(0) Obligation:

Clauses:

p(b).
p(a) :- p1(X).
p1(b).
p1(a) :- p1(X).

Queries:

p(g).

(1) PrologToPrologProblemTransformerProof (SOUND transformation)

Built Prolog problem from termination graph.

(2) Obligation:

Clauses:

p17(b).
p17(a) :- p17(X3).
p11(b).
p11(a) :- p17(X1).

Queries:

p11(g).

(3) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
p11_in: (b)
p17_in: (f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

p11_in_g(b) → p11_out_g(b)
p11_in_g(a) → U2_g(p17_in_a(X1))
p17_in_a(b) → p17_out_a(b)
p17_in_a(a) → U1_a(p17_in_a(X3))
U1_a(p17_out_a(X3)) → p17_out_a(a)
U2_g(p17_out_a(X1)) → p11_out_g(a)

The argument filtering Pi contains the following mapping:
p11_in_g(x1)  =  p11_in_g(x1)
b  =  b
p11_out_g(x1)  =  p11_out_g
a  =  a
U2_g(x1)  =  U2_g(x1)
p17_in_a(x1)  =  p17_in_a
p17_out_a(x1)  =  p17_out_a(x1)
U1_a(x1)  =  U1_a(x1)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(4) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

p11_in_g(b) → p11_out_g(b)
p11_in_g(a) → U2_g(p17_in_a(X1))
p17_in_a(b) → p17_out_a(b)
p17_in_a(a) → U1_a(p17_in_a(X3))
U1_a(p17_out_a(X3)) → p17_out_a(a)
U2_g(p17_out_a(X1)) → p11_out_g(a)

The argument filtering Pi contains the following mapping:
p11_in_g(x1)  =  p11_in_g(x1)
b  =  b
p11_out_g(x1)  =  p11_out_g
a  =  a
U2_g(x1)  =  U2_g(x1)
p17_in_a(x1)  =  p17_in_a
p17_out_a(x1)  =  p17_out_a(x1)
U1_a(x1)  =  U1_a(x1)

(5) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

P11_IN_G(a) → U2_G(p17_in_a(X1))
P11_IN_G(a) → P17_IN_A(X1)
P17_IN_A(a) → U1_A(p17_in_a(X3))
P17_IN_A(a) → P17_IN_A(X3)

The TRS R consists of the following rules:

p11_in_g(b) → p11_out_g(b)
p11_in_g(a) → U2_g(p17_in_a(X1))
p17_in_a(b) → p17_out_a(b)
p17_in_a(a) → U1_a(p17_in_a(X3))
U1_a(p17_out_a(X3)) → p17_out_a(a)
U2_g(p17_out_a(X1)) → p11_out_g(a)

The argument filtering Pi contains the following mapping:
p11_in_g(x1)  =  p11_in_g(x1)
b  =  b
p11_out_g(x1)  =  p11_out_g
a  =  a
U2_g(x1)  =  U2_g(x1)
p17_in_a(x1)  =  p17_in_a
p17_out_a(x1)  =  p17_out_a(x1)
U1_a(x1)  =  U1_a(x1)
P11_IN_G(x1)  =  P11_IN_G(x1)
U2_G(x1)  =  U2_G(x1)
P17_IN_A(x1)  =  P17_IN_A
U1_A(x1)  =  U1_A(x1)

We have to consider all (P,R,Pi)-chains

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

P11_IN_G(a) → U2_G(p17_in_a(X1))
P11_IN_G(a) → P17_IN_A(X1)
P17_IN_A(a) → U1_A(p17_in_a(X3))
P17_IN_A(a) → P17_IN_A(X3)

The TRS R consists of the following rules:

p11_in_g(b) → p11_out_g(b)
p11_in_g(a) → U2_g(p17_in_a(X1))
p17_in_a(b) → p17_out_a(b)
p17_in_a(a) → U1_a(p17_in_a(X3))
U1_a(p17_out_a(X3)) → p17_out_a(a)
U2_g(p17_out_a(X1)) → p11_out_g(a)

The argument filtering Pi contains the following mapping:
p11_in_g(x1)  =  p11_in_g(x1)
b  =  b
p11_out_g(x1)  =  p11_out_g
a  =  a
U2_g(x1)  =  U2_g(x1)
p17_in_a(x1)  =  p17_in_a
p17_out_a(x1)  =  p17_out_a(x1)
U1_a(x1)  =  U1_a(x1)
P11_IN_G(x1)  =  P11_IN_G(x1)
U2_G(x1)  =  U2_G(x1)
P17_IN_A(x1)  =  P17_IN_A
U1_A(x1)  =  U1_A(x1)

We have to consider all (P,R,Pi)-chains

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 3 less nodes.

(8) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

P17_IN_A(a) → P17_IN_A(X3)

The TRS R consists of the following rules:

p11_in_g(b) → p11_out_g(b)
p11_in_g(a) → U2_g(p17_in_a(X1))
p17_in_a(b) → p17_out_a(b)
p17_in_a(a) → U1_a(p17_in_a(X3))
U1_a(p17_out_a(X3)) → p17_out_a(a)
U2_g(p17_out_a(X1)) → p11_out_g(a)

The argument filtering Pi contains the following mapping:
p11_in_g(x1)  =  p11_in_g(x1)
b  =  b
p11_out_g(x1)  =  p11_out_g
a  =  a
U2_g(x1)  =  U2_g(x1)
p17_in_a(x1)  =  p17_in_a
p17_out_a(x1)  =  p17_out_a(x1)
U1_a(x1)  =  U1_a(x1)
P17_IN_A(x1)  =  P17_IN_A

We have to consider all (P,R,Pi)-chains

(9) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(10) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

P17_IN_A(a) → P17_IN_A(X3)

R is empty.
The argument filtering Pi contains the following mapping:
a  =  a
P17_IN_A(x1)  =  P17_IN_A

We have to consider all (P,R,Pi)-chains

(11) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P17_IN_AP17_IN_A

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(13) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

s = P17_IN_A evaluates to t =P17_IN_A

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Matcher: [ ]
  • Semiunifier: [ ]




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from P17_IN_A to P17_IN_A.



(14) NO

(15) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
p11_in: (b)
p17_in: (f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

p11_in_g(b) → p11_out_g(b)
p11_in_g(a) → U2_g(p17_in_a(X1))
p17_in_a(b) → p17_out_a(b)
p17_in_a(a) → U1_a(p17_in_a(X3))
U1_a(p17_out_a(X3)) → p17_out_a(a)
U2_g(p17_out_a(X1)) → p11_out_g(a)

The argument filtering Pi contains the following mapping:
p11_in_g(x1)  =  p11_in_g(x1)
b  =  b
p11_out_g(x1)  =  p11_out_g(x1)
a  =  a
U2_g(x1)  =  U2_g(x1)
p17_in_a(x1)  =  p17_in_a
p17_out_a(x1)  =  p17_out_a(x1)
U1_a(x1)  =  U1_a(x1)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(16) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

p11_in_g(b) → p11_out_g(b)
p11_in_g(a) → U2_g(p17_in_a(X1))
p17_in_a(b) → p17_out_a(b)
p17_in_a(a) → U1_a(p17_in_a(X3))
U1_a(p17_out_a(X3)) → p17_out_a(a)
U2_g(p17_out_a(X1)) → p11_out_g(a)

The argument filtering Pi contains the following mapping:
p11_in_g(x1)  =  p11_in_g(x1)
b  =  b
p11_out_g(x1)  =  p11_out_g(x1)
a  =  a
U2_g(x1)  =  U2_g(x1)
p17_in_a(x1)  =  p17_in_a
p17_out_a(x1)  =  p17_out_a(x1)
U1_a(x1)  =  U1_a(x1)

(17) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

P11_IN_G(a) → U2_G(p17_in_a(X1))
P11_IN_G(a) → P17_IN_A(X1)
P17_IN_A(a) → U1_A(p17_in_a(X3))
P17_IN_A(a) → P17_IN_A(X3)

The TRS R consists of the following rules:

p11_in_g(b) → p11_out_g(b)
p11_in_g(a) → U2_g(p17_in_a(X1))
p17_in_a(b) → p17_out_a(b)
p17_in_a(a) → U1_a(p17_in_a(X3))
U1_a(p17_out_a(X3)) → p17_out_a(a)
U2_g(p17_out_a(X1)) → p11_out_g(a)

The argument filtering Pi contains the following mapping:
p11_in_g(x1)  =  p11_in_g(x1)
b  =  b
p11_out_g(x1)  =  p11_out_g(x1)
a  =  a
U2_g(x1)  =  U2_g(x1)
p17_in_a(x1)  =  p17_in_a
p17_out_a(x1)  =  p17_out_a(x1)
U1_a(x1)  =  U1_a(x1)
P11_IN_G(x1)  =  P11_IN_G(x1)
U2_G(x1)  =  U2_G(x1)
P17_IN_A(x1)  =  P17_IN_A
U1_A(x1)  =  U1_A(x1)

We have to consider all (P,R,Pi)-chains

(18) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

P11_IN_G(a) → U2_G(p17_in_a(X1))
P11_IN_G(a) → P17_IN_A(X1)
P17_IN_A(a) → U1_A(p17_in_a(X3))
P17_IN_A(a) → P17_IN_A(X3)

The TRS R consists of the following rules:

p11_in_g(b) → p11_out_g(b)
p11_in_g(a) → U2_g(p17_in_a(X1))
p17_in_a(b) → p17_out_a(b)
p17_in_a(a) → U1_a(p17_in_a(X3))
U1_a(p17_out_a(X3)) → p17_out_a(a)
U2_g(p17_out_a(X1)) → p11_out_g(a)

The argument filtering Pi contains the following mapping:
p11_in_g(x1)  =  p11_in_g(x1)
b  =  b
p11_out_g(x1)  =  p11_out_g(x1)
a  =  a
U2_g(x1)  =  U2_g(x1)
p17_in_a(x1)  =  p17_in_a
p17_out_a(x1)  =  p17_out_a(x1)
U1_a(x1)  =  U1_a(x1)
P11_IN_G(x1)  =  P11_IN_G(x1)
U2_G(x1)  =  U2_G(x1)
P17_IN_A(x1)  =  P17_IN_A
U1_A(x1)  =  U1_A(x1)

We have to consider all (P,R,Pi)-chains

(19) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 3 less nodes.

(20) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

P17_IN_A(a) → P17_IN_A(X3)

The TRS R consists of the following rules:

p11_in_g(b) → p11_out_g(b)
p11_in_g(a) → U2_g(p17_in_a(X1))
p17_in_a(b) → p17_out_a(b)
p17_in_a(a) → U1_a(p17_in_a(X3))
U1_a(p17_out_a(X3)) → p17_out_a(a)
U2_g(p17_out_a(X1)) → p11_out_g(a)

The argument filtering Pi contains the following mapping:
p11_in_g(x1)  =  p11_in_g(x1)
b  =  b
p11_out_g(x1)  =  p11_out_g(x1)
a  =  a
U2_g(x1)  =  U2_g(x1)
p17_in_a(x1)  =  p17_in_a
p17_out_a(x1)  =  p17_out_a(x1)
U1_a(x1)  =  U1_a(x1)
P17_IN_A(x1)  =  P17_IN_A

We have to consider all (P,R,Pi)-chains

(21) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(22) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

P17_IN_A(a) → P17_IN_A(X3)

R is empty.
The argument filtering Pi contains the following mapping:
a  =  a
P17_IN_A(x1)  =  P17_IN_A

We have to consider all (P,R,Pi)-chains

(23) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(24) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P17_IN_AP17_IN_A

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(25) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

s = P17_IN_A evaluates to t =P17_IN_A

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Matcher: [ ]
  • Semiunifier: [ ]




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from P17_IN_A to P17_IN_A.



(26) NO