(0) Obligation:
Clauses:
p(b).
p(a) :- p1(X).
p1(b).
p1(a) :- p1(X).
Queries:
p(g).
(1) PrologToPrologProblemTransformerProof (SOUND transformation)
Built Prolog problem from termination graph.
(2) Obligation:
Clauses:
p17(b).
p17(a) :- p17(X3).
p11(b).
p11(a) :- p17(X1).
Queries:
p11(g).
(3) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
p11_in: (b)
p17_in: (f)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
p11_in_g(b) → p11_out_g(b)
p11_in_g(a) → U2_g(p17_in_a(X1))
p17_in_a(b) → p17_out_a(b)
p17_in_a(a) → U1_a(p17_in_a(X3))
U1_a(p17_out_a(X3)) → p17_out_a(a)
U2_g(p17_out_a(X1)) → p11_out_g(a)
The argument filtering Pi contains the following mapping:
p11_in_g(
x1) =
p11_in_g(
x1)
b =
b
p11_out_g(
x1) =
p11_out_g
a =
a
U2_g(
x1) =
U2_g(
x1)
p17_in_a(
x1) =
p17_in_a
p17_out_a(
x1) =
p17_out_a(
x1)
U1_a(
x1) =
U1_a(
x1)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(4) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
p11_in_g(b) → p11_out_g(b)
p11_in_g(a) → U2_g(p17_in_a(X1))
p17_in_a(b) → p17_out_a(b)
p17_in_a(a) → U1_a(p17_in_a(X3))
U1_a(p17_out_a(X3)) → p17_out_a(a)
U2_g(p17_out_a(X1)) → p11_out_g(a)
The argument filtering Pi contains the following mapping:
p11_in_g(
x1) =
p11_in_g(
x1)
b =
b
p11_out_g(
x1) =
p11_out_g
a =
a
U2_g(
x1) =
U2_g(
x1)
p17_in_a(
x1) =
p17_in_a
p17_out_a(
x1) =
p17_out_a(
x1)
U1_a(
x1) =
U1_a(
x1)
(5) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
P11_IN_G(a) → U2_G(p17_in_a(X1))
P11_IN_G(a) → P17_IN_A(X1)
P17_IN_A(a) → U1_A(p17_in_a(X3))
P17_IN_A(a) → P17_IN_A(X3)
The TRS R consists of the following rules:
p11_in_g(b) → p11_out_g(b)
p11_in_g(a) → U2_g(p17_in_a(X1))
p17_in_a(b) → p17_out_a(b)
p17_in_a(a) → U1_a(p17_in_a(X3))
U1_a(p17_out_a(X3)) → p17_out_a(a)
U2_g(p17_out_a(X1)) → p11_out_g(a)
The argument filtering Pi contains the following mapping:
p11_in_g(
x1) =
p11_in_g(
x1)
b =
b
p11_out_g(
x1) =
p11_out_g
a =
a
U2_g(
x1) =
U2_g(
x1)
p17_in_a(
x1) =
p17_in_a
p17_out_a(
x1) =
p17_out_a(
x1)
U1_a(
x1) =
U1_a(
x1)
P11_IN_G(
x1) =
P11_IN_G(
x1)
U2_G(
x1) =
U2_G(
x1)
P17_IN_A(
x1) =
P17_IN_A
U1_A(
x1) =
U1_A(
x1)
We have to consider all (P,R,Pi)-chains
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P11_IN_G(a) → U2_G(p17_in_a(X1))
P11_IN_G(a) → P17_IN_A(X1)
P17_IN_A(a) → U1_A(p17_in_a(X3))
P17_IN_A(a) → P17_IN_A(X3)
The TRS R consists of the following rules:
p11_in_g(b) → p11_out_g(b)
p11_in_g(a) → U2_g(p17_in_a(X1))
p17_in_a(b) → p17_out_a(b)
p17_in_a(a) → U1_a(p17_in_a(X3))
U1_a(p17_out_a(X3)) → p17_out_a(a)
U2_g(p17_out_a(X1)) → p11_out_g(a)
The argument filtering Pi contains the following mapping:
p11_in_g(
x1) =
p11_in_g(
x1)
b =
b
p11_out_g(
x1) =
p11_out_g
a =
a
U2_g(
x1) =
U2_g(
x1)
p17_in_a(
x1) =
p17_in_a
p17_out_a(
x1) =
p17_out_a(
x1)
U1_a(
x1) =
U1_a(
x1)
P11_IN_G(
x1) =
P11_IN_G(
x1)
U2_G(
x1) =
U2_G(
x1)
P17_IN_A(
x1) =
P17_IN_A
U1_A(
x1) =
U1_A(
x1)
We have to consider all (P,R,Pi)-chains
(7) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 3 less nodes.
(8) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P17_IN_A(a) → P17_IN_A(X3)
The TRS R consists of the following rules:
p11_in_g(b) → p11_out_g(b)
p11_in_g(a) → U2_g(p17_in_a(X1))
p17_in_a(b) → p17_out_a(b)
p17_in_a(a) → U1_a(p17_in_a(X3))
U1_a(p17_out_a(X3)) → p17_out_a(a)
U2_g(p17_out_a(X1)) → p11_out_g(a)
The argument filtering Pi contains the following mapping:
p11_in_g(
x1) =
p11_in_g(
x1)
b =
b
p11_out_g(
x1) =
p11_out_g
a =
a
U2_g(
x1) =
U2_g(
x1)
p17_in_a(
x1) =
p17_in_a
p17_out_a(
x1) =
p17_out_a(
x1)
U1_a(
x1) =
U1_a(
x1)
P17_IN_A(
x1) =
P17_IN_A
We have to consider all (P,R,Pi)-chains
(9) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(10) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P17_IN_A(a) → P17_IN_A(X3)
R is empty.
The argument filtering Pi contains the following mapping:
a =
a
P17_IN_A(
x1) =
P17_IN_A
We have to consider all (P,R,Pi)-chains
(11) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
P17_IN_A → P17_IN_A
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(13) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.
s =
P17_IN_A evaluates to t =
P17_IN_AThus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Matcher: [ ]
- Semiunifier: [ ]
Rewriting sequenceThe DP semiunifies directly so there is only one rewrite step from P17_IN_A to P17_IN_A.
(14) NO
(15) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
p11_in: (b)
p17_in: (f)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
p11_in_g(b) → p11_out_g(b)
p11_in_g(a) → U2_g(p17_in_a(X1))
p17_in_a(b) → p17_out_a(b)
p17_in_a(a) → U1_a(p17_in_a(X3))
U1_a(p17_out_a(X3)) → p17_out_a(a)
U2_g(p17_out_a(X1)) → p11_out_g(a)
The argument filtering Pi contains the following mapping:
p11_in_g(
x1) =
p11_in_g(
x1)
b =
b
p11_out_g(
x1) =
p11_out_g(
x1)
a =
a
U2_g(
x1) =
U2_g(
x1)
p17_in_a(
x1) =
p17_in_a
p17_out_a(
x1) =
p17_out_a(
x1)
U1_a(
x1) =
U1_a(
x1)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(16) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
p11_in_g(b) → p11_out_g(b)
p11_in_g(a) → U2_g(p17_in_a(X1))
p17_in_a(b) → p17_out_a(b)
p17_in_a(a) → U1_a(p17_in_a(X3))
U1_a(p17_out_a(X3)) → p17_out_a(a)
U2_g(p17_out_a(X1)) → p11_out_g(a)
The argument filtering Pi contains the following mapping:
p11_in_g(
x1) =
p11_in_g(
x1)
b =
b
p11_out_g(
x1) =
p11_out_g(
x1)
a =
a
U2_g(
x1) =
U2_g(
x1)
p17_in_a(
x1) =
p17_in_a
p17_out_a(
x1) =
p17_out_a(
x1)
U1_a(
x1) =
U1_a(
x1)
(17) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
P11_IN_G(a) → U2_G(p17_in_a(X1))
P11_IN_G(a) → P17_IN_A(X1)
P17_IN_A(a) → U1_A(p17_in_a(X3))
P17_IN_A(a) → P17_IN_A(X3)
The TRS R consists of the following rules:
p11_in_g(b) → p11_out_g(b)
p11_in_g(a) → U2_g(p17_in_a(X1))
p17_in_a(b) → p17_out_a(b)
p17_in_a(a) → U1_a(p17_in_a(X3))
U1_a(p17_out_a(X3)) → p17_out_a(a)
U2_g(p17_out_a(X1)) → p11_out_g(a)
The argument filtering Pi contains the following mapping:
p11_in_g(
x1) =
p11_in_g(
x1)
b =
b
p11_out_g(
x1) =
p11_out_g(
x1)
a =
a
U2_g(
x1) =
U2_g(
x1)
p17_in_a(
x1) =
p17_in_a
p17_out_a(
x1) =
p17_out_a(
x1)
U1_a(
x1) =
U1_a(
x1)
P11_IN_G(
x1) =
P11_IN_G(
x1)
U2_G(
x1) =
U2_G(
x1)
P17_IN_A(
x1) =
P17_IN_A
U1_A(
x1) =
U1_A(
x1)
We have to consider all (P,R,Pi)-chains
(18) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P11_IN_G(a) → U2_G(p17_in_a(X1))
P11_IN_G(a) → P17_IN_A(X1)
P17_IN_A(a) → U1_A(p17_in_a(X3))
P17_IN_A(a) → P17_IN_A(X3)
The TRS R consists of the following rules:
p11_in_g(b) → p11_out_g(b)
p11_in_g(a) → U2_g(p17_in_a(X1))
p17_in_a(b) → p17_out_a(b)
p17_in_a(a) → U1_a(p17_in_a(X3))
U1_a(p17_out_a(X3)) → p17_out_a(a)
U2_g(p17_out_a(X1)) → p11_out_g(a)
The argument filtering Pi contains the following mapping:
p11_in_g(
x1) =
p11_in_g(
x1)
b =
b
p11_out_g(
x1) =
p11_out_g(
x1)
a =
a
U2_g(
x1) =
U2_g(
x1)
p17_in_a(
x1) =
p17_in_a
p17_out_a(
x1) =
p17_out_a(
x1)
U1_a(
x1) =
U1_a(
x1)
P11_IN_G(
x1) =
P11_IN_G(
x1)
U2_G(
x1) =
U2_G(
x1)
P17_IN_A(
x1) =
P17_IN_A
U1_A(
x1) =
U1_A(
x1)
We have to consider all (P,R,Pi)-chains
(19) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 3 less nodes.
(20) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P17_IN_A(a) → P17_IN_A(X3)
The TRS R consists of the following rules:
p11_in_g(b) → p11_out_g(b)
p11_in_g(a) → U2_g(p17_in_a(X1))
p17_in_a(b) → p17_out_a(b)
p17_in_a(a) → U1_a(p17_in_a(X3))
U1_a(p17_out_a(X3)) → p17_out_a(a)
U2_g(p17_out_a(X1)) → p11_out_g(a)
The argument filtering Pi contains the following mapping:
p11_in_g(
x1) =
p11_in_g(
x1)
b =
b
p11_out_g(
x1) =
p11_out_g(
x1)
a =
a
U2_g(
x1) =
U2_g(
x1)
p17_in_a(
x1) =
p17_in_a
p17_out_a(
x1) =
p17_out_a(
x1)
U1_a(
x1) =
U1_a(
x1)
P17_IN_A(
x1) =
P17_IN_A
We have to consider all (P,R,Pi)-chains
(21) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(22) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P17_IN_A(a) → P17_IN_A(X3)
R is empty.
The argument filtering Pi contains the following mapping:
a =
a
P17_IN_A(
x1) =
P17_IN_A
We have to consider all (P,R,Pi)-chains
(23) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(24) Obligation:
Q DP problem:
The TRS P consists of the following rules:
P17_IN_A → P17_IN_A
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(25) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.
s =
P17_IN_A evaluates to t =
P17_IN_AThus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Matcher: [ ]
- Semiunifier: [ ]
Rewriting sequenceThe DP semiunifies directly so there is only one rewrite step from P17_IN_A to P17_IN_A.
(26) NO