → member124_out_gag(X131)
U3_gg(member34_out_gg) → member34_out_gg

The set Q consists of the following terms:

member124_in_gag(x0, x1)
member34_in_gg(x0, x1)
U2_gag(x0)
U3_gg(x0)

We have to consider all (P,Q,R)-chains.

(47) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U6_GGGG(y0, y1, .(x1, x2), member124_out_gag(x0)) → U7_GGGG(y0, y1, .(x1, x2), x0, U3_gg(member34_in_gg(x0, x2))) we obtained the following new rules [LPAR04]:

U6_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), member124_out_gag(z2)) → U7_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), z2, U3_gg(member34_in_gg(z2, .(z0, z4))))
U6_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), member124_out_gag(z2)) → U7_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), z2, U3_gg(member34_in_gg(z2, .(z4, z5))))
U6_GGGG(z1, .(z2, z3), .(z0, .(z0, z4)), member124_out_gag(x4)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z0, z4)), x4, U3_gg(member34_in_gg(x4, .(z0, z4))))
U6_GGGG(z1, .(z2, z3), .(z0, .(z4, z5)), member124_out_gag(x4)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z4, z5)), x4, U3_gg(member34_in_gg(x4, .(z4, z5))))

(48) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U7_GGGG(z0, z1, .(z2, z3), z2, member34_out_gg) → REACH1_IN_GGGG(z2, z0, z1, .(z2, .(z2, z3)))
U7_GGGG(z0, z1, .(z2, z3), z4, member34_out_gg) → REACH1_IN_GGGG(z4, z0, z1, .(z4, .(z2, z3)))
REACH1_IN_GGGG(z2, z0, .(.(z2, .(x2, [])), x3), .(z2, .(z2, z3))) → U6_GGGG(z0, .(.(z2, .(x2, [])), x3), .(z2, .(z2, z3)), member124_out_gag(x2))
REACH1_IN_GGGG(z4, z0, .(.(z4, .(x2, [])), x3), .(z4, .(z2, z3))) → U6_GGGG(z0, .(.(z4, .(x2, [])), x3), .(z4, .(z2, z3)), member124_out_gag(x2))
REACH1_IN_GGGG(z2, z0, .(x2, x3), .(z2, .(z2, z3))) → U6_GGGG(z0, .(x2, x3), .(z2, .(z2, z3)), U2_gag(member124_in_gag(z2, x3)))
REACH1_IN_GGGG(z4, z0, .(x2, x3), .(z4, .(z2, z3))) → U6_GGGG(z0, .(x2, x3), .(z4, .(z2, z3)), U2_gag(member124_in_gag(z4, x3)))
U6_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z0, z4)), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z0, z4)), z0, member34_out_gg)
U6_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, z5)), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, z5)), z0, member34_out_gg)
U6_GGGG(z1, .(z2, z3), .(z0, .(z0, z4)), member124_out_gag(z0)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z0, z4)), z0, member34_out_gg)
U6_GGGG(z1, .(z2, z3), .(z0, .(z4, z5)), member124_out_gag(z0)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z4, z5)), z0, member34_out_gg)
U6_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), member124_out_gag(z2)) → U7_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), z2, U3_gg(member34_in_gg(z2, .(z0, z4))))
U6_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), member124_out_gag(z2)) → U7_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), z2, U3_gg(member34_in_gg(z2, .(z4, z5))))
U6_GGGG(z1, .(z2, z3), .(z0, .(z0, z4)), member124_out_gag(x4)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z0, z4)), x4, U3_gg(member34_in_gg(x4, .(z0, z4))))
U6_GGGG(z1, .(z2, z3), .(z0, .(z4, z5)), member124_out_gag(x4)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z4, z5)), x4, U3_gg(member34_in_gg(x4, .(z4, z5))))

The TRS R consists of the following rules:

member124_in_gag(T120, .(.(T120, .(X117, [])), T121)) → member124_out_gag(X117)
member124_in_gag(T128, .(T129, T130)) → U2_gag(member124_in_gag(T128, T130))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg
member34_in_gg(T159, .(T160, T161)) → U3_gg(member34_in_gg(T159, T161))
U2_gag(member124_out_gag(X131)) → member124_out_gag(X131)
U3_gg(member34_out_gg) → member34_out_gg

The set Q consists of the following terms:

member124_in_gag(x0, x1)
member34_in_gg(x0, x1)
U2_gag(x0)
U3_gg(x0)

We have to consider all (P,Q,R)-chains.

(49) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U7_GGGG(z0, z1, .(z2, z3), z2, member34_out_gg) → REACH1_IN_GGGG(z2, z0, z1, .(z2, .(z2, z3))) we obtained the following new rules [LPAR04]:

U7_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, z3)), z1, member34_out_gg) → REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3))))
U7_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z3, z4)), z1, member34_out_gg) → REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4))))
U7_GGGG(z0, .(z1, z2), .(z3, .(z3, z4)), z3, member34_out_gg) → REACH1_IN_GGGG(z3, z0, .(z1, z2), .(z3, .(z3, .(z3, z4))))
U7_GGGG(z0, .(z1, z2), .(z3, .(z4, z5)), z3, member34_out_gg) → REACH1_IN_GGGG(z3, z0, .(z1, z2), .(z3, .(z3, .(z4, z5))))

(50) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U7_GGGG(z0, z1, .(z2, z3), z4, member34_out_gg) → REACH1_IN_GGGG(z4, z0, z1, .(z4, .(z2, z3)))
REACH1_IN_GGGG(z2, z0, .(.(z2, .(x2, [])), x3), .(z2, .(z2, z3))) → U6_GGGG(z0, .(.(z2, .(x2, [])), x3), .(z2, .(z2, z3)), member124_out_gag(x2))
REACH1_IN_GGGG(z4, z0, .(.(z4, .(x2, [])), x3), .(z4, .(z2, z3))) → U6_GGGG(z0, .(.(z4, .(x2, [])), x3), .(z4, .(z2, z3)), member124_out_gag(x2))
REACH1_IN_GGGG(z2, z0, .(x2, x3), .(z2, .(z2, z3))) → U6_GGGG(z0, .(x2, x3), .(z2, .(z2, z3)), U2_gag(member124_in_gag(z2, x3)))
REACH1_IN_GGGG(z4, z0, .(x2, x3), .(z4, .(z2, z3))) → U6_GGGG(z0, .(x2, x3), .(z4, .(z2, z3)), U2_gag(member124_in_gag(z4, x3)))
U6_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z0, z4)), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z0, z4)), z0, member34_out_gg)
U6_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, z5)), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, z5)), z0, member34_out_gg)
U6_GGGG(z1, .(z2, z3), .(z0, .(z0, z4)), member124_out_gag(z0)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z0, z4)), z0, member34_out_gg)
U6_GGGG(z1, .(z2, z3), .(z0, .(z4, z5)), member124_out_gag(z0)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z4, z5)), z0, member34_out_gg)
U6_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), member124_out_gag(z2)) → U7_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), z2, U3_gg(member34_in_gg(z2, .(z0, z4))))
U6_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), member124_out_gag(z2)) → U7_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), z2, U3_gg(member34_in_gg(z2, .(z4, z5))))
U6_GGGG(z1, .(z2, z3), .(z0, .(z0, z4)), member124_out_gag(x4)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z0, z4)), x4, U3_gg(member34_in_gg(x4, .(z0, z4))))
U6_GGGG(z1, .(z2, z3), .(z0, .(z4, z5)), member124_out_gag(x4)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z4, z5)), x4, U3_gg(member34_in_gg(x4, .(z4, z5))))
U7_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, z3)), z1, member34_out_gg) → REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3))))
U7_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z3, z4)), z1, member34_out_gg) → REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4))))
U7_GGGG(z0, .(z1, z2), .(z3, .(z3, z4)), z3, member34_out_gg) → REACH1_IN_GGGG(z3, z0, .(z1, z2), .(z3, .(z3, .(z3, z4))))
U7_GGGG(z0, .(z1, z2), .(z3, .(z4, z5)), z3, member34_out_gg) → REACH1_IN_GGGG(z3, z0, .(z1, z2), .(z3, .(z3, .(z4, z5))))

The TRS R consists of the following rules:

member124_in_gag(T120, .(.(T120, .(X117, [])), T121)) → member124_out_gag(X117)
member124_in_gag(T128, .(T129, T130)) → U2_gag(member124_in_gag(T128, T130))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg
member34_in_gg(T159, .(T160, T161)) → U3_gg(member34_in_gg(T159, T161))
U2_gag(member124_out_gag(X131)) → member124_out_gag(X131)
U3_gg(member34_out_gg) → member34_out_gg

The set Q consists of the following terms:

member124_in_gag(x0, x1)
member34_in_gg(x0, x1)
U2_gag(x0)
U3_gg(x0)

We have to consider all (P,Q,R)-chains.

(51) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U7_GGGG(z0, z1, .(z2, z3), z4, member34_out_gg) → REACH1_IN_GGGG(z4, z0, z1, .(z4, .(z2, z3))) we obtained the following new rules [LPAR04]:

U7_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, z3)), z1, member34_out_gg) → REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3))))
U7_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z3, z4)), z1, member34_out_gg) → REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4))))
U7_GGGG(z0, .(z1, z2), .(z3, .(z3, z4)), z3, member34_out_gg) → REACH1_IN_GGGG(z3, z0, .(z1, z2), .(z3, .(z3, .(z3, z4))))
U7_GGGG(z0, .(z1, z2), .(z3, .(z4, z5)), z3, member34_out_gg) → REACH1_IN_GGGG(z3, z0, .(z1, z2), .(z3, .(z3, .(z4, z5))))
U7_GGGG(z0, .(.(z1, .(z2, [])), z3), .(z1, .(z1, z4)), z2, member34_out_gg) → REACH1_IN_GGGG(z2, z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z1, z4))))
U7_GGGG(z0, .(.(z1, .(z2, [])), z3), .(z1, .(z4, z5)), z2, member34_out_gg) → REACH1_IN_GGGG(z2, z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z4, z5))))
U7_GGGG(z0, .(z1, z2), .(z3, .(z3, z4)), z5, member34_out_gg) → REACH1_IN_GGGG(z5, z0, .(z1, z2), .(z5, .(z3, .(z3, z4))))
U7_GGGG(z0, .(z1, z2), .(z3, .(z4, z5)), z6, member34_out_gg) → REACH1_IN_GGGG(z6, z0, .(z1, z2), .(z6, .(z3, .(z4, z5))))

(52) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REACH1_IN_GGGG(z2, z0, .(.(z2, .(x2, [])), x3), .(z2, .(z2, z3))) → U6_GGGG(z0, .(.(z2, .(x2, [])), x3), .(z2, .(z2, z3)), member124_out_gag(x2))
REACH1_IN_GGGG(z4, z0, .(.(z4, .(x2, [])), x3), .(z4, .(z2, z3))) → U6_GGGG(z0, .(.(z4, .(x2, [])), x3), .(z4, .(z2, z3)), member124_out_gag(x2))
REACH1_IN_GGGG(z2, z0, .(x2, x3), .(z2, .(z2, z3))) → U6_GGGG(z0, .(x2, x3), .(z2, .(z2, z3)), U2_gag(member124_in_gag(z2, x3)))
REACH1_IN_GGGG(z4, z0, .(x2, x3), .(z4, .(z2, z3))) → U6_GGGG(z0, .(x2, x3), .(z4, .(z2, z3)), U2_gag(member124_in_gag(z4, x3)))
U6_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z0, z4)), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z0, z4)), z0, member34_out_gg)
U6_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, z5)), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, z5)), z0, member34_out_gg)
U6_GGGG(z1, .(z2, z3), .(z0, .(z0, z4)), member124_out_gag(z0)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z0, z4)), z0, member34_out_gg)
U6_GGGG(z1, .(z2, z3), .(z0, .(z4, z5)), member124_out_gag(z0)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z4, z5)), z0, member34_out_gg)
U6_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), member124_out_gag(z2)) → U7_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), z2, U3_gg(member34_in_gg(z2, .(z0, z4))))
U6_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), member124_out_gag(z2)) → U7_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), z2, U3_gg(member34_in_gg(z2, .(z4, z5))))
U6_GGGG(z1, .(z2, z3), .(z0, .(z0, z4)), member124_out_gag(x4)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z0, z4)), x4, U3_gg(member34_in_gg(x4, .(z0, z4))))
U6_GGGG(z1, .(z2, z3), .(z0, .(z4, z5)), member124_out_gag(x4)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z4, z5)), x4, U3_gg(member34_in_gg(x4, .(z4, z5))))
U7_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, z3)), z1, member34_out_gg) → REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3))))
U7_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z3, z4)), z1, member34_out_gg) → REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4))))
U7_GGGG(z0, .(z1, z2), .(z3, .(z3, z4)), z3, member34_out_gg) → REACH1_IN_GGGG(z3, z0, .(z1, z2), .(z3, .(z3, .(z3, z4))))
U7_GGGG(z0, .(z1, z2), .(z3, .(z4, z5)), z3, member34_out_gg) → REACH1_IN_GGGG(z3, z0, .(z1, z2), .(z3, .(z3, .(z4, z5))))
U7_GGGG(z0, .(.(z1, .(z2, [])), z3), .(z1, .(z1, z4)), z2, member34_out_gg) → REACH1_IN_GGGG(z2, z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z1, z4))))
U7_GGGG(z0, .(.(z1, .(z2, [])), z3), .(z1, .(z4, z5)), z2, member34_out_gg) → REACH1_IN_GGGG(z2, z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z4, z5))))
U7_GGGG(z0, .(z1, z2), .(z3, .(z3, z4)), z5, member34_out_gg) → REACH1_IN_GGGG(z5, z0, .(z1, z2), .(z5, .(z3, .(z3, z4))))
U7_GGGG(z0, .(z1, z2), .(z3, .(z4, z5)), z6, member34_out_gg) → REACH1_IN_GGGG(z6, z0, .(z1, z2), .(z6, .(z3, .(z4, z5))))

The TRS R consists of the following rules:

member124_in_gag(T120, .(.(T120, .(X117, [])), T121)) → member124_out_gag(X117)
member124_in_gag(T128, .(T129, T130)) → U2_gag(member124_in_gag(T128, T130))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg
member34_in_gg(T159, .(T160, T161)) → U3_gg(member34_in_gg(T159, T161))
U2_gag(member124_out_gag(X131)) → member124_out_gag(X131)
U3_gg(member34_out_gg) → member34_out_gg

The set Q consists of the following terms:

member124_in_gag(x0, x1)
member34_in_gg(x0, x1)
U2_gag(x0)
U3_gg(x0)

We have to consider all (P,Q,R)-chains.

(53) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule REACH1_IN_GGGG(z2, z0, .(.(z2, .(x2, [])), x3), .(z2, .(z2, z3))) → U6_GGGG(z0, .(.(z2, .(x2, [])), x3), .(z2, .(z2, z3)), member124_out_gag(x2)) we obtained the following new rules [LPAR04]:

REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3)))) → U6_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3))), member124_out_gag(z1))
REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4)))) → U6_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4))), member124_out_gag(z1))
REACH1_IN_GGGG(z3, z0, .(.(z3, .(x2, [])), z2), .(z3, .(z3, .(z3, z4)))) → U6_GGGG(z0, .(.(z3, .(x2, [])), z2), .(z3, .(z3, .(z3, z4))), member124_out_gag(x2))
REACH1_IN_GGGG(z3, z0, .(.(z3, .(x2, [])), z2), .(z3, .(z3, .(z4, z5)))) → U6_GGGG(z0, .(.(z3, .(x2, [])), z2), .(z3, .(z3, .(z4, z5))), member124_out_gag(x2))

(54) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REACH1_IN_GGGG(z4, z0, .(.(z4, .(x2, [])), x3), .(z4, .(z2, z3))) → U6_GGGG(z0, .(.(z4, .(x2, [])), x3), .(z4, .(z2, z3)), member124_out_gag(x2))
REACH1_IN_GGGG(z2, z0, .(x2, x3), .(z2, .(z2, z3))) → U6_GGGG(z0, .(x2, x3), .(z2, .(z2, z3)), U2_gag(member124_in_gag(z2, x3)))
REACH1_IN_GGGG(z4, z0, .(x2, x3), .(z4, .(z2, z3))) → U6_GGGG(z0, .(x2, x3), .(z4, .(z2, z3)), U2_gag(member124_in_gag(z4, x3)))
U6_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z0, z4)), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z0, z4)), z0, member34_out_gg)
U6_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, z5)), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, z5)), z0, member34_out_gg)
U6_GGGG(z1, .(z2, z3), .(z0, .(z0, z4)), member124_out_gag(z0)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z0, z4)), z0, member34_out_gg)
U6_GGGG(z1, .(z2, z3), .(z0, .(z4, z5)), member124_out_gag(z0)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z4, z5)), z0, member34_out_gg)
U6_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), member124_out_gag(z2)) → U7_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), z2, U3_gg(member34_in_gg(z2, .(z0, z4))))
U6_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), member124_out_gag(z2)) → U7_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), z2, U3_gg(member34_in_gg(z2, .(z4, z5))))
U6_GGGG(z1, .(z2, z3), .(z0, .(z0, z4)), member124_out_gag(x4)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z0, z4)), x4, U3_gg(member34_in_gg(x4, .(z0, z4))))
U6_GGGG(z1, .(z2, z3), .(z0, .(z4, z5)), member124_out_gag(x4)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z4, z5)), x4, U3_gg(member34_in_gg(x4, .(z4, z5))))
U7_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, z3)), z1, member34_out_gg) → REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3))))
U7_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z3, z4)), z1, member34_out_gg) → REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4))))
U7_GGGG(z0, .(z1, z2), .(z3, .(z3, z4)), z3, member34_out_gg) → REACH1_IN_GGGG(z3, z0, .(z1, z2), .(z3, .(z3, .(z3, z4))))
U7_GGGG(z0, .(z1, z2), .(z3, .(z4, z5)), z3, member34_out_gg) → REACH1_IN_GGGG(z3, z0, .(z1, z2), .(z3, .(z3, .(z4, z5))))
U7_GGGG(z0, .(.(z1, .(z2, [])), z3), .(z1, .(z1, z4)), z2, member34_out_gg) → REACH1_IN_GGGG(z2, z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z1, z4))))
U7_GGGG(z0, .(.(z1, .(z2, [])), z3), .(z1, .(z4, z5)), z2, member34_out_gg) → REACH1_IN_GGGG(z2, z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z4, z5))))
U7_GGGG(z0, .(z1, z2), .(z3, .(z3, z4)), z5, member34_out_gg) → REACH1_IN_GGGG(z5, z0, .(z1, z2), .(z5, .(z3, .(z3, z4))))
U7_GGGG(z0, .(z1, z2), .(z3, .(z4, z5)), z6, member34_out_gg) → REACH1_IN_GGGG(z6, z0, .(z1, z2), .(z6, .(z3, .(z4, z5))))
REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3)))) → U6_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3))), member124_out_gag(z1))
REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4)))) → U6_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4))), member124_out_gag(z1))
REACH1_IN_GGGG(z3, z0, .(.(z3, .(x2, [])), z2), .(z3, .(z3, .(z3, z4)))) → U6_GGGG(z0, .(.(z3, .(x2, [])), z2), .(z3, .(z3, .(z3, z4))), member124_out_gag(x2))
REACH1_IN_GGGG(z3, z0, .(.(z3, .(x2, [])), z2), .(z3, .(z3, .(z4, z5)))) → U6_GGGG(z0, .(.(z3, .(x2, [])), z2), .(z3, .(z3, .(z4, z5))), member124_out_gag(x2))

The TRS R consists of the following rules:

member124_in_gag(T120, .(.(T120, .(X117, [])), T121)) → member124_out_gag(X117)
member124_in_gag(T128, .(T129, T130)) → U2_gag(member124_in_gag(T128, T130))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg
member34_in_gg(T159, .(T160, T161)) → U3_gg(member34_in_gg(T159, T161))
U2_gag(member124_out_gag(X131)) → member124_out_gag(X131)
U3_gg(member34_out_gg) → member34_out_gg

The set Q consists of the following terms:

member124_in_gag(x0, x1)
member34_in_gg(x0, x1)
U2_gag(x0)
U3_gg(x0)

We have to consider all (P,Q,R)-chains.

(55) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule REACH1_IN_GGGG(z4, z0, .(.(z4, .(x2, [])), x3), .(z4, .(z2, z3))) → U6_GGGG(z0, .(.(z4, .(x2, [])), x3), .(z4, .(z2, z3)), member124_out_gag(x2)) we obtained the following new rules [LPAR04]:

REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3)))) → U6_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3))), member124_out_gag(z1))
REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4)))) → U6_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4))), member124_out_gag(z1))
REACH1_IN_GGGG(z3, z0, .(.(z3, .(x2, [])), z2), .(z3, .(z3, .(z3, z4)))) → U6_GGGG(z0, .(.(z3, .(x2, [])), z2), .(z3, .(z3, .(z3, z4))), member124_out_gag(x2))
REACH1_IN_GGGG(z3, z0, .(.(z3, .(x2, [])), z2), .(z3, .(z3, .(z4, z5)))) → U6_GGGG(z0, .(.(z3, .(x2, [])), z2), .(z3, .(z3, .(z4, z5))), member124_out_gag(x2))
REACH1_IN_GGGG(z5, z0, .(.(z5, .(x2, [])), z2), .(z5, .(z3, .(z3, z4)))) → U6_GGGG(z0, .(.(z5, .(x2, [])), z2), .(z5, .(z3, .(z3, z4))), member124_out_gag(x2))
REACH1_IN_GGGG(z6, z0, .(.(z6, .(x2, [])), z2), .(z6, .(z3, .(z4, z5)))) → U6_GGGG(z0, .(.(z6, .(x2, [])), z2), .(z6, .(z3, .(z4, z5))), member124_out_gag(x2))

(56) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REACH1_IN_GGGG(z2, z0, .(x2, x3), .(z2, .(z2, z3))) → U6_GGGG(z0, .(x2, x3), .(z2, .(z2, z3)), U2_gag(member124_in_gag(z2, x3)))
REACH1_IN_GGGG(z4, z0, .(x2, x3), .(z4, .(z2, z3))) → U6_GGGG(z0, .(x2, x3), .(z4, .(z2, z3)), U2_gag(member124_in_gag(z4, x3)))
U6_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z0, z4)), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z0, z4)), z0, member34_out_gg)
U6_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, z5)), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, z5)), z0, member34_out_gg)
U6_GGGG(z1, .(z2, z3), .(z0, .(z0, z4)), member124_out_gag(z0)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z0, z4)), z0, member34_out_gg)
U6_GGGG(z1, .(z2, z3), .(z0, .(z4, z5)), member124_out_gag(z0)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z4, z5)), z0, member34_out_gg)
U6_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), member124_out_gag(z2)) → U7_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), z2, U3_gg(member34_in_gg(z2, .(z0, z4))))
U6_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), member124_out_gag(z2)) → U7_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), z2, U3_gg(member34_in_gg(z2, .(z4, z5))))
U6_GGGG(z1, .(z2, z3), .(z0, .(z0, z4)), member124_out_gag(x4)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z0, z4)), x4, U3_gg(member34_in_gg(x4, .(z0, z4))))
U6_GGGG(z1, .(z2, z3), .(z0, .(z4, z5)), member124_out_gag(x4)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z4, z5)), x4, U3_gg(member34_in_gg(x4, .(z4, z5))))
U7_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, z3)), z1, member34_out_gg) → REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3))))
U7_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z3, z4)), z1, member34_out_gg) → REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4))))
U7_GGGG(z0, .(z1, z2), .(z3, .(z3, z4)), z3, member34_out_gg) → REACH1_IN_GGGG(z3, z0, .(z1, z2), .(z3, .(z3, .(z3, z4))))
U7_GGGG(z0, .(z1, z2), .(z3, .(z4, z5)), z3, member34_out_gg) → REACH1_IN_GGGG(z3, z0, .(z1, z2), .(z3, .(z3, .(z4, z5))))
U7_GGGG(z0, .(.(z1, .(z2, [])), z3), .(z1, .(z1, z4)), z2, member34_out_gg) → REACH1_IN_GGGG(z2, z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z1, z4))))
U7_GGGG(z0, .(.(z1, .(z2, [])), z3), .(z1, .(z4, z5)), z2, member34_out_gg) → REACH1_IN_GGGG(z2, z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z4, z5))))
U7_GGGG(z0, .(z1, z2), .(z3, .(z3, z4)), z5, member34_out_gg) → REACH1_IN_GGGG(z5, z0, .(z1, z2), .(z5, .(z3, .(z3, z4))))
U7_GGGG(z0, .(z1, z2), .(z3, .(z4, z5)), z6, member34_out_gg) → REACH1_IN_GGGG(z6, z0, .(z1, z2), .(z6, .(z3, .(z4, z5))))
REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3)))) → U6_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3))), member124_out_gag(z1))
REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4)))) → U6_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4))), member124_out_gag(z1))
REACH1_IN_GGGG(z3, z0, .(.(z3, .(x2, [])), z2), .(z3, .(z3, .(z3, z4)))) → U6_GGGG(z0, .(.(z3, .(x2, [])), z2), .(z3, .(z3, .(z3, z4))), member124_out_gag(x2))
REACH1_IN_GGGG(z3, z0, .(.(z3, .(x2, [])), z2), .(z3, .(z3, .(z4, z5)))) → U6_GGGG(z0, .(.(z3, .(x2, [])), z2), .(z3, .(z3, .(z4, z5))), member124_out_gag(x2))
REACH1_IN_GGGG(z5, z0, .(.(z5, .(x2, [])), z2), .(z5, .(z3, .(z3, z4)))) → U6_GGGG(z0, .(.(z5, .(x2, [])), z2), .(z5, .(z3, .(z3, z4))), member124_out_gag(x2))
REACH1_IN_GGGG(z6, z0, .(.(z6, .(x2, [])), z2), .(z6, .(z3, .(z4, z5)))) → U6_GGGG(z0, .(.(z6, .(x2, [])), z2), .(z6, .(z3, .(z4, z5))), member124_out_gag(x2))

The TRS R consists of the following rules:

member124_in_gag(T120, .(.(T120, .(X117, [])), T121)) → member124_out_gag(X117)
member124_in_gag(T128, .(T129, T130)) → U2_gag(member124_in_gag(T128, T130))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg
member34_in_gg(T159, .(T160, T161)) → U3_gg(member34_in_gg(T159, T161))
U2_gag(member124_out_gag(X131)) → member124_out_gag(X131)
U3_gg(member34_out_gg) → member34_out_gg

The set Q consists of the following terms:

member124_in_gag(x0, x1)
member34_in_gg(x0, x1)
U2_gag(x0)
U3_gg(x0)

We have to consider all (P,Q,R)-chains.

(57) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule REACH1_IN_GGGG(z2, z0, .(x2, x3), .(z2, .(z2, z3))) → U6_GGGG(z0, .(x2, x3), .(z2, .(z2, z3)), U2_gag(member124_in_gag(z2, x3))) we obtained the following new rules [LPAR04]:

REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3)))) → U6_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3))), U2_gag(member124_in_gag(z1, z2)))
REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4)))) → U6_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4))), U2_gag(member124_in_gag(z1, z2)))
REACH1_IN_GGGG(z3, z0, .(z1, z2), .(z3, .(z3, .(z3, z4)))) → U6_GGGG(z0, .(z1, z2), .(z3, .(z3, .(z3, z4))), U2_gag(member124_in_gag(z3, z2)))
REACH1_IN_GGGG(z3, z0, .(z1, z2), .(z3, .(z3, .(z4, z5)))) → U6_GGGG(z0, .(z1, z2), .(z3, .(z3, .(z4, z5))), U2_gag(member124_in_gag(z3, z2)))

(58) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REACH1_IN_GGGG(z4, z0, .(x2, x3), .(z4, .(z2, z3))) → U6_GGGG(z0, .(x2, x3), .(z4, .(z2, z3)), U2_gag(member124_in_gag(z4, x3)))
U6_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z0, z4)), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z0, z4)), z0, member34_out_gg)
U6_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, z5)), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, z5)), z0, member34_out_gg)
U6_GGGG(z1, .(z2, z3), .(z0, .(z0, z4)), member124_out_gag(z0)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z0, z4)), z0, member34_out_gg)
U6_GGGG(z1, .(z2, z3), .(z0, .(z4, z5)), member124_out_gag(z0)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z4, z5)), z0, member34_out_gg)
U6_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), member124_out_gag(z2)) → U7_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), z2, U3_gg(member34_in_gg(z2, .(z0, z4))))
U6_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), member124_out_gag(z2)) → U7_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), z2, U3_gg(member34_in_gg(z2, .(z4, z5))))
U6_GGGG(z1, .(z2, z3), .(z0, .(z0, z4)), member124_out_gag(x4)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z0, z4)), x4, U3_gg(member34_in_gg(x4, .(z0, z4))))
U6_GGGG(z1, .(z2, z3), .(z0, .(z4, z5)), member124_out_gag(x4)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z4, z5)), x4, U3_gg(member34_in_gg(x4, .(z4, z5))))
U7_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, z3)), z1, member34_out_gg) → REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3))))
U7_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z3, z4)), z1, member34_out_gg) → REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4))))
U7_GGGG(z0, .(z1, z2), .(z3, .(z3, z4)), z3, member34_out_gg) → REACH1_IN_GGGG(z3, z0, .(z1, z2), .(z3, .(z3, .(z3, z4))))
U7_GGGG(z0, .(z1, z2), .(z3, .(z4, z5)), z3, member34_out_gg) → REACH1_IN_GGGG(z3, z0, .(z1, z2), .(z3, .(z3, .(z4, z5))))
U7_GGGG(z0, .(.(z1, .(z2, [])), z3), .(z1, .(z1, z4)), z2, member34_out_gg) → REACH1_IN_GGGG(z2, z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z1, z4))))
U7_GGGG(z0, .(.(z1, .(z2, [])), z3), .(z1, .(z4, z5)), z2, member34_out_gg) → REACH1_IN_GGGG(z2, z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z4, z5))))
U7_GGGG(z0, .(z1, z2), .(z3, .(z3, z4)), z5, member34_out_gg) → REACH1_IN_GGGG(z5, z0, .(z1, z2), .(z5, .(z3, .(z3, z4))))
U7_GGGG(z0, .(z1, z2), .(z3, .(z4, z5)), z6, member34_out_gg) → REACH1_IN_GGGG(z6, z0, .(z1, z2), .(z6, .(z3, .(z4, z5))))
REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3)))) → U6_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3))), member124_out_gag(z1))
REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4)))) → U6_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4))), member124_out_gag(z1))
REACH1_IN_GGGG(z3, z0, .(.(z3, .(x2, [])), z2), .(z3, .(z3, .(z3, z4)))) → U6_GGGG(z0, .(.(z3, .(x2, [])), z2), .(z3, .(z3, .(z3, z4))), member124_out_gag(x2))
REACH1_IN_GGGG(z3, z0, .(.(z3, .(x2, [])), z2), .(z3, .(z3, .(z4, z5)))) → U6_GGGG(z0, .(.(z3, .(x2, [])), z2), .(z3, .(z3, .(z4, z5))), member124_out_gag(x2))
REACH1_IN_GGGG(z5, z0, .(.(z5, .(x2, [])), z2), .(z5, .(z3, .(z3, z4)))) → U6_GGGG(z0, .(.(z5, .(x2, [])), z2), .(z5, .(z3, .(z3, z4))), member124_out_gag(x2))
REACH1_IN_GGGG(z6, z0, .(.(z6, .(x2, [])), z2), .(z6, .(z3, .(z4, z5)))) → U6_GGGG(z0, .(.(z6, .(x2, [])), z2), .(z6, .(z3, .(z4, z5))), member124_out_gag(x2))
REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3)))) → U6_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3))), U2_gag(member124_in_gag(z1, z2)))
REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4)))) → U6_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4))), U2_gag(member124_in_gag(z1, z2)))
REACH1_IN_GGGG(z3, z0, .(z1, z2), .(z3, .(z3, .(z3, z4)))) → U6_GGGG(z0, .(z1, z2), .(z3, .(z3, .(z3, z4))), U2_gag(member124_in_gag(z3, z2)))
REACH1_IN_GGGG(z3, z0, .(z1, z2), .(z3, .(z3, .(z4, z5)))) → U6_GGGG(z0, .(z1, z2), .(z3, .(z3, .(z4, z5))), U2_gag(member124_in_gag(z3, z2)))

The TRS R consists of the following rules:

member124_in_gag(T120, .(.(T120, .(X117, [])), T121)) → member124_out_gag(X117)
member124_in_gag(T128, .(T129, T130)) → U2_gag(member124_in_gag(T128, T130))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg
member34_in_gg(T159, .(T160, T161)) → U3_gg(member34_in_gg(T159, T161))
U2_gag(member124_out_gag(X131)) → member124_out_gag(X131)
U3_gg(member34_out_gg) → member34_out_gg

The set Q consists of the following terms:

member124_in_gag(x0, x1)
member34_in_gg(x0, x1)
U2_gag(x0)
U3_gg(x0)

We have to consider all (P,Q,R)-chains.

(59) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule REACH1_IN_GGGG(z4, z0, .(x2, x3), .(z4, .(z2, z3))) → U6_GGGG(z0, .(x2, x3), .(z4, .(z2, z3)), U2_gag(member124_in_gag(z4, x3))) we obtained the following new rules [LPAR04]:

REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3)))) → U6_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3))), U2_gag(member124_in_gag(z1, z2)))
REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4)))) → U6_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4))), U2_gag(member124_in_gag(z1, z2)))
REACH1_IN_GGGG(z3, z0, .(z1, z2), .(z3, .(z3, .(z3, z4)))) → U6_GGGG(z0, .(z1, z2), .(z3, .(z3, .(z3, z4))), U2_gag(member124_in_gag(z3, z2)))
REACH1_IN_GGGG(z3, z0, .(z1, z2), .(z3, .(z3, .(z4, z5)))) → U6_GGGG(z0, .(z1, z2), .(z3, .(z3, .(z4, z5))), U2_gag(member124_in_gag(z3, z2)))
REACH1_IN_GGGG(z2, z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z1, z4)))) → U6_GGGG(z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z1, z4))), U2_gag(member124_in_gag(z2, z3)))
REACH1_IN_GGGG(z2, z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z4, z5)))) → U6_GGGG(z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z4, z5))), U2_gag(member124_in_gag(z2, z3)))
REACH1_IN_GGGG(z5, z0, .(z1, z2), .(z5, .(z3, .(z3, z4)))) → U6_GGGG(z0, .(z1, z2), .(z5, .(z3, .(z3, z4))), U2_gag(member124_in_gag(z5, z2)))
REACH1_IN_GGGG(z6, z0, .(z1, z2), .(z6, .(z3, .(z4, z5)))) → U6_GGGG(z0, .(z1, z2), .(z6, .(z3, .(z4, z5))), U2_gag(member124_in_gag(z6, z2)))

(60) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U6_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z0, z4)), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z0, z4)), z0, member34_out_gg)
U6_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, z5)), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, z5)), z0, member34_out_gg)
U6_GGGG(z1, .(z2, z3), .(z0, .(z0, z4)), member124_out_gag(z0)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z0, z4)), z0, member34_out_gg)
U6_GGGG(z1, .(z2, z3), .(z0, .(z4, z5)), member124_out_gag(z0)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z4, z5)), z0, member34_out_gg)
U6_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), member124_out_gag(z2)) → U7_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), z2, U3_gg(member34_in_gg(z2, .(z0, z4))))
U6_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), member124_out_gag(z2)) → U7_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), z2, U3_gg(member34_in_gg(z2, .(z4, z5))))
U6_GGGG(z1, .(z2, z3), .(z0, .(z0, z4)), member124_out_gag(x4)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z0, z4)), x4, U3_gg(member34_in_gg(x4, .(z0, z4))))
U6_GGGG(z1, .(z2, z3), .(z0, .(z4, z5)), member124_out_gag(x4)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z4, z5)), x4, U3_gg(member34_in_gg(x4, .(z4, z5))))
U7_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, z3)), z1, member34_out_gg) → REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3))))
U7_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z3, z4)), z1, member34_out_gg) → REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4))))
U7_GGGG(z0, .(z1, z2), .(z3, .(z3, z4)), z3, member34_out_gg) → REACH1_IN_GGGG(z3, z0, .(z1, z2), .(z3, .(z3, .(z3, z4))))
U7_GGGG(z0, .(z1, z2), .(z3, .(z4, z5)), z3, member34_out_gg) → REACH1_IN_GGGG(z3, z0, .(z1, z2), .(z3, .(z3, .(z4, z5))))
U7_GGGG(z0, .(.(z1, .(z2, [])), z3), .(z1, .(z1, z4)), z2, member34_out_gg) → REACH1_IN_GGGG(z2, z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z1, z4))))
U7_GGGG(z0, .(.(z1, .(z2, [])), z3), .(z1, .(z4, z5)), z2, member34_out_gg) → REACH1_IN_GGGG(z2, z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z4, z5))))
U7_GGGG(z0, .(z1, z2), .(z3, .(z3, z4)), z5, member34_out_gg) → REACH1_IN_GGGG(z5, z0, .(z1, z2), .(z5, .(z3, .(z3, z4))))
U7_GGGG(z0, .(z1, z2), .(z3, .(z4, z5)), z6, member34_out_gg) → REACH1_IN_GGGG(z6, z0, .(z1, z2), .(z6, .(z3, .(z4, z5))))
REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3)))) → U6_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3))), member124_out_gag(z1))
REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4)))) → U6_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4))), member124_out_gag(z1))
REACH1_IN_GGGG(z3, z0, .(.(z3, .(x2, [])), z2), .(z3, .(z3, .(z3, z4)))) → U6_GGGG(z0, .(.(z3, .(x2, [])), z2), .(z3, .(z3, .(z3, z4))), member124_out_gag(x2))
REACH1_IN_GGGG(z3, z0, .(.(z3, .(x2, [])), z2), .(z3, .(z3, .(z4, z5)))) → U6_GGGG(z0, .(.(z3, .(x2, [])), z2), .(z3, .(z3, .(z4, z5))), member124_out_gag(x2))
REACH1_IN_GGGG(z5, z0, .(.(z5, .(x2, [])), z2), .(z5, .(z3, .(z3, z4)))) → U6_GGGG(z0, .(.(z5, .(x2, [])), z2), .(z5, .(z3, .(z3, z4))), member124_out_gag(x2))
REACH1_IN_GGGG(z6, z0, .(.(z6, .(x2, [])), z2), .(z6, .(z3, .(z4, z5)))) → U6_GGGG(z0, .(.(z6, .(x2, [])), z2), .(z6, .(z3, .(z4, z5))), member124_out_gag(x2))
REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3)))) → U6_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3))), U2_gag(member124_in_gag(z1, z2)))
REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4)))) → U6_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4))), U2_gag(member124_in_gag(z1, z2)))
REACH1_IN_GGGG(z3, z0, .(z1, z2), .(z3, .(z3, .(z3, z4)))) → U6_GGGG(z0, .(z1, z2), .(z3, .(z3, .(z3, z4))), U2_gag(member124_in_gag(z3, z2)))
REACH1_IN_GGGG(z3, z0, .(z1, z2), .(z3, .(z3, .(z4, z5)))) → U6_GGGG(z0, .(z1, z2), .(z3, .(z3, .(z4, z5))), U2_gag(member124_in_gag(z3, z2)))
REACH1_IN_GGGG(z2, z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z1, z4)))) → U6_GGGG(z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z1, z4))), U2_gag(member124_in_gag(z2, z3)))
REACH1_IN_GGGG(z2, z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z4, z5)))) → U6_GGGG(z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z4, z5))), U2_gag(member124_in_gag(z2, z3)))
REACH1_IN_GGGG(z5, z0, .(z1, z2), .(z5, .(z3, .(z3, z4)))) → U6_GGGG(z0, .(z1, z2), .(z5, .(z3, .(z3, z4))), U2_gag(member124_in_gag(z5, z2)))
REACH1_IN_GGGG(z6, z0, .(z1, z2), .(z6, .(z3, .(z4, z5)))) → U6_GGGG(z0, .(z1, z2), .(z6, .(z3, .(z4, z5))), U2_gag(member124_in_gag(z6, z2)))

The TRS R consists of the following rules:

member124_in_gag(T120, .(.(T120, .(X117, [])), T121)) → member124_out_gag(X117)
member124_in_gag(T128, .(T129, T130)) → U2_gag(member124_in_gag(T128, T130))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg
member34_in_gg(T159, .(T160, T161)) → U3_gg(member34_in_gg(T159, T161))
U2_gag(member124_out_gag(X131)) → member124_out_gag(X131)
U3_gg(member34_out_gg) → member34_out_gg

The set Q consists of the following terms:

member124_in_gag(x0, x1)
member34_in_gg(x0, x1)
U2_gag(x0)
U3_gg(x0)

We have to consider all (P,Q,R)-chains.

(61) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U6_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z0, z4)), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z0, z4)), z0, member34_out_gg) we obtained the following new rules [LPAR04]:

U6_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), z0, member34_out_gg)
U6_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), z0, member34_out_gg)

(62) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U6_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, z5)), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, z5)), z0, member34_out_gg)
U6_GGGG(z1, .(z2, z3), .(z0, .(z0, z4)), member124_out_gag(z0)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z0, z4)), z0, member34_out_gg)
U6_GGGG(z1, .(z2, z3), .(z0, .(z4, z5)), member124_out_gag(z0)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z4, z5)), z0, member34_out_gg)
U6_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), member124_out_gag(z2)) → U7_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), z2, U3_gg(member34_in_gg(z2, .(z0, z4))))
U6_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), member124_out_gag(z2)) → U7_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), z2, U3_gg(member34_in_gg(z2, .(z4, z5))))
U6_GGGG(z1, .(z2, z3), .(z0, .(z0, z4)), member124_out_gag(x4)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z0, z4)), x4, U3_gg(member34_in_gg(x4, .(z0, z4))))
U6_GGGG(z1, .(z2, z3), .(z0, .(z4, z5)), member124_out_gag(x4)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z4, z5)), x4, U3_gg(member34_in_gg(x4, .(z4, z5))))
U7_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, z3)), z1, member34_out_gg) → REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3))))
U7_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z3, z4)), z1, member34_out_gg) → REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4))))
U7_GGGG(z0, .(z1, z2), .(z3, .(z3, z4)), z3, member34_out_gg) → REACH1_IN_GGGG(z3, z0, .(z1, z2), .(z3, .(z3, .(z3, z4))))
U7_GGGG(z0, .(z1, z2), .(z3, .(z4, z5)), z3, member34_out_gg) → REACH1_IN_GGGG(z3, z0, .(z1, z2), .(z3, .(z3, .(z4, z5))))
U7_GGGG(z0, .(.(z1, .(z2, [])), z3), .(z1, .(z1, z4)), z2, member34_out_gg) → REACH1_IN_GGGG(z2, z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z1, z4))))
U7_GGGG(z0, .(.(z1, .(z2, [])), z3), .(z1, .(z4, z5)), z2, member34_out_gg) → REACH1_IN_GGGG(z2, z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z4, z5))))
U7_GGGG(z0, .(z1, z2), .(z3, .(z3, z4)), z5, member34_out_gg) → REACH1_IN_GGGG(z5, z0, .(z1, z2), .(z5, .(z3, .(z3, z4))))
U7_GGGG(z0, .(z1, z2), .(z3, .(z4, z5)), z6, member34_out_gg) → REACH1_IN_GGGG(z6, z0, .(z1, z2), .(z6, .(z3, .(z4, z5))))
REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3)))) → U6_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3))), member124_out_gag(z1))
REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4)))) → U6_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4))), member124_out_gag(z1))
REACH1_IN_GGGG(z3, z0, .(.(z3, .(x2, [])), z2), .(z3, .(z3, .(z3, z4)))) → U6_GGGG(z0, .(.(z3, .(x2, [])), z2), .(z3, .(z3, .(z3, z4))), member124_out_gag(x2))
REACH1_IN_GGGG(z3, z0, .(.(z3, .(x2, [])), z2), .(z3, .(z3, .(z4, z5)))) → U6_GGGG(z0, .(.(z3, .(x2, [])), z2), .(z3, .(z3, .(z4, z5))), member124_out_gag(x2))
REACH1_IN_GGGG(z5, z0, .(.(z5, .(x2, [])), z2), .(z5, .(z3, .(z3, z4)))) → U6_GGGG(z0, .(.(z5, .(x2, [])), z2), .(z5, .(z3, .(z3, z4))), member124_out_gag(x2))
REACH1_IN_GGGG(z6, z0, .(.(z6, .(x2, [])), z2), .(z6, .(z3, .(z4, z5)))) → U6_GGGG(z0, .(.(z6, .(x2, [])), z2), .(z6, .(z3, .(z4, z5))), member124_out_gag(x2))
REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3)))) → U6_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3))), U2_gag(member124_in_gag(z1, z2)))
REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4)))) → U6_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4))), U2_gag(member124_in_gag(z1, z2)))
REACH1_IN_GGGG(z3, z0, .(z1, z2), .(z3, .(z3, .(z3, z4)))) → U6_GGGG(z0, .(z1, z2), .(z3, .(z3, .(z3, z4))), U2_gag(member124_in_gag(z3, z2)))
REACH1_IN_GGGG(z3, z0, .(z1, z2), .(z3, .(z3, .(z4, z5)))) → U6_GGGG(z0, .(z1, z2), .(z3, .(z3, .(z4, z5))), U2_gag(member124_in_gag(z3, z2)))
REACH1_IN_GGGG(z2, z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z1, z4)))) → U6_GGGG(z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z1, z4))), U2_gag(member124_in_gag(z2, z3)))
REACH1_IN_GGGG(z2, z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z4, z5)))) → U6_GGGG(z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z4, z5))), U2_gag(member124_in_gag(z2, z3)))
REACH1_IN_GGGG(z5, z0, .(z1, z2), .(z5, .(z3, .(z3, z4)))) → U6_GGGG(z0, .(z1, z2), .(z5, .(z3, .(z3, z4))), U2_gag(member124_in_gag(z5, z2)))
REACH1_IN_GGGG(z6, z0, .(z1, z2), .(z6, .(z3, .(z4, z5)))) → U6_GGGG(z0, .(z1, z2), .(z6, .(z3, .(z4, z5))), U2_gag(member124_in_gag(z6, z2)))
U6_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), z0, member34_out_gg)
U6_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), z0, member34_out_gg)

The TRS R consists of the following rules:

member124_in_gag(T120, .(.(T120, .(X117, [])), T121)) → member124_out_gag(X117)
member124_in_gag(T128, .(T129, T130)) → U2_gag(member124_in_gag(T128, T130))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg
member34_in_gg(T159, .(T160, T161)) → U3_gg(member34_in_gg(T159, T161))
U2_gag(member124_out_gag(X131)) → member124_out_gag(X131)
U3_gg(member34_out_gg) → member34_out_gg

The set Q consists of the following terms:

member124_in_gag(x0, x1)
member34_in_gg(x0, x1)
U2_gag(x0)
U3_gg(x0)

We have to consider all (P,Q,R)-chains.

(63) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U6_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, z5)), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, z5)), z0, member34_out_gg) we obtained the following new rules [LPAR04]:

U6_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), z0, member34_out_gg)
U6_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), z0, member34_out_gg)
U6_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z4, z5))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z4, z5))), z0, member34_out_gg)
U6_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z5, z6))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z5, z6))), z0, member34_out_gg)

(64) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U6_GGGG(z1, .(z2, z3), .(z0, .(z0, z4)), member124_out_gag(z0)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z0, z4)), z0, member34_out_gg)
U6_GGGG(z1, .(z2, z3), .(z0, .(z4, z5)), member124_out_gag(z0)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z4, z5)), z0, member34_out_gg)
U6_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), member124_out_gag(z2)) → U7_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), z2, U3_gg(member34_in_gg(z2, .(z0, z4))))
U6_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), member124_out_gag(z2)) → U7_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), z2, U3_gg(member34_in_gg(z2, .(z4, z5))))
U6_GGGG(z1, .(z2, z3), .(z0, .(z0, z4)), member124_out_gag(x4)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z0, z4)), x4, U3_gg(member34_in_gg(x4, .(z0, z4))))
U6_GGGG(z1, .(z2, z3), .(z0, .(z4, z5)), member124_out_gag(x4)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z4, z5)), x4, U3_gg(member34_in_gg(x4, .(z4, z5))))
U7_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, z3)), z1, member34_out_gg) → REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3))))
U7_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z3, z4)), z1, member34_out_gg) → REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4))))
U7_GGGG(z0, .(z1, z2), .(z3, .(z3, z4)), z3, member34_out_gg) → REACH1_IN_GGGG(z3, z0, .(z1, z2), .(z3, .(z3, .(z3, z4))))
U7_GGGG(z0, .(z1, z2), .(z3, .(z4, z5)), z3, member34_out_gg) → REACH1_IN_GGGG(z3, z0, .(z1, z2), .(z3, .(z3, .(z4, z5))))
U7_GGGG(z0, .(.(z1, .(z2, [])), z3), .(z1, .(z1, z4)), z2, member34_out_gg) → REACH1_IN_GGGG(z2, z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z1, z4))))
U7_GGGG(z0, .(.(z1, .(z2, [])), z3), .(z1, .(z4, z5)), z2, member34_out_gg) → REACH1_IN_GGGG(z2, z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z4, z5))))
U7_GGGG(z0, .(z1, z2), .(z3, .(z3, z4)), z5, member34_out_gg) → REACH1_IN_GGGG(z5, z0, .(z1, z2), .(z5, .(z3, .(z3, z4))))
U7_GGGG(z0, .(z1, z2), .(z3, .(z4, z5)), z6, member34_out_gg) → REACH1_IN_GGGG(z6, z0, .(z1, z2), .(z6, .(z3, .(z4, z5))))
REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3)))) → U6_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3))), member124_out_gag(z1))
REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4)))) → U6_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4))), member124_out_gag(z1))
REACH1_IN_GGGG(z3, z0, .(.(z3, .(x2, [])), z2), .(z3, .(z3, .(z3, z4)))) → U6_GGGG(z0, .(.(z3, .(x2, [])), z2), .(z3, .(z3, .(z3, z4))), member124_out_gag(x2))
REACH1_IN_GGGG(z3, z0, .(.(z3, .(x2, [])), z2), .(z3, .(z3, .(z4, z5)))) → U6_GGGG(z0, .(.(z3, .(x2, [])), z2), .(z3, .(z3, .(z4, z5))), member124_out_gag(x2))
REACH1_IN_GGGG(z5, z0, .(.(z5, .(x2, [])), z2), .(z5, .(z3, .(z3, z4)))) → U6_GGGG(z0, .(.(z5, .(x2, [])), z2), .(z5, .(z3, .(z3, z4))), member124_out_gag(x2))
REACH1_IN_GGGG(z6, z0, .(.(z6, .(x2, [])), z2), .(z6, .(z3, .(z4, z5)))) → U6_GGGG(z0, .(.(z6, .(x2, [])), z2), .(z6, .(z3, .(z4, z5))), member124_out_gag(x2))
REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3)))) → U6_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3))), U2_gag(member124_in_gag(z1, z2)))
REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4)))) → U6_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4))), U2_gag(member124_in_gag(z1, z2)))
REACH1_IN_GGGG(z3, z0, .(z1, z2), .(z3, .(z3, .(z3, z4)))) → U6_GGGG(z0, .(z1, z2), .(z3, .(z3, .(z3, z4))), U2_gag(member124_in_gag(z3, z2)))
REACH1_IN_GGGG(z3, z0, .(z1, z2), .(z3, .(z3, .(z4, z5)))) → U6_GGGG(z0, .(z1, z2), .(z3, .(z3, .(z4, z5))), U2_gag(member124_in_gag(z3, z2)))
REACH1_IN_GGGG(z2, z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z1, z4)))) → U6_GGGG(z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z1, z4))), U2_gag(member124_in_gag(z2, z3)))
REACH1_IN_GGGG(z2, z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z4, z5)))) → U6_GGGG(z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z4, z5))), U2_gag(member124_in_gag(z2, z3)))
REACH1_IN_GGGG(z5, z0, .(z1, z2), .(z5, .(z3, .(z3, z4)))) → U6_GGGG(z0, .(z1, z2), .(z5, .(z3, .(z3, z4))), U2_gag(member124_in_gag(z5, z2)))
REACH1_IN_GGGG(z6, z0, .(z1, z2), .(z6, .(z3, .(z4, z5)))) → U6_GGGG(z0, .(z1, z2), .(z6, .(z3, .(z4, z5))), U2_gag(member124_in_gag(z6, z2)))
U6_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), z0, member34_out_gg)
U6_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), z0, member34_out_gg)
U6_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z4, z5))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z4, z5))), z0, member34_out_gg)
U6_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z5, z6))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z5, z6))), z0, member34_out_gg)

The TRS R consists of the following rules:

member124_in_gag(T120, .(.(T120, .(X117, [])), T121)) → member124_out_gag(X117)
member124_in_gag(T128, .(T129, T130)) → U2_gag(member124_in_gag(T128, T130))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg
member34_in_gg(T159, .(T160, T161)) → U3_gg(member34_in_gg(T159, T161))
U2_gag(member124_out_gag(X131)) → member124_out_gag(X131)
U3_gg(member34_out_gg) → member34_out_gg

The set Q consists of the following terms:

member124_in_gag(x0, x1)
member34_in_gg(x0, x1)
U2_gag(x0)
U3_gg(x0)

We have to consider all (P,Q,R)-chains.

(65) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U6_GGGG(z1, .(z2, z3), .(z0, .(z0, z4)), member124_out_gag(z0)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z0, z4)), z0, member34_out_gg) we obtained the following new rules [LPAR04]:

U6_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), z0, member34_out_gg)
U6_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), z0, member34_out_gg)
U6_GGGG(z1, .(z2, z3), .(z0, .(z0, .(z0, z4))), member124_out_gag(z0)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z0, .(z0, z4))), z0, member34_out_gg)
U6_GGGG(z1, .(z2, z3), .(z0, .(z0, .(z4, z5))), member124_out_gag(z0)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z0, .(z4, z5))), z0, member34_out_gg)

(66) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U6_GGGG(z1, .(z2, z3), .(z0, .(z4, z5)), member124_out_gag(z0)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z4, z5)), z0, member34_out_gg)
U6_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), member124_out_gag(z2)) → U7_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), z2, U3_gg(member34_in_gg(z2, .(z0, z4))))
U6_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), member124_out_gag(z2)) → U7_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), z2, U3_gg(member34_in_gg(z2, .(z4, z5))))
U6_GGGG(z1, .(z2, z3), .(z0, .(z0, z4)), member124_out_gag(x4)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z0, z4)), x4, U3_gg(member34_in_gg(x4, .(z0, z4))))
U6_GGGG(z1, .(z2, z3), .(z0, .(z4, z5)), member124_out_gag(x4)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z4, z5)), x4, U3_gg(member34_in_gg(x4, .(z4, z5))))
U7_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, z3)), z1, member34_out_gg) → REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3))))
U7_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z3, z4)), z1, member34_out_gg) → REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4))))
U7_GGGG(z0, .(z1, z2), .(z3, .(z3, z4)), z3, member34_out_gg) → REACH1_IN_GGGG(z3, z0, .(z1, z2), .(z3, .(z3, .(z3, z4))))
U7_GGGG(z0, .(z1, z2), .(z3, .(z4, z5)), z3, member34_out_gg) → REACH1_IN_GGGG(z3, z0, .(z1, z2), .(z3, .(z3, .(z4, z5))))
U7_GGGG(z0, .(.(z1, .(z2, [])), z3), .(z1, .(z1, z4)), z2, member34_out_gg) → REACH1_IN_GGGG(z2, z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z1, z4))))
U7_GGGG(z0, .(.(z1, .(z2, [])), z3), .(z1, .(z4, z5)), z2, member34_out_gg) → REACH1_IN_GGGG(z2, z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z4, z5))))
U7_GGGG(z0, .(z1, z2), .(z3, .(z3, z4)), z5, member34_out_gg) → REACH1_IN_GGGG(z5, z0, .(z1, z2), .(z5, .(z3, .(z3, z4))))
U7_GGGG(z0, .(z1, z2), .(z3, .(z4, z5)), z6, member34_out_gg) → REACH1_IN_GGGG(z6, z0, .(z1, z2), .(z6, .(z3, .(z4, z5))))
REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3)))) → U6_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3))), member124_out_gag(z1))
REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4)))) → U6_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4))), member124_out_gag(z1))
REACH1_IN_GGGG(z3, z0, .(.(z3, .(x2, [])), z2), .(z3, .(z3, .(z3, z4)))) → U6_GGGG(z0, .(.(z3, .(x2, [])), z2), .(z3, .(z3, .(z3, z4))), member124_out_gag(x2))
REACH1_IN_GGGG(z3, z0, .(.(z3, .(x2, [])), z2), .(z3, .(z3, .(z4, z5)))) → U6_GGGG(z0, .(.(z3, .(x2, [])), z2), .(z3, .(z3, .(z4, z5))), member124_out_gag(x2))
REACH1_IN_GGGG(z5, z0, .(.(z5, .(x2, [])), z2), .(z5, .(z3, .(z3, z4)))) → U6_GGGG(z0, .(.(z5, .(x2, [])), z2), .(z5, .(z3, .(z3, z4))), member124_out_gag(x2))
REACH1_IN_GGGG(z6, z0, .(.(z6, .(x2, [])), z2), .(z6, .(z3, .(z4, z5)))) → U6_GGGG(z0, .(.(z6, .(x2, [])), z2), .(z6, .(z3, .(z4, z5))), member124_out_gag(x2))
REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3)))) → U6_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3))), U2_gag(member124_in_gag(z1, z2)))
REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4)))) → U6_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4))), U2_gag(member124_in_gag(z1, z2)))
REACH1_IN_GGGG(z3, z0, .(z1, z2), .(z3, .(z3, .(z3, z4)))) → U6_GGGG(z0, .(z1, z2), .(z3, .(z3, .(z3, z4))), U2_gag(member124_in_gag(z3, z2)))
REACH1_IN_GGGG(z3, z0, .(z1, z2), .(z3, .(z3, .(z4, z5)))) → U6_GGGG(z0, .(z1, z2), .(z3, .(z3, .(z4, z5))), U2_gag(member124_in_gag(z3, z2)))
REACH1_IN_GGGG(z2, z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z1, z4)))) → U6_GGGG(z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z1, z4))), U2_gag(member124_in_gag(z2, z3)))
REACH1_IN_GGGG(z2, z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z4, z5)))) → U6_GGGG(z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z4, z5))), U2_gag(member124_in_gag(z2, z3)))
REACH1_IN_GGGG(z5, z0, .(z1, z2), .(z5, .(z3, .(z3, z4)))) → U6_GGGG(z0, .(z1, z2), .(z5, .(z3, .(z3, z4))), U2_gag(member124_in_gag(z5, z2)))
REACH1_IN_GGGG(z6, z0, .(z1, z2), .(z6, .(z3, .(z4, z5)))) → U6_GGGG(z0, .(z1, z2), .(z6, .(z3, .(z4, z5))), U2_gag(member124_in_gag(z6, z2)))
U6_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), z0, member34_out_gg)
U6_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), z0, member34_out_gg)
U6_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z4, z5))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z4, z5))), z0, member34_out_gg)
U6_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z5, z6))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z5, z6))), z0, member34_out_gg)
U6_GGGG(z1, .(z2, z3), .(z0, .(z0, .(z0, z4))), member124_out_gag(z0)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z0, .(z0, z4))), z0, member34_out_gg)
U6_GGGG(z1, .(z2, z3), .(z0, .(z0, .(z4, z5))), member124_out_gag(z0)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z0, .(z4, z5))), z0, member34_out_gg)

The TRS R consists of the following rules:

member124_in_gag(T120, .(.(T120, .(X117, [])), T121)) → member124_out_gag(X117)
member124_in_gag(T128, .(T129, T130)) → U2_gag(member124_in_gag(T128, T130))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg
member34_in_gg(T159, .(T160, T161)) → U3_gg(member34_in_gg(T159, T161))
U2_gag(member124_out_gag(X131)) → member124_out_gag(X131)
U3_gg(member34_out_gg) → member34_out_gg

The set Q consists of the following terms:

member124_in_gag(x0, x1)
member34_in_gg(x0, x1)
U2_gag(x0)
U3_gg(x0)

We have to consider all (P,Q,R)-chains.

(67) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U6_GGGG(z1, .(z2, z3), .(z0, .(z4, z5)), member124_out_gag(z0)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z4, z5)), z0, member34_out_gg) we obtained the following new rules [LPAR04]:

U6_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), z0, member34_out_gg)
U6_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), z0, member34_out_gg)
U6_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z4, z5))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z4, z5))), z0, member34_out_gg)
U6_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z5, z6))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z5, z6))), z0, member34_out_gg)
U6_GGGG(z1, .(z2, z3), .(z0, .(z0, .(z0, z4))), member124_out_gag(z0)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z0, .(z0, z4))), z0, member34_out_gg)
U6_GGGG(z1, .(z2, z3), .(z0, .(z0, .(z4, z5))), member124_out_gag(z0)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z0, .(z4, z5))), z0, member34_out_gg)
U6_GGGG(z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z2, z4))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z2, z4))), z0, member34_out_gg)
U6_GGGG(z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z4, z5))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z4, z5))), z0, member34_out_gg)
U6_GGGG(z1, .(z2, z3), .(z0, .(z4, .(z4, z5))), member124_out_gag(z0)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z4, .(z4, z5))), z0, member34_out_gg)
U6_GGGG(z1, .(z2, z3), .(z0, .(z4, .(z5, z6))), member124_out_gag(z0)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z4, .(z5, z6))), z0, member34_out_gg)

(68) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U6_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), member124_out_gag(z2)) → U7_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), z2, U3_gg(member34_in_gg(z2, .(z0, z4))))
U6_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), member124_out_gag(z2)) → U7_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), z2, U3_gg(member34_in_gg(z2, .(z4, z5))))
U6_GGGG(z1, .(z2, z3), .(z0, .(z0, z4)), member124_out_gag(x4)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z0, z4)), x4, U3_gg(member34_in_gg(x4, .(z0, z4))))
U6_GGGG(z1, .(z2, z3), .(z0, .(z4, z5)), member124_out_gag(x4)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z4, z5)), x4, U3_gg(member34_in_gg(x4, .(z4, z5))))
U7_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, z3)), z1, member34_out_gg) → REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3))))
U7_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z3, z4)), z1, member34_out_gg) → REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4))))
U7_GGGG(z0, .(z1, z2), .(z3, .(z3, z4)), z3, member34_out_gg) → REACH1_IN_GGGG(z3, z0, .(z1, z2), .(z3, .(z3, .(z3, z4))))
U7_GGGG(z0, .(z1, z2), .(z3, .(z4, z5)), z3, member34_out_gg) → REACH1_IN_GGGG(z3, z0, .(z1, z2), .(z3, .(z3, .(z4, z5))))
U7_GGGG(z0, .(.(z1, .(z2, [])), z3), .(z1, .(z1, z4)), z2, member34_out_gg) → REACH1_IN_GGGG(z2, z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z1, z4))))
U7_GGGG(z0, .(.(z1, .(z2, [])), z3), .(z1, .(z4, z5)), z2, member34_out_gg) → REACH1_IN_GGGG(z2, z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z4, z5))))
U7_GGGG(z0, .(z1, z2), .(z3, .(z3, z4)), z5, member34_out_gg) → REACH1_IN_GGGG(z5, z0, .(z1, z2), .(z5, .(z3, .(z3, z4))))
U7_GGGG(z0, .(z1, z2), .(z3, .(z4, z5)), z6, member34_out_gg) → REACH1_IN_GGGG(z6, z0, .(z1, z2), .(z6, .(z3, .(z4, z5))))
REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3)))) → U6_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3))), member124_out_gag(z1))
REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4)))) → U6_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4))), member124_out_gag(z1))
REACH1_IN_GGGG(z3, z0, .(.(z3, .(x2, [])), z2), .(z3, .(z3, .(z3, z4)))) → U6_GGGG(z0, .(.(z3, .(x2, [])), z2), .(z3, .(z3, .(z3, z4))), member124_out_gag(x2))
REACH1_IN_GGGG(z3, z0, .(.(z3, .(x2, [])), z2), .(z3, .(z3, .(z4, z5)))) → U6_GGGG(z0, .(.(z3, .(x2, [])), z2), .(z3, .(z3, .(z4, z5))), member124_out_gag(x2))
REACH1_IN_GGGG(z5, z0, .(.(z5, .(x2, [])), z2), .(z5, .(z3, .(z3, z4)))) → U6_GGGG(z0, .(.(z5, .(x2, [])), z2), .(z5, .(z3, .(z3, z4))), member124_out_gag(x2))
REACH1_IN_GGGG(z6, z0, .(.(z6, .(x2, [])), z2), .(z6, .(z3, .(z4, z5)))) → U6_GGGG(z0, .(.(z6, .(x2, [])), z2), .(z6, .(z3, .(z4, z5))), member124_out_gag(x2))
REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3)))) → U6_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3))), U2_gag(member124_in_gag(z1, z2)))
REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4)))) → U6_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4))), U2_gag(member124_in_gag(z1, z2)))
REACH1_IN_GGGG(z3, z0, .(z1, z2), .(z3, .(z3, .(z3, z4)))) → U6_GGGG(z0, .(z1, z2), .(z3, .(z3, .(z3, z4))), U2_gag(member124_in_gag(z3, z2)))
REACH1_IN_GGGG(z3, z0, .(z1, z2), .(z3, .(z3, .(z4, z5)))) → U6_GGGG(z0, .(z1, z2), .(z3, .(z3, .(z4, z5))), U2_gag(member124_in_gag(z3, z2)))
REACH1_IN_GGGG(z2, z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z1, z4)))) → U6_GGGG(z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z1, z4))), U2_gag(member124_in_gag(z2, z3)))
REACH1_IN_GGGG(z2, z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z4, z5)))) → U6_GGGG(z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z4, z5))), U2_gag(member124_in_gag(z2, z3)))
REACH1_IN_GGGG(z5, z0, .(z1, z2), .(z5, .(z3, .(z3, z4)))) → U6_GGGG(z0, .(z1, z2), .(z5, .(z3, .(z3, z4))), U2_gag(member124_in_gag(z5, z2)))
REACH1_IN_GGGG(z6, z0, .(z1, z2), .(z6, .(z3, .(z4, z5)))) → U6_GGGG(z0, .(z1, z2), .(z6, .(z3, .(z4, z5))), U2_gag(member124_in_gag(z6, z2)))
U6_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), z0, member34_out_gg)
U6_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), z0, member34_out_gg)
U6_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z4, z5))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z4, z5))), z0, member34_out_gg)
U6_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z5, z6))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z5, z6))), z0, member34_out_gg)
U6_GGGG(z1, .(z2, z3), .(z0, .(z0, .(z0, z4))), member124_out_gag(z0)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z0, .(z0, z4))), z0, member34_out_gg)
U6_GGGG(z1, .(z2, z3), .(z0, .(z0, .(z4, z5))), member124_out_gag(z0)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z0, .(z4, z5))), z0, member34_out_gg)
U6_GGGG(z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z2, z4))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z2, z4))), z0, member34_out_gg)
U6_GGGG(z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z4, z5))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z4, z5))), z0, member34_out_gg)
U6_GGGG(z1, .(z2, z3), .(z0, .(z4, .(z4, z5))), member124_out_gag(z0)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z4, .(z4, z5))), z0, member34_out_gg)
U6_GGGG(z1, .(z2, z3), .(z0, .(z4, .(z5, z6))), member124_out_gag(z0)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z4, .(z5, z6))), z0, member34_out_gg)

The TRS R consists of the following rules:

member124_in_gag(T120, .(.(T120, .(X117, [])), T121)) → member124_out_gag(X117)
member124_in_gag(T128, .(T129, T130)) → U2_gag(member124_in_gag(T128, T130))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg
member34_in_gg(T159, .(T160, T161)) → U3_gg(member34_in_gg(T159, T161))
U2_gag(member124_out_gag(X131)) → member124_out_gag(X131)
U3_gg(member34_out_gg) → member34_out_gg

The set Q consists of the following terms:

member124_in_gag(x0, x1)
member34_in_gg(x0, x1)
U2_gag(x0)
U3_gg(x0)

We have to consider all (P,Q,R)-chains.

(69) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U6_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), member124_out_gag(z2)) → U7_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), z2, U3_gg(member34_in_gg(z2, .(z0, z4)))) we obtained the following new rules [LPAR04]:

U6_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), z0, U3_gg(member34_in_gg(z0, .(z0, .(z0, z3)))))
U6_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), z0, U3_gg(member34_in_gg(z0, .(z0, .(z3, z4)))))
U6_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z0, z4))), member124_out_gag(z2)) → U7_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z0, z4))), z2, U3_gg(member34_in_gg(z2, .(z0, .(z0, z4)))))
U6_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z4, z5))), member124_out_gag(z2)) → U7_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z4, z5))), z2, U3_gg(member34_in_gg(z2, .(z0, .(z4, z5)))))

(70) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U6_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), member124_out_gag(z2)) → U7_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), z2, U3_gg(member34_in_gg(z2, .(z4, z5))))
U6_GGGG(z1, .(z2, z3), .(z0, .(z0, z4)), member124_out_gag(x4)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z0, z4)), x4, U3_gg(member34_in_gg(x4, .(z0, z4))))
U6_GGGG(z1, .(z2, z3), .(z0, .(z4, z5)), member124_out_gag(x4)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z4, z5)), x4, U3_gg(member34_in_gg(x4, .(z4, z5))))
U7_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, z3)), z1, member34_out_gg) → REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3))))
U7_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z3, z4)), z1, member34_out_gg) → REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4))))
U7_GGGG(z0, .(z1, z2), .(z3, .(z3, z4)), z3, member34_out_gg) → REACH1_IN_GGGG(z3, z0, .(z1, z2), .(z3, .(z3, .(z3, z4))))
U7_GGGG(z0, .(z1, z2), .(z3, .(z4, z5)), z3, member34_out_gg) → REACH1_IN_GGGG(z3, z0, .(z1, z2), .(z3, .(z3, .(z4, z5))))
U7_GGGG(z0, .(.(z1, .(z2, [])), z3), .(z1, .(z1, z4)), z2, member34_out_gg) → REACH1_IN_GGGG(z2, z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z1, z4))))
U7_GGGG(z0, .(.(z1, .(z2, [])), z3), .(z1, .(z4, z5)), z2, member34_out_gg) → REACH1_IN_GGGG(z2, z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z4, z5))))
U7_GGGG(z0, .(z1, z2), .(z3, .(z3, z4)), z5, member34_out_gg) → REACH1_IN_GGGG(z5, z0, .(z1, z2), .(z5, .(z3, .(z3, z4))))
U7_GGGG(z0, .(z1, z2), .(z3, .(z4, z5)), z6, member34_out_gg) → REACH1_IN_GGGG(z6, z0, .(z1, z2), .(z6, .(z3, .(z4, z5))))
REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3)))) → U6_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3))), member124_out_gag(z1))
REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4)))) → U6_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4))), member124_out_gag(z1))
REACH1_IN_GGGG(z3, z0, .(.(z3, .(x2, [])), z2), .(z3, .(z3, .(z3, z4)))) → U6_GGGG(z0, .(.(z3, .(x2, [])), z2), .(z3, .(z3, .(z3, z4))), member124_out_gag(x2))
REACH1_IN_GGGG(z3, z0, .(.(z3, .(x2, [])), z2), .(z3, .(z3, .(z4, z5)))) → U6_GGGG(z0, .(.(z3, .(x2, [])), z2), .(z3, .(z3, .(z4, z5))), member124_out_gag(x2))
REACH1_IN_GGGG(z5, z0, .(.(z5, .(x2, [])), z2), .(z5, .(z3, .(z3, z4)))) → U6_GGGG(z0, .(.(z5, .(x2, [])), z2), .(z5, .(z3, .(z3, z4))), member124_out_gag(x2))
REACH1_IN_GGGG(z6, z0, .(.(z6, .(x2, [])), z2), .(z6, .(z3, .(z4, z5)))) → U6_GGGG(z0, .(.(z6, .(x2, [])), z2), .(z6, .(z3, .(z4, z5))), member124_out_gag(x2))
REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3)))) → U6_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3))), U2_gag(member124_in_gag(z1, z2)))
REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4)))) → U6_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4))), U2_gag(member124_in_gag(z1, z2)))
REACH1_IN_GGGG(z3, z0, .(z1, z2), .(z3, .(z3, .(z3, z4)))) → U6_GGGG(z0, .(z1, z2), .(z3, .(z3, .(z3, z4))), U2_gag(member124_in_gag(z3, z2)))
REACH1_IN_GGGG(z3, z0, .(z1, z2), .(z3, .(z3, .(z4, z5)))) → U6_GGGG(z0, .(z1, z2), .(z3, .(z3, .(z4, z5))), U2_gag(member124_in_gag(z3, z2)))
REACH1_IN_GGGG(z2, z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z1, z4)))) → U6_GGGG(z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z1, z4))), U2_gag(member124_in_gag(z2, z3)))
REACH1_IN_GGGG(z2, z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z4, z5)))) → U6_GGGG(z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z4, z5))), U2_gag(member124_in_gag(z2, z3)))
REACH1_IN_GGGG(z5, z0, .(z1, z2), .(z5, .(z3, .(z3, z4)))) → U6_GGGG(z0, .(z1, z2), .(z5, .(z3, .(z3, z4))), U2_gag(member124_in_gag(z5, z2)))
REACH1_IN_GGGG(z6, z0, .(z1, z2), .(z6, .(z3, .(z4, z5)))) → U6_GGGG(z0, .(z1, z2), .(z6, .(z3, .(z4, z5))), U2_gag(member124_in_gag(z6, z2)))
U6_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), z0, member34_out_gg)
U6_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), z0, member34_out_gg)
U6_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z4, z5))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z4, z5))), z0, member34_out_gg)
U6_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z5, z6))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z5, z6))), z0, member34_out_gg)
U6_GGGG(z1, .(z2, z3), .(z0, .(z0, .(z0, z4))), member124_out_gag(z0)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z0, .(z0, z4))), z0, member34_out_gg)
U6_GGGG(z1, .(z2, z3), .(z0, .(z0, .(z4, z5))), member124_out_gag(z0)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z0, .(z4, z5))), z0, member34_out_gg)
U6_GGGG(z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z2, z4))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z2, z4))), z0, member34_out_gg)
U6_GGGG(z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z4, z5))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z4, z5))), z0, member34_out_gg)
U6_GGGG(z1, .(z2, z3), .(z0, .(z4, .(z4, z5))), member124_out_gag(z0)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z4, .(z4, z5))), z0, member34_out_gg)
U6_GGGG(z1, .(z2, z3), .(z0, .(z4, .(z5, z6))), member124_out_gag(z0)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z4, .(z5, z6))), z0, member34_out_gg)
U6_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), z0, U3_gg(member34_in_gg(z0, .(z0, .(z0, z3)))))
U6_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), z0, U3_gg(member34_in_gg(z0, .(z0, .(z3, z4)))))
U6_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z0, z4))), member124_out_gag(z2)) → U7_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z0, z4))), z2, U3_gg(member34_in_gg(z2, .(z0, .(z0, z4)))))
U6_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z4, z5))), member124_out_gag(z2)) → U7_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z4, z5))), z2, U3_gg(member34_in_gg(z2, .(z0, .(z4, z5)))))

The TRS R consists of the following rules:

member124_in_gag(T120, .(.(T120, .(X117, [])), T121)) → member124_out_gag(X117)
member124_in_gag(T128, .(T129, T130)) → U2_gag(member124_in_gag(T128, T130))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg
member34_in_gg(T159, .(T160, T161)) → U3_gg(member34_in_gg(T159, T161))
U2_gag(member124_out_gag(X131)) → member124_out_gag(X131)
U3_gg(member34_out_gg) → member34_out_gg

The set Q consists of the following terms:

member124_in_gag(x0, x1)
member34_in_gg(x0, x1)
U2_gag(x0)
U3_gg(x0)

We have to consider all (P,Q,R)-chains.

(71) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U6_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), member124_out_gag(z2)) → U7_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), z2, U3_gg(member34_in_gg(z2, .(z4, z5)))) we obtained the following new rules [LPAR04]:

U6_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), z0, U3_gg(member34_in_gg(z0, .(z0, .(z0, z3)))))
U6_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), z0, U3_gg(member34_in_gg(z0, .(z0, .(z3, z4)))))
U6_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z0, z4))), member124_out_gag(z2)) → U7_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z0, z4))), z2, U3_gg(member34_in_gg(z2, .(z0, .(z0, z4)))))
U6_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z4, z5))), member124_out_gag(z2)) → U7_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z4, z5))), z2, U3_gg(member34_in_gg(z2, .(z0, .(z4, z5)))))
U6_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, .(z4, z5))), member124_out_gag(z2)) → U7_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, .(z4, z5))), z2, U3_gg(member34_in_gg(z2, .(z4, .(z4, z5)))))
U6_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, .(z5, z6))), member124_out_gag(z2)) → U7_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, .(z5, z6))), z2, U3_gg(member34_in_gg(z2, .(z4, .(z5, z6)))))

(72) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U6_GGGG(z1, .(z2, z3), .(z0, .(z0, z4)), member124_out_gag(x4)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z0, z4)), x4, U3_gg(member34_in_gg(x4, .(z0, z4))))
U6_GGGG(z1, .(z2, z3), .(z0, .(z4, z5)), member124_out_gag(x4)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z4, z5)), x4, U3_gg(member34_in_gg(x4, .(z4, z5))))
U7_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, z3)), z1, member34_out_gg) → REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3))))
U7_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z3, z4)), z1, member34_out_gg) → REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4))))
U7_GGGG(z0, .(z1, z2), .(z3, .(z3, z4)), z3, member34_out_gg) → REACH1_IN_GGGG(z3, z0, .(z1, z2), .(z3, .(z3, .(z3, z4))))
U7_GGGG(z0, .(z1, z2), .(z3, .(z4, z5)), z3, member34_out_gg) → REACH1_IN_GGGG(z3, z0, .(z1, z2), .(z3, .(z3, .(z4, z5))))
U7_GGGG(z0, .(.(z1, .(z2, [])), z3), .(z1, .(z1, z4)), z2, member34_out_gg) → REACH1_IN_GGGG(z2, z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z1, z4))))
U7_GGGG(z0, .(.(z1, .(z2, [])), z3), .(z1, .(z4, z5)), z2, member34_out_gg) → REACH1_IN_GGGG(z2, z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z4, z5))))
U7_GGGG(z0, .(z1, z2), .(z3, .(z3, z4)), z5, member34_out_gg) → REACH1_IN_GGGG(z5, z0, .(z1, z2), .(z5, .(z3, .(z3, z4))))
U7_GGGG(z0, .(z1, z2), .(z3, .(z4, z5)), z6, member34_out_gg) → REACH1_IN_GGGG(z6, z0, .(z1, z2), .(z6, .(z3, .(z4, z5))))
REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3)))) → U6_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3))), member124_out_gag(z1))
REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4)))) → U6_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4))), member124_out_gag(z1))
REACH1_IN_GGGG(z3, z0, .(.(z3, .(x2, [])), z2), .(z3, .(z3, .(z3, z4)))) → U6_GGGG(z0, .(.(z3, .(x2, [])), z2), .(z3, .(z3, .(z3, z4))), member124_out_gag(x2))
REACH1_IN_GGGG(z3, z0, .(.(z3, .(x2, [])), z2), .(z3, .(z3, .(z4, z5)))) → U6_GGGG(z0, .(.(z3, .(x2, [])), z2), .(z3, .(z3, .(z4, z5))), member124_out_gag(x2))
REACH1_IN_GGGG(z5, z0, .(.(z5, .(x2, [])), z2), .(z5, .(z3, .(z3, z4)))) → U6_GGGG(z0, .(.(z5, .(x2, [])), z2), .(z5, .(z3, .(z3, z4))), member124_out_gag(x2))
REACH1_IN_GGGG(z6, z0, .(.(z6, .(x2, [])), z2), .(z6, .(z3, .(z4, z5)))) → U6_GGGG(z0, .(.(z6, .(x2, [])), z2), .(z6, .(z3, .(z4, z5))), member124_out_gag(x2))
REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3)))) → U6_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3))), U2_gag(member124_in_gag(z1, z2)))
REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4)))) → U6_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4))), U2_gag(member124_in_gag(z1, z2)))
REACH1_IN_GGGG(z3, z0, .(z1, z2), .(z3, .(z3, .(z3, z4)))) → U6_GGGG(z0, .(z1, z2), .(z3, .(z3, .(z3, z4))), U2_gag(member124_in_gag(z3, z2)))
REACH1_IN_GGGG(z3, z0, .(z1, z2), .(z3, .(z3, .(z4, z5)))) → U6_GGGG(z0, .(z1, z2), .(z3, .(z3, .(z4, z5))), U2_gag(member124_in_gag(z3, z2)))
REACH1_IN_GGGG(z2, z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z1, z4)))) → U6_GGGG(z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z1, z4))), U2_gag(member124_in_gag(z2, z3)))
REACH1_IN_GGGG(z2, z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z4, z5)))) → U6_GGGG(z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z4, z5))), U2_gag(member124_in_gag(z2, z3)))
REACH1_IN_GGGG(z5, z0, .(z1, z2), .(z5, .(z3, .(z3, z4)))) → U6_GGGG(z0, .(z1, z2), .(z5, .(z3, .(z3, z4))), U2_gag(member124_in_gag(z5, z2)))
REACH1_IN_GGGG(z6, z0, .(z1, z2), .(z6, .(z3, .(z4, z5)))) → U6_GGGG(z0, .(z1, z2), .(z6, .(z3, .(z4, z5))), U2_gag(member124_in_gag(z6, z2)))
U6_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), z0, member34_out_gg)
U6_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), z0, member34_out_gg)
U6_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z4, z5))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z4, z5))), z0, member34_out_gg)
U6_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z5, z6))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z5, z6))), z0, member34_out_gg)
U6_GGGG(z1, .(z2, z3), .(z0, .(z0, .(z0, z4))), member124_out_gag(z0)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z0, .(z0, z4))), z0, member34_out_gg)
U6_GGGG(z1, .(z2, z3), .(z0, .(z0, .(z4, z5))), member124_out_gag(z0)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z0, .(z4, z5))), z0, member34_out_gg)
U6_GGGG(z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z2, z4))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z2, z4))), z0, member34_out_gg)
U6_GGGG(z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z4, z5))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z4, z5))), z0, member34_out_gg)
U6_GGGG(z1, .(z2, z3), .(z0, .(z4, .(z4, z5))), member124_out_gag(z0)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z4, .(z4, z5))), z0, member34_out_gg)
U6_GGGG(z1, .(z2, z3), .(z0, .(z4, .(z5, z6))), member124_out_gag(z0)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z4, .(z5, z6))), z0, member34_out_gg)
U6_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), z0, U3_gg(member34_in_gg(z0, .(z0, .(z0, z3)))))
U6_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), z0, U3_gg(member34_in_gg(z0, .(z0, .(z3, z4)))))
U6_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z0, z4))), member124_out_gag(z2)) → U7_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z0, z4))), z2, U3_gg(member34_in_gg(z2, .(z0, .(z0, z4)))))
U6_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z4, z5))), member124_out_gag(z2)) → U7_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z4, z5))), z2, U3_gg(member34_in_gg(z2, .(z0, .(z4, z5)))))
U6_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, .(z4, z5))), member124_out_gag(z2)) → U7_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, .(z4, z5))), z2, U3_gg(member34_in_gg(z2, .(z4, .(z4, z5)))))
U6_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, .(z5, z6))), member124_out_gag(z2)) → U7_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, .(z5, z6))), z2, U3_gg(member34_in_gg(z2, .(z4, .(z5, z6)))))

The TRS R consists of the following rules:

member124_in_gag(T120, .(.(T120, .(X117, [])), T121)) → member124_out_gag(X117)
member124_in_gag(T128, .(T129, T130)) → U2_gag(member124_in_gag(T128, T130))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg
member34_in_gg(T159, .(T160, T161)) → U3_gg(member34_in_gg(T159, T161))
U2_gag(member124_out_gag(X131)) → member124_out_gag(X131)
U3_gg(member34_out_gg) → member34_out_gg

The set Q consists of the following terms:

member124_in_gag(x0, x1)
member34_in_gg(x0, x1)
U2_gag(x0)
U3_gg(x0)

We have to consider all (P,Q,R)-chains.

(73) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U6_GGGG(z1, .(z2, z3), .(z0, .(z0, z4)), member124_out_gag(x4)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z0, z4)), x4, U3_gg(member34_in_gg(x4, .(z0, z4)))) we obtained the following new rules [LPAR04]:

U6_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), z0, U3_gg(member34_in_gg(z0, .(z0, .(z0, z3)))))
U6_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), z0, U3_gg(member34_in_gg(z0, .(z0, .(z3, z4)))))
U6_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z0, z4))), member124_out_gag(z2)) → U7_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z0, z4))), z2, U3_gg(member34_in_gg(z2, .(z0, .(z0, z4)))))
U6_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z4, z5))), member124_out_gag(z2)) → U7_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z4, z5))), z2, U3_gg(member34_in_gg(z2, .(z0, .(z4, z5)))))
U6_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(x5)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), x5, U3_gg(member34_in_gg(x5, .(z0, .(z0, z3)))))
U6_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(x5)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), x5, U3_gg(member34_in_gg(x5, .(z0, .(z3, z4)))))
U6_GGGG(z1, .(z2, z3), .(z0, .(z0, .(z0, z4))), member124_out_gag(x5)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z0, .(z0, z4))), x5, U3_gg(member34_in_gg(x5, .(z0, .(z0, z4)))))
U6_GGGG(z1, .(z2, z3), .(z0, .(z0, .(z4, z5))), member124_out_gag(x5)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z0, .(z4, z5))), x5, U3_gg(member34_in_gg(x5, .(z0, .(z4, z5)))))

(74) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U6_GGGG(z1, .(z2, z3), .(z0, .(z4, z5)), member124_out_gag(x4)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z4, z5)), x4, U3_gg(member34_in_gg(x4, .(z4, z5))))
U7_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, z3)), z1, member34_out_gg) → REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3))))
U7_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z3, z4)), z1, member34_out_gg) → REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4))))
U7_GGGG(z0, .(z1, z2), .(z3, .(z3, z4)), z3, member34_out_gg) → REACH1_IN_GGGG(z3, z0, .(z1, z2), .(z3, .(z3, .(z3, z4))))
U7_GGGG(z0, .(z1, z2), .(z3, .(z4, z5)), z3, member34_out_gg) → REACH1_IN_GGGG(z3, z0, .(z1, z2), .(z3, .(z3, .(z4, z5))))
U7_GGGG(z0, .(.(z1, .(z2, [])), z3), .(z1, .(z1, z4)), z2, member34_out_gg) → REACH1_IN_GGGG(z2, z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z1, z4))))
U7_GGGG(z0, .(.(z1, .(z2, [])), z3), .(z1, .(z4, z5)), z2, member34_out_gg) → REACH1_IN_GGGG(z2, z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z4, z5))))
U7_GGGG(z0, .(z1, z2), .(z3, .(z3, z4)), z5, member34_out_gg) → REACH1_IN_GGGG(z5, z0, .(z1, z2), .(z5, .(z3, .(z3, z4))))
U7_GGGG(z0, .(z1, z2), .(z3, .(z4, z5)), z6, member34_out_gg) → REACH1_IN_GGGG(z6, z0, .(z1, z2), .(z6, .(z3, .(z4, z5))))
REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3)))) → U6_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3))), member124_out_gag(z1))
REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4)))) → U6_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4))), member124_out_gag(z1))
REACH1_IN_GGGG(z3, z0, .(.(z3, .(x2, [])), z2), .(z3, .(z3, .(z3, z4)))) → U6_GGGG(z0, .(.(z3, .(x2, [])), z2), .(z3, .(z3, .(z3, z4))), member124_out_gag(x2))
REACH1_IN_GGGG(z3, z0, .(.(z3, .(x2, [])), z2), .(z3, .(z3, .(z4, z5)))) → U6_GGGG(z0, .(.(z3, .(x2, [])), z2), .(z3, .(z3, .(z4, z5))), member124_out_gag(x2))
REACH1_IN_GGGG(z5, z0, .(.(z5, .(x2, [])), z2), .(z5, .(z3, .(z3, z4)))) → U6_GGGG(z0, .(.(z5, .(x2, [])), z2), .(z5, .(z3, .(z3, z4))), member124_out_gag(x2))
REACH1_IN_GGGG(z6, z0, .(.(z6, .(x2, [])), z2), .(z6, .(z3, .(z4, z5)))) → U6_GGGG(z0, .(.(z6, .(x2, [])), z2), .(z6, .(z3, .(z4, z5))), member124_out_gag(x2))
REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3)))) → U6_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3))), U2_gag(member124_in_gag(z1, z2)))
REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4)))) → U6_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4))), U2_gag(member124_in_gag(z1, z2)))
REACH1_IN_GGGG(z3, z0, .(z1, z2), .(z3, .(z3, .(z3, z4)))) → U6_GGGG(z0, .(z1, z2), .(z3, .(z3, .(z3, z4))), U2_gag(member124_in_gag(z3, z2)))
REACH1_IN_GGGG(z3, z0, .(z1, z2), .(z3, .(z3, .(z4, z5)))) → U6_GGGG(z0, .(z1, z2), .(z3, .(z3, .(z4, z5))), U2_gag(member124_in_gag(z3, z2)))
REACH1_IN_GGGG(z2, z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z1, z4)))) → U6_GGGG(z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z1, z4))), U2_gag(member124_in_gag(z2, z3)))
REACH1_IN_GGGG(z2, z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z4, z5)))) → U6_GGGG(z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z4, z5))), U2_gag(member124_in_gag(z2, z3)))
REACH1_IN_GGGG(z5, z0, .(z1, z2), .(z5, .(z3, .(z3, z4)))) → U6_GGGG(z0, .(z1, z2), .(z5, .(z3, .(z3, z4))), U2_gag(member124_in_gag(z5, z2)))
REACH1_IN_GGGG(z6, z0, .(z1, z2), .(z6, .(z3, .(z4, z5)))) → U6_GGGG(z0, .(z1, z2), .(z6, .(z3, .(z4, z5))), U2_gag(member124_in_gag(z6, z2)))
U6_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), z0, member34_out_gg)
U6_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), z0, member34_out_gg)
U6_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z4, z5))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z4, z5))), z0, member34_out_gg)
U6_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z5, z6))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z5, z6))), z0, member34_out_gg)
U6_GGGG(z1, .(z2, z3), .(z0, .(z0, .(z0, z4))), member124_out_gag(z0)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z0, .(z0, z4))), z0, member34_out_gg)
U6_GGGG(z1, .(z2, z3), .(z0, .(z0, .(z4, z5))), member124_out_gag(z0)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z0, .(z4, z5))), z0, member34_out_gg)
U6_GGGG(z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z2, z4))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z2, z4))), z0, member34_out_gg)
U6_GGGG(z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z4, z5))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z4, z5))), z0, member34_out_gg)
U6_GGGG(z1, .(z2, z3), .(z0, .(z4, .(z4, z5))), member124_out_gag(z0)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z4, .(z4, z5))), z0, member34_out_gg)
U6_GGGG(z1, .(z2, z3), .(z0, .(z4, .(z5, z6))), member124_out_gag(z0)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z4, .(z5, z6))), z0, member34_out_gg)
U6_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), z0, U3_gg(member34_in_gg(z0, .(z0, .(z0, z3)))))
U6_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), z0, U3_gg(member34_in_gg(z0, .(z0, .(z3, z4)))))
U6_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z0, z4))), member124_out_gag(z2)) → U7_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z0, z4))), z2, U3_gg(member34_in_gg(z2, .(z0, .(z0, z4)))))
U6_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z4, z5))), member124_out_gag(z2)) → U7_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z4, z5))), z2, U3_gg(member34_in_gg(z2, .(z0, .(z4, z5)))))
U6_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, .(z4, z5))), member124_out_gag(z2)) → U7_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, .(z4, z5))), z2, U3_gg(member34_in_gg(z2, .(z4, .(z4, z5)))))
U6_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, .(z5, z6))), member124_out_gag(z2)) → U7_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, .(z5, z6))), z2, U3_gg(member34_in_gg(z2, .(z4, .(z5, z6)))))
U6_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(x5)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), x5, U3_gg(member34_in_gg(x5, .(z0, .(z0, z3)))))
U6_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(x5)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), x5, U3_gg(member34_in_gg(x5, .(z0, .(z3, z4)))))
U6_GGGG(z1, .(z2, z3), .(z0, .(z0, .(z0, z4))), member124_out_gag(x5)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z0, .(z0, z4))), x5, U3_gg(member34_in_gg(x5, .(z0, .(z0, z4)))))
U6_GGGG(z1, .(z2, z3), .(z0, .(z0, .(z4, z5))), member124_out_gag(x5)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z0, .(z4, z5))), x5, U3_gg(member34_in_gg(x5, .(z0, .(z4, z5)))))

The TRS R consists of the following rules:

member124_in_gag(T120, .(.(T120, .(X117, [])), T121)) → member124_out_gag(X117)
member124_in_gag(T128, .(T129, T130)) → U2_gag(member124_in_gag(T128, T130))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg
member34_in_gg(T159, .(T160, T161)) → U3_gg(member34_in_gg(T159, T161))
U2_gag(member124_out_gag(X131)) → member124_out_gag(X131)
U3_gg(member34_out_gg) → member34_out_gg

The set Q consists of the following terms:

member124_in_gag(x0, x1)
member34_in_gg(x0, x1)
U2_gag(x0)
U3_gg(x0)

We have to consider all (P,Q,R)-chains.

(75) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U6_GGGG(z1, .(z2, z3), .(z0, .(z4, z5)), member124_out_gag(x4)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z4, z5)), x4, U3_gg(member34_in_gg(x4, .(z4, z5)))) we obtained the following new rules [LPAR04]:

U6_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), z0, U3_gg(member34_in_gg(z0, .(z0, .(z0, z3)))))
U6_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), z0, U3_gg(member34_in_gg(z0, .(z0, .(z3, z4)))))
U6_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z0, z4))), member124_out_gag(z2)) → U7_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z0, z4))), z2, U3_gg(member34_in_gg(z2, .(z0, .(z0, z4)))))
U6_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z4, z5))), member124_out_gag(z2)) → U7_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z4, z5))), z2, U3_gg(member34_in_gg(z2, .(z0, .(z4, z5)))))
U6_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, .(z4, z5))), member124_out_gag(z2)) → U7_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, .(z4, z5))), z2, U3_gg(member34_in_gg(z2, .(z4, .(z4, z5)))))
U6_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, .(z5, z6))), member124_out_gag(z2)) → U7_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, .(z5, z6))), z2, U3_gg(member34_in_gg(z2, .(z4, .(z5, z6)))))
U6_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(x6)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), x6, U3_gg(member34_in_gg(x6, .(z0, .(z0, z3)))))
U6_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(x6)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), x6, U3_gg(member34_in_gg(x6, .(z0, .(z3, z4)))))
U6_GGGG(z1, .(z2, z3), .(z0, .(z0, .(z0, z4))), member124_out_gag(x6)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z0, .(z0, z4))), x6, U3_gg(member34_in_gg(x6, .(z0, .(z0, z4)))))
U6_GGGG(z1, .(z2, z3), .(z0, .(z0, .(z4, z5))), member124_out_gag(x6)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z0, .(z4, z5))), x6, U3_gg(member34_in_gg(x6, .(z0, .(z4, z5)))))
U6_GGGG(z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z2, z4))), member124_out_gag(x6)) → U7_GGGG(z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z2, z4))), x6, U3_gg(member34_in_gg(x6, .(z2, .(z2, z4)))))
U6_GGGG(z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z4, z5))), member124_out_gag(x6)) → U7_GGGG(z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z4, z5))), x6, U3_gg(member34_in_gg(x6, .(z2, .(z4, z5)))))
U6_GGGG(z1, .(z2, z3), .(z0, .(z4, .(z4, z5))), member124_out_gag(x6)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z4, .(z4, z5))), x6, U3_gg(member34_in_gg(x6, .(z4, .(z4, z5)))))
U6_GGGG(z1, .(z2, z3), .(z0, .(z4, .(z5, z6))), member124_out_gag(x6)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z4, .(z5, z6))), x6, U3_gg(member34_in_gg(x6, .(z4, .(z5, z6)))))

(76) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U7_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, z3)), z1, member34_out_gg) → REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3))))
U7_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z3, z4)), z1, member34_out_gg) → REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4))))
U7_GGGG(z0, .(z1, z2), .(z3, .(z3, z4)), z3, member34_out_gg) → REACH1_IN_GGGG(z3, z0, .(z1, z2), .(z3, .(z3, .(z3, z4))))
U7_GGGG(z0, .(z1, z2), .(z3, .(z4, z5)), z3, member34_out_gg) → REACH1_IN_GGGG(z3, z0, .(z1, z2), .(z3, .(z3, .(z4, z5))))
U7_GGGG(z0, .(.(z1, .(z2, [])), z3), .(z1, .(z1, z4)), z2, member34_out_gg) → REACH1_IN_GGGG(z2, z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z1, z4))))
U7_GGGG(z0, .(.(z1, .(z2, [])), z3), .(z1, .(z4, z5)), z2, member34_out_gg) → REACH1_IN_GGGG(z2, z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z4, z5))))
U7_GGGG(z0, .(z1, z2), .(z3, .(z3, z4)), z5, member34_out_gg) → REACH1_IN_GGGG(z5, z0, .(z1, z2), .(z5, .(z3, .(z3, z4))))
U7_GGGG(z0, .(z1, z2), .(z3, .(z4, z5)), z6, member34_out_gg) → REACH1_IN_GGGG(z6, z0, .(z1, z2), .(z6, .(z3, .(z4, z5))))
REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3)))) → U6_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3))), member124_out_gag(z1))
REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4)))) → U6_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4))), member124_out_gag(z1))
REACH1_IN_GGGG(z3, z0, .(.(z3, .(x2, [])), z2), .(z3, .(z3, .(z3, z4)))) → U6_GGGG(z0, .(.(z3, .(x2, [])), z2), .(z3, .(z3, .(z3, z4))), member124_out_gag(x2))
REACH1_IN_GGGG(z3, z0, .(.(z3, .(x2, [])), z2), .(z3, .(z3, .(z4, z5)))) → U6_GGGG(z0, .(.(z3, .(x2, [])), z2), .(z3, .(z3, .(z4, z5))), member124_out_gag(x2))
REACH1_IN_GGGG(z5, z0, .(.(z5, .(x2, [])), z2), .(z5, .(z3, .(z3, z4)))) → U6_GGGG(z0, .(.(z5, .(x2, [])), z2), .(z5, .(z3, .(z3, z4))), member124_out_gag(x2))
REACH1_IN_GGGG(z6, z0, .(.(z6, .(x2, [])), z2), .(z6, .(z3, .(z4, z5)))) → U6_GGGG(z0, .(.(z6, .(x2, [])), z2), .(z6, .(z3, .(z4, z5))), member124_out_gag(x2))
REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3)))) → U6_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3))), U2_gag(member124_in_gag(z1, z2)))
REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4)))) → U6_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z3, z4))), U2_gag(member124_in_gag(z1, z2)))
REACH1_IN_GGGG(z3, z0, .(z1, z2), .(z3, .(z3, .(z3, z4)))) → U6_GGGG(z0, .(z1, z2), .(z3, .(z3, .(z3, z4))), U2_gag(member124_in_gag(z3, z2)))
REACH1_IN_GGGG(z3, z0, .(z1, z2), .(z3, .(z3, .(z4, z5)))) → U6_GGGG(z0, .(z1, z2), .(z3, .(z3, .(z4, z5))), U2_gag(member124_in_gag(z3, z2)))
REACH1_IN_GGGG(z2, z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z1, z4)))) → U6_GGGG(z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z1, z4))), U2_gag(member124_in_gag(z2, z3)))
REACH1_IN_GGGG(z2, z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z4, z5)))) → U6_GGGG(z0, .(.(z1, .(z2, [])), z3), .(z2, .(z1, .(z4, z5))), U2_gag(member124_in_gag(z2, z3)))
REACH1_IN_GGGG(z5, z0, .(z1, z2), .(z5, .(z3, .(z3, z4)))) → U6_GGGG(z0, .(z1, z2), .(z5, .(z3, .(z3, z4))), U2_gag(member124_in_gag(z5, z2)))
REACH1_IN_GGGG(z6, z0, .(z1, z2), .(z6, .(z3, .(z4, z5)))) → U6_GGGG(z0, .(z1, z2), .(z6, .(z3, .(z4, z5))), U2_gag(member124_in_gag(z6, z2)))
U6_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), z0, member34_out_gg)
U6_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), z0, member34_out_gg)
U6_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z4, z5))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z4, z5))), z0, member34_out_gg)
U6_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z5, z6))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z5, z6))), z0, member34_out_gg)
U6_GGGG(z1, .(z2, z3), .(z0, .(z0, .(z0, z4))), member124_out_gag(z0)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z0, .(z0, z4))), z0, member34_out_gg)
U6_GGGG(z1, .(z2, z3), .(z0, .(z0, .(z4, z5))), member124_out_gag(z0)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z0, .(z4, z5))), z0, member34_out_gg)
U6_GGGG(z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z2, z4))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z2, z4))), z0, member34_out_gg)
U6_GGGG(z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z4, z5))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z4, z5))), z0, member34_out_gg)
U6_GGGG(z1, .(z2, z3), .(z0, .(z4, .(z4, z5))), member124_out_gag(z0)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z4, .(z4, z5))), z0, member34_out_gg)
U6_GGGG(z1, .(z2, z3), .(z0, .(z4, .(z5, z6))), member124_out_gag(z0)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z4, .(z5, z6))), z0, member34_out_gg)
U6_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), z0, U3_gg(member34_in_gg(z0, .(z0, .(z0, z3)))))
U6_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(z0)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), z0, U3_gg(member34_in_gg(z0, .(z0, .(z3, z4)))))
U6_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z0, z4))), member124_out_gag(z2)) → U7_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z0, z4))), z2, U3_gg(member34_in_gg(z2, .(z0, .(z0, z4)))))
U6_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z4, z5))), member124_out_gag(z2)) → U7_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z4, z5))), z2, U3_gg(member34_in_gg(z2, .(z0, .(z4, z5)))))
U6_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, .(z4, z5))), member124_out_gag(z2)) → U7_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, .(z4, z5))), z2, U3_gg(member34_in_gg(z2, .(z4, .(z4, z5)))))
U6_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, .(z5, z6))), member124_out_gag(z2)) → U7_GGGG(z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, .(z5, z6))), z2, U3_gg(member34_in_gg(z2, .(z4, .(z5, z6)))))
U6_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(x5)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), x5, U3_gg(member34_in_gg(x5, .(z0, .(z0, z3)))))
U6_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(x5)) → U7_GGGG(z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), x5, U3_gg(member34_in_gg(x5, .(z0, .(z3, z4)))))
U6_GGGG(z1, .(z2, z3), .(z0, .(z0, .(z0, z4))), member124_out_gag(x5)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z0, .(z0, z4))), x5, U3_gg(member34_in_gg(x5, .(z0, .(z0, z4)))))
U6_GGGG(z1, .(z2, z3), .(z0, .(z0, .(z4, z5))), member124_out_gag(x5)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z0, .(z4, z5))), x5, U3_gg(member34_in_gg(x5, .(z0, .(z4, z5)))))
U6_GGGG(z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z2, z4))), member124_out_gag(x6)) → U7_GGGG(z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z2, z4))), x6, U3_gg(member34_in_gg(x6, .(z2, .(z2, z4)))))
U6_GGGG(z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z4, z5))), member124_out_gag(x6)) → U7_GGGG(z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z4, z5))), x6, U3_gg(member34_in_gg(x6, .(z2, .(z4, z5)))))
U6_GGGG(z1, .(z2, z3), .(z0, .(z4, .(z4, z5))), member124_out_gag(x6)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z4, .(z4, z5))), x6, U3_gg(member34_in_gg(x6, .(z4, .(z4, z5)))))
U6_GGGG(z1, .(z2, z3), .(z0, .(z4, .(z5, z6))), member124_out_gag(x6)) → U7_GGGG(z1, .(z2, z3), .(z0, .(z4, .(z5, z6))), x6, U3_gg(member34_in_gg(x6, .(z4, .(z5, z6)))))

The TRS R consists of the following rules:

member124_in_gag(T120, .(.(T120, .(X117, [])), T121)) → member124_out_gag(X117)
member124_in_gag(T128, .(T129, T130)) → U2_gag(member124_in_gag(T128, T130))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg
member34_in_gg(T159, .(T160, T161)) → U3_gg(member34_in_gg(T159, T161))
U2_gag(member124_out_gag(X131)) → member124_out_gag(X131)
U3_gg(member34_out_gg) → member34_out_gg

The set Q consists of the following terms:

member124_in_gag(x0, x1)
member34_in_gg(x0, x1)
U2_gag(x0)
U3_gg(x0)

We have to consider all (P,Q,R)-chains.

(77) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:

s = REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3)))) evaluates to t =REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, .(z1, z3)))))

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Matcher: [z3 / .(z1, z3)]
  • Semiunifier: [ ]




Rewriting sequence

REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3))))U6_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3))), member124_out_gag(z1))
with rule REACH1_IN_GGGG(z1', z0', .(.(z1', .(z1', [])), z2'), .(z1', .(z1', .(z1', z3')))) → U6_GGGG(z0', .(.(z1', .(z1', [])), z2'), .(z1', .(z1', .(z1', z3'))), member124_out_gag(z1')) at position [] and matcher [z1' / z1, z0' / z0, z2' / z2, z3' / z3]

U6_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3))), member124_out_gag(z1))U7_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3))), z1, member34_out_gg)
with rule U6_GGGG(z1', .(.(z0', .(z0', [])), z2'), .(z0', .(z0', .(z0', z3'))), member124_out_gag(z0')) → U7_GGGG(z1', .(.(z0', .(z0', [])), z2'), .(z0', .(z0', .(z0', z3'))), z0', member34_out_gg) at position [] and matcher [z1' / z0, z0' / z1, z2' / z2, z3' / z3]

U7_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3))), z1, member34_out_gg)REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, .(z1, z3)))))
with rule U7_GGGG(z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, z3)), z1, member34_out_gg) → REACH1_IN_GGGG(z1, z0, .(.(z1, .(z1, [])), z2), .(z1, .(z1, .(z1, z3))))

Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence


All these steps are and every following step will be a correct step w.r.t to Q.



(78) NO

(79) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
reach1_in: (b,b,b,b)
member12_in: (b,b,b)
member124_in: (b,f,b)
member34_in: (b,b)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

reach1_in_gggg(T25, T26, .(.(T25, .(T26, [])), T27), T12) → reach1_out_gggg(T25, T26, .(.(T25, .(T26, [])), T27), T12)
reach1_in_gggg(T44, T45, .(T46, T47), T12) → U4_gggg(T44, T45, T46, T47, T12, member12_in_ggg(T44, T45, T47))
member12_in_ggg(T66, T67, .(.(T66, .(T67, [])), T68)) → member12_out_ggg(T66, T67, .(.(T66, .(T67, [])), T68))
member12_in_ggg(T77, T78, .(T79, T80)) → U1_ggg(T77, T78, T79, T80, member12_in_ggg(T77, T78, T80))
U1_ggg(T77, T78, T79, T80, member12_out_ggg(T77, T78, T80)) → member12_out_ggg(T77, T78, .(T79, T80))
U4_gggg(T44, T45, T46, T47, T12, member12_out_ggg(T44, T45, T47)) → reach1_out_gggg(T44, T45, .(T46, T47), T12)
reach1_in_gggg(T99, T100, T101, T102) → U5_gggg(T99, T100, T101, T102, member124_in_gag(T99, X90, T101))
member124_in_gag(T120, X117, .(.(T120, .(X117, [])), T121)) → member124_out_gag(T120, X117, .(.(T120, .(X117, [])), T121))
member124_in_gag(T128, X131, .(T129, T130)) → U2_gag(T128, X131, T129, T130, member124_in_gag(T128, X131, T130))
U2_gag(T128, X131, T129, T130, member124_out_gag(T128, X131, T130)) → member124_out_gag(T128, X131, .(T129, T130))
U5_gggg(T99, T100, T101, T102, member124_out_gag(T99, X90, T101)) → reach1_out_gggg(T99, T100, T101, T102)
reach1_in_gggg(T99, T100, T101, T102) → U6_gggg(T99, T100, T101, T102, member124_in_gag(T99, T107, T101))
U6_gggg(T99, T100, T101, T102, member124_out_gag(T99, T107, T101)) → U7_gggg(T99, T100, T101, T102, T107, member34_in_gg(T107, T102))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg(T151, .(T151, T152))
member34_in_gg(T159, .(T160, T161)) → U3_gg(T159, T160, T161, member34_in_gg(T159, T161))
U3_gg(T159, T160, T161, member34_out_gg(T159, T161)) → member34_out_gg(T159, .(T160, T161))
U7_gggg(T99, T100, T101, T102, T107, member34_out_gg(T107, T102)) → reach1_out_gggg(T99, T100, T101, T102)
U7_gggg(T99, T100, T101, T102, T107, member34_out_gg(T107, T102)) → U8_gggg(T99, T100, T101, T102, reach1_in_gggg(T107, T100, T101, .(T107, T102)))
U8_gggg(T99, T100, T101, T102, reach1_out_gggg(T107, T100, T101, .(T107, T102))) → reach1_out_gggg(T99, T100, T101, T102)

The argument filtering Pi contains the following mapping:
reach1_in_gggg(x1, x2, x3, x4)  =  reach1_in_gggg(x1, x2, x3, x4)
.(x1, x2)  =  .(x1, x2)
[]  =  []
reach1_out_gggg(x1, x2, x3, x4)  =  reach1_out_gggg(x1, x2, x3, x4)
U4_gggg(x1, x2, x3, x4, x5, x6)  =  U4_gggg(x1, x2, x3, x4, x5, x6)
member12_in_ggg(x1, x2, x3)  =  member12_in_ggg(x1, x2, x3)
member12_out_ggg(x1, x2, x3)  =  member12_out_ggg(x1, x2, x3)
U1_ggg(x1, x2, x3, x4, x5)  =  U1_ggg(x1, x2, x3, x4, x5)
U5_gggg(x1, x2, x3, x4, x5)  =  U5_gggg(x1, x2, x3, x4, x5)
member124_in_gag(x1, x2, x3)  =  member124_in_gag(x1, x3)
member124_out_gag(x1, x2, x3)  =  member124_out_gag(x1, x2, x3)
U2_gag(x1, x2, x3, x4, x5)  =  U2_gag(x1, x3, x4, x5)
U6_gggg(x1, x2, x3, x4, x5)  =  U6_gggg(x1, x2, x3, x4, x5)
U7_gggg(x1, x2, x3, x4, x5, x6)  =  U7_gggg(x1, x2, x3, x4, x5, x6)
member34_in_gg(x1, x2)  =  member34_in_gg(x1, x2)
member34_out_gg(x1, x2)  =  member34_out_gg(x1, x2)
U3_gg(x1, x2, x3, x4)  =  U3_gg(x1, x2, x3, x4)
U8_gggg(x1, x2, x3, x4, x5)  =  U8_gggg(x1, x2, x3, x4, x5)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(80) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

reach1_in_gggg(T25, T26, .(.(T25, .(T26, [])), T27), T12) → reach1_out_gggg(T25, T26, .(.(T25, .(T26, [])), T27), T12)
reach1_in_gggg(T44, T45, .(T46, T47), T12) → U4_gggg(T44, T45, T46, T47, T12, member12_in_ggg(T44, T45, T47))
member12_in_ggg(T66, T67, .(.(T66, .(T67, [])), T68)) → member12_out_ggg(T66, T67, .(.(T66, .(T67, [])), T68))
member12_in_ggg(T77, T78, .(T79, T80)) → U1_ggg(T77, T78, T79, T80, member12_in_ggg(T77, T78, T80))
U1_ggg(T77, T78, T79, T80, member12_out_ggg(T77, T78, T80)) → member12_out_ggg(T77, T78, .(T79, T80))
U4_gggg(T44, T45, T46, T47, T12, member12_out_ggg(T44, T45, T47)) → reach1_out_gggg(T44, T45, .(T46, T47), T12)
reach1_in_gggg(T99, T100, T101, T102) → U5_gggg(T99, T100, T101, T102, member124_in_gag(T99, X90, T101))
member124_in_gag(T120, X117, .(.(T120, .(X117, [])), T121)) → member124_out_gag(T120, X117, .(.(T120, .(X117, [])), T121))
member124_in_gag(T128, X131, .(T129, T130)) → U2_gag(T128, X131, T129, T130, member124_in_gag(T128, X131, T130))
U2_gag(T128, X131, T129, T130, member124_out_gag(T128, X131, T130)) → member124_out_gag(T128, X131, .(T129, T130))
U5_gggg(T99, T100, T101, T102, member124_out_gag(T99, X90, T101)) → reach1_out_gggg(T99, T100, T101, T102)
reach1_in_gggg(T99, T100, T101, T102) → U6_gggg(T99, T100, T101, T102, member124_in_gag(T99, T107, T101))
U6_gggg(T99, T100, T101, T102, member124_out_gag(T99, T107, T101)) → U7_gggg(T99, T100, T101, T102, T107, member34_in_gg(T107, T102))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg(T151, .(T151, T152))
member34_in_gg(T159, .(T160, T161)) → U3_gg(T159, T160, T161, member34_in_gg(T159, T161))
U3_gg(T159, T160, T161, member34_out_gg(T159, T161)) → member34_out_gg(T159, .(T160, T161))
U7_gggg(T99, T100, T101, T102, T107, member34_out_gg(T107, T102)) → reach1_out_gggg(T99, T100, T101, T102)
U7_gggg(T99, T100, T101, T102, T107, member34_out_gg(T107, T102)) → U8_gggg(T99, T100, T101, T102, reach1_in_gggg(T107, T100, T101, .(T107, T102)))
U8_gggg(T99, T100, T101, T102, reach1_out_gggg(T107, T100, T101, .(T107, T102))) → reach1_out_gggg(T99, T100, T101, T102)

The argument filtering Pi contains the following mapping:
reach1_in_gggg(x1, x2, x3, x4)  =  reach1_in_gggg(x1, x2, x3, x4)
.(x1, x2)  =  .(x1, x2)
[]  =  []
reach1_out_gggg(x1, x2, x3, x4)  =  reach1_out_gggg(x1, x2, x3, x4)
U4_gggg(x1, x2, x3, x4, x5, x6)  =  U4_gggg(x1, x2, x3, x4, x5, x6)
member12_in_ggg(x1, x2, x3)  =  member12_in_ggg(x1, x2, x3)
member12_out_ggg(x1, x2, x3)  =  member12_out_ggg(x1, x2, x3)
U1_ggg(x1, x2, x3, x4, x5)  =  U1_ggg(x1, x2, x3, x4, x5)
U5_gggg(x1, x2, x3, x4, x5)  =  U5_gggg(x1, x2, x3, x4, x5)
member124_in_gag(x1, x2, x3)  =  member124_in_gag(x1, x3)
member124_out_gag(x1, x2, x3)  =  member124_out_gag(x1, x2, x3)
U2_gag(x1, x2, x3, x4, x5)  =  U2_gag(x1, x3, x4, x5)
U6_gggg(x1, x2, x3, x4, x5)  =  U6_gggg(x1, x2, x3, x4, x5)
U7_gggg(x1, x2, x3, x4, x5, x6)  =  U7_gggg(x1, x2, x3, x4, x5, x6)
member34_in_gg(x1, x2)  =  member34_in_gg(x1, x2)
member34_out_gg(x1, x2)  =  member34_out_gg(x1, x2)
U3_gg(x1, x2, x3, x4)  =  U3_gg(x1, x2, x3, x4)
U8_gggg(x1, x2, x3, x4, x5)  =  U8_gggg(x1, x2, x3, x4, x5)

(81) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

REACH1_IN_GGGG(T44, T45, .(T46, T47), T12) → U4_GGGG(T44, T45, T46, T47, T12, member12_in_ggg(T44, T45, T47))
REACH1_IN_GGGG(T44, T45, .(T46, T47), T12) → MEMBER12_IN_GGG(T44, T45, T47)
MEMBER12_IN_GGG(T77, T78, .(T79, T80)) → U1_GGG(T77, T78, T79, T80, member12_in_ggg(T77, T78, T80))
MEMBER12_IN_GGG(T77, T78, .(T79, T80)) → MEMBER12_IN_GGG(T77, T78, T80)
REACH1_IN_GGGG(T99, T100, T101, T102) → U5_GGGG(T99, T100, T101, T102, member124_in_gag(T99, X90, T101))
REACH1_IN_GGGG(T99, T100, T101, T102) → MEMBER124_IN_GAG(T99, X90, T101)
MEMBER124_IN_GAG(T128, X131, .(T129, T130)) → U2_GAG(T128, X131, T129, T130, member124_in_gag(T128, X131, T130))
MEMBER124_IN_GAG(T128, X131, .(T129, T130)) → MEMBER124_IN_GAG(T128, X131, T130)
REACH1_IN_GGGG(T99, T100, T101, T102) → U6_GGGG(T99, T100, T101, T102, member124_in_gag(T99, T107, T101))
U6_GGGG(T99, T100, T101, T102, member124_out_gag(T99, T107, T101)) → U7_GGGG(T99, T100, T101, T102, T107, member34_in_gg(T107, T102))
U6_GGGG(T99, T100, T101, T102, member124_out_gag(T99, T107, T101)) → MEMBER34_IN_GG(T107, T102)
MEMBER34_IN_GG(T159, .(T160, T161)) → U3_GG(T159, T160, T161, member34_in_gg(T159, T161))
MEMBER34_IN_GG(T159, .(T160, T161)) → MEMBER34_IN_GG(T159, T161)
U7_GGGG(T99, T100, T101, T102, T107, member34_out_gg(T107, T102)) → U8_GGGG(T99, T100, T101, T102, reach1_in_gggg(T107, T100, T101, .(T107, T102)))
U7_GGGG(T99, T100, T101, T102, T107, member34_out_gg(T107, T102)) → REACH1_IN_GGGG(T107, T100, T101, .(T107, T102))

The TRS R consists of the following rules:

reach1_in_gggg(T25, T26, .(.(T25, .(T26, [])), T27), T12) → reach1_out_gggg(T25, T26, .(.(T25, .(T26, [])), T27), T12)
reach1_in_gggg(T44, T45, .(T46, T47), T12) → U4_gggg(T44, T45, T46, T47, T12, member12_in_ggg(T44, T45, T47))
member12_in_ggg(T66, T67, .(.(T66, .(T67, [])), T68)) → member12_out_ggg(T66, T67, .(.(T66, .(T67, [])), T68))
member12_in_ggg(T77, T78, .(T79, T80)) → U1_ggg(T77, T78, T79, T80, member12_in_ggg(T77, T78, T80))
U1_ggg(T77, T78, T79, T80, member12_out_ggg(T77, T78, T80)) → member12_out_ggg(T77, T78, .(T79, T80))
U4_gggg(T44, T45, T46, T47, T12, member12_out_ggg(T44, T45, T47)) → reach1_out_gggg(T44, T45, .(T46, T47), T12)
reach1_in_gggg(T99, T100, T101, T102) → U5_gggg(T99, T100, T101, T102, member124_in_gag(T99, X90, T101))
member124_in_gag(T120, X117, .(.(T120, .(X117, [])), T121)) → member124_out_gag(T120, X117, .(.(T120, .(X117, [])), T121))
member124_in_gag(T128, X131, .(T129, T130)) → U2_gag(T128, X131, T129, T130, member124_in_gag(T128, X131, T130))
U2_gag(T128, X131, T129, T130, member124_out_gag(T128, X131, T130)) → member124_out_gag(T128, X131, .(T129, T130))
U5_gggg(T99, T100, T101, T102, member124_out_gag(T99, X90, T101)) → reach1_out_gggg(T99, T100, T101, T102)
reach1_in_gggg(T99, T100, T101, T102) → U6_gggg(T99, T100, T101, T102, member124_in_gag(T99, T107, T101))
U6_gggg(T99, T100, T101, T102, member124_out_gag(T99, T107, T101)) → U7_gggg(T99, T100, T101, T102, T107, member34_in_gg(T107, T102))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg(T151, .(T151, T152))
member34_in_gg(T159, .(T160, T161)) → U3_gg(T159, T160, T161, member34_in_gg(T159, T161))
U3_gg(T159, T160, T161, member34_out_gg(T159, T161)) → member34_out_gg(T159, .(T160, T161))
U7_gggg(T99, T100, T101, T102, T107, member34_out_gg(T107, T102)) → reach1_out_gggg(T99, T100, T101, T102)
U7_gggg(T99, T100, T101, T102, T107, member34_out_gg(T107, T102)) → U8_gggg(T99, T100, T101, T102, reach1_in_gggg(T107, T100, T101, .(T107, T102)))
U8_gggg(T99, T100, T101, T102, reach1_out_gggg(T107, T100, T101, .(T107, T102))) → reach1_out_gggg(T99, T100, T101, T102)

The argument filtering Pi contains the following mapping:
reach1_in_gggg(x1, x2, x3, x4)  =  reach1_in_gggg(x1, x2, x3, x4)
.(x1, x2)  =  .(x1, x2)
[]  =  []
reach1_out_gggg(x1, x2, x3, x4)  =  reach1_out_gggg(x1, x2, x3, x4)
U4_gggg(x1, x2, x3, x4, x5, x6)  =  U4_gggg(x1, x2, x3, x4, x5, x6)
member12_in_ggg(x1, x2, x3)  =  member12_in_ggg(x1, x2, x3)
member12_out_ggg(x1, x2, x3)  =  member12_out_ggg(x1, x2, x3)
U1_ggg(x1, x2, x3, x4, x5)  =  U1_ggg(x1, x2, x3, x4, x5)
U5_gggg(x1, x2, x3, x4, x5)  =  U5_gggg(x1, x2, x3, x4, x5)
member124_in_gag(x1, x2, x3)  =  member124_in_gag(x1, x3)
member124_out_gag(x1, x2, x3)  =  member124_out_gag(x1, x2, x3)
U2_gag(x1, x2, x3, x4, x5)  =  U2_gag(x1, x3, x4, x5)
U6_gggg(x1, x2, x3, x4, x5)  =  U6_gggg(x1, x2, x3, x4, x5)
U7_gggg(x1, x2, x3, x4, x5, x6)  =  U7_gggg(x1, x2, x3, x4, x5, x6)
member34_in_gg(x1, x2)  =  member34_in_gg(x1, x2)
member34_out_gg(x1, x2)  =  member34_out_gg(x1, x2)
U3_gg(x1, x2, x3, x4)  =  U3_gg(x1, x2, x3, x4)
U8_gggg(x1, x2, x3, x4, x5)  =  U8_gggg(x1, x2, x3, x4, x5)
REACH1_IN_GGGG(x1, x2, x3, x4)  =  REACH1_IN_GGGG(x1, x2, x3, x4)
U4_GGGG(x1, x2, x3, x4, x5, x6)  =  U4_GGGG(x1, x2, x3, x4, x5, x6)
MEMBER12_IN_GGG(x1, x2, x3)  =  MEMBER12_IN_GGG(x1, x2, x3)
U1_GGG(x1, x2, x3, x4, x5)  =  U1_GGG(x1, x2, x3, x4, x5)
U5_GGGG(x1, x2, x3, x4, x5)  =  U5_GGGG(x1, x2, x3, x4, x5)
MEMBER124_IN_GAG(x1, x2, x3)  =  MEMBER124_IN_GAG(x1, x3)
U2_GAG(x1, x2, x3, x4, x5)  =  U2_GAG(x1, x3, x4, x5)
U6_GGGG(x1, x2, x3, x4, x5)  =  U6_GGGG(x1, x2, x3, x4, x5)
U7_GGGG(x1, x2, x3, x4, x5, x6)  =  U7_GGGG(x1, x2, x3, x4, x5, x6)
MEMBER34_IN_GG(x1, x2)  =  MEMBER34_IN_GG(x1, x2)
U3_GG(x1, x2, x3, x4)  =  U3_GG(x1, x2, x3, x4)
U8_GGGG(x1, x2, x3, x4, x5)  =  U8_GGGG(x1, x2, x3, x4, x5)

We have to consider all (P,R,Pi)-chains

(82) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

REACH1_IN_GGGG(T44, T45, .(T46, T47), T12) → U4_GGGG(T44, T45, T46, T47, T12, member12_in_ggg(T44, T45, T47))
REACH1_IN_GGGG(T44, T45, .(T46, T47), T12) → MEMBER12_IN_GGG(T44, T45, T47)
MEMBER12_IN_GGG(T77, T78, .(T79, T80)) → U1_GGG(T77, T78, T79, T80, member12_in_ggg(T77, T78, T80))
MEMBER12_IN_GGG(T77, T78, .(T79, T80)) → MEMBER12_IN_GGG(T77, T78, T80)
REACH1_IN_GGGG(T99, T100, T101, T102) → U5_GGGG(T99, T100, T101, T102, member124_in_gag(T99, X90, T101))
REACH1_IN_GGGG(T99, T100, T101, T102) → MEMBER124_IN_GAG(T99, X90, T101)
MEMBER124_IN_GAG(T128, X131, .(T129, T130)) → U2_GAG(T128, X131, T129, T130, member124_in_gag(T128, X131, T130))
MEMBER124_IN_GAG(T128, X131, .(T129, T130)) → MEMBER124_IN_GAG(T128, X131, T130)
REACH1_IN_GGGG(T99, T100, T101, T102) → U6_GGGG(T99, T100, T101, T102, member124_in_gag(T99, T107, T101))
U6_GGGG(T99, T100, T101, T102, member124_out_gag(T99, T107, T101)) → U7_GGGG(T99, T100, T101, T102, T107, member34_in_gg(T107, T102))
U6_GGGG(T99, T100, T101, T102, member124_out_gag(T99, T107, T101)) → MEMBER34_IN_GG(T107, T102)
MEMBER34_IN_GG(T159, .(T160, T161)) → U3_GG(T159, T160, T161, member34_in_gg(T159, T161))
MEMBER34_IN_GG(T159, .(T160, T161)) → MEMBER34_IN_GG(T159, T161)
U7_GGGG(T99, T100, T101, T102, T107, member34_out_gg(T107, T102)) → U8_GGGG(T99, T100, T101, T102, reach1_in_gggg(T107, T100, T101, .(T107, T102)))
U7_GGGG(T99, T100, T101, T102, T107, member34_out_gg(T107, T102)) → REACH1_IN_GGGG(T107, T100, T101, .(T107, T102))

The TRS R consists of the following rules:

reach1_in_gggg(T25, T26, .(.(T25, .(T26, [])), T27), T12) → reach1_out_gggg(T25, T26, .(.(T25, .(T26, [])), T27), T12)
reach1_in_gggg(T44, T45, .(T46, T47), T12) → U4_gggg(T44, T45, T46, T47, T12, member12_in_ggg(T44, T45, T47))
member12_in_ggg(T66, T67, .(.(T66, .(T67, [])), T68)) → member12_out_ggg(T66, T67, .(.(T66, .(T67, [])), T68))
member12_in_ggg(T77, T78, .(T79, T80)) → U1_ggg(T77, T78, T79, T80, member12_in_ggg(T77, T78, T80))
U1_ggg(T77, T78, T79, T80, member12_out_ggg(T77, T78, T80)) → member12_out_ggg(T77, T78, .(T79, T80))
U4_gggg(T44, T45, T46, T47, T12, member12_out_ggg(T44, T45, T47)) → reach1_out_gggg(T44, T45, .(T46, T47), T12)
reach1_in_gggg(T99, T100, T101, T102) → U5_gggg(T99, T100, T101, T102, member124_in_gag(T99, X90, T101))
member124_in_gag(T120, X117, .(.(T120, .(X117, [])), T121)) → member124_out_gag(T120, X117, .(.(T120, .(X117, [])), T121))
member124_in_gag(T128, X131, .(T129, T130)) → U2_gag(T128, X131, T129, T130, member124_in_gag(T128, X131, T130))
U2_gag(T128, X131, T129, T130, member124_out_gag(T128, X131, T130)) → member124_out_gag(T128, X131, .(T129, T130))
U5_gggg(T99, T100, T101, T102, member124_out_gag(T99, X90, T101)) → reach1_out_gggg(T99, T100, T101, T102)
reach1_in_gggg(T99, T100, T101, T102) → U6_gggg(T99, T100, T101, T102, member124_in_gag(T99, T107, T101))
U6_gggg(T99, T100, T101, T102, member124_out_gag(T99, T107, T101)) → U7_gggg(T99, T100, T101, T102, T107, member34_in_gg(T107, T102))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg(T151, .(T151, T152))
member34_in_gg(T159, .(T160, T161)) → U3_gg(T159, T160, T161, member34_in_gg(T159, T161))
U3_gg(T159, T160, T161, member34_out_gg(T159, T161)) → member34_out_gg(T159, .(T160, T161))
U7_gggg(T99, T100, T101, T102, T107, member34_out_gg(T107, T102)) → reach1_out_gggg(T99, T100, T101, T102)
U7_gggg(T99, T100, T101, T102, T107, member34_out_gg(T107, T102)) → U8_gggg(T99, T100, T101, T102, reach1_in_gggg(T107, T100, T101, .(T107, T102)))
U8_gggg(T99, T100, T101, T102, reach1_out_gggg(T107, T100, T101, .(T107, T102))) → reach1_out_gggg(T99, T100, T101, T102)

The argument filtering Pi contains the following mapping:
reach1_in_gggg(x1, x2, x3, x4)  =  reach1_in_gggg(x1, x2, x3, x4)
.(x1, x2)  =  .(x1, x2)
[]  =  []
reach1_out_gggg(x1, x2, x3, x4)  =  reach1_out_gggg(x1, x2, x3, x4)
U4_gggg(x1, x2, x3, x4, x5, x6)  =  U4_gggg(x1, x2, x3, x4, x5, x6)
member12_in_ggg(x1, x2, x3)  =  member12_in_ggg(x1, x2, x3)
member12_out_ggg(x1, x2, x3)  =  member12_out_ggg(x1, x2, x3)
U1_ggg(x1, x2, x3, x4, x5)  =  U1_ggg(x1, x2, x3, x4, x5)
U5_gggg(x1, x2, x3, x4, x5)  =  U5_gggg(x1, x2, x3, x4, x5)
member124_in_gag(x1, x2, x3)  =  member124_in_gag(x1, x3)
member124_out_gag(x1, x2, x3)  =  member124_out_gag(x1, x2, x3)
U2_gag(x1, x2, x3, x4, x5)  =  U2_gag(x1, x3, x4, x5)
U6_gggg(x1, x2, x3, x4, x5)  =  U6_gggg(x1, x2, x3, x4, x5)
U7_gggg(x1, x2, x3, x4, x5, x6)  =  U7_gggg(x1, x2, x3, x4, x5, x6)
member34_in_gg(x1, x2)  =  member34_in_gg(x1, x2)
member34_out_gg(x1, x2)  =  member34_out_gg(x1, x2)
U3_gg(x1, x2, x3, x4)  =  U3_gg(x1, x2, x3, x4)
U8_gggg(x1, x2, x3, x4, x5)  =  U8_gggg(x1, x2, x3, x4, x5)
REACH1_IN_GGGG(x1, x2, x3, x4)  =  REACH1_IN_GGGG(x1, x2, x3, x4)
U4_GGGG(x1, x2, x3, x4, x5, x6)  =  U4_GGGG(x1, x2, x3, x4, x5, x6)
MEMBER12_IN_GGG(x1, x2, x3)  =  MEMBER12_IN_GGG(x1, x2, x3)
U1_GGG(x1, x2, x3, x4, x5)  =  U1_GGG(x1, x2, x3, x4, x5)
U5_GGGG(x1, x2, x3, x4, x5)  =  U5_GGGG(x1, x2, x3, x4, x5)
MEMBER124_IN_GAG(x1, x2, x3)  =  MEMBER124_IN_GAG(x1, x3)
U2_GAG(x1, x2, x3, x4, x5)  =  U2_GAG(x1, x3, x4, x5)
U6_GGGG(x1, x2, x3, x4, x5)  =  U6_GGGG(x1, x2, x3, x4, x5)
U7_GGGG(x1, x2, x3, x4, x5, x6)  =  U7_GGGG(x1, x2, x3, x4, x5, x6)
MEMBER34_IN_GG(x1, x2)  =  MEMBER34_IN_GG(x1, x2)
U3_GG(x1, x2, x3, x4)  =  U3_GG(x1, x2, x3, x4)
U8_GGGG(x1, x2, x3, x4, x5)  =  U8_GGGG(x1, x2, x3, x4, x5)

We have to consider all (P,R,Pi)-chains

(83) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 4 SCCs with 9 less nodes.

(84) Complex Obligation (AND)

(85) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MEMBER34_IN_GG(T159, .(T160, T161)) → MEMBER34_IN_GG(T159, T161)

The TRS R consists of the following rules:

reach1_in_gggg(T25, T26, .(.(T25, .(T26, [])), T27), T12) → reach1_out_gggg(T25, T26, .(.(T25, .(T26, [])), T27), T12)
reach1_in_gggg(T44, T45, .(T46, T47), T12) → U4_gggg(T44, T45, T46, T47, T12, member12_in_ggg(T44, T45, T47))
member12_in_ggg(T66, T67, .(.(T66, .(T67, [])), T68)) → member12_out_ggg(T66, T67, .(.(T66, .(T67, [])), T68))
member12_in_ggg(T77, T78, .(T79, T80)) → U1_ggg(T77, T78, T79, T80, member12_in_ggg(T77, T78, T80))
U1_ggg(T77, T78, T79, T80, member12_out_ggg(T77, T78, T80)) → member12_out_ggg(T77, T78, .(T79, T80))
U4_gggg(T44, T45, T46, T47, T12, member12_out_ggg(T44, T45, T47)) → reach1_out_gggg(T44, T45, .(T46, T47), T12)
reach1_in_gggg(T99, T100, T101, T102) → U5_gggg(T99, T100, T101, T102, member124_in_gag(T99, X90, T101))
member124_in_gag(T120, X117, .(.(T120, .(X117, [])), T121)) → member124_out_gag(T120, X117, .(.(T120, .(X117, [])), T121))
member124_in_gag(T128, X131, .(T129, T130)) → U2_gag(T128, X131, T129, T130, member124_in_gag(T128, X131, T130))
U2_gag(T128, X131, T129, T130, member124_out_gag(T128, X131, T130)) → member124_out_gag(T128, X131, .(T129, T130))
U5_gggg(T99, T100, T101, T102, member124_out_gag(T99, X90, T101)) → reach1_out_gggg(T99, T100, T101, T102)
reach1_in_gggg(T99, T100, T101, T102) → U6_gggg(T99, T100, T101, T102, member124_in_gag(T99, T107, T101))
U6_gggg(T99, T100, T101, T102, member124_out_gag(T99, T107, T101)) → U7_gggg(T99, T100, T101, T102, T107, member34_in_gg(T107, T102))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg(T151, .(T151, T152))
member34_in_gg(T159, .(T160, T161)) → U3_gg(T159, T160, T161, member34_in_gg(T159, T161))
U3_gg(T159, T160, T161, member34_out_gg(T159, T161)) → member34_out_gg(T159, .(T160, T161))
U7_gggg(T99, T100, T101, T102, T107, member34_out_gg(T107, T102)) → reach1_out_gggg(T99, T100, T101, T102)
U7_gggg(T99, T100, T101, T102, T107, member34_out_gg(T107, T102)) → U8_gggg(T99, T100, T101, T102, reach1_in_gggg(T107, T100, T101, .(T107, T102)))
U8_gggg(T99, T100, T101, T102, reach1_out_gggg(T107, T100, T101, .(T107, T102))) → reach1_out_gggg(T99, T100, T101, T102)

The argument filtering Pi contains the following mapping:
reach1_in_gggg(x1, x2, x3, x4)  =  reach1_in_gggg(x1, x2, x3, x4)
.(x1, x2)  =  .(x1, x2)
[]  =  []
reach1_out_gggg(x1, x2, x3, x4)  =  reach1_out_gggg(x1, x2, x3, x4)
U4_gggg(x1, x2, x3, x4, x5, x6)  =  U4_gggg(x1, x2, x3, x4, x5, x6)
member12_in_ggg(x1, x2, x3)  =  member12_in_ggg(x1, x2, x3)
member12_out_ggg(x1, x2, x3)  =  member12_out_ggg(x1, x2, x3)
U1_ggg(x1, x2, x3, x4, x5)  =  U1_ggg(x1, x2, x3, x4, x5)
U5_gggg(x1, x2, x3, x4, x5)  =  U5_gggg(x1, x2, x3, x4, x5)
member124_in_gag(x1, x2, x3)  =  member124_in_gag(x1, x3)
member124_out_gag(x1, x2, x3)  =  member124_out_gag(x1, x2, x3)
U2_gag(x1, x2, x3, x4, x5)  =  U2_gag(x1, x3, x4, x5)
U6_gggg(x1, x2, x3, x4, x5)  =  U6_gggg(x1, x2, x3, x4, x5)
U7_gggg(x1, x2, x3, x4, x5, x6)  =  U7_gggg(x1, x2, x3, x4, x5, x6)
member34_in_gg(x1, x2)  =  member34_in_gg(x1, x2)
member34_out_gg(x1, x2)  =  member34_out_gg(x1, x2)
U3_gg(x1, x2, x3, x4)  =  U3_gg(x1, x2, x3, x4)
U8_gggg(x1, x2, x3, x4, x5)  =  U8_gggg(x1, x2, x3, x4, x5)
MEMBER34_IN_GG(x1, x2)  =  MEMBER34_IN_GG(x1, x2)

We have to consider all (P,R,Pi)-chains

(86) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(87) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MEMBER34_IN_GG(T159, .(T160, T161)) → MEMBER34_IN_GG(T159, T161)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains

(88) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(89) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MEMBER34_IN_GG(T159, .(T160, T161)) → MEMBER34_IN_GG(T159, T161)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(90) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • MEMBER34_IN_GG(T159, .(T160, T161)) → MEMBER34_IN_GG(T159, T161)
    The graph contains the following edges 1 >= 1, 2 > 2

(91) YES

(92) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MEMBER124_IN_GAG(T128, X131, .(T129, T130)) → MEMBER124_IN_GAG(T128, X131, T130)

The TRS R consists of the following rules:

reach1_in_gggg(T25, T26, .(.(T25, .(T26, [])), T27), T12) → reach1_out_gggg(T25, T26, .(.(T25, .(T26, [])), T27), T12)
reach1_in_gggg(T44, T45, .(T46, T47), T12) → U4_gggg(T44, T45, T46, T47, T12, member12_in_ggg(T44, T45, T47))
member12_in_ggg(T66, T67, .(.(T66, .(T67, [])), T68)) → member12_out_ggg(T66, T67, .(.(T66, .(T67, [])), T68))
member12_in_ggg(T77, T78, .(T79, T80)) → U1_ggg(T77, T78, T79, T80, member12_in_ggg(T77, T78, T80))
U1_ggg(T77, T78, T79, T80, member12_out_ggg(T77, T78, T80)) → member12_out_ggg(T77, T78, .(T79, T80))
U4_gggg(T44, T45, T46, T47, T12, member12_out_ggg(T44, T45, T47)) → reach1_out_gggg(T44, T45, .(T46, T47), T12)
reach1_in_gggg(T99, T100, T101, T102) → U5_gggg(T99, T100, T101, T102, member124_in_gag(T99, X90, T101))
member124_in_gag(T120, X117, .(.(T120, .(X117, [])), T121)) → member124_out_gag(T120, X117, .(.(T120, .(X117, [])), T121))
member124_in_gag(T128, X131, .(T129, T130)) → U2_gag(T128, X131, T129, T130, member124_in_gag(T128, X131, T130))
U2_gag(T128, X131, T129, T130, member124_out_gag(T128, X131, T130)) → member124_out_gag(T128, X131, .(T129, T130))
U5_gggg(T99, T100, T101, T102, member124_out_gag(T99, X90, T101)) → reach1_out_gggg(T99, T100, T101, T102)
reach1_in_gggg(T99, T100, T101, T102) → U6_gggg(T99, T100, T101, T102, member124_in_gag(T99, T107, T101))
U6_gggg(T99, T100, T101, T102, member124_out_gag(T99, T107, T101)) → U7_gggg(T99, T100, T101, T102, T107, member34_in_gg(T107, T102))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg(T151, .(T151, T152))
member34_in_gg(T159, .(T160, T161)) → U3_gg(T159, T160, T161, member34_in_gg(T159, T161))
U3_gg(T159, T160, T161, member34_out_gg(T159, T161)) → member34_out_gg(T159, .(T160, T161))
U7_gggg(T99, T100, T101, T102, T107, member34_out_gg(T107, T102)) → reach1_out_gggg(T99, T100, T101, T102)
U7_gggg(T99, T100, T101, T102, T107, member34_out_gg(T107, T102)) → U8_gggg(T99, T100, T101, T102, reach1_in_gggg(T107, T100, T101, .(T107, T102)))
U8_gggg(T99, T100, T101, T102, reach1_out_gggg(T107, T100, T101, .(T107, T102))) → reach1_out_gggg(T99, T100, T101, T102)

The argument filtering Pi contains the following mapping:
reach1_in_gggg(x1, x2, x3, x4)  =  reach1_in_gggg(x1, x2, x3, x4)
.(x1, x2)  =  .(x1, x2)
[]  =  []
reach1_out_gggg(x1, x2, x3, x4)  =  reach1_out_gggg(x1, x2, x3, x4)
U4_gggg(x1, x2, x3, x4, x5, x6)  =  U4_gggg(x1, x2, x3, x4, x5, x6)
member12_in_ggg(x1, x2, x3)  =  member12_in_ggg(x1, x2, x3)
member12_out_ggg(x1, x2, x3)  =  member12_out_ggg(x1, x2, x3)
U1_ggg(x1, x2, x3, x4, x5)  =  U1_ggg(x1, x2, x3, x4, x5)
U5_gggg(x1, x2, x3, x4, x5)  =  U5_gggg(x1, x2, x3, x4, x5)
member124_in_gag(x1, x2, x3)  =  member124_in_gag(x1, x3)
member124_out_gag(x1, x2, x3)  =  member124_out_gag(x1, x2, x3)
U2_gag(x1, x2, x3, x4, x5)  =  U2_gag(x1, x3, x4, x5)
U6_gggg(x1, x2, x3, x4, x5)  =  U6_gggg(x1, x2, x3, x4, x5)
U7_gggg(x1, x2, x3, x4, x5, x6)  =  U7_gggg(x1, x2, x3, x4, x5, x6)
member34_in_gg(x1, x2)  =  member34_in_gg(x1, x2)
member34_out_gg(x1, x2)  =  member34_out_gg(x1, x2)
U3_gg(x1, x2, x3, x4)  =  U3_gg(x1, x2, x3, x4)
U8_gggg(x1, x2, x3, x4, x5)  =  U8_gggg(x1, x2, x3, x4, x5)
MEMBER124_IN_GAG(x1, x2, x3)  =  MEMBER124_IN_GAG(x1, x3)

We have to consider all (P,R,Pi)-chains

(93) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(94) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MEMBER124_IN_GAG(T128, X131, .(T129, T130)) → MEMBER124_IN_GAG(T128, X131, T130)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
MEMBER124_IN_GAG(x1, x2, x3)  =  MEMBER124_IN_GAG(x1, x3)

We have to consider all (P,R,Pi)-chains

(95) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(96) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MEMBER124_IN_GAG(T128, .(T129, T130)) → MEMBER124_IN_GAG(T128, T130)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(97) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • MEMBER124_IN_GAG(T128, .(T129, T130)) → MEMBER124_IN_GAG(T128, T130)
    The graph contains the following edges 1 >= 1, 2 > 2

(98) YES

(99) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MEMBER12_IN_GGG(T77, T78, .(T79, T80)) → MEMBER12_IN_GGG(T77, T78, T80)

The TRS R consists of the following rules:

reach1_in_gggg(T25, T26, .(.(T25, .(T26, [])), T27), T12) → reach1_out_gggg(T25, T26, .(.(T25, .(T26, [])), T27), T12)
reach1_in_gggg(T44, T45, .(T46, T47), T12) → U4_gggg(T44, T45, T46, T47, T12, member12_in_ggg(T44, T45, T47))
member12_in_ggg(T66, T67, .(.(T66, .(T67, [])), T68)) → member12_out_ggg(T66, T67, .(.(T66, .(T67, [])), T68))
member12_in_ggg(T77, T78, .(T79, T80)) → U1_ggg(T77, T78, T79, T80, member12_in_ggg(T77, T78, T80))
U1_ggg(T77, T78, T79, T80, member12_out_ggg(T77, T78, T80)) → member12_out_ggg(T77, T78, .(T79, T80))
U4_gggg(T44, T45, T46, T47, T12, member12_out_ggg(T44, T45, T47)) → reach1_out_gggg(T44, T45, .(T46, T47), T12)
reach1_in_gggg(T99, T100, T101, T102) → U5_gggg(T99, T100, T101, T102, member124_in_gag(T99, X90, T101))
member124_in_gag(T120, X117, .(.(T120, .(X117, [])), T121)) → member124_out_gag(T120, X117, .(.(T120, .(X117, [])), T121))
member124_in_gag(T128, X131, .(T129, T130)) → U2_gag(T128, X131, T129, T130, member124_in_gag(T128, X131, T130))
U2_gag(T128, X131, T129, T130, member124_out_gag(T128, X131, T130)) → member124_out_gag(T128, X131, .(T129, T130))
U5_gggg(T99, T100, T101, T102, member124_out_gag(T99, X90, T101)) → reach1_out_gggg(T99, T100, T101, T102)
reach1_in_gggg(T99, T100, T101, T102) → U6_gggg(T99, T100, T101, T102, member124_in_gag(T99, T107, T101))
U6_gggg(T99, T100, T101, T102, member124_out_gag(T99, T107, T101)) → U7_gggg(T99, T100, T101, T102, T107, member34_in_gg(T107, T102))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg(T151, .(T151, T152))
member34_in_gg(T159, .(T160, T161)) → U3_gg(T159, T160, T161, member34_in_gg(T159, T161))
U3_gg(T159, T160, T161, member34_out_gg(T159, T161)) → member34_out_gg(T159, .(T160, T161))
U7_gggg(T99, T100, T101, T102, T107, member34_out_gg(T107, T102)) → reach1_out_gggg(T99, T100, T101, T102)
U7_gggg(T99, T100, T101, T102, T107, member34_out_gg(T107, T102)) → U8_gggg(T99, T100, T101, T102, reach1_in_gggg(T107, T100, T101, .(T107, T102)))
U8_gggg(T99, T100, T101, T102, reach1_out_gggg(T107, T100, T101, .(T107, T102))) → reach1_out_gggg(T99, T100, T101, T102)

The argument filtering Pi contains the following mapping:
reach1_in_gggg(x1, x2, x3, x4)  =  reach1_in_gggg(x1, x2, x3, x4)
.(x1, x2)  =  .(x1, x2)
[]  =  []
reach1_out_gggg(x1, x2, x3, x4)  =  reach1_out_gggg(x1, x2, x3, x4)
U4_gggg(x1, x2, x3, x4, x5, x6)  =  U4_gggg(x1, x2, x3, x4, x5, x6)
member12_in_ggg(x1, x2, x3)  =  member12_in_ggg(x1, x2, x3)
member12_out_ggg(x1, x2, x3)  =  member12_out_ggg(x1, x2, x3)
U1_ggg(x1, x2, x3, x4, x5)  =  U1_ggg(x1, x2, x3, x4, x5)
U5_gggg(x1, x2, x3, x4, x5)  =  U5_gggg(x1, x2, x3, x4, x5)
member124_in_gag(x1, x2, x3)  =  member124_in_gag(x1, x3)
member124_out_gag(x1, x2, x3)  =  member124_out_gag(x1, x2, x3)
U2_gag(x1, x2, x3, x4, x5)  =  U2_gag(x1, x3, x4, x5)
U6_gggg(x1, x2, x3, x4, x5)  =  U6_gggg(x1, x2, x3, x4, x5)
U7_gggg(x1, x2, x3, x4, x5, x6)  =  U7_gggg(x1, x2, x3, x4, x5, x6)
member34_in_gg(x1, x2)  =  member34_in_gg(x1, x2)
member34_out_gg(x1, x2)  =  member34_out_gg(x1, x2)
U3_gg(x1, x2, x3, x4)  =  U3_gg(x1, x2, x3, x4)
U8_gggg(x1, x2, x3, x4, x5)  =  U8_gggg(x1, x2, x3, x4, x5)
MEMBER12_IN_GGG(x1, x2, x3)  =  MEMBER12_IN_GGG(x1, x2, x3)

We have to consider all (P,R,Pi)-chains

(100) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(101) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MEMBER12_IN_GGG(T77, T78, .(T79, T80)) → MEMBER12_IN_GGG(T77, T78, T80)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains

(102) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(103) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MEMBER12_IN_GGG(T77, T78, .(T79, T80)) → MEMBER12_IN_GGG(T77, T78, T80)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(104) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • MEMBER12_IN_GGG(T77, T78, .(T79, T80)) → MEMBER12_IN_GGG(T77, T78, T80)
    The graph contains the following edges 1 >= 1, 2 >= 2, 3 > 3

(105) YES

(106) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

REACH1_IN_GGGG(T99, T100, T101, T102) → U6_GGGG(T99, T100, T101, T102, member124_in_gag(T99, T107, T101))
U6_GGGG(T99, T100, T101, T102, member124_out_gag(T99, T107, T101)) → U7_GGGG(T99, T100, T101, T102, T107, member34_in_gg(T107, T102))
U7_GGGG(T99, T100, T101, T102, T107, member34_out_gg(T107, T102)) → REACH1_IN_GGGG(T107, T100, T101, .(T107, T102))

The TRS R consists of the following rules:

reach1_in_gggg(T25, T26, .(.(T25, .(T26, [])), T27), T12) → reach1_out_gggg(T25, T26, .(.(T25, .(T26, [])), T27), T12)
reach1_in_gggg(T44, T45, .(T46, T47), T12) → U4_gggg(T44, T45, T46, T47, T12, member12_in_ggg(T44, T45, T47))
member12_in_ggg(T66, T67, .(.(T66, .(T67, [])), T68)) → member12_out_ggg(T66, T67, .(.(T66, .(T67, [])), T68))
member12_in_ggg(T77, T78, .(T79, T80)) → U1_ggg(T77, T78, T79, T80, member12_in_ggg(T77, T78, T80))
U1_ggg(T77, T78, T79, T80, member12_out_ggg(T77, T78, T80)) → member12_out_ggg(T77, T78, .(T79, T80))
U4_gggg(T44, T45, T46, T47, T12, member12_out_ggg(T44, T45, T47)) → reach1_out_gggg(T44, T45, .(T46, T47), T12)
reach1_in_gggg(T99, T100, T101, T102) → U5_gggg(T99, T100, T101, T102, member124_in_gag(T99, X90, T101))
member124_in_gag(T120, X117, .(.(T120, .(X117, [])), T121)) → member124_out_gag(T120, X117, .(.(T120, .(X117, [])), T121))
member124_in_gag(T128, X131, .(T129, T130)) → U2_gag(T128, X131, T129, T130, member124_in_gag(T128, X131, T130))
U2_gag(T128, X131, T129, T130, member124_out_gag(T128, X131, T130)) → member124_out_gag(T128, X131, .(T129, T130))
U5_gggg(T99, T100, T101, T102, member124_out_gag(T99, X90, T101)) → reach1_out_gggg(T99, T100, T101, T102)
reach1_in_gggg(T99, T100, T101, T102) → U6_gggg(T99, T100, T101, T102, member124_in_gag(T99, T107, T101))
U6_gggg(T99, T100, T101, T102, member124_out_gag(T99, T107, T101)) → U7_gggg(T99, T100, T101, T102, T107, member34_in_gg(T107, T102))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg(T151, .(T151, T152))
member34_in_gg(T159, .(T160, T161)) → U3_gg(T159, T160, T161, member34_in_gg(T159, T161))
U3_gg(T159, T160, T161, member34_out_gg(T159, T161)) → member34_out_gg(T159, .(T160, T161))
U7_gggg(T99, T100, T101, T102, T107, member34_out_gg(T107, T102)) → reach1_out_gggg(T99, T100, T101, T102)
U7_gggg(T99, T100, T101, T102, T107, member34_out_gg(T107, T102)) → U8_gggg(T99, T100, T101, T102, reach1_in_gggg(T107, T100, T101, .(T107, T102)))
U8_gggg(T99, T100, T101, T102, reach1_out_gggg(T107, T100, T101, .(T107, T102))) → reach1_out_gggg(T99, T100, T101, T102)

The argument filtering Pi contains the following mapping:
reach1_in_gggg(x1, x2, x3, x4)  =  reach1_in_gggg(x1, x2, x3, x4)
.(x1, x2)  =  .(x1, x2)
[]  =  []
reach1_out_gggg(x1, x2, x3, x4)  =  reach1_out_gggg(x1, x2, x3, x4)
U4_gggg(x1, x2, x3, x4, x5, x6)  =  U4_gggg(x1, x2, x3, x4, x5, x6)
member12_in_ggg(x1, x2, x3)  =  member12_in_ggg(x1, x2, x3)
member12_out_ggg(x1, x2, x3)  =  member12_out_ggg(x1, x2, x3)
U1_ggg(x1, x2, x3, x4, x5)  =  U1_ggg(x1, x2, x3, x4, x5)
U5_gggg(x1, x2, x3, x4, x5)  =  U5_gggg(x1, x2, x3, x4, x5)
member124_in_gag(x1, x2, x3)  =  member124_in_gag(x1, x3)
member124_out_gag(x1, x2, x3)  =  member124_out_gag(x1, x2, x3)
U2_gag(x1, x2, x3, x4, x5)  =  U2_gag(x1, x3, x4, x5)
U6_gggg(x1, x2, x3, x4, x5)  =  U6_gggg(x1, x2, x3, x4, x5)
U7_gggg(x1, x2, x3, x4, x5, x6)  =  U7_gggg(x1, x2, x3, x4, x5, x6)
member34_in_gg(x1, x2)  =  member34_in_gg(x1, x2)
member34_out_gg(x1, x2)  =  member34_out_gg(x1, x2)
U3_gg(x1, x2, x3, x4)  =  U3_gg(x1, x2, x3, x4)
U8_gggg(x1, x2, x3, x4, x5)  =  U8_gggg(x1, x2, x3, x4, x5)
REACH1_IN_GGGG(x1, x2, x3, x4)  =  REACH1_IN_GGGG(x1, x2, x3, x4)
U6_GGGG(x1, x2, x3, x4, x5)  =  U6_GGGG(x1, x2, x3, x4, x5)
U7_GGGG(x1, x2, x3, x4, x5, x6)  =  U7_GGGG(x1, x2, x3, x4, x5, x6)

We have to consider all (P,R,Pi)-chains

(107) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(108) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

REACH1_IN_GGGG(T99, T100, T101, T102) → U6_GGGG(T99, T100, T101, T102, member124_in_gag(T99, T107, T101))
U6_GGGG(T99, T100, T101, T102, member124_out_gag(T99, T107, T101)) → U7_GGGG(T99, T100, T101, T102, T107, member34_in_gg(T107, T102))
U7_GGGG(T99, T100, T101, T102, T107, member34_out_gg(T107, T102)) → REACH1_IN_GGGG(T107, T100, T101, .(T107, T102))

The TRS R consists of the following rules:

member124_in_gag(T120, X117, .(.(T120, .(X117, [])), T121)) → member124_out_gag(T120, X117, .(.(T120, .(X117, [])), T121))
member124_in_gag(T128, X131, .(T129, T130)) → U2_gag(T128, X131, T129, T130, member124_in_gag(T128, X131, T130))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg(T151, .(T151, T152))
member34_in_gg(T159, .(T160, T161)) → U3_gg(T159, T160, T161, member34_in_gg(T159, T161))
U2_gag(T128, X131, T129, T130, member124_out_gag(T128, X131, T130)) → member124_out_gag(T128, X131, .(T129, T130))
U3_gg(T159, T160, T161, member34_out_gg(T159, T161)) → member34_out_gg(T159, .(T160, T161))

The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
[]  =  []
member124_in_gag(x1, x2, x3)  =  member124_in_gag(x1, x3)
member124_out_gag(x1, x2, x3)  =  member124_out_gag(x1, x2, x3)
U2_gag(x1, x2, x3, x4, x5)  =  U2_gag(x1, x3, x4, x5)
member34_in_gg(x1, x2)  =  member34_in_gg(x1, x2)
member34_out_gg(x1, x2)  =  member34_out_gg(x1, x2)
U3_gg(x1, x2, x3, x4)  =  U3_gg(x1, x2, x3, x4)
REACH1_IN_GGGG(x1, x2, x3, x4)  =  REACH1_IN_GGGG(x1, x2, x3, x4)
U6_GGGG(x1, x2, x3, x4, x5)  =  U6_GGGG(x1, x2, x3, x4, x5)
U7_GGGG(x1, x2, x3, x4, x5, x6)  =  U7_GGGG(x1, x2, x3, x4, x5, x6)

We have to consider all (P,R,Pi)-chains

(109) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(110) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REACH1_IN_GGGG(T99, T100, T101, T102) → U6_GGGG(T99, T100, T101, T102, member124_in_gag(T99, T101))
U6_GGGG(T99, T100, T101, T102, member124_out_gag(T99, T107, T101)) → U7_GGGG(T99, T100, T101, T102, T107, member34_in_gg(T107, T102))
U7_GGGG(T99, T100, T101, T102, T107, member34_out_gg(T107, T102)) → REACH1_IN_GGGG(T107, T100, T101, .(T107, T102))

The TRS R consists of the following rules:

member124_in_gag(T120, .(.(T120, .(X117, [])), T121)) → member124_out_gag(T120, X117, .(.(T120, .(X117, [])), T121))
member124_in_gag(T128, .(T129, T130)) → U2_gag(T128, T129, T130, member124_in_gag(T128, T130))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg(T151, .(T151, T152))
member34_in_gg(T159, .(T160, T161)) → U3_gg(T159, T160, T161, member34_in_gg(T159, T161))
U2_gag(T128, T129, T130, member124_out_gag(T128, X131, T130)) → member124_out_gag(T128, X131, .(T129, T130))
U3_gg(T159, T160, T161, member34_out_gg(T159, T161)) → member34_out_gg(T159, .(T160, T161))

The set Q consists of the following terms:

member124_in_gag(x0, x1)
member34_in_gg(x0, x1)
U2_gag(x0, x1, x2, x3)
U3_gg(x0, x1, x2, x3)

We have to consider all (P,Q,R)-chains.

(111) Narrowing (SOUND transformation)

By narrowing [LPAR04] the rule REACH1_IN_GGGG(T99, T100, T101, T102) → U6_GGGG(T99, T100, T101, T102, member124_in_gag(T99, T101)) at position [4] we obtained the following new rules [LPAR04]:

REACH1_IN_GGGG(x0, y1, .(.(x0, .(x1, [])), x2), y3) → U6_GGGG(x0, y1, .(.(x0, .(x1, [])), x2), y3, member124_out_gag(x0, x1, .(.(x0, .(x1, [])), x2)))
REACH1_IN_GGGG(x0, y1, .(x1, x2), y3) → U6_GGGG(x0, y1, .(x1, x2), y3, U2_gag(x0, x1, x2, member124_in_gag(x0, x2)))

(112) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U6_GGGG(T99, T100, T101, T102, member124_out_gag(T99, T107, T101)) → U7_GGGG(T99, T100, T101, T102, T107, member34_in_gg(T107, T102))
U7_GGGG(T99, T100, T101, T102, T107, member34_out_gg(T107, T102)) → REACH1_IN_GGGG(T107, T100, T101, .(T107, T102))
REACH1_IN_GGGG(x0, y1, .(.(x0, .(x1, [])), x2), y3) → U6_GGGG(x0, y1, .(.(x0, .(x1, [])), x2), y3, member124_out_gag(x0, x1, .(.(x0, .(x1, [])), x2)))
REACH1_IN_GGGG(x0, y1, .(x1, x2), y3) → U6_GGGG(x0, y1, .(x1, x2), y3, U2_gag(x0, x1, x2, member124_in_gag(x0, x2)))

The TRS R consists of the following rules:

member124_in_gag(T120, .(.(T120, .(X117, [])), T121)) → member124_out_gag(T120, X117, .(.(T120, .(X117, [])), T121))
member124_in_gag(T128, .(T129, T130)) → U2_gag(T128, T129, T130, member124_in_gag(T128, T130))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg(T151, .(T151, T152))
member34_in_gg(T159, .(T160, T161)) → U3_gg(T159, T160, T161, member34_in_gg(T159, T161))
U2_gag(T128, T129, T130, member124_out_gag(T128, X131, T130)) → member124_out_gag(T128, X131, .(T129, T130))
U3_gg(T159, T160, T161, member34_out_gg(T159, T161)) → member34_out_gg(T159, .(T160, T161))

The set Q consists of the following terms:

member124_in_gag(x0, x1)
member34_in_gg(x0, x1)
U2_gag(x0, x1, x2, x3)
U3_gg(x0, x1, x2, x3)

We have to consider all (P,Q,R)-chains.

(113) Narrowing (SOUND transformation)

By narrowing [LPAR04] the rule U6_GGGG(T99, T100, T101, T102, member124_out_gag(T99, T107, T101)) → U7_GGGG(T99, T100, T101, T102, T107, member34_in_gg(T107, T102)) at position [5] we obtained the following new rules [LPAR04]:

U6_GGGG(y0, y1, y2, .(x0, x1), member124_out_gag(y0, x0, y2)) → U7_GGGG(y0, y1, y2, .(x0, x1), x0, member34_out_gg(x0, .(x0, x1)))
U6_GGGG(y0, y1, y2, .(x1, x2), member124_out_gag(y0, x0, y2)) → U7_GGGG(y0, y1, y2, .(x1, x2), x0, U3_gg(x0, x1, x2, member34_in_gg(x0, x2)))

(114) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U7_GGGG(T99, T100, T101, T102, T107, member34_out_gg(T107, T102)) → REACH1_IN_GGGG(T107, T100, T101, .(T107, T102))
REACH1_IN_GGGG(x0, y1, .(.(x0, .(x1, [])), x2), y3) → U6_GGGG(x0, y1, .(.(x0, .(x1, [])), x2), y3, member124_out_gag(x0, x1, .(.(x0, .(x1, [])), x2)))
REACH1_IN_GGGG(x0, y1, .(x1, x2), y3) → U6_GGGG(x0, y1, .(x1, x2), y3, U2_gag(x0, x1, x2, member124_in_gag(x0, x2)))
U6_GGGG(y0, y1, y2, .(x0, x1), member124_out_gag(y0, x0, y2)) → U7_GGGG(y0, y1, y2, .(x0, x1), x0, member34_out_gg(x0, .(x0, x1)))
U6_GGGG(y0, y1, y2, .(x1, x2), member124_out_gag(y0, x0, y2)) → U7_GGGG(y0, y1, y2, .(x1, x2), x0, U3_gg(x0, x1, x2, member34_in_gg(x0, x2)))

The TRS R consists of the following rules:

member124_in_gag(T120, .(.(T120, .(X117, [])), T121)) → member124_out_gag(T120, X117, .(.(T120, .(X117, [])), T121))
member124_in_gag(T128, .(T129, T130)) → U2_gag(T128, T129, T130, member124_in_gag(T128, T130))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg(T151, .(T151, T152))
member34_in_gg(T159, .(T160, T161)) → U3_gg(T159, T160, T161, member34_in_gg(T159, T161))
U2_gag(T128, T129, T130, member124_out_gag(T128, X131, T130)) → member124_out_gag(T128, X131, .(T129, T130))
U3_gg(T159, T160, T161, member34_out_gg(T159, T161)) → member34_out_gg(T159, .(T160, T161))

The set Q consists of the following terms:

member124_in_gag(x0, x1)
member34_in_gg(x0, x1)
U2_gag(x0, x1, x2, x3)
U3_gg(x0, x1, x2, x3)

We have to consider all (P,Q,R)-chains.

(115) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U7_GGGG(T99, T100, T101, T102, T107, member34_out_gg(T107, T102)) → REACH1_IN_GGGG(T107, T100, T101, .(T107, T102)) we obtained the following new rules [LPAR04]:

U7_GGGG(z0, z1, z2, .(z3, z4), z3, member34_out_gg(z3, .(z3, z4))) → REACH1_IN_GGGG(z3, z1, z2, .(z3, .(z3, z4)))
U7_GGGG(z0, z1, z2, .(z3, z4), z5, member34_out_gg(z5, .(z3, z4))) → REACH1_IN_GGGG(z5, z1, z2, .(z5, .(z3, z4)))

(116) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REACH1_IN_GGGG(x0, y1, .(.(x0, .(x1, [])), x2), y3) → U6_GGGG(x0, y1, .(.(x0, .(x1, [])), x2), y3, member124_out_gag(x0, x1, .(.(x0, .(x1, [])), x2)))
REACH1_IN_GGGG(x0, y1, .(x1, x2), y3) → U6_GGGG(x0, y1, .(x1, x2), y3, U2_gag(x0, x1, x2, member124_in_gag(x0, x2)))
U6_GGGG(y0, y1, y2, .(x0, x1), member124_out_gag(y0, x0, y2)) → U7_GGGG(y0, y1, y2, .(x0, x1), x0, member34_out_gg(x0, .(x0, x1)))
U6_GGGG(y0, y1, y2, .(x1, x2), member124_out_gag(y0, x0, y2)) → U7_GGGG(y0, y1, y2, .(x1, x2), x0, U3_gg(x0, x1, x2, member34_in_gg(x0, x2)))
U7_GGGG(z0, z1, z2, .(z3, z4), z3, member34_out_gg(z3, .(z3, z4))) → REACH1_IN_GGGG(z3, z1, z2, .(z3, .(z3, z4)))
U7_GGGG(z0, z1, z2, .(z3, z4), z5, member34_out_gg(z5, .(z3, z4))) → REACH1_IN_GGGG(z5, z1, z2, .(z5, .(z3, z4)))

The TRS R consists of the following rules:

member124_in_gag(T120, .(.(T120, .(X117, [])), T121)) → member124_out_gag(T120, X117, .(.(T120, .(X117, [])), T121))
member124_in_gag(T128, .(T129, T130)) → U2_gag(T128, T129, T130, member124_in_gag(T128, T130))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg(T151, .(T151, T152))
member34_in_gg(T159, .(T160, T161)) → U3_gg(T159, T160, T161, member34_in_gg(T159, T161))
U2_gag(T128, T129, T130, member124_out_gag(T128, X131, T130)) → member124_out_gag(T128, X131, .(T129, T130))
U3_gg(T159, T160, T161, member34_out_gg(T159, T161)) → member34_out_gg(T159, .(T160, T161))

The set Q consists of the following terms:

member124_in_gag(x0, x1)
member34_in_gg(x0, x1)
U2_gag(x0, x1, x2, x3)
U3_gg(x0, x1, x2, x3)

We have to consider all (P,Q,R)-chains.

(117) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule REACH1_IN_GGGG(x0, y1, .(.(x0, .(x1, [])), x2), y3) → U6_GGGG(x0, y1, .(.(x0, .(x1, [])), x2), y3, member124_out_gag(x0, x1, .(.(x0, .(x1, [])), x2))) we obtained the following new rules [LPAR04]:

REACH1_IN_GGGG(z3, z1, .(.(z3, .(x2, [])), x3), .(z3, .(z3, z4))) → U6_GGGG(z3, z1, .(.(z3, .(x2, [])), x3), .(z3, .(z3, z4)), member124_out_gag(z3, x2, .(.(z3, .(x2, [])), x3)))
REACH1_IN_GGGG(z5, z1, .(.(z5, .(x2, [])), x3), .(z5, .(z3, z4))) → U6_GGGG(z5, z1, .(.(z5, .(x2, [])), x3), .(z5, .(z3, z4)), member124_out_gag(z5, x2, .(.(z5, .(x2, [])), x3)))

(118) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REACH1_IN_GGGG(x0, y1, .(x1, x2), y3) → U6_GGGG(x0, y1, .(x1, x2), y3, U2_gag(x0, x1, x2, member124_in_gag(x0, x2)))
U6_GGGG(y0, y1, y2, .(x0, x1), member124_out_gag(y0, x0, y2)) → U7_GGGG(y0, y1, y2, .(x0, x1), x0, member34_out_gg(x0, .(x0, x1)))
U6_GGGG(y0, y1, y2, .(x1, x2), member124_out_gag(y0, x0, y2)) → U7_GGGG(y0, y1, y2, .(x1, x2), x0, U3_gg(x0, x1, x2, member34_in_gg(x0, x2)))
U7_GGGG(z0, z1, z2, .(z3, z4), z3, member34_out_gg(z3, .(z3, z4))) → REACH1_IN_GGGG(z3, z1, z2, .(z3, .(z3, z4)))
U7_GGGG(z0, z1, z2, .(z3, z4), z5, member34_out_gg(z5, .(z3, z4))) → REACH1_IN_GGGG(z5, z1, z2, .(z5, .(z3, z4)))
REACH1_IN_GGGG(z3, z1, .(.(z3, .(x2, [])), x3), .(z3, .(z3, z4))) → U6_GGGG(z3, z1, .(.(z3, .(x2, [])), x3), .(z3, .(z3, z4)), member124_out_gag(z3, x2, .(.(z3, .(x2, [])), x3)))
REACH1_IN_GGGG(z5, z1, .(.(z5, .(x2, [])), x3), .(z5, .(z3, z4))) → U6_GGGG(z5, z1, .(.(z5, .(x2, [])), x3), .(z5, .(z3, z4)), member124_out_gag(z5, x2, .(.(z5, .(x2, [])), x3)))

The TRS R consists of the following rules:

member124_in_gag(T120, .(.(T120, .(X117, [])), T121)) → member124_out_gag(T120, X117, .(.(T120, .(X117, [])), T121))
member124_in_gag(T128, .(T129, T130)) → U2_gag(T128, T129, T130, member124_in_gag(T128, T130))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg(T151, .(T151, T152))
member34_in_gg(T159, .(T160, T161)) → U3_gg(T159, T160, T161, member34_in_gg(T159, T161))
U2_gag(T128, T129, T130, member124_out_gag(T128, X131, T130)) → member124_out_gag(T128, X131, .(T129, T130))
U3_gg(T159, T160, T161, member34_out_gg(T159, T161)) → member34_out_gg(T159, .(T160, T161))

The set Q consists of the following terms:

member124_in_gag(x0, x1)
member34_in_gg(x0, x1)
U2_gag(x0, x1, x2, x3)
U3_gg(x0, x1, x2, x3)

We have to consider all (P,Q,R)-chains.

(119) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule REACH1_IN_GGGG(x0, y1, .(x1, x2), y3) → U6_GGGG(x0, y1, .(x1, x2), y3, U2_gag(x0, x1, x2, member124_in_gag(x0, x2))) we obtained the following new rules [LPAR04]:

REACH1_IN_GGGG(z3, z1, .(x2, x3), .(z3, .(z3, z4))) → U6_GGGG(z3, z1, .(x2, x3), .(z3, .(z3, z4)), U2_gag(z3, x2, x3, member124_in_gag(z3, x3)))
REACH1_IN_GGGG(z5, z1, .(x2, x3), .(z5, .(z3, z4))) → U6_GGGG(z5, z1, .(x2, x3), .(z5, .(z3, z4)), U2_gag(z5, x2, x3, member124_in_gag(z5, x3)))

(120) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U6_GGGG(y0, y1, y2, .(x0, x1), member124_out_gag(y0, x0, y2)) → U7_GGGG(y0, y1, y2, .(x0, x1), x0, member34_out_gg(x0, .(x0, x1)))
U6_GGGG(y0, y1, y2, .(x1, x2), member124_out_gag(y0, x0, y2)) → U7_GGGG(y0, y1, y2, .(x1, x2), x0, U3_gg(x0, x1, x2, member34_in_gg(x0, x2)))
U7_GGGG(z0, z1, z2, .(z3, z4), z3, member34_out_gg(z3, .(z3, z4))) → REACH1_IN_GGGG(z3, z1, z2, .(z3, .(z3, z4)))
U7_GGGG(z0, z1, z2, .(z3, z4), z5, member34_out_gg(z5, .(z3, z4))) → REACH1_IN_GGGG(z5, z1, z2, .(z5, .(z3, z4)))
REACH1_IN_GGGG(z3, z1, .(.(z3, .(x2, [])), x3), .(z3, .(z3, z4))) → U6_GGGG(z3, z1, .(.(z3, .(x2, [])), x3), .(z3, .(z3, z4)), member124_out_gag(z3, x2, .(.(z3, .(x2, [])), x3)))
REACH1_IN_GGGG(z5, z1, .(.(z5, .(x2, [])), x3), .(z5, .(z3, z4))) → U6_GGGG(z5, z1, .(.(z5, .(x2, [])), x3), .(z5, .(z3, z4)), member124_out_gag(z5, x2, .(.(z5, .(x2, [])), x3)))
REACH1_IN_GGGG(z3, z1, .(x2, x3), .(z3, .(z3, z4))) → U6_GGGG(z3, z1, .(x2, x3), .(z3, .(z3, z4)), U2_gag(z3, x2, x3, member124_in_gag(z3, x3)))
REACH1_IN_GGGG(z5, z1, .(x2, x3), .(z5, .(z3, z4))) → U6_GGGG(z5, z1, .(x2, x3), .(z5, .(z3, z4)), U2_gag(z5, x2, x3, member124_in_gag(z5, x3)))

The TRS R consists of the following rules:

member124_in_gag(T120, .(.(T120, .(X117, [])), T121)) → member124_out_gag(T120, X117, .(.(T120, .(X117, [])), T121))
member124_in_gag(T128, .(T129, T130)) → U2_gag(T128, T129, T130, member124_in_gag(T128, T130))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg(T151, .(T151, T152))
member34_in_gg(T159, .(T160, T161)) → U3_gg(T159, T160, T161, member34_in_gg(T159, T161))
U2_gag(T128, T129, T130, member124_out_gag(T128, X131, T130)) → member124_out_gag(T128, X131, .(T129, T130))
U3_gg(T159, T160, T161, member34_out_gg(T159, T161)) → member34_out_gg(T159, .(T160, T161))

The set Q consists of the following terms:

member124_in_gag(x0, x1)
member34_in_gg(x0, x1)
U2_gag(x0, x1, x2, x3)
U3_gg(x0, x1, x2, x3)

We have to consider all (P,Q,R)-chains.

(121) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U6_GGGG(y0, y1, y2, .(x0, x1), member124_out_gag(y0, x0, y2)) → U7_GGGG(y0, y1, y2, .(x0, x1), x0, member34_out_gg(x0, .(x0, x1))) we obtained the following new rules [LPAR04]:

U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z0, z4)), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z0, z4)), z0, member34_out_gg(z0, .(z0, .(z0, z4))))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, z5)), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, z5)), z0, member34_out_gg(z0, .(z0, .(z4, z5))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), member124_out_gag(z0, z0, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), z0, member34_out_gg(z0, .(z0, .(z0, z4))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), member124_out_gag(z0, z0, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), z0, member34_out_gg(z0, .(z0, .(z4, z5))))

(122) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U6_GGGG(y0, y1, y2, .(x1, x2), member124_out_gag(y0, x0, y2)) → U7_GGGG(y0, y1, y2, .(x1, x2), x0, U3_gg(x0, x1, x2, member34_in_gg(x0, x2)))
U7_GGGG(z0, z1, z2, .(z3, z4), z3, member34_out_gg(z3, .(z3, z4))) → REACH1_IN_GGGG(z3, z1, z2, .(z3, .(z3, z4)))
U7_GGGG(z0, z1, z2, .(z3, z4), z5, member34_out_gg(z5, .(z3, z4))) → REACH1_IN_GGGG(z5, z1, z2, .(z5, .(z3, z4)))
REACH1_IN_GGGG(z3, z1, .(.(z3, .(x2, [])), x3), .(z3, .(z3, z4))) → U6_GGGG(z3, z1, .(.(z3, .(x2, [])), x3), .(z3, .(z3, z4)), member124_out_gag(z3, x2, .(.(z3, .(x2, [])), x3)))
REACH1_IN_GGGG(z5, z1, .(.(z5, .(x2, [])), x3), .(z5, .(z3, z4))) → U6_GGGG(z5, z1, .(.(z5, .(x2, [])), x3), .(z5, .(z3, z4)), member124_out_gag(z5, x2, .(.(z5, .(x2, [])), x3)))
REACH1_IN_GGGG(z3, z1, .(x2, x3), .(z3, .(z3, z4))) → U6_GGGG(z3, z1, .(x2, x3), .(z3, .(z3, z4)), U2_gag(z3, x2, x3, member124_in_gag(z3, x3)))
REACH1_IN_GGGG(z5, z1, .(x2, x3), .(z5, .(z3, z4))) → U6_GGGG(z5, z1, .(x2, x3), .(z5, .(z3, z4)), U2_gag(z5, x2, x3, member124_in_gag(z5, x3)))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z0, z4)), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z0, z4)), z0, member34_out_gg(z0, .(z0, .(z0, z4))))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, z5)), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, z5)), z0, member34_out_gg(z0, .(z0, .(z4, z5))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), member124_out_gag(z0, z0, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), z0, member34_out_gg(z0, .(z0, .(z0, z4))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), member124_out_gag(z0, z0, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), z0, member34_out_gg(z0, .(z0, .(z4, z5))))

The TRS R consists of the following rules:

member124_in_gag(T120, .(.(T120, .(X117, [])), T121)) → member124_out_gag(T120, X117, .(.(T120, .(X117, [])), T121))
member124_in_gag(T128, .(T129, T130)) → U2_gag(T128, T129, T130, member124_in_gag(T128, T130))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg(T151, .(T151, T152))
member34_in_gg(T159, .(T160, T161)) → U3_gg(T159, T160, T161, member34_in_gg(T159, T161))
U2_gag(T128, T129, T130, member124_out_gag(T128, X131, T130)) → member124_out_gag(T128, X131, .(T129, T130))
U3_gg(T159, T160, T161, member34_out_gg(T159, T161)) → member34_out_gg(T159, .(T160, T161))

The set Q consists of the following terms:

member124_in_gag(x0, x1)
member34_in_gg(x0, x1)
U2_gag(x0, x1, x2, x3)
U3_gg(x0, x1, x2, x3)

We have to consider all (P,Q,R)-chains.

(123) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U6_GGGG(y0, y1, y2, .(x1, x2), member124_out_gag(y0, x0, y2)) → U7_GGGG(y0, y1, y2, .(x1, x2), x0, U3_gg(x0, x1, x2, member34_in_gg(x0, x2))) we obtained the following new rules [LPAR04]:

U6_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), member124_out_gag(z0, z2, .(.(z0, .(z2, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), z2, U3_gg(z2, z0, .(z0, z4), member34_in_gg(z2, .(z0, z4))))
U6_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), member124_out_gag(z0, z2, .(.(z0, .(z2, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), z2, U3_gg(z2, z0, .(z4, z5), member34_in_gg(z2, .(z4, z5))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), member124_out_gag(z0, x5, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), x5, U3_gg(x5, z0, .(z0, z4), member34_in_gg(x5, .(z0, z4))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), member124_out_gag(z0, x5, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), x5, U3_gg(x5, z0, .(z4, z5), member34_in_gg(x5, .(z4, z5))))

(124) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U7_GGGG(z0, z1, z2, .(z3, z4), z3, member34_out_gg(z3, .(z3, z4))) → REACH1_IN_GGGG(z3, z1, z2, .(z3, .(z3, z4)))
U7_GGGG(z0, z1, z2, .(z3, z4), z5, member34_out_gg(z5, .(z3, z4))) → REACH1_IN_GGGG(z5, z1, z2, .(z5, .(z3, z4)))
REACH1_IN_GGGG(z3, z1, .(.(z3, .(x2, [])), x3), .(z3, .(z3, z4))) → U6_GGGG(z3, z1, .(.(z3, .(x2, [])), x3), .(z3, .(z3, z4)), member124_out_gag(z3, x2, .(.(z3, .(x2, [])), x3)))
REACH1_IN_GGGG(z5, z1, .(.(z5, .(x2, [])), x3), .(z5, .(z3, z4))) → U6_GGGG(z5, z1, .(.(z5, .(x2, [])), x3), .(z5, .(z3, z4)), member124_out_gag(z5, x2, .(.(z5, .(x2, [])), x3)))
REACH1_IN_GGGG(z3, z1, .(x2, x3), .(z3, .(z3, z4))) → U6_GGGG(z3, z1, .(x2, x3), .(z3, .(z3, z4)), U2_gag(z3, x2, x3, member124_in_gag(z3, x3)))
REACH1_IN_GGGG(z5, z1, .(x2, x3), .(z5, .(z3, z4))) → U6_GGGG(z5, z1, .(x2, x3), .(z5, .(z3, z4)), U2_gag(z5, x2, x3, member124_in_gag(z5, x3)))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z0, z4)), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z0, z4)), z0, member34_out_gg(z0, .(z0, .(z0, z4))))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, z5)), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, z5)), z0, member34_out_gg(z0, .(z0, .(z4, z5))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), member124_out_gag(z0, z0, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), z0, member34_out_gg(z0, .(z0, .(z0, z4))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), member124_out_gag(z0, z0, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), z0, member34_out_gg(z0, .(z0, .(z4, z5))))
U6_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), member124_out_gag(z0, z2, .(.(z0, .(z2, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), z2, U3_gg(z2, z0, .(z0, z4), member34_in_gg(z2, .(z0, z4))))
U6_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), member124_out_gag(z0, z2, .(.(z0, .(z2, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), z2, U3_gg(z2, z0, .(z4, z5), member34_in_gg(z2, .(z4, z5))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), member124_out_gag(z0, x5, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), x5, U3_gg(x5, z0, .(z0, z4), member34_in_gg(x5, .(z0, z4))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), member124_out_gag(z0, x5, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), x5, U3_gg(x5, z0, .(z4, z5), member34_in_gg(x5, .(z4, z5))))

The TRS R consists of the following rules:

member124_in_gag(T120, .(.(T120, .(X117, [])), T121)) → member124_out_gag(T120, X117, .(.(T120, .(X117, [])), T121))
member124_in_gag(T128, .(T129, T130)) → U2_gag(T128, T129, T130, member124_in_gag(T128, T130))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg(T151, .(T151, T152))
member34_in_gg(T159, .(T160, T161)) → U3_gg(T159, T160, T161, member34_in_gg(T159, T161))
U2_gag(T128, T129, T130, member124_out_gag(T128, X131, T130)) → member124_out_gag(T128, X131, .(T129, T130))
U3_gg(T159, T160, T161, member34_out_gg(T159, T161)) → member34_out_gg(T159, .(T160, T161))

The set Q consists of the following terms:

member124_in_gag(x0, x1)
member34_in_gg(x0, x1)
U2_gag(x0, x1, x2, x3)
U3_gg(x0, x1, x2, x3)

We have to consider all (P,Q,R)-chains.

(125) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U7_GGGG(z0, z1, z2, .(z3, z4), z3, member34_out_gg(z3, .(z3, z4))) → REACH1_IN_GGGG(z3, z1, z2, .(z3, .(z3, z4))) we obtained the following new rules [LPAR04]:

U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, z3)), z0, member34_out_gg(z0, .(z0, .(z0, z3)))) → REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))))
U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z3, z4)), z0, member34_out_gg(z0, .(z0, .(z3, z4)))) → REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))))
U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), z0, member34_out_gg(z0, .(z0, .(z0, z4)))) → REACH1_IN_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4))))
U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), z0, member34_out_gg(z0, .(z0, .(z4, z5)))) → REACH1_IN_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5))))

(126) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U7_GGGG(z0, z1, z2, .(z3, z4), z5, member34_out_gg(z5, .(z3, z4))) → REACH1_IN_GGGG(z5, z1, z2, .(z5, .(z3, z4)))
REACH1_IN_GGGG(z3, z1, .(.(z3, .(x2, [])), x3), .(z3, .(z3, z4))) → U6_GGGG(z3, z1, .(.(z3, .(x2, [])), x3), .(z3, .(z3, z4)), member124_out_gag(z3, x2, .(.(z3, .(x2, [])), x3)))
REACH1_IN_GGGG(z5, z1, .(.(z5, .(x2, [])), x3), .(z5, .(z3, z4))) → U6_GGGG(z5, z1, .(.(z5, .(x2, [])), x3), .(z5, .(z3, z4)), member124_out_gag(z5, x2, .(.(z5, .(x2, [])), x3)))
REACH1_IN_GGGG(z3, z1, .(x2, x3), .(z3, .(z3, z4))) → U6_GGGG(z3, z1, .(x2, x3), .(z3, .(z3, z4)), U2_gag(z3, x2, x3, member124_in_gag(z3, x3)))
REACH1_IN_GGGG(z5, z1, .(x2, x3), .(z5, .(z3, z4))) → U6_GGGG(z5, z1, .(x2, x3), .(z5, .(z3, z4)), U2_gag(z5, x2, x3, member124_in_gag(z5, x3)))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z0, z4)), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z0, z4)), z0, member34_out_gg(z0, .(z0, .(z0, z4))))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, z5)), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, z5)), z0, member34_out_gg(z0, .(z0, .(z4, z5))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), member124_out_gag(z0, z0, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), z0, member34_out_gg(z0, .(z0, .(z0, z4))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), member124_out_gag(z0, z0, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), z0, member34_out_gg(z0, .(z0, .(z4, z5))))
U6_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), member124_out_gag(z0, z2, .(.(z0, .(z2, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), z2, U3_gg(z2, z0, .(z0, z4), member34_in_gg(z2, .(z0, z4))))
U6_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), member124_out_gag(z0, z2, .(.(z0, .(z2, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), z2, U3_gg(z2, z0, .(z4, z5), member34_in_gg(z2, .(z4, z5))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), member124_out_gag(z0, x5, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), x5, U3_gg(x5, z0, .(z0, z4), member34_in_gg(x5, .(z0, z4))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), member124_out_gag(z0, x5, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), x5, U3_gg(x5, z0, .(z4, z5), member34_in_gg(x5, .(z4, z5))))
U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, z3)), z0, member34_out_gg(z0, .(z0, .(z0, z3)))) → REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))))
U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z3, z4)), z0, member34_out_gg(z0, .(z0, .(z3, z4)))) → REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))))
U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), z0, member34_out_gg(z0, .(z0, .(z0, z4)))) → REACH1_IN_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4))))
U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), z0, member34_out_gg(z0, .(z0, .(z4, z5)))) → REACH1_IN_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5))))

The TRS R consists of the following rules:

member124_in_gag(T120, .(.(T120, .(X117, [])), T121)) → member124_out_gag(T120, X117, .(.(T120, .(X117, [])), T121))
member124_in_gag(T128, .(T129, T130)) → U2_gag(T128, T129, T130, member124_in_gag(T128, T130))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg(T151, .(T151, T152))
member34_in_gg(T159, .(T160, T161)) → U3_gg(T159, T160, T161, member34_in_gg(T159, T161))
U2_gag(T128, T129, T130, member124_out_gag(T128, X131, T130)) → member124_out_gag(T128, X131, .(T129, T130))
U3_gg(T159, T160, T161, member34_out_gg(T159, T161)) → member34_out_gg(T159, .(T160, T161))

The set Q consists of the following terms:

member124_in_gag(x0, x1)
member34_in_gg(x0, x1)
U2_gag(x0, x1, x2, x3)
U3_gg(x0, x1, x2, x3)

We have to consider all (P,Q,R)-chains.

(127) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U7_GGGG(z0, z1, z2, .(z3, z4), z5, member34_out_gg(z5, .(z3, z4))) → REACH1_IN_GGGG(z5, z1, z2, .(z5, .(z3, z4))) we obtained the following new rules [LPAR04]:

U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, z3)), z0, member34_out_gg(z0, .(z0, .(z0, z3)))) → REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))))
U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z3, z4)), z0, member34_out_gg(z0, .(z0, .(z3, z4)))) → REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))))
U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), z0, member34_out_gg(z0, .(z0, .(z0, z4)))) → REACH1_IN_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4))))
U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), z0, member34_out_gg(z0, .(z0, .(z4, z5)))) → REACH1_IN_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5))))
U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), z2, member34_out_gg(z2, .(z0, .(z0, z4)))) → REACH1_IN_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z0, z4))))
U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), z2, member34_out_gg(z2, .(z0, .(z4, z5)))) → REACH1_IN_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z4, z5))))
U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), z5, member34_out_gg(z5, .(z0, .(z0, z4)))) → REACH1_IN_GGGG(z5, z1, .(z2, z3), .(z5, .(z0, .(z0, z4))))
U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), z6, member34_out_gg(z6, .(z0, .(z4, z5)))) → REACH1_IN_GGGG(z6, z1, .(z2, z3), .(z6, .(z0, .(z4, z5))))

(128) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REACH1_IN_GGGG(z3, z1, .(.(z3, .(x2, [])), x3), .(z3, .(z3, z4))) → U6_GGGG(z3, z1, .(.(z3, .(x2, [])), x3), .(z3, .(z3, z4)), member124_out_gag(z3, x2, .(.(z3, .(x2, [])), x3)))
REACH1_IN_GGGG(z5, z1, .(.(z5, .(x2, [])), x3), .(z5, .(z3, z4))) → U6_GGGG(z5, z1, .(.(z5, .(x2, [])), x3), .(z5, .(z3, z4)), member124_out_gag(z5, x2, .(.(z5, .(x2, [])), x3)))
REACH1_IN_GGGG(z3, z1, .(x2, x3), .(z3, .(z3, z4))) → U6_GGGG(z3, z1, .(x2, x3), .(z3, .(z3, z4)), U2_gag(z3, x2, x3, member124_in_gag(z3, x3)))
REACH1_IN_GGGG(z5, z1, .(x2, x3), .(z5, .(z3, z4))) → U6_GGGG(z5, z1, .(x2, x3), .(z5, .(z3, z4)), U2_gag(z5, x2, x3, member124_in_gag(z5, x3)))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z0, z4)), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z0, z4)), z0, member34_out_gg(z0, .(z0, .(z0, z4))))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, z5)), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, z5)), z0, member34_out_gg(z0, .(z0, .(z4, z5))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), member124_out_gag(z0, z0, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), z0, member34_out_gg(z0, .(z0, .(z0, z4))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), member124_out_gag(z0, z0, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), z0, member34_out_gg(z0, .(z0, .(z4, z5))))
U6_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), member124_out_gag(z0, z2, .(.(z0, .(z2, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), z2, U3_gg(z2, z0, .(z0, z4), member34_in_gg(z2, .(z0, z4))))
U6_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), member124_out_gag(z0, z2, .(.(z0, .(z2, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), z2, U3_gg(z2, z0, .(z4, z5), member34_in_gg(z2, .(z4, z5))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), member124_out_gag(z0, x5, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), x5, U3_gg(x5, z0, .(z0, z4), member34_in_gg(x5, .(z0, z4))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), member124_out_gag(z0, x5, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), x5, U3_gg(x5, z0, .(z4, z5), member34_in_gg(x5, .(z4, z5))))
U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, z3)), z0, member34_out_gg(z0, .(z0, .(z0, z3)))) → REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))))
U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z3, z4)), z0, member34_out_gg(z0, .(z0, .(z3, z4)))) → REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))))
U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), z0, member34_out_gg(z0, .(z0, .(z0, z4)))) → REACH1_IN_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4))))
U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), z0, member34_out_gg(z0, .(z0, .(z4, z5)))) → REACH1_IN_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5))))
U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), z2, member34_out_gg(z2, .(z0, .(z0, z4)))) → REACH1_IN_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z0, z4))))
U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), z2, member34_out_gg(z2, .(z0, .(z4, z5)))) → REACH1_IN_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z4, z5))))
U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), z5, member34_out_gg(z5, .(z0, .(z0, z4)))) → REACH1_IN_GGGG(z5, z1, .(z2, z3), .(z5, .(z0, .(z0, z4))))
U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), z6, member34_out_gg(z6, .(z0, .(z4, z5)))) → REACH1_IN_GGGG(z6, z1, .(z2, z3), .(z6, .(z0, .(z4, z5))))

The TRS R consists of the following rules:

member124_in_gag(T120, .(.(T120, .(X117, [])), T121)) → member124_out_gag(T120, X117, .(.(T120, .(X117, [])), T121))
member124_in_gag(T128, .(T129, T130)) → U2_gag(T128, T129, T130, member124_in_gag(T128, T130))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg(T151, .(T151, T152))
member34_in_gg(T159, .(T160, T161)) → U3_gg(T159, T160, T161, member34_in_gg(T159, T161))
U2_gag(T128, T129, T130, member124_out_gag(T128, X131, T130)) → member124_out_gag(T128, X131, .(T129, T130))
U3_gg(T159, T160, T161, member34_out_gg(T159, T161)) → member34_out_gg(T159, .(T160, T161))

The set Q consists of the following terms:

member124_in_gag(x0, x1)
member34_in_gg(x0, x1)
U2_gag(x0, x1, x2, x3)
U3_gg(x0, x1, x2, x3)

We have to consider all (P,Q,R)-chains.

(129) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule REACH1_IN_GGGG(z3, z1, .(.(z3, .(x2, [])), x3), .(z3, .(z3, z4))) → U6_GGGG(z3, z1, .(.(z3, .(x2, [])), x3), .(z3, .(z3, z4)), member124_out_gag(z3, x2, .(.(z3, .(x2, [])), x3))) we obtained the following new rules [LPAR04]:

REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3)))) → U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4)))) → U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(x2, [])), z3), .(z0, .(z0, .(z0, z4)))) → U6_GGGG(z0, z1, .(.(z0, .(x2, [])), z3), .(z0, .(z0, .(z0, z4))), member124_out_gag(z0, x2, .(.(z0, .(x2, [])), z3)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(x2, [])), z3), .(z0, .(z0, .(z4, z5)))) → U6_GGGG(z0, z1, .(.(z0, .(x2, [])), z3), .(z0, .(z0, .(z4, z5))), member124_out_gag(z0, x2, .(.(z0, .(x2, [])), z3)))

(130) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REACH1_IN_GGGG(z5, z1, .(.(z5, .(x2, [])), x3), .(z5, .(z3, z4))) → U6_GGGG(z5, z1, .(.(z5, .(x2, [])), x3), .(z5, .(z3, z4)), member124_out_gag(z5, x2, .(.(z5, .(x2, [])), x3)))
REACH1_IN_GGGG(z3, z1, .(x2, x3), .(z3, .(z3, z4))) → U6_GGGG(z3, z1, .(x2, x3), .(z3, .(z3, z4)), U2_gag(z3, x2, x3, member124_in_gag(z3, x3)))
REACH1_IN_GGGG(z5, z1, .(x2, x3), .(z5, .(z3, z4))) → U6_GGGG(z5, z1, .(x2, x3), .(z5, .(z3, z4)), U2_gag(z5, x2, x3, member124_in_gag(z5, x3)))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z0, z4)), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z0, z4)), z0, member34_out_gg(z0, .(z0, .(z0, z4))))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, z5)), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, z5)), z0, member34_out_gg(z0, .(z0, .(z4, z5))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), member124_out_gag(z0, z0, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), z0, member34_out_gg(z0, .(z0, .(z0, z4))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), member124_out_gag(z0, z0, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), z0, member34_out_gg(z0, .(z0, .(z4, z5))))
U6_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), member124_out_gag(z0, z2, .(.(z0, .(z2, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), z2, U3_gg(z2, z0, .(z0, z4), member34_in_gg(z2, .(z0, z4))))
U6_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), member124_out_gag(z0, z2, .(.(z0, .(z2, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), z2, U3_gg(z2, z0, .(z4, z5), member34_in_gg(z2, .(z4, z5))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), member124_out_gag(z0, x5, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), x5, U3_gg(x5, z0, .(z0, z4), member34_in_gg(x5, .(z0, z4))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), member124_out_gag(z0, x5, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), x5, U3_gg(x5, z0, .(z4, z5), member34_in_gg(x5, .(z4, z5))))
U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, z3)), z0, member34_out_gg(z0, .(z0, .(z0, z3)))) → REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))))
U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z3, z4)), z0, member34_out_gg(z0, .(z0, .(z3, z4)))) → REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))))
U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), z0, member34_out_gg(z0, .(z0, .(z0, z4)))) → REACH1_IN_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4))))
U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), z0, member34_out_gg(z0, .(z0, .(z4, z5)))) → REACH1_IN_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5))))
U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), z2, member34_out_gg(z2, .(z0, .(z0, z4)))) → REACH1_IN_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z0, z4))))
U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), z2, member34_out_gg(z2, .(z0, .(z4, z5)))) → REACH1_IN_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z4, z5))))
U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), z5, member34_out_gg(z5, .(z0, .(z0, z4)))) → REACH1_IN_GGGG(z5, z1, .(z2, z3), .(z5, .(z0, .(z0, z4))))
U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), z6, member34_out_gg(z6, .(z0, .(z4, z5)))) → REACH1_IN_GGGG(z6, z1, .(z2, z3), .(z6, .(z0, .(z4, z5))))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3)))) → U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4)))) → U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(x2, [])), z3), .(z0, .(z0, .(z0, z4)))) → U6_GGGG(z0, z1, .(.(z0, .(x2, [])), z3), .(z0, .(z0, .(z0, z4))), member124_out_gag(z0, x2, .(.(z0, .(x2, [])), z3)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(x2, [])), z3), .(z0, .(z0, .(z4, z5)))) → U6_GGGG(z0, z1, .(.(z0, .(x2, [])), z3), .(z0, .(z0, .(z4, z5))), member124_out_gag(z0, x2, .(.(z0, .(x2, [])), z3)))

The TRS R consists of the following rules:

member124_in_gag(T120, .(.(T120, .(X117, [])), T121)) → member124_out_gag(T120, X117, .(.(T120, .(X117, [])), T121))
member124_in_gag(T128, .(T129, T130)) → U2_gag(T128, T129, T130, member124_in_gag(T128, T130))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg(T151, .(T151, T152))
member34_in_gg(T159, .(T160, T161)) → U3_gg(T159, T160, T161, member34_in_gg(T159, T161))
U2_gag(T128, T129, T130, member124_out_gag(T128, X131, T130)) → member124_out_gag(T128, X131, .(T129, T130))
U3_gg(T159, T160, T161, member34_out_gg(T159, T161)) → member34_out_gg(T159, .(T160, T161))

The set Q consists of the following terms:

member124_in_gag(x0, x1)
member34_in_gg(x0, x1)
U2_gag(x0, x1, x2, x3)
U3_gg(x0, x1, x2, x3)

We have to consider all (P,Q,R)-chains.

(131) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule REACH1_IN_GGGG(z5, z1, .(.(z5, .(x2, [])), x3), .(z5, .(z3, z4))) → U6_GGGG(z5, z1, .(.(z5, .(x2, [])), x3), .(z5, .(z3, z4)), member124_out_gag(z5, x2, .(.(z5, .(x2, [])), x3))) we obtained the following new rules [LPAR04]:

REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3)))) → U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4)))) → U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(x2, [])), z3), .(z0, .(z0, .(z0, z4)))) → U6_GGGG(z0, z1, .(.(z0, .(x2, [])), z3), .(z0, .(z0, .(z0, z4))), member124_out_gag(z0, x2, .(.(z0, .(x2, [])), z3)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(x2, [])), z3), .(z0, .(z0, .(z4, z5)))) → U6_GGGG(z0, z1, .(.(z0, .(x2, [])), z3), .(z0, .(z0, .(z4, z5))), member124_out_gag(z0, x2, .(.(z0, .(x2, [])), z3)))
REACH1_IN_GGGG(z5, z1, .(.(z5, .(x2, [])), z3), .(z5, .(z0, .(z0, z4)))) → U6_GGGG(z5, z1, .(.(z5, .(x2, [])), z3), .(z5, .(z0, .(z0, z4))), member124_out_gag(z5, x2, .(.(z5, .(x2, [])), z3)))
REACH1_IN_GGGG(z6, z1, .(.(z6, .(x2, [])), z3), .(z6, .(z0, .(z4, z5)))) → U6_GGGG(z6, z1, .(.(z6, .(x2, [])), z3), .(z6, .(z0, .(z4, z5))), member124_out_gag(z6, x2, .(.(z6, .(x2, [])), z3)))

(132) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REACH1_IN_GGGG(z3, z1, .(x2, x3), .(z3, .(z3, z4))) → U6_GGGG(z3, z1, .(x2, x3), .(z3, .(z3, z4)), U2_gag(z3, x2, x3, member124_in_gag(z3, x3)))
REACH1_IN_GGGG(z5, z1, .(x2, x3), .(z5, .(z3, z4))) → U6_GGGG(z5, z1, .(x2, x3), .(z5, .(z3, z4)), U2_gag(z5, x2, x3, member124_in_gag(z5, x3)))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z0, z4)), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z0, z4)), z0, member34_out_gg(z0, .(z0, .(z0, z4))))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, z5)), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, z5)), z0, member34_out_gg(z0, .(z0, .(z4, z5))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), member124_out_gag(z0, z0, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), z0, member34_out_gg(z0, .(z0, .(z0, z4))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), member124_out_gag(z0, z0, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), z0, member34_out_gg(z0, .(z0, .(z4, z5))))
U6_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), member124_out_gag(z0, z2, .(.(z0, .(z2, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), z2, U3_gg(z2, z0, .(z0, z4), member34_in_gg(z2, .(z0, z4))))
U6_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), member124_out_gag(z0, z2, .(.(z0, .(z2, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), z2, U3_gg(z2, z0, .(z4, z5), member34_in_gg(z2, .(z4, z5))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), member124_out_gag(z0, x5, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), x5, U3_gg(x5, z0, .(z0, z4), member34_in_gg(x5, .(z0, z4))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), member124_out_gag(z0, x5, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), x5, U3_gg(x5, z0, .(z4, z5), member34_in_gg(x5, .(z4, z5))))
U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, z3)), z0, member34_out_gg(z0, .(z0, .(z0, z3)))) → REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))))
U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z3, z4)), z0, member34_out_gg(z0, .(z0, .(z3, z4)))) → REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))))
U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), z0, member34_out_gg(z0, .(z0, .(z0, z4)))) → REACH1_IN_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4))))
U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), z0, member34_out_gg(z0, .(z0, .(z4, z5)))) → REACH1_IN_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5))))
U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), z2, member34_out_gg(z2, .(z0, .(z0, z4)))) → REACH1_IN_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z0, z4))))
U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), z2, member34_out_gg(z2, .(z0, .(z4, z5)))) → REACH1_IN_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z4, z5))))
U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), z5, member34_out_gg(z5, .(z0, .(z0, z4)))) → REACH1_IN_GGGG(z5, z1, .(z2, z3), .(z5, .(z0, .(z0, z4))))
U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), z6, member34_out_gg(z6, .(z0, .(z4, z5)))) → REACH1_IN_GGGG(z6, z1, .(z2, z3), .(z6, .(z0, .(z4, z5))))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3)))) → U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4)))) → U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(x2, [])), z3), .(z0, .(z0, .(z0, z4)))) → U6_GGGG(z0, z1, .(.(z0, .(x2, [])), z3), .(z0, .(z0, .(z0, z4))), member124_out_gag(z0, x2, .(.(z0, .(x2, [])), z3)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(x2, [])), z3), .(z0, .(z0, .(z4, z5)))) → U6_GGGG(z0, z1, .(.(z0, .(x2, [])), z3), .(z0, .(z0, .(z4, z5))), member124_out_gag(z0, x2, .(.(z0, .(x2, [])), z3)))
REACH1_IN_GGGG(z5, z1, .(.(z5, .(x2, [])), z3), .(z5, .(z0, .(z0, z4)))) → U6_GGGG(z5, z1, .(.(z5, .(x2, [])), z3), .(z5, .(z0, .(z0, z4))), member124_out_gag(z5, x2, .(.(z5, .(x2, [])), z3)))
REACH1_IN_GGGG(z6, z1, .(.(z6, .(x2, [])), z3), .(z6, .(z0, .(z4, z5)))) → U6_GGGG(z6, z1, .(.(z6, .(x2, [])), z3), .(z6, .(z0, .(z4, z5))), member124_out_gag(z6, x2, .(.(z6, .(x2, [])), z3)))

The TRS R consists of the following rules:

member124_in_gag(T120, .(.(T120, .(X117, [])), T121)) → member124_out_gag(T120, X117, .(.(T120, .(X117, [])), T121))
member124_in_gag(T128, .(T129, T130)) → U2_gag(T128, T129, T130, member124_in_gag(T128, T130))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg(T151, .(T151, T152))
member34_in_gg(T159, .(T160, T161)) → U3_gg(T159, T160, T161, member34_in_gg(T159, T161))
U2_gag(T128, T129, T130, member124_out_gag(T128, X131, T130)) → member124_out_gag(T128, X131, .(T129, T130))
U3_gg(T159, T160, T161, member34_out_gg(T159, T161)) → member34_out_gg(T159, .(T160, T161))

The set Q consists of the following terms:

member124_in_gag(x0, x1)
member34_in_gg(x0, x1)
U2_gag(x0, x1, x2, x3)
U3_gg(x0, x1, x2, x3)

We have to consider all (P,Q,R)-chains.

(133) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule REACH1_IN_GGGG(z3, z1, .(x2, x3), .(z3, .(z3, z4))) → U6_GGGG(z3, z1, .(x2, x3), .(z3, .(z3, z4)), U2_gag(z3, x2, x3, member124_in_gag(z3, x3))) we obtained the following new rules [LPAR04]:

REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3)))) → U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), U2_gag(z0, .(z0, .(z0, [])), z2, member124_in_gag(z0, z2)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4)))) → U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), U2_gag(z0, .(z0, .(z0, [])), z2, member124_in_gag(z0, z2)))
REACH1_IN_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4)))) → U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4))), U2_gag(z0, z2, z3, member124_in_gag(z0, z3)))
REACH1_IN_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5)))) → U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5))), U2_gag(z0, z2, z3, member124_in_gag(z0, z3)))

(134) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REACH1_IN_GGGG(z5, z1, .(x2, x3), .(z5, .(z3, z4))) → U6_GGGG(z5, z1, .(x2, x3), .(z5, .(z3, z4)), U2_gag(z5, x2, x3, member124_in_gag(z5, x3)))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z0, z4)), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z0, z4)), z0, member34_out_gg(z0, .(z0, .(z0, z4))))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, z5)), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, z5)), z0, member34_out_gg(z0, .(z0, .(z4, z5))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), member124_out_gag(z0, z0, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), z0, member34_out_gg(z0, .(z0, .(z0, z4))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), member124_out_gag(z0, z0, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), z0, member34_out_gg(z0, .(z0, .(z4, z5))))
U6_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), member124_out_gag(z0, z2, .(.(z0, .(z2, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), z2, U3_gg(z2, z0, .(z0, z4), member34_in_gg(z2, .(z0, z4))))
U6_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), member124_out_gag(z0, z2, .(.(z0, .(z2, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), z2, U3_gg(z2, z0, .(z4, z5), member34_in_gg(z2, .(z4, z5))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), member124_out_gag(z0, x5, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), x5, U3_gg(x5, z0, .(z0, z4), member34_in_gg(x5, .(z0, z4))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), member124_out_gag(z0, x5, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), x5, U3_gg(x5, z0, .(z4, z5), member34_in_gg(x5, .(z4, z5))))
U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, z3)), z0, member34_out_gg(z0, .(z0, .(z0, z3)))) → REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))))
U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z3, z4)), z0, member34_out_gg(z0, .(z0, .(z3, z4)))) → REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))))
U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), z0, member34_out_gg(z0, .(z0, .(z0, z4)))) → REACH1_IN_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4))))
U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), z0, member34_out_gg(z0, .(z0, .(z4, z5)))) → REACH1_IN_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5))))
U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), z2, member34_out_gg(z2, .(z0, .(z0, z4)))) → REACH1_IN_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z0, z4))))
U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), z2, member34_out_gg(z2, .(z0, .(z4, z5)))) → REACH1_IN_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z4, z5))))
U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), z5, member34_out_gg(z5, .(z0, .(z0, z4)))) → REACH1_IN_GGGG(z5, z1, .(z2, z3), .(z5, .(z0, .(z0, z4))))
U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), z6, member34_out_gg(z6, .(z0, .(z4, z5)))) → REACH1_IN_GGGG(z6, z1, .(z2, z3), .(z6, .(z0, .(z4, z5))))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3)))) → U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4)))) → U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(x2, [])), z3), .(z0, .(z0, .(z0, z4)))) → U6_GGGG(z0, z1, .(.(z0, .(x2, [])), z3), .(z0, .(z0, .(z0, z4))), member124_out_gag(z0, x2, .(.(z0, .(x2, [])), z3)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(x2, [])), z3), .(z0, .(z0, .(z4, z5)))) → U6_GGGG(z0, z1, .(.(z0, .(x2, [])), z3), .(z0, .(z0, .(z4, z5))), member124_out_gag(z0, x2, .(.(z0, .(x2, [])), z3)))
REACH1_IN_GGGG(z5, z1, .(.(z5, .(x2, [])), z3), .(z5, .(z0, .(z0, z4)))) → U6_GGGG(z5, z1, .(.(z5, .(x2, [])), z3), .(z5, .(z0, .(z0, z4))), member124_out_gag(z5, x2, .(.(z5, .(x2, [])), z3)))
REACH1_IN_GGGG(z6, z1, .(.(z6, .(x2, [])), z3), .(z6, .(z0, .(z4, z5)))) → U6_GGGG(z6, z1, .(.(z6, .(x2, [])), z3), .(z6, .(z0, .(z4, z5))), member124_out_gag(z6, x2, .(.(z6, .(x2, [])), z3)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3)))) → U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), U2_gag(z0, .(z0, .(z0, [])), z2, member124_in_gag(z0, z2)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4)))) → U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), U2_gag(z0, .(z0, .(z0, [])), z2, member124_in_gag(z0, z2)))
REACH1_IN_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4)))) → U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4))), U2_gag(z0, z2, z3, member124_in_gag(z0, z3)))
REACH1_IN_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5)))) → U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5))), U2_gag(z0, z2, z3, member124_in_gag(z0, z3)))

The TRS R consists of the following rules:

member124_in_gag(T120, .(.(T120, .(X117, [])), T121)) → member124_out_gag(T120, X117, .(.(T120, .(X117, [])), T121))
member124_in_gag(T128, .(T129, T130)) → U2_gag(T128, T129, T130, member124_in_gag(T128, T130))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg(T151, .(T151, T152))
member34_in_gg(T159, .(T160, T161)) → U3_gg(T159, T160, T161, member34_in_gg(T159, T161))
U2_gag(T128, T129, T130, member124_out_gag(T128, X131, T130)) → member124_out_gag(T128, X131, .(T129, T130))
U3_gg(T159, T160, T161, member34_out_gg(T159, T161)) → member34_out_gg(T159, .(T160, T161))

The set Q consists of the following terms:

member124_in_gag(x0, x1)
member34_in_gg(x0, x1)
U2_gag(x0, x1, x2, x3)
U3_gg(x0, x1, x2, x3)

We have to consider all (P,Q,R)-chains.

(135) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule REACH1_IN_GGGG(z5, z1, .(x2, x3), .(z5, .(z3, z4))) → U6_GGGG(z5, z1, .(x2, x3), .(z5, .(z3, z4)), U2_gag(z5, x2, x3, member124_in_gag(z5, x3))) we obtained the following new rules [LPAR04]:

REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3)))) → U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), U2_gag(z0, .(z0, .(z0, [])), z2, member124_in_gag(z0, z2)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4)))) → U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), U2_gag(z0, .(z0, .(z0, [])), z2, member124_in_gag(z0, z2)))
REACH1_IN_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4)))) → U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4))), U2_gag(z0, z2, z3, member124_in_gag(z0, z3)))
REACH1_IN_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5)))) → U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5))), U2_gag(z0, z2, z3, member124_in_gag(z0, z3)))
REACH1_IN_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z0, z4)))) → U6_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z0, z4))), U2_gag(z2, .(z0, .(z2, [])), z3, member124_in_gag(z2, z3)))
REACH1_IN_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z4, z5)))) → U6_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z4, z5))), U2_gag(z2, .(z0, .(z2, [])), z3, member124_in_gag(z2, z3)))
REACH1_IN_GGGG(z5, z1, .(z2, z3), .(z5, .(z0, .(z0, z4)))) → U6_GGGG(z5, z1, .(z2, z3), .(z5, .(z0, .(z0, z4))), U2_gag(z5, z2, z3, member124_in_gag(z5, z3)))
REACH1_IN_GGGG(z6, z1, .(z2, z3), .(z6, .(z0, .(z4, z5)))) → U6_GGGG(z6, z1, .(z2, z3), .(z6, .(z0, .(z4, z5))), U2_gag(z6, z2, z3, member124_in_gag(z6, z3)))

(136) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z0, z4)), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z0, z4)), z0, member34_out_gg(z0, .(z0, .(z0, z4))))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, z5)), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, z5)), z0, member34_out_gg(z0, .(z0, .(z4, z5))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), member124_out_gag(z0, z0, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), z0, member34_out_gg(z0, .(z0, .(z0, z4))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), member124_out_gag(z0, z0, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), z0, member34_out_gg(z0, .(z0, .(z4, z5))))
U6_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), member124_out_gag(z0, z2, .(.(z0, .(z2, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), z2, U3_gg(z2, z0, .(z0, z4), member34_in_gg(z2, .(z0, z4))))
U6_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), member124_out_gag(z0, z2, .(.(z0, .(z2, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), z2, U3_gg(z2, z0, .(z4, z5), member34_in_gg(z2, .(z4, z5))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), member124_out_gag(z0, x5, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), x5, U3_gg(x5, z0, .(z0, z4), member34_in_gg(x5, .(z0, z4))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), member124_out_gag(z0, x5, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), x5, U3_gg(x5, z0, .(z4, z5), member34_in_gg(x5, .(z4, z5))))
U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, z3)), z0, member34_out_gg(z0, .(z0, .(z0, z3)))) → REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))))
U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z3, z4)), z0, member34_out_gg(z0, .(z0, .(z3, z4)))) → REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))))
U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), z0, member34_out_gg(z0, .(z0, .(z0, z4)))) → REACH1_IN_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4))))
U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), z0, member34_out_gg(z0, .(z0, .(z4, z5)))) → REACH1_IN_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5))))
U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), z2, member34_out_gg(z2, .(z0, .(z0, z4)))) → REACH1_IN_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z0, z4))))
U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), z2, member34_out_gg(z2, .(z0, .(z4, z5)))) → REACH1_IN_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z4, z5))))
U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), z5, member34_out_gg(z5, .(z0, .(z0, z4)))) → REACH1_IN_GGGG(z5, z1, .(z2, z3), .(z5, .(z0, .(z0, z4))))
U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), z6, member34_out_gg(z6, .(z0, .(z4, z5)))) → REACH1_IN_GGGG(z6, z1, .(z2, z3), .(z6, .(z0, .(z4, z5))))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3)))) → U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4)))) → U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(x2, [])), z3), .(z0, .(z0, .(z0, z4)))) → U6_GGGG(z0, z1, .(.(z0, .(x2, [])), z3), .(z0, .(z0, .(z0, z4))), member124_out_gag(z0, x2, .(.(z0, .(x2, [])), z3)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(x2, [])), z3), .(z0, .(z0, .(z4, z5)))) → U6_GGGG(z0, z1, .(.(z0, .(x2, [])), z3), .(z0, .(z0, .(z4, z5))), member124_out_gag(z0, x2, .(.(z0, .(x2, [])), z3)))
REACH1_IN_GGGG(z5, z1, .(.(z5, .(x2, [])), z3), .(z5, .(z0, .(z0, z4)))) → U6_GGGG(z5, z1, .(.(z5, .(x2, [])), z3), .(z5, .(z0, .(z0, z4))), member124_out_gag(z5, x2, .(.(z5, .(x2, [])), z3)))
REACH1_IN_GGGG(z6, z1, .(.(z6, .(x2, [])), z3), .(z6, .(z0, .(z4, z5)))) → U6_GGGG(z6, z1, .(.(z6, .(x2, [])), z3), .(z6, .(z0, .(z4, z5))), member124_out_gag(z6, x2, .(.(z6, .(x2, [])), z3)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3)))) → U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), U2_gag(z0, .(z0, .(z0, [])), z2, member124_in_gag(z0, z2)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4)))) → U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), U2_gag(z0, .(z0, .(z0, [])), z2, member124_in_gag(z0, z2)))
REACH1_IN_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4)))) → U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4))), U2_gag(z0, z2, z3, member124_in_gag(z0, z3)))
REACH1_IN_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5)))) → U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5))), U2_gag(z0, z2, z3, member124_in_gag(z0, z3)))
REACH1_IN_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z0, z4)))) → U6_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z0, z4))), U2_gag(z2, .(z0, .(z2, [])), z3, member124_in_gag(z2, z3)))
REACH1_IN_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z4, z5)))) → U6_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z4, z5))), U2_gag(z2, .(z0, .(z2, [])), z3, member124_in_gag(z2, z3)))
REACH1_IN_GGGG(z5, z1, .(z2, z3), .(z5, .(z0, .(z0, z4)))) → U6_GGGG(z5, z1, .(z2, z3), .(z5, .(z0, .(z0, z4))), U2_gag(z5, z2, z3, member124_in_gag(z5, z3)))
REACH1_IN_GGGG(z6, z1, .(z2, z3), .(z6, .(z0, .(z4, z5)))) → U6_GGGG(z6, z1, .(z2, z3), .(z6, .(z0, .(z4, z5))), U2_gag(z6, z2, z3, member124_in_gag(z6, z3)))

The TRS R consists of the following rules:

member124_in_gag(T120, .(.(T120, .(X117, [])), T121)) → member124_out_gag(T120, X117, .(.(T120, .(X117, [])), T121))
member124_in_gag(T128, .(T129, T130)) → U2_gag(T128, T129, T130, member124_in_gag(T128, T130))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg(T151, .(T151, T152))
member34_in_gg(T159, .(T160, T161)) → U3_gg(T159, T160, T161, member34_in_gg(T159, T161))
U2_gag(T128, T129, T130, member124_out_gag(T128, X131, T130)) → member124_out_gag(T128, X131, .(T129, T130))
U3_gg(T159, T160, T161, member34_out_gg(T159, T161)) → member34_out_gg(T159, .(T160, T161))

The set Q consists of the following terms:

member124_in_gag(x0, x1)
member34_in_gg(x0, x1)
U2_gag(x0, x1, x2, x3)
U3_gg(x0, x1, x2, x3)

We have to consider all (P,Q,R)-chains.

(137) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z0, z4)), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z0, z4)), z0, member34_out_gg(z0, .(z0, .(z0, z4)))) we obtained the following new rules [LPAR04]:

U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), z0, member34_out_gg(z0, .(z0, .(z0, .(z0, z3)))))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), z0, member34_out_gg(z0, .(z0, .(z0, .(z3, z4)))))

(138) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, z5)), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, z5)), z0, member34_out_gg(z0, .(z0, .(z4, z5))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), member124_out_gag(z0, z0, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), z0, member34_out_gg(z0, .(z0, .(z0, z4))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), member124_out_gag(z0, z0, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), z0, member34_out_gg(z0, .(z0, .(z4, z5))))
U6_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), member124_out_gag(z0, z2, .(.(z0, .(z2, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), z2, U3_gg(z2, z0, .(z0, z4), member34_in_gg(z2, .(z0, z4))))
U6_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), member124_out_gag(z0, z2, .(.(z0, .(z2, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), z2, U3_gg(z2, z0, .(z4, z5), member34_in_gg(z2, .(z4, z5))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), member124_out_gag(z0, x5, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), x5, U3_gg(x5, z0, .(z0, z4), member34_in_gg(x5, .(z0, z4))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), member124_out_gag(z0, x5, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), x5, U3_gg(x5, z0, .(z4, z5), member34_in_gg(x5, .(z4, z5))))
U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, z3)), z0, member34_out_gg(z0, .(z0, .(z0, z3)))) → REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))))
U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z3, z4)), z0, member34_out_gg(z0, .(z0, .(z3, z4)))) → REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))))
U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), z0, member34_out_gg(z0, .(z0, .(z0, z4)))) → REACH1_IN_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4))))
U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), z0, member34_out_gg(z0, .(z0, .(z4, z5)))) → REACH1_IN_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5))))
U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), z2, member34_out_gg(z2, .(z0, .(z0, z4)))) → REACH1_IN_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z0, z4))))
U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), z2, member34_out_gg(z2, .(z0, .(z4, z5)))) → REACH1_IN_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z4, z5))))
U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), z5, member34_out_gg(z5, .(z0, .(z0, z4)))) → REACH1_IN_GGGG(z5, z1, .(z2, z3), .(z5, .(z0, .(z0, z4))))
U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), z6, member34_out_gg(z6, .(z0, .(z4, z5)))) → REACH1_IN_GGGG(z6, z1, .(z2, z3), .(z6, .(z0, .(z4, z5))))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3)))) → U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4)))) → U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(x2, [])), z3), .(z0, .(z0, .(z0, z4)))) → U6_GGGG(z0, z1, .(.(z0, .(x2, [])), z3), .(z0, .(z0, .(z0, z4))), member124_out_gag(z0, x2, .(.(z0, .(x2, [])), z3)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(x2, [])), z3), .(z0, .(z0, .(z4, z5)))) → U6_GGGG(z0, z1, .(.(z0, .(x2, [])), z3), .(z0, .(z0, .(z4, z5))), member124_out_gag(z0, x2, .(.(z0, .(x2, [])), z3)))
REACH1_IN_GGGG(z5, z1, .(.(z5, .(x2, [])), z3), .(z5, .(z0, .(z0, z4)))) → U6_GGGG(z5, z1, .(.(z5, .(x2, [])), z3), .(z5, .(z0, .(z0, z4))), member124_out_gag(z5, x2, .(.(z5, .(x2, [])), z3)))
REACH1_IN_GGGG(z6, z1, .(.(z6, .(x2, [])), z3), .(z6, .(z0, .(z4, z5)))) → U6_GGGG(z6, z1, .(.(z6, .(x2, [])), z3), .(z6, .(z0, .(z4, z5))), member124_out_gag(z6, x2, .(.(z6, .(x2, [])), z3)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3)))) → U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), U2_gag(z0, .(z0, .(z0, [])), z2, member124_in_gag(z0, z2)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4)))) → U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), U2_gag(z0, .(z0, .(z0, [])), z2, member124_in_gag(z0, z2)))
REACH1_IN_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4)))) → U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4))), U2_gag(z0, z2, z3, member124_in_gag(z0, z3)))
REACH1_IN_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5)))) → U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5))), U2_gag(z0, z2, z3, member124_in_gag(z0, z3)))
REACH1_IN_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z0, z4)))) → U6_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z0, z4))), U2_gag(z2, .(z0, .(z2, [])), z3, member124_in_gag(z2, z3)))
REACH1_IN_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z4, z5)))) → U6_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z4, z5))), U2_gag(z2, .(z0, .(z2, [])), z3, member124_in_gag(z2, z3)))
REACH1_IN_GGGG(z5, z1, .(z2, z3), .(z5, .(z0, .(z0, z4)))) → U6_GGGG(z5, z1, .(z2, z3), .(z5, .(z0, .(z0, z4))), U2_gag(z5, z2, z3, member124_in_gag(z5, z3)))
REACH1_IN_GGGG(z6, z1, .(z2, z3), .(z6, .(z0, .(z4, z5)))) → U6_GGGG(z6, z1, .(z2, z3), .(z6, .(z0, .(z4, z5))), U2_gag(z6, z2, z3, member124_in_gag(z6, z3)))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), z0, member34_out_gg(z0, .(z0, .(z0, .(z0, z3)))))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), z0, member34_out_gg(z0, .(z0, .(z0, .(z3, z4)))))

The TRS R consists of the following rules:

member124_in_gag(T120, .(.(T120, .(X117, [])), T121)) → member124_out_gag(T120, X117, .(.(T120, .(X117, [])), T121))
member124_in_gag(T128, .(T129, T130)) → U2_gag(T128, T129, T130, member124_in_gag(T128, T130))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg(T151, .(T151, T152))
member34_in_gg(T159, .(T160, T161)) → U3_gg(T159, T160, T161, member34_in_gg(T159, T161))
U2_gag(T128, T129, T130, member124_out_gag(T128, X131, T130)) → member124_out_gag(T128, X131, .(T129, T130))
U3_gg(T159, T160, T161, member34_out_gg(T159, T161)) → member34_out_gg(T159, .(T160, T161))

The set Q consists of the following terms:

member124_in_gag(x0, x1)
member34_in_gg(x0, x1)
U2_gag(x0, x1, x2, x3)
U3_gg(x0, x1, x2, x3)

We have to consider all (P,Q,R)-chains.

(139) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, z5)), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, z5)), z0, member34_out_gg(z0, .(z0, .(z4, z5)))) we obtained the following new rules [LPAR04]:

U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), z0, member34_out_gg(z0, .(z0, .(z0, .(z0, z3)))))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), z0, member34_out_gg(z0, .(z0, .(z0, .(z3, z4)))))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z4, z5))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z4, z5))), z0, member34_out_gg(z0, .(z0, .(z4, .(z4, z5)))))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z5, z6))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z5, z6))), z0, member34_out_gg(z0, .(z0, .(z4, .(z5, z6)))))

(140) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), member124_out_gag(z0, z0, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), z0, member34_out_gg(z0, .(z0, .(z0, z4))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), member124_out_gag(z0, z0, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), z0, member34_out_gg(z0, .(z0, .(z4, z5))))
U6_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), member124_out_gag(z0, z2, .(.(z0, .(z2, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), z2, U3_gg(z2, z0, .(z0, z4), member34_in_gg(z2, .(z0, z4))))
U6_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), member124_out_gag(z0, z2, .(.(z0, .(z2, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), z2, U3_gg(z2, z0, .(z4, z5), member34_in_gg(z2, .(z4, z5))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), member124_out_gag(z0, x5, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), x5, U3_gg(x5, z0, .(z0, z4), member34_in_gg(x5, .(z0, z4))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), member124_out_gag(z0, x5, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), x5, U3_gg(x5, z0, .(z4, z5), member34_in_gg(x5, .(z4, z5))))
U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, z3)), z0, member34_out_gg(z0, .(z0, .(z0, z3)))) → REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))))
U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z3, z4)), z0, member34_out_gg(z0, .(z0, .(z3, z4)))) → REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))))
U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), z0, member34_out_gg(z0, .(z0, .(z0, z4)))) → REACH1_IN_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4))))
U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), z0, member34_out_gg(z0, .(z0, .(z4, z5)))) → REACH1_IN_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5))))
U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), z2, member34_out_gg(z2, .(z0, .(z0, z4)))) → REACH1_IN_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z0, z4))))
U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), z2, member34_out_gg(z2, .(z0, .(z4, z5)))) → REACH1_IN_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z4, z5))))
U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), z5, member34_out_gg(z5, .(z0, .(z0, z4)))) → REACH1_IN_GGGG(z5, z1, .(z2, z3), .(z5, .(z0, .(z0, z4))))
U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), z6, member34_out_gg(z6, .(z0, .(z4, z5)))) → REACH1_IN_GGGG(z6, z1, .(z2, z3), .(z6, .(z0, .(z4, z5))))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3)))) → U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4)))) → U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(x2, [])), z3), .(z0, .(z0, .(z0, z4)))) → U6_GGGG(z0, z1, .(.(z0, .(x2, [])), z3), .(z0, .(z0, .(z0, z4))), member124_out_gag(z0, x2, .(.(z0, .(x2, [])), z3)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(x2, [])), z3), .(z0, .(z0, .(z4, z5)))) → U6_GGGG(z0, z1, .(.(z0, .(x2, [])), z3), .(z0, .(z0, .(z4, z5))), member124_out_gag(z0, x2, .(.(z0, .(x2, [])), z3)))
REACH1_IN_GGGG(z5, z1, .(.(z5, .(x2, [])), z3), .(z5, .(z0, .(z0, z4)))) → U6_GGGG(z5, z1, .(.(z5, .(x2, [])), z3), .(z5, .(z0, .(z0, z4))), member124_out_gag(z5, x2, .(.(z5, .(x2, [])), z3)))
REACH1_IN_GGGG(z6, z1, .(.(z6, .(x2, [])), z3), .(z6, .(z0, .(z4, z5)))) → U6_GGGG(z6, z1, .(.(z6, .(x2, [])), z3), .(z6, .(z0, .(z4, z5))), member124_out_gag(z6, x2, .(.(z6, .(x2, [])), z3)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3)))) → U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), U2_gag(z0, .(z0, .(z0, [])), z2, member124_in_gag(z0, z2)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4)))) → U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), U2_gag(z0, .(z0, .(z0, [])), z2, member124_in_gag(z0, z2)))
REACH1_IN_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4)))) → U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4))), U2_gag(z0, z2, z3, member124_in_gag(z0, z3)))
REACH1_IN_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5)))) → U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5))), U2_gag(z0, z2, z3, member124_in_gag(z0, z3)))
REACH1_IN_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z0, z4)))) → U6_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z0, z4))), U2_gag(z2, .(z0, .(z2, [])), z3, member124_in_gag(z2, z3)))
REACH1_IN_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z4, z5)))) → U6_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z4, z5))), U2_gag(z2, .(z0, .(z2, [])), z3, member124_in_gag(z2, z3)))
REACH1_IN_GGGG(z5, z1, .(z2, z3), .(z5, .(z0, .(z0, z4)))) → U6_GGGG(z5, z1, .(z2, z3), .(z5, .(z0, .(z0, z4))), U2_gag(z5, z2, z3, member124_in_gag(z5, z3)))
REACH1_IN_GGGG(z6, z1, .(z2, z3), .(z6, .(z0, .(z4, z5)))) → U6_GGGG(z6, z1, .(z2, z3), .(z6, .(z0, .(z4, z5))), U2_gag(z6, z2, z3, member124_in_gag(z6, z3)))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), z0, member34_out_gg(z0, .(z0, .(z0, .(z0, z3)))))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), z0, member34_out_gg(z0, .(z0, .(z0, .(z3, z4)))))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z4, z5))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z4, z5))), z0, member34_out_gg(z0, .(z0, .(z4, .(z4, z5)))))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z5, z6))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z5, z6))), z0, member34_out_gg(z0, .(z0, .(z4, .(z5, z6)))))

The TRS R consists of the following rules:

member124_in_gag(T120, .(.(T120, .(X117, [])), T121)) → member124_out_gag(T120, X117, .(.(T120, .(X117, [])), T121))
member124_in_gag(T128, .(T129, T130)) → U2_gag(T128, T129, T130, member124_in_gag(T128, T130))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg(T151, .(T151, T152))
member34_in_gg(T159, .(T160, T161)) → U3_gg(T159, T160, T161, member34_in_gg(T159, T161))
U2_gag(T128, T129, T130, member124_out_gag(T128, X131, T130)) → member124_out_gag(T128, X131, .(T129, T130))
U3_gg(T159, T160, T161, member34_out_gg(T159, T161)) → member34_out_gg(T159, .(T160, T161))

The set Q consists of the following terms:

member124_in_gag(x0, x1)
member34_in_gg(x0, x1)
U2_gag(x0, x1, x2, x3)
U3_gg(x0, x1, x2, x3)

We have to consider all (P,Q,R)-chains.

(141) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), member124_out_gag(z0, z0, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), z0, member34_out_gg(z0, .(z0, .(z0, z4)))) we obtained the following new rules [LPAR04]:

U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), z0, member34_out_gg(z0, .(z0, .(z0, .(z0, z3)))))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), z0, member34_out_gg(z0, .(z0, .(z0, .(z3, z4)))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4))), member124_out_gag(z0, z0, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4))), z0, member34_out_gg(z0, .(z0, .(z0, .(z0, z4)))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5))), member124_out_gag(z0, z0, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5))), z0, member34_out_gg(z0, .(z0, .(z0, .(z4, z5)))))

(142) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), member124_out_gag(z0, z0, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), z0, member34_out_gg(z0, .(z0, .(z4, z5))))
U6_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), member124_out_gag(z0, z2, .(.(z0, .(z2, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), z2, U3_gg(z2, z0, .(z0, z4), member34_in_gg(z2, .(z0, z4))))
U6_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), member124_out_gag(z0, z2, .(.(z0, .(z2, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), z2, U3_gg(z2, z0, .(z4, z5), member34_in_gg(z2, .(z4, z5))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), member124_out_gag(z0, x5, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), x5, U3_gg(x5, z0, .(z0, z4), member34_in_gg(x5, .(z0, z4))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), member124_out_gag(z0, x5, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), x5, U3_gg(x5, z0, .(z4, z5), member34_in_gg(x5, .(z4, z5))))
U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, z3)), z0, member34_out_gg(z0, .(z0, .(z0, z3)))) → REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))))
U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z3, z4)), z0, member34_out_gg(z0, .(z0, .(z3, z4)))) → REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))))
U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), z0, member34_out_gg(z0, .(z0, .(z0, z4)))) → REACH1_IN_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4))))
U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), z0, member34_out_gg(z0, .(z0, .(z4, z5)))) → REACH1_IN_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5))))
U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), z2, member34_out_gg(z2, .(z0, .(z0, z4)))) → REACH1_IN_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z0, z4))))
U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), z2, member34_out_gg(z2, .(z0, .(z4, z5)))) → REACH1_IN_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z4, z5))))
U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), z5, member34_out_gg(z5, .(z0, .(z0, z4)))) → REACH1_IN_GGGG(z5, z1, .(z2, z3), .(z5, .(z0, .(z0, z4))))
U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), z6, member34_out_gg(z6, .(z0, .(z4, z5)))) → REACH1_IN_GGGG(z6, z1, .(z2, z3), .(z6, .(z0, .(z4, z5))))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3)))) → U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4)))) → U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(x2, [])), z3), .(z0, .(z0, .(z0, z4)))) → U6_GGGG(z0, z1, .(.(z0, .(x2, [])), z3), .(z0, .(z0, .(z0, z4))), member124_out_gag(z0, x2, .(.(z0, .(x2, [])), z3)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(x2, [])), z3), .(z0, .(z0, .(z4, z5)))) → U6_GGGG(z0, z1, .(.(z0, .(x2, [])), z3), .(z0, .(z0, .(z4, z5))), member124_out_gag(z0, x2, .(.(z0, .(x2, [])), z3)))
REACH1_IN_GGGG(z5, z1, .(.(z5, .(x2, [])), z3), .(z5, .(z0, .(z0, z4)))) → U6_GGGG(z5, z1, .(.(z5, .(x2, [])), z3), .(z5, .(z0, .(z0, z4))), member124_out_gag(z5, x2, .(.(z5, .(x2, [])), z3)))
REACH1_IN_GGGG(z6, z1, .(.(z6, .(x2, [])), z3), .(z6, .(z0, .(z4, z5)))) → U6_GGGG(z6, z1, .(.(z6, .(x2, [])), z3), .(z6, .(z0, .(z4, z5))), member124_out_gag(z6, x2, .(.(z6, .(x2, [])), z3)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3)))) → U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), U2_gag(z0, .(z0, .(z0, [])), z2, member124_in_gag(z0, z2)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4)))) → U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), U2_gag(z0, .(z0, .(z0, [])), z2, member124_in_gag(z0, z2)))
REACH1_IN_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4)))) → U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4))), U2_gag(z0, z2, z3, member124_in_gag(z0, z3)))
REACH1_IN_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5)))) → U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5))), U2_gag(z0, z2, z3, member124_in_gag(z0, z3)))
REACH1_IN_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z0, z4)))) → U6_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z0, z4))), U2_gag(z2, .(z0, .(z2, [])), z3, member124_in_gag(z2, z3)))
REACH1_IN_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z4, z5)))) → U6_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z4, z5))), U2_gag(z2, .(z0, .(z2, [])), z3, member124_in_gag(z2, z3)))
REACH1_IN_GGGG(z5, z1, .(z2, z3), .(z5, .(z0, .(z0, z4)))) → U6_GGGG(z5, z1, .(z2, z3), .(z5, .(z0, .(z0, z4))), U2_gag(z5, z2, z3, member124_in_gag(z5, z3)))
REACH1_IN_GGGG(z6, z1, .(z2, z3), .(z6, .(z0, .(z4, z5)))) → U6_GGGG(z6, z1, .(z2, z3), .(z6, .(z0, .(z4, z5))), U2_gag(z6, z2, z3, member124_in_gag(z6, z3)))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), z0, member34_out_gg(z0, .(z0, .(z0, .(z0, z3)))))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), z0, member34_out_gg(z0, .(z0, .(z0, .(z3, z4)))))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z4, z5))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z4, z5))), z0, member34_out_gg(z0, .(z0, .(z4, .(z4, z5)))))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z5, z6))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z5, z6))), z0, member34_out_gg(z0, .(z0, .(z4, .(z5, z6)))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4))), member124_out_gag(z0, z0, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4))), z0, member34_out_gg(z0, .(z0, .(z0, .(z0, z4)))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5))), member124_out_gag(z0, z0, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5))), z0, member34_out_gg(z0, .(z0, .(z0, .(z4, z5)))))

The TRS R consists of the following rules:

member124_in_gag(T120, .(.(T120, .(X117, [])), T121)) → member124_out_gag(T120, X117, .(.(T120, .(X117, [])), T121))
member124_in_gag(T128, .(T129, T130)) → U2_gag(T128, T129, T130, member124_in_gag(T128, T130))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg(T151, .(T151, T152))
member34_in_gg(T159, .(T160, T161)) → U3_gg(T159, T160, T161, member34_in_gg(T159, T161))
U2_gag(T128, T129, T130, member124_out_gag(T128, X131, T130)) → member124_out_gag(T128, X131, .(T129, T130))
U3_gg(T159, T160, T161, member34_out_gg(T159, T161)) → member34_out_gg(T159, .(T160, T161))

The set Q consists of the following terms:

member124_in_gag(x0, x1)
member34_in_gg(x0, x1)
U2_gag(x0, x1, x2, x3)
U3_gg(x0, x1, x2, x3)

We have to consider all (P,Q,R)-chains.

(143) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), member124_out_gag(z0, z0, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), z0, member34_out_gg(z0, .(z0, .(z4, z5)))) we obtained the following new rules [LPAR04]:

U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), z0, member34_out_gg(z0, .(z0, .(z0, .(z0, z3)))))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), z0, member34_out_gg(z0, .(z0, .(z0, .(z3, z4)))))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z4, z5))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z4, z5))), z0, member34_out_gg(z0, .(z0, .(z4, .(z4, z5)))))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z5, z6))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z5, z6))), z0, member34_out_gg(z0, .(z0, .(z4, .(z5, z6)))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4))), member124_out_gag(z0, z0, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4))), z0, member34_out_gg(z0, .(z0, .(z0, .(z0, z4)))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5))), member124_out_gag(z0, z0, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5))), z0, member34_out_gg(z0, .(z0, .(z0, .(z4, z5)))))
U6_GGGG(z0, z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z2, z4))), member124_out_gag(z0, z0, .(.(z2, .(z0, [])), z3))) → U7_GGGG(z0, z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z2, z4))), z0, member34_out_gg(z0, .(z0, .(z2, .(z2, z4)))))
U6_GGGG(z0, z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z4, z5))), member124_out_gag(z0, z0, .(.(z2, .(z0, [])), z3))) → U7_GGGG(z0, z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z4, z5))), z0, member34_out_gg(z0, .(z0, .(z2, .(z4, z5)))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, .(z4, z5))), member124_out_gag(z0, z0, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, .(z4, z5))), z0, member34_out_gg(z0, .(z0, .(z4, .(z4, z5)))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, .(z5, z6))), member124_out_gag(z0, z0, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, .(z5, z6))), z0, member34_out_gg(z0, .(z0, .(z4, .(z5, z6)))))

(144) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U6_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), member124_out_gag(z0, z2, .(.(z0, .(z2, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), z2, U3_gg(z2, z0, .(z0, z4), member34_in_gg(z2, .(z0, z4))))
U6_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), member124_out_gag(z0, z2, .(.(z0, .(z2, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), z2, U3_gg(z2, z0, .(z4, z5), member34_in_gg(z2, .(z4, z5))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), member124_out_gag(z0, x5, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), x5, U3_gg(x5, z0, .(z0, z4), member34_in_gg(x5, .(z0, z4))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), member124_out_gag(z0, x5, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), x5, U3_gg(x5, z0, .(z4, z5), member34_in_gg(x5, .(z4, z5))))
U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, z3)), z0, member34_out_gg(z0, .(z0, .(z0, z3)))) → REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))))
U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z3, z4)), z0, member34_out_gg(z0, .(z0, .(z3, z4)))) → REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))))
U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), z0, member34_out_gg(z0, .(z0, .(z0, z4)))) → REACH1_IN_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4))))
U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), z0, member34_out_gg(z0, .(z0, .(z4, z5)))) → REACH1_IN_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5))))
U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), z2, member34_out_gg(z2, .(z0, .(z0, z4)))) → REACH1_IN_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z0, z4))))
U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), z2, member34_out_gg(z2, .(z0, .(z4, z5)))) → REACH1_IN_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z4, z5))))
U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), z5, member34_out_gg(z5, .(z0, .(z0, z4)))) → REACH1_IN_GGGG(z5, z1, .(z2, z3), .(z5, .(z0, .(z0, z4))))
U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), z6, member34_out_gg(z6, .(z0, .(z4, z5)))) → REACH1_IN_GGGG(z6, z1, .(z2, z3), .(z6, .(z0, .(z4, z5))))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3)))) → U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4)))) → U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(x2, [])), z3), .(z0, .(z0, .(z0, z4)))) → U6_GGGG(z0, z1, .(.(z0, .(x2, [])), z3), .(z0, .(z0, .(z0, z4))), member124_out_gag(z0, x2, .(.(z0, .(x2, [])), z3)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(x2, [])), z3), .(z0, .(z0, .(z4, z5)))) → U6_GGGG(z0, z1, .(.(z0, .(x2, [])), z3), .(z0, .(z0, .(z4, z5))), member124_out_gag(z0, x2, .(.(z0, .(x2, [])), z3)))
REACH1_IN_GGGG(z5, z1, .(.(z5, .(x2, [])), z3), .(z5, .(z0, .(z0, z4)))) → U6_GGGG(z5, z1, .(.(z5, .(x2, [])), z3), .(z5, .(z0, .(z0, z4))), member124_out_gag(z5, x2, .(.(z5, .(x2, [])), z3)))
REACH1_IN_GGGG(z6, z1, .(.(z6, .(x2, [])), z3), .(z6, .(z0, .(z4, z5)))) → U6_GGGG(z6, z1, .(.(z6, .(x2, [])), z3), .(z6, .(z0, .(z4, z5))), member124_out_gag(z6, x2, .(.(z6, .(x2, [])), z3)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3)))) → U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), U2_gag(z0, .(z0, .(z0, [])), z2, member124_in_gag(z0, z2)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4)))) → U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), U2_gag(z0, .(z0, .(z0, [])), z2, member124_in_gag(z0, z2)))
REACH1_IN_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4)))) → U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4))), U2_gag(z0, z2, z3, member124_in_gag(z0, z3)))
REACH1_IN_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5)))) → U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5))), U2_gag(z0, z2, z3, member124_in_gag(z0, z3)))
REACH1_IN_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z0, z4)))) → U6_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z0, z4))), U2_gag(z2, .(z0, .(z2, [])), z3, member124_in_gag(z2, z3)))
REACH1_IN_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z4, z5)))) → U6_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z4, z5))), U2_gag(z2, .(z0, .(z2, [])), z3, member124_in_gag(z2, z3)))
REACH1_IN_GGGG(z5, z1, .(z2, z3), .(z5, .(z0, .(z0, z4)))) → U6_GGGG(z5, z1, .(z2, z3), .(z5, .(z0, .(z0, z4))), U2_gag(z5, z2, z3, member124_in_gag(z5, z3)))
REACH1_IN_GGGG(z6, z1, .(z2, z3), .(z6, .(z0, .(z4, z5)))) → U6_GGGG(z6, z1, .(z2, z3), .(z6, .(z0, .(z4, z5))), U2_gag(z6, z2, z3, member124_in_gag(z6, z3)))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), z0, member34_out_gg(z0, .(z0, .(z0, .(z0, z3)))))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), z0, member34_out_gg(z0, .(z0, .(z0, .(z3, z4)))))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z4, z5))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z4, z5))), z0, member34_out_gg(z0, .(z0, .(z4, .(z4, z5)))))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z5, z6))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z5, z6))), z0, member34_out_gg(z0, .(z0, .(z4, .(z5, z6)))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4))), member124_out_gag(z0, z0, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4))), z0, member34_out_gg(z0, .(z0, .(z0, .(z0, z4)))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5))), member124_out_gag(z0, z0, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5))), z0, member34_out_gg(z0, .(z0, .(z0, .(z4, z5)))))
U6_GGGG(z0, z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z2, z4))), member124_out_gag(z0, z0, .(.(z2, .(z0, [])), z3))) → U7_GGGG(z0, z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z2, z4))), z0, member34_out_gg(z0, .(z0, .(z2, .(z2, z4)))))
U6_GGGG(z0, z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z4, z5))), member124_out_gag(z0, z0, .(.(z2, .(z0, [])), z3))) → U7_GGGG(z0, z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z4, z5))), z0, member34_out_gg(z0, .(z0, .(z2, .(z4, z5)))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, .(z4, z5))), member124_out_gag(z0, z0, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, .(z4, z5))), z0, member34_out_gg(z0, .(z0, .(z4, .(z4, z5)))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, .(z5, z6))), member124_out_gag(z0, z0, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, .(z5, z6))), z0, member34_out_gg(z0, .(z0, .(z4, .(z5, z6)))))

The TRS R consists of the following rules:

member124_in_gag(T120, .(.(T120, .(X117, [])), T121)) → member124_out_gag(T120, X117, .(.(T120, .(X117, [])), T121))
member124_in_gag(T128, .(T129, T130)) → U2_gag(T128, T129, T130, member124_in_gag(T128, T130))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg(T151, .(T151, T152))
member34_in_gg(T159, .(T160, T161)) → U3_gg(T159, T160, T161, member34_in_gg(T159, T161))
U2_gag(T128, T129, T130, member124_out_gag(T128, X131, T130)) → member124_out_gag(T128, X131, .(T129, T130))
U3_gg(T159, T160, T161, member34_out_gg(T159, T161)) → member34_out_gg(T159, .(T160, T161))

The set Q consists of the following terms:

member124_in_gag(x0, x1)
member34_in_gg(x0, x1)
U2_gag(x0, x1, x2, x3)
U3_gg(x0, x1, x2, x3)

We have to consider all (P,Q,R)-chains.

(145) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U6_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), member124_out_gag(z0, z2, .(.(z0, .(z2, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), z2, U3_gg(z2, z0, .(z0, z4), member34_in_gg(z2, .(z0, z4)))) we obtained the following new rules [LPAR04]:

U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), z0, U3_gg(z0, z0, .(z0, .(z0, z3)), member34_in_gg(z0, .(z0, .(z0, z3)))))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), z0, U3_gg(z0, z0, .(z0, .(z3, z4)), member34_in_gg(z0, .(z0, .(z3, z4)))))
U6_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z0, z4))), member124_out_gag(z0, z2, .(.(z0, .(z2, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z0, z4))), z2, U3_gg(z2, z0, .(z0, .(z0, z4)), member34_in_gg(z2, .(z0, .(z0, z4)))))
U6_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z4, z5))), member124_out_gag(z0, z2, .(.(z0, .(z2, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z4, z5))), z2, U3_gg(z2, z0, .(z0, .(z4, z5)), member34_in_gg(z2, .(z0, .(z4, z5)))))

(146) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U6_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), member124_out_gag(z0, z2, .(.(z0, .(z2, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), z2, U3_gg(z2, z0, .(z4, z5), member34_in_gg(z2, .(z4, z5))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), member124_out_gag(z0, x5, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), x5, U3_gg(x5, z0, .(z0, z4), member34_in_gg(x5, .(z0, z4))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), member124_out_gag(z0, x5, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), x5, U3_gg(x5, z0, .(z4, z5), member34_in_gg(x5, .(z4, z5))))
U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, z3)), z0, member34_out_gg(z0, .(z0, .(z0, z3)))) → REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))))
U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z3, z4)), z0, member34_out_gg(z0, .(z0, .(z3, z4)))) → REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))))
U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), z0, member34_out_gg(z0, .(z0, .(z0, z4)))) → REACH1_IN_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4))))
U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), z0, member34_out_gg(z0, .(z0, .(z4, z5)))) → REACH1_IN_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5))))
U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), z2, member34_out_gg(z2, .(z0, .(z0, z4)))) → REACH1_IN_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z0, z4))))
U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), z2, member34_out_gg(z2, .(z0, .(z4, z5)))) → REACH1_IN_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z4, z5))))
U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), z5, member34_out_gg(z5, .(z0, .(z0, z4)))) → REACH1_IN_GGGG(z5, z1, .(z2, z3), .(z5, .(z0, .(z0, z4))))
U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), z6, member34_out_gg(z6, .(z0, .(z4, z5)))) → REACH1_IN_GGGG(z6, z1, .(z2, z3), .(z6, .(z0, .(z4, z5))))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3)))) → U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4)))) → U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(x2, [])), z3), .(z0, .(z0, .(z0, z4)))) → U6_GGGG(z0, z1, .(.(z0, .(x2, [])), z3), .(z0, .(z0, .(z0, z4))), member124_out_gag(z0, x2, .(.(z0, .(x2, [])), z3)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(x2, [])), z3), .(z0, .(z0, .(z4, z5)))) → U6_GGGG(z0, z1, .(.(z0, .(x2, [])), z3), .(z0, .(z0, .(z4, z5))), member124_out_gag(z0, x2, .(.(z0, .(x2, [])), z3)))
REACH1_IN_GGGG(z5, z1, .(.(z5, .(x2, [])), z3), .(z5, .(z0, .(z0, z4)))) → U6_GGGG(z5, z1, .(.(z5, .(x2, [])), z3), .(z5, .(z0, .(z0, z4))), member124_out_gag(z5, x2, .(.(z5, .(x2, [])), z3)))
REACH1_IN_GGGG(z6, z1, .(.(z6, .(x2, [])), z3), .(z6, .(z0, .(z4, z5)))) → U6_GGGG(z6, z1, .(.(z6, .(x2, [])), z3), .(z6, .(z0, .(z4, z5))), member124_out_gag(z6, x2, .(.(z6, .(x2, [])), z3)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3)))) → U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), U2_gag(z0, .(z0, .(z0, [])), z2, member124_in_gag(z0, z2)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4)))) → U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), U2_gag(z0, .(z0, .(z0, [])), z2, member124_in_gag(z0, z2)))
REACH1_IN_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4)))) → U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4))), U2_gag(z0, z2, z3, member124_in_gag(z0, z3)))
REACH1_IN_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5)))) → U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5))), U2_gag(z0, z2, z3, member124_in_gag(z0, z3)))
REACH1_IN_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z0, z4)))) → U6_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z0, z4))), U2_gag(z2, .(z0, .(z2, [])), z3, member124_in_gag(z2, z3)))
REACH1_IN_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z4, z5)))) → U6_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z4, z5))), U2_gag(z2, .(z0, .(z2, [])), z3, member124_in_gag(z2, z3)))
REACH1_IN_GGGG(z5, z1, .(z2, z3), .(z5, .(z0, .(z0, z4)))) → U6_GGGG(z5, z1, .(z2, z3), .(z5, .(z0, .(z0, z4))), U2_gag(z5, z2, z3, member124_in_gag(z5, z3)))
REACH1_IN_GGGG(z6, z1, .(z2, z3), .(z6, .(z0, .(z4, z5)))) → U6_GGGG(z6, z1, .(z2, z3), .(z6, .(z0, .(z4, z5))), U2_gag(z6, z2, z3, member124_in_gag(z6, z3)))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), z0, member34_out_gg(z0, .(z0, .(z0, .(z0, z3)))))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), z0, member34_out_gg(z0, .(z0, .(z0, .(z3, z4)))))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z4, z5))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z4, z5))), z0, member34_out_gg(z0, .(z0, .(z4, .(z4, z5)))))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z5, z6))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z5, z6))), z0, member34_out_gg(z0, .(z0, .(z4, .(z5, z6)))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4))), member124_out_gag(z0, z0, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4))), z0, member34_out_gg(z0, .(z0, .(z0, .(z0, z4)))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5))), member124_out_gag(z0, z0, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5))), z0, member34_out_gg(z0, .(z0, .(z0, .(z4, z5)))))
U6_GGGG(z0, z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z2, z4))), member124_out_gag(z0, z0, .(.(z2, .(z0, [])), z3))) → U7_GGGG(z0, z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z2, z4))), z0, member34_out_gg(z0, .(z0, .(z2, .(z2, z4)))))
U6_GGGG(z0, z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z4, z5))), member124_out_gag(z0, z0, .(.(z2, .(z0, [])), z3))) → U7_GGGG(z0, z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z4, z5))), z0, member34_out_gg(z0, .(z0, .(z2, .(z4, z5)))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, .(z4, z5))), member124_out_gag(z0, z0, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, .(z4, z5))), z0, member34_out_gg(z0, .(z0, .(z4, .(z4, z5)))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, .(z5, z6))), member124_out_gag(z0, z0, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, .(z5, z6))), z0, member34_out_gg(z0, .(z0, .(z4, .(z5, z6)))))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), z0, U3_gg(z0, z0, .(z0, .(z0, z3)), member34_in_gg(z0, .(z0, .(z0, z3)))))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), z0, U3_gg(z0, z0, .(z0, .(z3, z4)), member34_in_gg(z0, .(z0, .(z3, z4)))))
U6_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z0, z4))), member124_out_gag(z0, z2, .(.(z0, .(z2, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z0, z4))), z2, U3_gg(z2, z0, .(z0, .(z0, z4)), member34_in_gg(z2, .(z0, .(z0, z4)))))
U6_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z4, z5))), member124_out_gag(z0, z2, .(.(z0, .(z2, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z4, z5))), z2, U3_gg(z2, z0, .(z0, .(z4, z5)), member34_in_gg(z2, .(z0, .(z4, z5)))))

The TRS R consists of the following rules:

member124_in_gag(T120, .(.(T120, .(X117, [])), T121)) → member124_out_gag(T120, X117, .(.(T120, .(X117, [])), T121))
member124_in_gag(T128, .(T129, T130)) → U2_gag(T128, T129, T130, member124_in_gag(T128, T130))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg(T151, .(T151, T152))
member34_in_gg(T159, .(T160, T161)) → U3_gg(T159, T160, T161, member34_in_gg(T159, T161))
U2_gag(T128, T129, T130, member124_out_gag(T128, X131, T130)) → member124_out_gag(T128, X131, .(T129, T130))
U3_gg(T159, T160, T161, member34_out_gg(T159, T161)) → member34_out_gg(T159, .(T160, T161))

The set Q consists of the following terms:

member124_in_gag(x0, x1)
member34_in_gg(x0, x1)
U2_gag(x0, x1, x2, x3)
U3_gg(x0, x1, x2, x3)

We have to consider all (P,Q,R)-chains.

(147) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U6_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), member124_out_gag(z0, z2, .(.(z0, .(z2, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), z2, U3_gg(z2, z0, .(z4, z5), member34_in_gg(z2, .(z4, z5)))) we obtained the following new rules [LPAR04]:

U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), z0, U3_gg(z0, z0, .(z0, .(z0, z3)), member34_in_gg(z0, .(z0, .(z0, z3)))))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), z0, U3_gg(z0, z0, .(z0, .(z3, z4)), member34_in_gg(z0, .(z0, .(z3, z4)))))
U6_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z0, z4))), member124_out_gag(z0, z2, .(.(z0, .(z2, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z0, z4))), z2, U3_gg(z2, z0, .(z0, .(z0, z4)), member34_in_gg(z2, .(z0, .(z0, z4)))))
U6_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z4, z5))), member124_out_gag(z0, z2, .(.(z0, .(z2, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z4, z5))), z2, U3_gg(z2, z0, .(z0, .(z4, z5)), member34_in_gg(z2, .(z0, .(z4, z5)))))
U6_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, .(z4, z5))), member124_out_gag(z0, z2, .(.(z0, .(z2, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, .(z4, z5))), z2, U3_gg(z2, z0, .(z4, .(z4, z5)), member34_in_gg(z2, .(z4, .(z4, z5)))))
U6_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, .(z5, z6))), member124_out_gag(z0, z2, .(.(z0, .(z2, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, .(z5, z6))), z2, U3_gg(z2, z0, .(z4, .(z5, z6)), member34_in_gg(z2, .(z4, .(z5, z6)))))

(148) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), member124_out_gag(z0, x5, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), x5, U3_gg(x5, z0, .(z0, z4), member34_in_gg(x5, .(z0, z4))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), member124_out_gag(z0, x5, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), x5, U3_gg(x5, z0, .(z4, z5), member34_in_gg(x5, .(z4, z5))))
U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, z3)), z0, member34_out_gg(z0, .(z0, .(z0, z3)))) → REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))))
U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z3, z4)), z0, member34_out_gg(z0, .(z0, .(z3, z4)))) → REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))))
U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), z0, member34_out_gg(z0, .(z0, .(z0, z4)))) → REACH1_IN_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4))))
U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), z0, member34_out_gg(z0, .(z0, .(z4, z5)))) → REACH1_IN_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5))))
U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), z2, member34_out_gg(z2, .(z0, .(z0, z4)))) → REACH1_IN_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z0, z4))))
U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), z2, member34_out_gg(z2, .(z0, .(z4, z5)))) → REACH1_IN_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z4, z5))))
U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), z5, member34_out_gg(z5, .(z0, .(z0, z4)))) → REACH1_IN_GGGG(z5, z1, .(z2, z3), .(z5, .(z0, .(z0, z4))))
U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), z6, member34_out_gg(z6, .(z0, .(z4, z5)))) → REACH1_IN_GGGG(z6, z1, .(z2, z3), .(z6, .(z0, .(z4, z5))))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3)))) → U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4)))) → U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(x2, [])), z3), .(z0, .(z0, .(z0, z4)))) → U6_GGGG(z0, z1, .(.(z0, .(x2, [])), z3), .(z0, .(z0, .(z0, z4))), member124_out_gag(z0, x2, .(.(z0, .(x2, [])), z3)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(x2, [])), z3), .(z0, .(z0, .(z4, z5)))) → U6_GGGG(z0, z1, .(.(z0, .(x2, [])), z3), .(z0, .(z0, .(z4, z5))), member124_out_gag(z0, x2, .(.(z0, .(x2, [])), z3)))
REACH1_IN_GGGG(z5, z1, .(.(z5, .(x2, [])), z3), .(z5, .(z0, .(z0, z4)))) → U6_GGGG(z5, z1, .(.(z5, .(x2, [])), z3), .(z5, .(z0, .(z0, z4))), member124_out_gag(z5, x2, .(.(z5, .(x2, [])), z3)))
REACH1_IN_GGGG(z6, z1, .(.(z6, .(x2, [])), z3), .(z6, .(z0, .(z4, z5)))) → U6_GGGG(z6, z1, .(.(z6, .(x2, [])), z3), .(z6, .(z0, .(z4, z5))), member124_out_gag(z6, x2, .(.(z6, .(x2, [])), z3)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3)))) → U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), U2_gag(z0, .(z0, .(z0, [])), z2, member124_in_gag(z0, z2)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4)))) → U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), U2_gag(z0, .(z0, .(z0, [])), z2, member124_in_gag(z0, z2)))
REACH1_IN_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4)))) → U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4))), U2_gag(z0, z2, z3, member124_in_gag(z0, z3)))
REACH1_IN_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5)))) → U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5))), U2_gag(z0, z2, z3, member124_in_gag(z0, z3)))
REACH1_IN_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z0, z4)))) → U6_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z0, z4))), U2_gag(z2, .(z0, .(z2, [])), z3, member124_in_gag(z2, z3)))
REACH1_IN_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z4, z5)))) → U6_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z4, z5))), U2_gag(z2, .(z0, .(z2, [])), z3, member124_in_gag(z2, z3)))
REACH1_IN_GGGG(z5, z1, .(z2, z3), .(z5, .(z0, .(z0, z4)))) → U6_GGGG(z5, z1, .(z2, z3), .(z5, .(z0, .(z0, z4))), U2_gag(z5, z2, z3, member124_in_gag(z5, z3)))
REACH1_IN_GGGG(z6, z1, .(z2, z3), .(z6, .(z0, .(z4, z5)))) → U6_GGGG(z6, z1, .(z2, z3), .(z6, .(z0, .(z4, z5))), U2_gag(z6, z2, z3, member124_in_gag(z6, z3)))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), z0, member34_out_gg(z0, .(z0, .(z0, .(z0, z3)))))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), z0, member34_out_gg(z0, .(z0, .(z0, .(z3, z4)))))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z4, z5))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z4, z5))), z0, member34_out_gg(z0, .(z0, .(z4, .(z4, z5)))))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z5, z6))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z5, z6))), z0, member34_out_gg(z0, .(z0, .(z4, .(z5, z6)))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4))), member124_out_gag(z0, z0, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4))), z0, member34_out_gg(z0, .(z0, .(z0, .(z0, z4)))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5))), member124_out_gag(z0, z0, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5))), z0, member34_out_gg(z0, .(z0, .(z0, .(z4, z5)))))
U6_GGGG(z0, z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z2, z4))), member124_out_gag(z0, z0, .(.(z2, .(z0, [])), z3))) → U7_GGGG(z0, z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z2, z4))), z0, member34_out_gg(z0, .(z0, .(z2, .(z2, z4)))))
U6_GGGG(z0, z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z4, z5))), member124_out_gag(z0, z0, .(.(z2, .(z0, [])), z3))) → U7_GGGG(z0, z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z4, z5))), z0, member34_out_gg(z0, .(z0, .(z2, .(z4, z5)))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, .(z4, z5))), member124_out_gag(z0, z0, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, .(z4, z5))), z0, member34_out_gg(z0, .(z0, .(z4, .(z4, z5)))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, .(z5, z6))), member124_out_gag(z0, z0, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, .(z5, z6))), z0, member34_out_gg(z0, .(z0, .(z4, .(z5, z6)))))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), z0, U3_gg(z0, z0, .(z0, .(z0, z3)), member34_in_gg(z0, .(z0, .(z0, z3)))))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), z0, U3_gg(z0, z0, .(z0, .(z3, z4)), member34_in_gg(z0, .(z0, .(z3, z4)))))
U6_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z0, z4))), member124_out_gag(z0, z2, .(.(z0, .(z2, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z0, z4))), z2, U3_gg(z2, z0, .(z0, .(z0, z4)), member34_in_gg(z2, .(z0, .(z0, z4)))))
U6_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z4, z5))), member124_out_gag(z0, z2, .(.(z0, .(z2, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z4, z5))), z2, U3_gg(z2, z0, .(z0, .(z4, z5)), member34_in_gg(z2, .(z0, .(z4, z5)))))
U6_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, .(z4, z5))), member124_out_gag(z0, z2, .(.(z0, .(z2, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, .(z4, z5))), z2, U3_gg(z2, z0, .(z4, .(z4, z5)), member34_in_gg(z2, .(z4, .(z4, z5)))))
U6_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, .(z5, z6))), member124_out_gag(z0, z2, .(.(z0, .(z2, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, .(z5, z6))), z2, U3_gg(z2, z0, .(z4, .(z5, z6)), member34_in_gg(z2, .(z4, .(z5, z6)))))

The TRS R consists of the following rules:

member124_in_gag(T120, .(.(T120, .(X117, [])), T121)) → member124_out_gag(T120, X117, .(.(T120, .(X117, [])), T121))
member124_in_gag(T128, .(T129, T130)) → U2_gag(T128, T129, T130, member124_in_gag(T128, T130))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg(T151, .(T151, T152))
member34_in_gg(T159, .(T160, T161)) → U3_gg(T159, T160, T161, member34_in_gg(T159, T161))
U2_gag(T128, T129, T130, member124_out_gag(T128, X131, T130)) → member124_out_gag(T128, X131, .(T129, T130))
U3_gg(T159, T160, T161, member34_out_gg(T159, T161)) → member34_out_gg(T159, .(T160, T161))

The set Q consists of the following terms:

member124_in_gag(x0, x1)
member34_in_gg(x0, x1)
U2_gag(x0, x1, x2, x3)
U3_gg(x0, x1, x2, x3)

We have to consider all (P,Q,R)-chains.

(149) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), member124_out_gag(z0, x5, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), x5, U3_gg(x5, z0, .(z0, z4), member34_in_gg(x5, .(z0, z4)))) we obtained the following new rules [LPAR04]:

U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), z0, U3_gg(z0, z0, .(z0, .(z0, z3)), member34_in_gg(z0, .(z0, .(z0, z3)))))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), z0, U3_gg(z0, z0, .(z0, .(z3, z4)), member34_in_gg(z0, .(z0, .(z3, z4)))))
U6_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z0, z4))), member124_out_gag(z0, z2, .(.(z0, .(z2, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z0, z4))), z2, U3_gg(z2, z0, .(z0, .(z0, z4)), member34_in_gg(z2, .(z0, .(z0, z4)))))
U6_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z4, z5))), member124_out_gag(z0, z2, .(.(z0, .(z2, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z4, z5))), z2, U3_gg(z2, z0, .(z0, .(z4, z5)), member34_in_gg(z2, .(z0, .(z4, z5)))))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(z0, x5, .(.(z0, .(z0, [])), z2))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), x5, U3_gg(x5, z0, .(z0, .(z0, z3)), member34_in_gg(x5, .(z0, .(z0, z3)))))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(z0, x5, .(.(z0, .(z0, [])), z2))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), x5, U3_gg(x5, z0, .(z0, .(z3, z4)), member34_in_gg(x5, .(z0, .(z3, z4)))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4))), member124_out_gag(z0, x5, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4))), x5, U3_gg(x5, z0, .(z0, .(z0, z4)), member34_in_gg(x5, .(z0, .(z0, z4)))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5))), member124_out_gag(z0, x5, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5))), x5, U3_gg(x5, z0, .(z0, .(z4, z5)), member34_in_gg(x5, .(z0, .(z4, z5)))))

(150) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), member124_out_gag(z0, x5, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), x5, U3_gg(x5, z0, .(z4, z5), member34_in_gg(x5, .(z4, z5))))
U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, z3)), z0, member34_out_gg(z0, .(z0, .(z0, z3)))) → REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))))
U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z3, z4)), z0, member34_out_gg(z0, .(z0, .(z3, z4)))) → REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))))
U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), z0, member34_out_gg(z0, .(z0, .(z0, z4)))) → REACH1_IN_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4))))
U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), z0, member34_out_gg(z0, .(z0, .(z4, z5)))) → REACH1_IN_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5))))
U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), z2, member34_out_gg(z2, .(z0, .(z0, z4)))) → REACH1_IN_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z0, z4))))
U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), z2, member34_out_gg(z2, .(z0, .(z4, z5)))) → REACH1_IN_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z4, z5))))
U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), z5, member34_out_gg(z5, .(z0, .(z0, z4)))) → REACH1_IN_GGGG(z5, z1, .(z2, z3), .(z5, .(z0, .(z0, z4))))
U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), z6, member34_out_gg(z6, .(z0, .(z4, z5)))) → REACH1_IN_GGGG(z6, z1, .(z2, z3), .(z6, .(z0, .(z4, z5))))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3)))) → U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4)))) → U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(x2, [])), z3), .(z0, .(z0, .(z0, z4)))) → U6_GGGG(z0, z1, .(.(z0, .(x2, [])), z3), .(z0, .(z0, .(z0, z4))), member124_out_gag(z0, x2, .(.(z0, .(x2, [])), z3)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(x2, [])), z3), .(z0, .(z0, .(z4, z5)))) → U6_GGGG(z0, z1, .(.(z0, .(x2, [])), z3), .(z0, .(z0, .(z4, z5))), member124_out_gag(z0, x2, .(.(z0, .(x2, [])), z3)))
REACH1_IN_GGGG(z5, z1, .(.(z5, .(x2, [])), z3), .(z5, .(z0, .(z0, z4)))) → U6_GGGG(z5, z1, .(.(z5, .(x2, [])), z3), .(z5, .(z0, .(z0, z4))), member124_out_gag(z5, x2, .(.(z5, .(x2, [])), z3)))
REACH1_IN_GGGG(z6, z1, .(.(z6, .(x2, [])), z3), .(z6, .(z0, .(z4, z5)))) → U6_GGGG(z6, z1, .(.(z6, .(x2, [])), z3), .(z6, .(z0, .(z4, z5))), member124_out_gag(z6, x2, .(.(z6, .(x2, [])), z3)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3)))) → U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), U2_gag(z0, .(z0, .(z0, [])), z2, member124_in_gag(z0, z2)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4)))) → U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), U2_gag(z0, .(z0, .(z0, [])), z2, member124_in_gag(z0, z2)))
REACH1_IN_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4)))) → U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4))), U2_gag(z0, z2, z3, member124_in_gag(z0, z3)))
REACH1_IN_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5)))) → U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5))), U2_gag(z0, z2, z3, member124_in_gag(z0, z3)))
REACH1_IN_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z0, z4)))) → U6_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z0, z4))), U2_gag(z2, .(z0, .(z2, [])), z3, member124_in_gag(z2, z3)))
REACH1_IN_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z4, z5)))) → U6_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z4, z5))), U2_gag(z2, .(z0, .(z2, [])), z3, member124_in_gag(z2, z3)))
REACH1_IN_GGGG(z5, z1, .(z2, z3), .(z5, .(z0, .(z0, z4)))) → U6_GGGG(z5, z1, .(z2, z3), .(z5, .(z0, .(z0, z4))), U2_gag(z5, z2, z3, member124_in_gag(z5, z3)))
REACH1_IN_GGGG(z6, z1, .(z2, z3), .(z6, .(z0, .(z4, z5)))) → U6_GGGG(z6, z1, .(z2, z3), .(z6, .(z0, .(z4, z5))), U2_gag(z6, z2, z3, member124_in_gag(z6, z3)))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), z0, member34_out_gg(z0, .(z0, .(z0, .(z0, z3)))))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), z0, member34_out_gg(z0, .(z0, .(z0, .(z3, z4)))))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z4, z5))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z4, z5))), z0, member34_out_gg(z0, .(z0, .(z4, .(z4, z5)))))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z5, z6))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z5, z6))), z0, member34_out_gg(z0, .(z0, .(z4, .(z5, z6)))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4))), member124_out_gag(z0, z0, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4))), z0, member34_out_gg(z0, .(z0, .(z0, .(z0, z4)))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5))), member124_out_gag(z0, z0, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5))), z0, member34_out_gg(z0, .(z0, .(z0, .(z4, z5)))))
U6_GGGG(z0, z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z2, z4))), member124_out_gag(z0, z0, .(.(z2, .(z0, [])), z3))) → U7_GGGG(z0, z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z2, z4))), z0, member34_out_gg(z0, .(z0, .(z2, .(z2, z4)))))
U6_GGGG(z0, z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z4, z5))), member124_out_gag(z0, z0, .(.(z2, .(z0, [])), z3))) → U7_GGGG(z0, z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z4, z5))), z0, member34_out_gg(z0, .(z0, .(z2, .(z4, z5)))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, .(z4, z5))), member124_out_gag(z0, z0, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, .(z4, z5))), z0, member34_out_gg(z0, .(z0, .(z4, .(z4, z5)))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, .(z5, z6))), member124_out_gag(z0, z0, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, .(z5, z6))), z0, member34_out_gg(z0, .(z0, .(z4, .(z5, z6)))))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), z0, U3_gg(z0, z0, .(z0, .(z0, z3)), member34_in_gg(z0, .(z0, .(z0, z3)))))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), z0, U3_gg(z0, z0, .(z0, .(z3, z4)), member34_in_gg(z0, .(z0, .(z3, z4)))))
U6_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z0, z4))), member124_out_gag(z0, z2, .(.(z0, .(z2, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z0, z4))), z2, U3_gg(z2, z0, .(z0, .(z0, z4)), member34_in_gg(z2, .(z0, .(z0, z4)))))
U6_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z4, z5))), member124_out_gag(z0, z2, .(.(z0, .(z2, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z4, z5))), z2, U3_gg(z2, z0, .(z0, .(z4, z5)), member34_in_gg(z2, .(z0, .(z4, z5)))))
U6_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, .(z4, z5))), member124_out_gag(z0, z2, .(.(z0, .(z2, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, .(z4, z5))), z2, U3_gg(z2, z0, .(z4, .(z4, z5)), member34_in_gg(z2, .(z4, .(z4, z5)))))
U6_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, .(z5, z6))), member124_out_gag(z0, z2, .(.(z0, .(z2, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, .(z5, z6))), z2, U3_gg(z2, z0, .(z4, .(z5, z6)), member34_in_gg(z2, .(z4, .(z5, z6)))))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(z0, x5, .(.(z0, .(z0, [])), z2))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), x5, U3_gg(x5, z0, .(z0, .(z0, z3)), member34_in_gg(x5, .(z0, .(z0, z3)))))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(z0, x5, .(.(z0, .(z0, [])), z2))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), x5, U3_gg(x5, z0, .(z0, .(z3, z4)), member34_in_gg(x5, .(z0, .(z3, z4)))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4))), member124_out_gag(z0, x5, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4))), x5, U3_gg(x5, z0, .(z0, .(z0, z4)), member34_in_gg(x5, .(z0, .(z0, z4)))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5))), member124_out_gag(z0, x5, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5))), x5, U3_gg(x5, z0, .(z0, .(z4, z5)), member34_in_gg(x5, .(z0, .(z4, z5)))))

The TRS R consists of the following rules:

member124_in_gag(T120, .(.(T120, .(X117, [])), T121)) → member124_out_gag(T120, X117, .(.(T120, .(X117, [])), T121))
member124_in_gag(T128, .(T129, T130)) → U2_gag(T128, T129, T130, member124_in_gag(T128, T130))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg(T151, .(T151, T152))
member34_in_gg(T159, .(T160, T161)) → U3_gg(T159, T160, T161, member34_in_gg(T159, T161))
U2_gag(T128, T129, T130, member124_out_gag(T128, X131, T130)) → member124_out_gag(T128, X131, .(T129, T130))
U3_gg(T159, T160, T161, member34_out_gg(T159, T161)) → member34_out_gg(T159, .(T160, T161))

The set Q consists of the following terms:

member124_in_gag(x0, x1)
member34_in_gg(x0, x1)
U2_gag(x0, x1, x2, x3)
U3_gg(x0, x1, x2, x3)

We have to consider all (P,Q,R)-chains.

(151) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), member124_out_gag(z0, x5, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), x5, U3_gg(x5, z0, .(z4, z5), member34_in_gg(x5, .(z4, z5)))) we obtained the following new rules [LPAR04]:

U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), z0, U3_gg(z0, z0, .(z0, .(z0, z3)), member34_in_gg(z0, .(z0, .(z0, z3)))))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), z0, U3_gg(z0, z0, .(z0, .(z3, z4)), member34_in_gg(z0, .(z0, .(z3, z4)))))
U6_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z0, z4))), member124_out_gag(z0, z2, .(.(z0, .(z2, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z0, z4))), z2, U3_gg(z2, z0, .(z0, .(z0, z4)), member34_in_gg(z2, .(z0, .(z0, z4)))))
U6_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z4, z5))), member124_out_gag(z0, z2, .(.(z0, .(z2, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z4, z5))), z2, U3_gg(z2, z0, .(z0, .(z4, z5)), member34_in_gg(z2, .(z0, .(z4, z5)))))
U6_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, .(z4, z5))), member124_out_gag(z0, z2, .(.(z0, .(z2, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, .(z4, z5))), z2, U3_gg(z2, z0, .(z4, .(z4, z5)), member34_in_gg(z2, .(z4, .(z4, z5)))))
U6_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, .(z5, z6))), member124_out_gag(z0, z2, .(.(z0, .(z2, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, .(z5, z6))), z2, U3_gg(z2, z0, .(z4, .(z5, z6)), member34_in_gg(z2, .(z4, .(z5, z6)))))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(z0, x6, .(.(z0, .(z0, [])), z2))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), x6, U3_gg(x6, z0, .(z0, .(z0, z3)), member34_in_gg(x6, .(z0, .(z0, z3)))))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(z0, x6, .(.(z0, .(z0, [])), z2))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), x6, U3_gg(x6, z0, .(z0, .(z3, z4)), member34_in_gg(x6, .(z0, .(z3, z4)))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4))), member124_out_gag(z0, x6, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4))), x6, U3_gg(x6, z0, .(z0, .(z0, z4)), member34_in_gg(x6, .(z0, .(z0, z4)))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5))), member124_out_gag(z0, x6, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5))), x6, U3_gg(x6, z0, .(z0, .(z4, z5)), member34_in_gg(x6, .(z0, .(z4, z5)))))
U6_GGGG(z0, z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z2, z4))), member124_out_gag(z0, x6, .(.(z2, .(z0, [])), z3))) → U7_GGGG(z0, z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z2, z4))), x6, U3_gg(x6, z0, .(z2, .(z2, z4)), member34_in_gg(x6, .(z2, .(z2, z4)))))
U6_GGGG(z0, z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z4, z5))), member124_out_gag(z0, x6, .(.(z2, .(z0, [])), z3))) → U7_GGGG(z0, z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z4, z5))), x6, U3_gg(x6, z0, .(z2, .(z4, z5)), member34_in_gg(x6, .(z2, .(z4, z5)))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, .(z4, z5))), member124_out_gag(z0, x6, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, .(z4, z5))), x6, U3_gg(x6, z0, .(z4, .(z4, z5)), member34_in_gg(x6, .(z4, .(z4, z5)))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, .(z5, z6))), member124_out_gag(z0, x6, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, .(z5, z6))), x6, U3_gg(x6, z0, .(z4, .(z5, z6)), member34_in_gg(x6, .(z4, .(z5, z6)))))

(152) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, z3)), z0, member34_out_gg(z0, .(z0, .(z0, z3)))) → REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))))
U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z3, z4)), z0, member34_out_gg(z0, .(z0, .(z3, z4)))) → REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))))
U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), z0, member34_out_gg(z0, .(z0, .(z0, z4)))) → REACH1_IN_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4))))
U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), z0, member34_out_gg(z0, .(z0, .(z4, z5)))) → REACH1_IN_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5))))
U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, z4)), z2, member34_out_gg(z2, .(z0, .(z0, z4)))) → REACH1_IN_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z0, z4))))
U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, z5)), z2, member34_out_gg(z2, .(z0, .(z4, z5)))) → REACH1_IN_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z4, z5))))
U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, z4)), z5, member34_out_gg(z5, .(z0, .(z0, z4)))) → REACH1_IN_GGGG(z5, z1, .(z2, z3), .(z5, .(z0, .(z0, z4))))
U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, z5)), z6, member34_out_gg(z6, .(z0, .(z4, z5)))) → REACH1_IN_GGGG(z6, z1, .(z2, z3), .(z6, .(z0, .(z4, z5))))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3)))) → U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4)))) → U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(x2, [])), z3), .(z0, .(z0, .(z0, z4)))) → U6_GGGG(z0, z1, .(.(z0, .(x2, [])), z3), .(z0, .(z0, .(z0, z4))), member124_out_gag(z0, x2, .(.(z0, .(x2, [])), z3)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(x2, [])), z3), .(z0, .(z0, .(z4, z5)))) → U6_GGGG(z0, z1, .(.(z0, .(x2, [])), z3), .(z0, .(z0, .(z4, z5))), member124_out_gag(z0, x2, .(.(z0, .(x2, [])), z3)))
REACH1_IN_GGGG(z5, z1, .(.(z5, .(x2, [])), z3), .(z5, .(z0, .(z0, z4)))) → U6_GGGG(z5, z1, .(.(z5, .(x2, [])), z3), .(z5, .(z0, .(z0, z4))), member124_out_gag(z5, x2, .(.(z5, .(x2, [])), z3)))
REACH1_IN_GGGG(z6, z1, .(.(z6, .(x2, [])), z3), .(z6, .(z0, .(z4, z5)))) → U6_GGGG(z6, z1, .(.(z6, .(x2, [])), z3), .(z6, .(z0, .(z4, z5))), member124_out_gag(z6, x2, .(.(z6, .(x2, [])), z3)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3)))) → U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), U2_gag(z0, .(z0, .(z0, [])), z2, member124_in_gag(z0, z2)))
REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4)))) → U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), U2_gag(z0, .(z0, .(z0, [])), z2, member124_in_gag(z0, z2)))
REACH1_IN_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4)))) → U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4))), U2_gag(z0, z2, z3, member124_in_gag(z0, z3)))
REACH1_IN_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5)))) → U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5))), U2_gag(z0, z2, z3, member124_in_gag(z0, z3)))
REACH1_IN_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z0, z4)))) → U6_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z0, z4))), U2_gag(z2, .(z0, .(z2, [])), z3, member124_in_gag(z2, z3)))
REACH1_IN_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z4, z5)))) → U6_GGGG(z2, z1, .(.(z0, .(z2, [])), z3), .(z2, .(z0, .(z4, z5))), U2_gag(z2, .(z0, .(z2, [])), z3, member124_in_gag(z2, z3)))
REACH1_IN_GGGG(z5, z1, .(z2, z3), .(z5, .(z0, .(z0, z4)))) → U6_GGGG(z5, z1, .(z2, z3), .(z5, .(z0, .(z0, z4))), U2_gag(z5, z2, z3, member124_in_gag(z5, z3)))
REACH1_IN_GGGG(z6, z1, .(z2, z3), .(z6, .(z0, .(z4, z5)))) → U6_GGGG(z6, z1, .(z2, z3), .(z6, .(z0, .(z4, z5))), U2_gag(z6, z2, z3, member124_in_gag(z6, z3)))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), z0, member34_out_gg(z0, .(z0, .(z0, .(z0, z3)))))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), z0, member34_out_gg(z0, .(z0, .(z0, .(z3, z4)))))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z4, z5))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z4, z5))), z0, member34_out_gg(z0, .(z0, .(z4, .(z4, z5)))))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z5, z6))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z3), .(z0, .(z4, .(z5, z6))), z0, member34_out_gg(z0, .(z0, .(z4, .(z5, z6)))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4))), member124_out_gag(z0, z0, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4))), z0, member34_out_gg(z0, .(z0, .(z0, .(z0, z4)))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5))), member124_out_gag(z0, z0, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5))), z0, member34_out_gg(z0, .(z0, .(z0, .(z4, z5)))))
U6_GGGG(z0, z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z2, z4))), member124_out_gag(z0, z0, .(.(z2, .(z0, [])), z3))) → U7_GGGG(z0, z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z2, z4))), z0, member34_out_gg(z0, .(z0, .(z2, .(z2, z4)))))
U6_GGGG(z0, z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z4, z5))), member124_out_gag(z0, z0, .(.(z2, .(z0, [])), z3))) → U7_GGGG(z0, z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z4, z5))), z0, member34_out_gg(z0, .(z0, .(z2, .(z4, z5)))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, .(z4, z5))), member124_out_gag(z0, z0, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, .(z4, z5))), z0, member34_out_gg(z0, .(z0, .(z4, .(z4, z5)))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, .(z5, z6))), member124_out_gag(z0, z0, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, .(z5, z6))), z0, member34_out_gg(z0, .(z0, .(z4, .(z5, z6)))))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), z0, U3_gg(z0, z0, .(z0, .(z0, z3)), member34_in_gg(z0, .(z0, .(z0, z3)))))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), z0, U3_gg(z0, z0, .(z0, .(z3, z4)), member34_in_gg(z0, .(z0, .(z3, z4)))))
U6_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z0, z4))), member124_out_gag(z0, z2, .(.(z0, .(z2, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z0, z4))), z2, U3_gg(z2, z0, .(z0, .(z0, z4)), member34_in_gg(z2, .(z0, .(z0, z4)))))
U6_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z4, z5))), member124_out_gag(z0, z2, .(.(z0, .(z2, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z0, .(z4, z5))), z2, U3_gg(z2, z0, .(z0, .(z4, z5)), member34_in_gg(z2, .(z0, .(z4, z5)))))
U6_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, .(z4, z5))), member124_out_gag(z0, z2, .(.(z0, .(z2, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, .(z4, z5))), z2, U3_gg(z2, z0, .(z4, .(z4, z5)), member34_in_gg(z2, .(z4, .(z4, z5)))))
U6_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, .(z5, z6))), member124_out_gag(z0, z2, .(.(z0, .(z2, [])), z3))) → U7_GGGG(z0, z1, .(.(z0, .(z2, [])), z3), .(z0, .(z4, .(z5, z6))), z2, U3_gg(z2, z0, .(z4, .(z5, z6)), member34_in_gg(z2, .(z4, .(z5, z6)))))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(z0, x5, .(.(z0, .(z0, [])), z2))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), x5, U3_gg(x5, z0, .(z0, .(z0, z3)), member34_in_gg(x5, .(z0, .(z0, z3)))))
U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), member124_out_gag(z0, x5, .(.(z0, .(z0, [])), z2))) → U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z3, z4))), x5, U3_gg(x5, z0, .(z0, .(z3, z4)), member34_in_gg(x5, .(z0, .(z3, z4)))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4))), member124_out_gag(z0, x5, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z0, z4))), x5, U3_gg(x5, z0, .(z0, .(z0, z4)), member34_in_gg(x5, .(z0, .(z0, z4)))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5))), member124_out_gag(z0, x5, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z0, .(z4, z5))), x5, U3_gg(x5, z0, .(z0, .(z4, z5)), member34_in_gg(x5, .(z0, .(z4, z5)))))
U6_GGGG(z0, z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z2, z4))), member124_out_gag(z0, x6, .(.(z2, .(z0, [])), z3))) → U7_GGGG(z0, z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z2, z4))), x6, U3_gg(x6, z0, .(z2, .(z2, z4)), member34_in_gg(x6, .(z2, .(z2, z4)))))
U6_GGGG(z0, z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z4, z5))), member124_out_gag(z0, x6, .(.(z2, .(z0, [])), z3))) → U7_GGGG(z0, z1, .(.(z2, .(z0, [])), z3), .(z0, .(z2, .(z4, z5))), x6, U3_gg(x6, z0, .(z2, .(z4, z5)), member34_in_gg(x6, .(z2, .(z4, z5)))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, .(z4, z5))), member124_out_gag(z0, x6, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, .(z4, z5))), x6, U3_gg(x6, z0, .(z4, .(z4, z5)), member34_in_gg(x6, .(z4, .(z4, z5)))))
U6_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, .(z5, z6))), member124_out_gag(z0, x6, .(z2, z3))) → U7_GGGG(z0, z1, .(z2, z3), .(z0, .(z4, .(z5, z6))), x6, U3_gg(x6, z0, .(z4, .(z5, z6)), member34_in_gg(x6, .(z4, .(z5, z6)))))

The TRS R consists of the following rules:

member124_in_gag(T120, .(.(T120, .(X117, [])), T121)) → member124_out_gag(T120, X117, .(.(T120, .(X117, [])), T121))
member124_in_gag(T128, .(T129, T130)) → U2_gag(T128, T129, T130, member124_in_gag(T128, T130))
member34_in_gg(T151, .(T151, T152)) → member34_out_gg(T151, .(T151, T152))
member34_in_gg(T159, .(T160, T161)) → U3_gg(T159, T160, T161, member34_in_gg(T159, T161))
U2_gag(T128, T129, T130, member124_out_gag(T128, X131, T130)) → member124_out_gag(T128, X131, .(T129, T130))
U3_gg(T159, T160, T161, member34_out_gg(T159, T161)) → member34_out_gg(T159, .(T160, T161))

The set Q consists of the following terms:

member124_in_gag(x0, x1)
member34_in_gg(x0, x1)
U2_gag(x0, x1, x2, x3)
U3_gg(x0, x1, x2, x3)

We have to consider all (P,Q,R)-chains.

(153) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:

s = REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3)))) evaluates to t =REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, .(z0, z3)))))

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Matcher: [z3 / .(z0, z3)]
  • Semiunifier: [ ]




Rewriting sequence

REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))))U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2)))
with rule REACH1_IN_GGGG(z0', z1', .(.(z0', .(z0', [])), z2'), .(z0', .(z0', .(z0', z3')))) → U6_GGGG(z0', z1', .(.(z0', .(z0', [])), z2'), .(z0', .(z0', .(z0', z3'))), member124_out_gag(z0', z0', .(.(z0', .(z0', [])), z2'))) at position [] and matcher [z0' / z0, z1' / z1, z2' / z2, z3' / z3]

U6_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), member124_out_gag(z0, z0, .(.(z0, .(z0, [])), z2)))U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), z0, member34_out_gg(z0, .(z0, .(z0, .(z0, z3)))))
with rule U6_GGGG(z0', z1', .(.(z0', .(z0', [])), z2'), .(z0', .(z0', .(z0', z3'))), member124_out_gag(z0', z0', .(.(z0', .(z0', [])), z2'))) → U7_GGGG(z0', z1', .(.(z0', .(z0', [])), z2'), .(z0', .(z0', .(z0', z3'))), z0', member34_out_gg(z0', .(z0', .(z0', .(z0', z3'))))) at position [] and matcher [z0' / z0, z1' / z1, z2' / z2, z3' / z3]

U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))), z0, member34_out_gg(z0, .(z0, .(z0, .(z0, z3)))))REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, .(z0, z3)))))
with rule U7_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, z3)), z0, member34_out_gg(z0, .(z0, .(z0, z3)))) → REACH1_IN_GGGG(z0, z1, .(.(z0, .(z0, [])), z2), .(z0, .(z0, .(z0, z3))))

Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence


All these steps are and every following step will be a correct step w.r.t to Q.



(154) NO