(0) Obligation:
Clauses:
mult(0, Y, 0).
mult(s(X), Y, Z) :- ','(mult(X, Y, Z1), add(Z1, Y, Z)).
add(0, Y, Y).
add(s(X), Y, s(Z)) :- add(X, Y, Z).
Queries:
mult(g,g,a).
(1) PrologToDTProblemTransformerProof (SOUND transformation)
Built DT problem from termination graph.
(2) Obligation:
Triples:
mult23(s(T45), T46, X74) :- mult23(T45, T46, X73).
mult23(s(T45), T46, X74) :- ','(multc23(T45, T46, T49), add34(T49, T46, X74)).
add34(s(T63), T64, s(X101)) :- add34(T63, T64, X101).
add44(s(T85), T86, s(T88)) :- add44(T85, T86, T88).
mult1(s(s(T29)), T30, T12) :- mult23(T29, T30, X46).
mult1(s(s(T29)), T30, T12) :- ','(multc23(T29, T30, T33), add34(T33, T30, X47)).
mult1(s(s(T29)), T30, T12) :- ','(multc23(T29, T30, T33), ','(addc34(T33, T30, T69), add44(T69, T30, T12))).
Clauses:
multc23(0, T40, 0).
multc23(s(T45), T46, X74) :- ','(multc23(T45, T46, T49), addc34(T49, T46, X74)).
addc34(0, T58, T58).
addc34(s(T63), T64, s(X101)) :- addc34(T63, T64, X101).
addc44(0, T78, T78).
addc44(s(T85), T86, s(T88)) :- addc44(T85, T86, T88).
Afs:
mult1(x1, x2, x3) = mult1(x1, x2)
(3) TriplesToPiDPProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
mult1_in: (b,b,f)
mult23_in: (b,b,f)
multc23_in: (b,b,f)
addc34_in: (b,b,f)
add34_in: (b,b,f)
add44_in: (b,b,f)
Transforming
TRIPLES into the following
Term Rewriting System:
Pi DP problem:
The TRS P consists of the following rules:
MULT1_IN_GGA(s(s(T29)), T30, T12) → U6_GGA(T29, T30, T12, mult23_in_gga(T29, T30, X46))
MULT1_IN_GGA(s(s(T29)), T30, T12) → MULT23_IN_GGA(T29, T30, X46)
MULT23_IN_GGA(s(T45), T46, X74) → U1_GGA(T45, T46, X74, mult23_in_gga(T45, T46, X73))
MULT23_IN_GGA(s(T45), T46, X74) → MULT23_IN_GGA(T45, T46, X73)
MULT23_IN_GGA(s(T45), T46, X74) → U2_GGA(T45, T46, X74, multc23_in_gga(T45, T46, T49))
U2_GGA(T45, T46, X74, multc23_out_gga(T45, T46, T49)) → U3_GGA(T45, T46, X74, add34_in_gga(T49, T46, X74))
U2_GGA(T45, T46, X74, multc23_out_gga(T45, T46, T49)) → ADD34_IN_GGA(T49, T46, X74)
ADD34_IN_GGA(s(T63), T64, s(X101)) → U4_GGA(T63, T64, X101, add34_in_gga(T63, T64, X101))
ADD34_IN_GGA(s(T63), T64, s(X101)) → ADD34_IN_GGA(T63, T64, X101)
MULT1_IN_GGA(s(s(T29)), T30, T12) → U7_GGA(T29, T30, T12, multc23_in_gga(T29, T30, T33))
U7_GGA(T29, T30, T12, multc23_out_gga(T29, T30, T33)) → U8_GGA(T29, T30, T12, add34_in_gga(T33, T30, X47))
U7_GGA(T29, T30, T12, multc23_out_gga(T29, T30, T33)) → ADD34_IN_GGA(T33, T30, X47)
U7_GGA(T29, T30, T12, multc23_out_gga(T29, T30, T33)) → U9_GGA(T29, T30, T12, addc34_in_gga(T33, T30, T69))
U9_GGA(T29, T30, T12, addc34_out_gga(T33, T30, T69)) → U10_GGA(T29, T30, T12, add44_in_gga(T69, T30, T12))
U9_GGA(T29, T30, T12, addc34_out_gga(T33, T30, T69)) → ADD44_IN_GGA(T69, T30, T12)
ADD44_IN_GGA(s(T85), T86, s(T88)) → U5_GGA(T85, T86, T88, add44_in_gga(T85, T86, T88))
ADD44_IN_GGA(s(T85), T86, s(T88)) → ADD44_IN_GGA(T85, T86, T88)
The TRS R consists of the following rules:
multc23_in_gga(0, T40, 0) → multc23_out_gga(0, T40, 0)
multc23_in_gga(s(T45), T46, X74) → U12_gga(T45, T46, X74, multc23_in_gga(T45, T46, T49))
U12_gga(T45, T46, X74, multc23_out_gga(T45, T46, T49)) → U13_gga(T45, T46, X74, addc34_in_gga(T49, T46, X74))
addc34_in_gga(0, T58, T58) → addc34_out_gga(0, T58, T58)
addc34_in_gga(s(T63), T64, s(X101)) → U14_gga(T63, T64, X101, addc34_in_gga(T63, T64, X101))
U14_gga(T63, T64, X101, addc34_out_gga(T63, T64, X101)) → addc34_out_gga(s(T63), T64, s(X101))
U13_gga(T45, T46, X74, addc34_out_gga(T49, T46, X74)) → multc23_out_gga(s(T45), T46, X74)
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
mult23_in_gga(
x1,
x2,
x3) =
mult23_in_gga(
x1,
x2)
multc23_in_gga(
x1,
x2,
x3) =
multc23_in_gga(
x1,
x2)
0 =
0
multc23_out_gga(
x1,
x2,
x3) =
multc23_out_gga(
x1,
x2,
x3)
U12_gga(
x1,
x2,
x3,
x4) =
U12_gga(
x1,
x2,
x4)
U13_gga(
x1,
x2,
x3,
x4) =
U13_gga(
x1,
x2,
x4)
addc34_in_gga(
x1,
x2,
x3) =
addc34_in_gga(
x1,
x2)
addc34_out_gga(
x1,
x2,
x3) =
addc34_out_gga(
x1,
x2,
x3)
U14_gga(
x1,
x2,
x3,
x4) =
U14_gga(
x1,
x2,
x4)
add34_in_gga(
x1,
x2,
x3) =
add34_in_gga(
x1,
x2)
add44_in_gga(
x1,
x2,
x3) =
add44_in_gga(
x1,
x2)
MULT1_IN_GGA(
x1,
x2,
x3) =
MULT1_IN_GGA(
x1,
x2)
U6_GGA(
x1,
x2,
x3,
x4) =
U6_GGA(
x1,
x2,
x4)
MULT23_IN_GGA(
x1,
x2,
x3) =
MULT23_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3,
x4) =
U1_GGA(
x1,
x2,
x4)
U2_GGA(
x1,
x2,
x3,
x4) =
U2_GGA(
x1,
x2,
x4)
U3_GGA(
x1,
x2,
x3,
x4) =
U3_GGA(
x1,
x2,
x4)
ADD34_IN_GGA(
x1,
x2,
x3) =
ADD34_IN_GGA(
x1,
x2)
U4_GGA(
x1,
x2,
x3,
x4) =
U4_GGA(
x1,
x2,
x4)
U7_GGA(
x1,
x2,
x3,
x4) =
U7_GGA(
x1,
x2,
x4)
U8_GGA(
x1,
x2,
x3,
x4) =
U8_GGA(
x1,
x2,
x4)
U9_GGA(
x1,
x2,
x3,
x4) =
U9_GGA(
x1,
x2,
x4)
U10_GGA(
x1,
x2,
x3,
x4) =
U10_GGA(
x1,
x2,
x4)
ADD44_IN_GGA(
x1,
x2,
x3) =
ADD44_IN_GGA(
x1,
x2)
U5_GGA(
x1,
x2,
x3,
x4) =
U5_GGA(
x1,
x2,
x4)
We have to consider all (P,R,Pi)-chains
Infinitary Constructor Rewriting Termination of PiDP implies Termination of TRIPLES
(4) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
MULT1_IN_GGA(s(s(T29)), T30, T12) → U6_GGA(T29, T30, T12, mult23_in_gga(T29, T30, X46))
MULT1_IN_GGA(s(s(T29)), T30, T12) → MULT23_IN_GGA(T29, T30, X46)
MULT23_IN_GGA(s(T45), T46, X74) → U1_GGA(T45, T46, X74, mult23_in_gga(T45, T46, X73))
MULT23_IN_GGA(s(T45), T46, X74) → MULT23_IN_GGA(T45, T46, X73)
MULT23_IN_GGA(s(T45), T46, X74) → U2_GGA(T45, T46, X74, multc23_in_gga(T45, T46, T49))
U2_GGA(T45, T46, X74, multc23_out_gga(T45, T46, T49)) → U3_GGA(T45, T46, X74, add34_in_gga(T49, T46, X74))
U2_GGA(T45, T46, X74, multc23_out_gga(T45, T46, T49)) → ADD34_IN_GGA(T49, T46, X74)
ADD34_IN_GGA(s(T63), T64, s(X101)) → U4_GGA(T63, T64, X101, add34_in_gga(T63, T64, X101))
ADD34_IN_GGA(s(T63), T64, s(X101)) → ADD34_IN_GGA(T63, T64, X101)
MULT1_IN_GGA(s(s(T29)), T30, T12) → U7_GGA(T29, T30, T12, multc23_in_gga(T29, T30, T33))
U7_GGA(T29, T30, T12, multc23_out_gga(T29, T30, T33)) → U8_GGA(T29, T30, T12, add34_in_gga(T33, T30, X47))
U7_GGA(T29, T30, T12, multc23_out_gga(T29, T30, T33)) → ADD34_IN_GGA(T33, T30, X47)
U7_GGA(T29, T30, T12, multc23_out_gga(T29, T30, T33)) → U9_GGA(T29, T30, T12, addc34_in_gga(T33, T30, T69))
U9_GGA(T29, T30, T12, addc34_out_gga(T33, T30, T69)) → U10_GGA(T29, T30, T12, add44_in_gga(T69, T30, T12))
U9_GGA(T29, T30, T12, addc34_out_gga(T33, T30, T69)) → ADD44_IN_GGA(T69, T30, T12)
ADD44_IN_GGA(s(T85), T86, s(T88)) → U5_GGA(T85, T86, T88, add44_in_gga(T85, T86, T88))
ADD44_IN_GGA(s(T85), T86, s(T88)) → ADD44_IN_GGA(T85, T86, T88)
The TRS R consists of the following rules:
multc23_in_gga(0, T40, 0) → multc23_out_gga(0, T40, 0)
multc23_in_gga(s(T45), T46, X74) → U12_gga(T45, T46, X74, multc23_in_gga(T45, T46, T49))
U12_gga(T45, T46, X74, multc23_out_gga(T45, T46, T49)) → U13_gga(T45, T46, X74, addc34_in_gga(T49, T46, X74))
addc34_in_gga(0, T58, T58) → addc34_out_gga(0, T58, T58)
addc34_in_gga(s(T63), T64, s(X101)) → U14_gga(T63, T64, X101, addc34_in_gga(T63, T64, X101))
U14_gga(T63, T64, X101, addc34_out_gga(T63, T64, X101)) → addc34_out_gga(s(T63), T64, s(X101))
U13_gga(T45, T46, X74, addc34_out_gga(T49, T46, X74)) → multc23_out_gga(s(T45), T46, X74)
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
mult23_in_gga(
x1,
x2,
x3) =
mult23_in_gga(
x1,
x2)
multc23_in_gga(
x1,
x2,
x3) =
multc23_in_gga(
x1,
x2)
0 =
0
multc23_out_gga(
x1,
x2,
x3) =
multc23_out_gga(
x1,
x2,
x3)
U12_gga(
x1,
x2,
x3,
x4) =
U12_gga(
x1,
x2,
x4)
U13_gga(
x1,
x2,
x3,
x4) =
U13_gga(
x1,
x2,
x4)
addc34_in_gga(
x1,
x2,
x3) =
addc34_in_gga(
x1,
x2)
addc34_out_gga(
x1,
x2,
x3) =
addc34_out_gga(
x1,
x2,
x3)
U14_gga(
x1,
x2,
x3,
x4) =
U14_gga(
x1,
x2,
x4)
add34_in_gga(
x1,
x2,
x3) =
add34_in_gga(
x1,
x2)
add44_in_gga(
x1,
x2,
x3) =
add44_in_gga(
x1,
x2)
MULT1_IN_GGA(
x1,
x2,
x3) =
MULT1_IN_GGA(
x1,
x2)
U6_GGA(
x1,
x2,
x3,
x4) =
U6_GGA(
x1,
x2,
x4)
MULT23_IN_GGA(
x1,
x2,
x3) =
MULT23_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3,
x4) =
U1_GGA(
x1,
x2,
x4)
U2_GGA(
x1,
x2,
x3,
x4) =
U2_GGA(
x1,
x2,
x4)
U3_GGA(
x1,
x2,
x3,
x4) =
U3_GGA(
x1,
x2,
x4)
ADD34_IN_GGA(
x1,
x2,
x3) =
ADD34_IN_GGA(
x1,
x2)
U4_GGA(
x1,
x2,
x3,
x4) =
U4_GGA(
x1,
x2,
x4)
U7_GGA(
x1,
x2,
x3,
x4) =
U7_GGA(
x1,
x2,
x4)
U8_GGA(
x1,
x2,
x3,
x4) =
U8_GGA(
x1,
x2,
x4)
U9_GGA(
x1,
x2,
x3,
x4) =
U9_GGA(
x1,
x2,
x4)
U10_GGA(
x1,
x2,
x3,
x4) =
U10_GGA(
x1,
x2,
x4)
ADD44_IN_GGA(
x1,
x2,
x3) =
ADD44_IN_GGA(
x1,
x2)
U5_GGA(
x1,
x2,
x3,
x4) =
U5_GGA(
x1,
x2,
x4)
We have to consider all (P,R,Pi)-chains
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 3 SCCs with 14 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
ADD44_IN_GGA(s(T85), T86, s(T88)) → ADD44_IN_GGA(T85, T86, T88)
The TRS R consists of the following rules:
multc23_in_gga(0, T40, 0) → multc23_out_gga(0, T40, 0)
multc23_in_gga(s(T45), T46, X74) → U12_gga(T45, T46, X74, multc23_in_gga(T45, T46, T49))
U12_gga(T45, T46, X74, multc23_out_gga(T45, T46, T49)) → U13_gga(T45, T46, X74, addc34_in_gga(T49, T46, X74))
addc34_in_gga(0, T58, T58) → addc34_out_gga(0, T58, T58)
addc34_in_gga(s(T63), T64, s(X101)) → U14_gga(T63, T64, X101, addc34_in_gga(T63, T64, X101))
U14_gga(T63, T64, X101, addc34_out_gga(T63, T64, X101)) → addc34_out_gga(s(T63), T64, s(X101))
U13_gga(T45, T46, X74, addc34_out_gga(T49, T46, X74)) → multc23_out_gga(s(T45), T46, X74)
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
multc23_in_gga(
x1,
x2,
x3) =
multc23_in_gga(
x1,
x2)
0 =
0
multc23_out_gga(
x1,
x2,
x3) =
multc23_out_gga(
x1,
x2,
x3)
U12_gga(
x1,
x2,
x3,
x4) =
U12_gga(
x1,
x2,
x4)
U13_gga(
x1,
x2,
x3,
x4) =
U13_gga(
x1,
x2,
x4)
addc34_in_gga(
x1,
x2,
x3) =
addc34_in_gga(
x1,
x2)
addc34_out_gga(
x1,
x2,
x3) =
addc34_out_gga(
x1,
x2,
x3)
U14_gga(
x1,
x2,
x3,
x4) =
U14_gga(
x1,
x2,
x4)
ADD44_IN_GGA(
x1,
x2,
x3) =
ADD44_IN_GGA(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(8) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(9) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
ADD44_IN_GGA(s(T85), T86, s(T88)) → ADD44_IN_GGA(T85, T86, T88)
R is empty.
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
ADD44_IN_GGA(
x1,
x2,
x3) =
ADD44_IN_GGA(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(10) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ADD44_IN_GGA(s(T85), T86) → ADD44_IN_GGA(T85, T86)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(12) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- ADD44_IN_GGA(s(T85), T86) → ADD44_IN_GGA(T85, T86)
The graph contains the following edges 1 > 1, 2 >= 2
(13) YES
(14) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
ADD34_IN_GGA(s(T63), T64, s(X101)) → ADD34_IN_GGA(T63, T64, X101)
The TRS R consists of the following rules:
multc23_in_gga(0, T40, 0) → multc23_out_gga(0, T40, 0)
multc23_in_gga(s(T45), T46, X74) → U12_gga(T45, T46, X74, multc23_in_gga(T45, T46, T49))
U12_gga(T45, T46, X74, multc23_out_gga(T45, T46, T49)) → U13_gga(T45, T46, X74, addc34_in_gga(T49, T46, X74))
addc34_in_gga(0, T58, T58) → addc34_out_gga(0, T58, T58)
addc34_in_gga(s(T63), T64, s(X101)) → U14_gga(T63, T64, X101, addc34_in_gga(T63, T64, X101))
U14_gga(T63, T64, X101, addc34_out_gga(T63, T64, X101)) → addc34_out_gga(s(T63), T64, s(X101))
U13_gga(T45, T46, X74, addc34_out_gga(T49, T46, X74)) → multc23_out_gga(s(T45), T46, X74)
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
multc23_in_gga(
x1,
x2,
x3) =
multc23_in_gga(
x1,
x2)
0 =
0
multc23_out_gga(
x1,
x2,
x3) =
multc23_out_gga(
x1,
x2,
x3)
U12_gga(
x1,
x2,
x3,
x4) =
U12_gga(
x1,
x2,
x4)
U13_gga(
x1,
x2,
x3,
x4) =
U13_gga(
x1,
x2,
x4)
addc34_in_gga(
x1,
x2,
x3) =
addc34_in_gga(
x1,
x2)
addc34_out_gga(
x1,
x2,
x3) =
addc34_out_gga(
x1,
x2,
x3)
U14_gga(
x1,
x2,
x3,
x4) =
U14_gga(
x1,
x2,
x4)
ADD34_IN_GGA(
x1,
x2,
x3) =
ADD34_IN_GGA(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(15) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(16) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
ADD34_IN_GGA(s(T63), T64, s(X101)) → ADD34_IN_GGA(T63, T64, X101)
R is empty.
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
ADD34_IN_GGA(
x1,
x2,
x3) =
ADD34_IN_GGA(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(17) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ADD34_IN_GGA(s(T63), T64) → ADD34_IN_GGA(T63, T64)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(19) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- ADD34_IN_GGA(s(T63), T64) → ADD34_IN_GGA(T63, T64)
The graph contains the following edges 1 > 1, 2 >= 2
(20) YES
(21) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
MULT23_IN_GGA(s(T45), T46, X74) → MULT23_IN_GGA(T45, T46, X73)
The TRS R consists of the following rules:
multc23_in_gga(0, T40, 0) → multc23_out_gga(0, T40, 0)
multc23_in_gga(s(T45), T46, X74) → U12_gga(T45, T46, X74, multc23_in_gga(T45, T46, T49))
U12_gga(T45, T46, X74, multc23_out_gga(T45, T46, T49)) → U13_gga(T45, T46, X74, addc34_in_gga(T49, T46, X74))
addc34_in_gga(0, T58, T58) → addc34_out_gga(0, T58, T58)
addc34_in_gga(s(T63), T64, s(X101)) → U14_gga(T63, T64, X101, addc34_in_gga(T63, T64, X101))
U14_gga(T63, T64, X101, addc34_out_gga(T63, T64, X101)) → addc34_out_gga(s(T63), T64, s(X101))
U13_gga(T45, T46, X74, addc34_out_gga(T49, T46, X74)) → multc23_out_gga(s(T45), T46, X74)
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
multc23_in_gga(
x1,
x2,
x3) =
multc23_in_gga(
x1,
x2)
0 =
0
multc23_out_gga(
x1,
x2,
x3) =
multc23_out_gga(
x1,
x2,
x3)
U12_gga(
x1,
x2,
x3,
x4) =
U12_gga(
x1,
x2,
x4)
U13_gga(
x1,
x2,
x3,
x4) =
U13_gga(
x1,
x2,
x4)
addc34_in_gga(
x1,
x2,
x3) =
addc34_in_gga(
x1,
x2)
addc34_out_gga(
x1,
x2,
x3) =
addc34_out_gga(
x1,
x2,
x3)
U14_gga(
x1,
x2,
x3,
x4) =
U14_gga(
x1,
x2,
x4)
MULT23_IN_GGA(
x1,
x2,
x3) =
MULT23_IN_GGA(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(22) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(23) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
MULT23_IN_GGA(s(T45), T46, X74) → MULT23_IN_GGA(T45, T46, X73)
R is empty.
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
MULT23_IN_GGA(
x1,
x2,
x3) =
MULT23_IN_GGA(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(24) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(25) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MULT23_IN_GGA(s(T45), T46) → MULT23_IN_GGA(T45, T46)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(26) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- MULT23_IN_GGA(s(T45), T46) → MULT23_IN_GGA(T45, T46)
The graph contains the following edges 1 > 1, 2 >= 2
(27) YES