(0) Obligation:
Clauses:
p(b).
p(a) :- p1(X).
p1(b).
p1(a) :- p1(X).
Queries:
p(g).
(1) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
p_in: (b)
p1_in: (f)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
p_in_g(b) → p_out_g(b)
p_in_g(a) → U1_g(p1_in_a(X))
p1_in_a(b) → p1_out_a(b)
p1_in_a(a) → U2_a(p1_in_a(X))
U2_a(p1_out_a(X)) → p1_out_a(a)
U1_g(p1_out_a(X)) → p_out_g(a)
The argument filtering Pi contains the following mapping:
p_in_g(
x1) =
p_in_g(
x1)
b =
b
p_out_g(
x1) =
p_out_g
a =
a
U1_g(
x1) =
U1_g(
x1)
p1_in_a(
x1) =
p1_in_a
p1_out_a(
x1) =
p1_out_a(
x1)
U2_a(
x1) =
U2_a(
x1)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(2) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
p_in_g(b) → p_out_g(b)
p_in_g(a) → U1_g(p1_in_a(X))
p1_in_a(b) → p1_out_a(b)
p1_in_a(a) → U2_a(p1_in_a(X))
U2_a(p1_out_a(X)) → p1_out_a(a)
U1_g(p1_out_a(X)) → p_out_g(a)
The argument filtering Pi contains the following mapping:
p_in_g(
x1) =
p_in_g(
x1)
b =
b
p_out_g(
x1) =
p_out_g
a =
a
U1_g(
x1) =
U1_g(
x1)
p1_in_a(
x1) =
p1_in_a
p1_out_a(
x1) =
p1_out_a(
x1)
U2_a(
x1) =
U2_a(
x1)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_G(a) → U1_G(p1_in_a(X))
P_IN_G(a) → P1_IN_A(X)
P1_IN_A(a) → U2_A(p1_in_a(X))
P1_IN_A(a) → P1_IN_A(X)
The TRS R consists of the following rules:
p_in_g(b) → p_out_g(b)
p_in_g(a) → U1_g(p1_in_a(X))
p1_in_a(b) → p1_out_a(b)
p1_in_a(a) → U2_a(p1_in_a(X))
U2_a(p1_out_a(X)) → p1_out_a(a)
U1_g(p1_out_a(X)) → p_out_g(a)
The argument filtering Pi contains the following mapping:
p_in_g(
x1) =
p_in_g(
x1)
b =
b
p_out_g(
x1) =
p_out_g
a =
a
U1_g(
x1) =
U1_g(
x1)
p1_in_a(
x1) =
p1_in_a
p1_out_a(
x1) =
p1_out_a(
x1)
U2_a(
x1) =
U2_a(
x1)
P_IN_G(
x1) =
P_IN_G(
x1)
U1_G(
x1) =
U1_G(
x1)
P1_IN_A(
x1) =
P1_IN_A
U2_A(
x1) =
U2_A(
x1)
We have to consider all (P,R,Pi)-chains
(4) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_G(a) → U1_G(p1_in_a(X))
P_IN_G(a) → P1_IN_A(X)
P1_IN_A(a) → U2_A(p1_in_a(X))
P1_IN_A(a) → P1_IN_A(X)
The TRS R consists of the following rules:
p_in_g(b) → p_out_g(b)
p_in_g(a) → U1_g(p1_in_a(X))
p1_in_a(b) → p1_out_a(b)
p1_in_a(a) → U2_a(p1_in_a(X))
U2_a(p1_out_a(X)) → p1_out_a(a)
U1_g(p1_out_a(X)) → p_out_g(a)
The argument filtering Pi contains the following mapping:
p_in_g(
x1) =
p_in_g(
x1)
b =
b
p_out_g(
x1) =
p_out_g
a =
a
U1_g(
x1) =
U1_g(
x1)
p1_in_a(
x1) =
p1_in_a
p1_out_a(
x1) =
p1_out_a(
x1)
U2_a(
x1) =
U2_a(
x1)
P_IN_G(
x1) =
P_IN_G(
x1)
U1_G(
x1) =
U1_G(
x1)
P1_IN_A(
x1) =
P1_IN_A
U2_A(
x1) =
U2_A(
x1)
We have to consider all (P,R,Pi)-chains
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 3 less nodes.
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P1_IN_A(a) → P1_IN_A(X)
The TRS R consists of the following rules:
p_in_g(b) → p_out_g(b)
p_in_g(a) → U1_g(p1_in_a(X))
p1_in_a(b) → p1_out_a(b)
p1_in_a(a) → U2_a(p1_in_a(X))
U2_a(p1_out_a(X)) → p1_out_a(a)
U1_g(p1_out_a(X)) → p_out_g(a)
The argument filtering Pi contains the following mapping:
p_in_g(
x1) =
p_in_g(
x1)
b =
b
p_out_g(
x1) =
p_out_g
a =
a
U1_g(
x1) =
U1_g(
x1)
p1_in_a(
x1) =
p1_in_a
p1_out_a(
x1) =
p1_out_a(
x1)
U2_a(
x1) =
U2_a(
x1)
P1_IN_A(
x1) =
P1_IN_A
We have to consider all (P,R,Pi)-chains
(7) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(8) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P1_IN_A(a) → P1_IN_A(X)
R is empty.
The argument filtering Pi contains the following mapping:
a =
a
P1_IN_A(
x1) =
P1_IN_A
We have to consider all (P,R,Pi)-chains
(9) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
P1_IN_A → P1_IN_A
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(11) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.
s =
P1_IN_A evaluates to t =
P1_IN_AThus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Matcher: [ ]
- Semiunifier: [ ]
Rewriting sequenceThe DP semiunifies directly so there is only one rewrite step from P1_IN_A to P1_IN_A.
(12) FALSE
(13) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
p_in: (b)
p1_in: (f)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
p_in_g(b) → p_out_g(b)
p_in_g(a) → U1_g(p1_in_a(X))
p1_in_a(b) → p1_out_a(b)
p1_in_a(a) → U2_a(p1_in_a(X))
U2_a(p1_out_a(X)) → p1_out_a(a)
U1_g(p1_out_a(X)) → p_out_g(a)
The argument filtering Pi contains the following mapping:
p_in_g(
x1) =
p_in_g(
x1)
b =
b
p_out_g(
x1) =
p_out_g(
x1)
a =
a
U1_g(
x1) =
U1_g(
x1)
p1_in_a(
x1) =
p1_in_a
p1_out_a(
x1) =
p1_out_a(
x1)
U2_a(
x1) =
U2_a(
x1)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(14) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
p_in_g(b) → p_out_g(b)
p_in_g(a) → U1_g(p1_in_a(X))
p1_in_a(b) → p1_out_a(b)
p1_in_a(a) → U2_a(p1_in_a(X))
U2_a(p1_out_a(X)) → p1_out_a(a)
U1_g(p1_out_a(X)) → p_out_g(a)
The argument filtering Pi contains the following mapping:
p_in_g(
x1) =
p_in_g(
x1)
b =
b
p_out_g(
x1) =
p_out_g(
x1)
a =
a
U1_g(
x1) =
U1_g(
x1)
p1_in_a(
x1) =
p1_in_a
p1_out_a(
x1) =
p1_out_a(
x1)
U2_a(
x1) =
U2_a(
x1)
(15) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_G(a) → U1_G(p1_in_a(X))
P_IN_G(a) → P1_IN_A(X)
P1_IN_A(a) → U2_A(p1_in_a(X))
P1_IN_A(a) → P1_IN_A(X)
The TRS R consists of the following rules:
p_in_g(b) → p_out_g(b)
p_in_g(a) → U1_g(p1_in_a(X))
p1_in_a(b) → p1_out_a(b)
p1_in_a(a) → U2_a(p1_in_a(X))
U2_a(p1_out_a(X)) → p1_out_a(a)
U1_g(p1_out_a(X)) → p_out_g(a)
The argument filtering Pi contains the following mapping:
p_in_g(
x1) =
p_in_g(
x1)
b =
b
p_out_g(
x1) =
p_out_g(
x1)
a =
a
U1_g(
x1) =
U1_g(
x1)
p1_in_a(
x1) =
p1_in_a
p1_out_a(
x1) =
p1_out_a(
x1)
U2_a(
x1) =
U2_a(
x1)
P_IN_G(
x1) =
P_IN_G(
x1)
U1_G(
x1) =
U1_G(
x1)
P1_IN_A(
x1) =
P1_IN_A
U2_A(
x1) =
U2_A(
x1)
We have to consider all (P,R,Pi)-chains
(16) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_G(a) → U1_G(p1_in_a(X))
P_IN_G(a) → P1_IN_A(X)
P1_IN_A(a) → U2_A(p1_in_a(X))
P1_IN_A(a) → P1_IN_A(X)
The TRS R consists of the following rules:
p_in_g(b) → p_out_g(b)
p_in_g(a) → U1_g(p1_in_a(X))
p1_in_a(b) → p1_out_a(b)
p1_in_a(a) → U2_a(p1_in_a(X))
U2_a(p1_out_a(X)) → p1_out_a(a)
U1_g(p1_out_a(X)) → p_out_g(a)
The argument filtering Pi contains the following mapping:
p_in_g(
x1) =
p_in_g(
x1)
b =
b
p_out_g(
x1) =
p_out_g(
x1)
a =
a
U1_g(
x1) =
U1_g(
x1)
p1_in_a(
x1) =
p1_in_a
p1_out_a(
x1) =
p1_out_a(
x1)
U2_a(
x1) =
U2_a(
x1)
P_IN_G(
x1) =
P_IN_G(
x1)
U1_G(
x1) =
U1_G(
x1)
P1_IN_A(
x1) =
P1_IN_A
U2_A(
x1) =
U2_A(
x1)
We have to consider all (P,R,Pi)-chains
(17) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 3 less nodes.
(18) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P1_IN_A(a) → P1_IN_A(X)
The TRS R consists of the following rules:
p_in_g(b) → p_out_g(b)
p_in_g(a) → U1_g(p1_in_a(X))
p1_in_a(b) → p1_out_a(b)
p1_in_a(a) → U2_a(p1_in_a(X))
U2_a(p1_out_a(X)) → p1_out_a(a)
U1_g(p1_out_a(X)) → p_out_g(a)
The argument filtering Pi contains the following mapping:
p_in_g(
x1) =
p_in_g(
x1)
b =
b
p_out_g(
x1) =
p_out_g(
x1)
a =
a
U1_g(
x1) =
U1_g(
x1)
p1_in_a(
x1) =
p1_in_a
p1_out_a(
x1) =
p1_out_a(
x1)
U2_a(
x1) =
U2_a(
x1)
P1_IN_A(
x1) =
P1_IN_A
We have to consider all (P,R,Pi)-chains
(19) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(20) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P1_IN_A(a) → P1_IN_A(X)
R is empty.
The argument filtering Pi contains the following mapping:
a =
a
P1_IN_A(
x1) =
P1_IN_A
We have to consider all (P,R,Pi)-chains
(21) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(22) Obligation:
Q DP problem:
The TRS P consists of the following rules:
P1_IN_A → P1_IN_A
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(23) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.
s =
P1_IN_A evaluates to t =
P1_IN_AThus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Semiunifier: [ ]
- Matcher: [ ]
Rewriting sequenceThe DP semiunifies directly so there is only one rewrite step from P1_IN_A to P1_IN_A.
(24) FALSE