(0) Obligation:

Clauses:

perm([], []).
perm(.(X, L), Z) :- ','(perm(L, Y), insert(X, Y, Z)).
insert(X, [], .(X, [])).
insert(X, L, .(X, L)).
insert(X, .(H, L1), .(H, L2)) :- insert(X, L1, L2).

Queries:

perm(g,a).

(1) PrologToDTProblemTransformerProof (SOUND transformation)

Built DT problem from termination graph.

(2) Obligation:

Triples:

perm28(.(T34, T35), X68) :- perm28(T35, X67).
perm28(.(T34, T35), X68) :- ','(permc28(T35, T36), insert39(T34, T36, X68)).
insert39(T60, .(T61, T62), .(T61, X104)) :- insert39(T60, T62, X104).
insert53(T95, .(T96, T97), .(T96, T99)) :- insert53(T95, T97, T99).
perm1(.(T6, .(T27, T28)), T9) :- perm28(T28, X50).
perm1(.(T6, .(T27, T28)), T9) :- ','(permc28(T28, T29), insert39(T27, T29, X51)).
perm1(.(T6, .(T27, T28)), T9) :- ','(permc28(T28, T29), ','(insertc39(T27, T29, T67), insert53(T6, T67, T9))).

Clauses:

permc28([], []).
permc28(.(T34, T35), X68) :- ','(permc28(T35, T36), insertc39(T34, T36, X68)).
insertc39(T43, [], .(T43, [])).
insertc39(T52, T53, .(T52, T53)).
insertc39(T60, .(T61, T62), .(T61, X104)) :- insertc39(T60, T62, X104).
insertc53(T76, [], .(T76, [])).
insertc53(T85, T86, .(T85, T86)).
insertc53(T95, .(T96, T97), .(T96, T99)) :- insertc53(T95, T97, T99).

Afs:

perm1(x1, x2)  =  perm1(x1)

(3) TriplesToPiDPProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
perm1_in: (b,f)
perm28_in: (b,f)
permc28_in: (b,f)
insertc39_in: (b,b,f)
insert39_in: (b,b,f)
insert53_in: (b,b,f)
Transforming TRIPLES into the following Term Rewriting System:
Pi DP problem:
The TRS P consists of the following rules:

PERM1_IN_GA(.(T6, .(T27, T28)), T9) → U6_GA(T6, T27, T28, T9, perm28_in_ga(T28, X50))
PERM1_IN_GA(.(T6, .(T27, T28)), T9) → PERM28_IN_GA(T28, X50)
PERM28_IN_GA(.(T34, T35), X68) → U1_GA(T34, T35, X68, perm28_in_ga(T35, X67))
PERM28_IN_GA(.(T34, T35), X68) → PERM28_IN_GA(T35, X67)
PERM28_IN_GA(.(T34, T35), X68) → U2_GA(T34, T35, X68, permc28_in_ga(T35, T36))
U2_GA(T34, T35, X68, permc28_out_ga(T35, T36)) → U3_GA(T34, T35, X68, insert39_in_gga(T34, T36, X68))
U2_GA(T34, T35, X68, permc28_out_ga(T35, T36)) → INSERT39_IN_GGA(T34, T36, X68)
INSERT39_IN_GGA(T60, .(T61, T62), .(T61, X104)) → U4_GGA(T60, T61, T62, X104, insert39_in_gga(T60, T62, X104))
INSERT39_IN_GGA(T60, .(T61, T62), .(T61, X104)) → INSERT39_IN_GGA(T60, T62, X104)
PERM1_IN_GA(.(T6, .(T27, T28)), T9) → U7_GA(T6, T27, T28, T9, permc28_in_ga(T28, T29))
U7_GA(T6, T27, T28, T9, permc28_out_ga(T28, T29)) → U8_GA(T6, T27, T28, T9, insert39_in_gga(T27, T29, X51))
U7_GA(T6, T27, T28, T9, permc28_out_ga(T28, T29)) → INSERT39_IN_GGA(T27, T29, X51)
U7_GA(T6, T27, T28, T9, permc28_out_ga(T28, T29)) → U9_GA(T6, T27, T28, T9, insertc39_in_gga(T27, T29, T67))
U9_GA(T6, T27, T28, T9, insertc39_out_gga(T27, T29, T67)) → U10_GA(T6, T27, T28, T9, insert53_in_gga(T6, T67, T9))
U9_GA(T6, T27, T28, T9, insertc39_out_gga(T27, T29, T67)) → INSERT53_IN_GGA(T6, T67, T9)
INSERT53_IN_GGA(T95, .(T96, T97), .(T96, T99)) → U5_GGA(T95, T96, T97, T99, insert53_in_gga(T95, T97, T99))
INSERT53_IN_GGA(T95, .(T96, T97), .(T96, T99)) → INSERT53_IN_GGA(T95, T97, T99)

The TRS R consists of the following rules:

permc28_in_ga([], []) → permc28_out_ga([], [])
permc28_in_ga(.(T34, T35), X68) → U12_ga(T34, T35, X68, permc28_in_ga(T35, T36))
U12_ga(T34, T35, X68, permc28_out_ga(T35, T36)) → U13_ga(T34, T35, X68, insertc39_in_gga(T34, T36, X68))
insertc39_in_gga(T43, [], .(T43, [])) → insertc39_out_gga(T43, [], .(T43, []))
insertc39_in_gga(T52, T53, .(T52, T53)) → insertc39_out_gga(T52, T53, .(T52, T53))
insertc39_in_gga(T60, .(T61, T62), .(T61, X104)) → U14_gga(T60, T61, T62, X104, insertc39_in_gga(T60, T62, X104))
U14_gga(T60, T61, T62, X104, insertc39_out_gga(T60, T62, X104)) → insertc39_out_gga(T60, .(T61, T62), .(T61, X104))
U13_ga(T34, T35, X68, insertc39_out_gga(T34, T36, X68)) → permc28_out_ga(.(T34, T35), X68)

The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
perm28_in_ga(x1, x2)  =  perm28_in_ga(x1)
permc28_in_ga(x1, x2)  =  permc28_in_ga(x1)
[]  =  []
permc28_out_ga(x1, x2)  =  permc28_out_ga(x1, x2)
U12_ga(x1, x2, x3, x4)  =  U12_ga(x1, x2, x4)
U13_ga(x1, x2, x3, x4)  =  U13_ga(x1, x2, x4)
insertc39_in_gga(x1, x2, x3)  =  insertc39_in_gga(x1, x2)
insertc39_out_gga(x1, x2, x3)  =  insertc39_out_gga(x1, x2, x3)
U14_gga(x1, x2, x3, x4, x5)  =  U14_gga(x1, x2, x3, x5)
insert39_in_gga(x1, x2, x3)  =  insert39_in_gga(x1, x2)
insert53_in_gga(x1, x2, x3)  =  insert53_in_gga(x1, x2)
PERM1_IN_GA(x1, x2)  =  PERM1_IN_GA(x1)
U6_GA(x1, x2, x3, x4, x5)  =  U6_GA(x1, x2, x3, x5)
PERM28_IN_GA(x1, x2)  =  PERM28_IN_GA(x1)
U1_GA(x1, x2, x3, x4)  =  U1_GA(x1, x2, x4)
U2_GA(x1, x2, x3, x4)  =  U2_GA(x1, x2, x4)
U3_GA(x1, x2, x3, x4)  =  U3_GA(x1, x2, x4)
INSERT39_IN_GGA(x1, x2, x3)  =  INSERT39_IN_GGA(x1, x2)
U4_GGA(x1, x2, x3, x4, x5)  =  U4_GGA(x1, x2, x3, x5)
U7_GA(x1, x2, x3, x4, x5)  =  U7_GA(x1, x2, x3, x5)
U8_GA(x1, x2, x3, x4, x5)  =  U8_GA(x1, x2, x3, x5)
U9_GA(x1, x2, x3, x4, x5)  =  U9_GA(x1, x2, x3, x5)
U10_GA(x1, x2, x3, x4, x5)  =  U10_GA(x1, x2, x3, x5)
INSERT53_IN_GGA(x1, x2, x3)  =  INSERT53_IN_GGA(x1, x2)
U5_GGA(x1, x2, x3, x4, x5)  =  U5_GGA(x1, x2, x3, x5)

We have to consider all (P,R,Pi)-chains

Infinitary Constructor Rewriting Termination of PiDP implies Termination of TRIPLES

(4) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

PERM1_IN_GA(.(T6, .(T27, T28)), T9) → U6_GA(T6, T27, T28, T9, perm28_in_ga(T28, X50))
PERM1_IN_GA(.(T6, .(T27, T28)), T9) → PERM28_IN_GA(T28, X50)
PERM28_IN_GA(.(T34, T35), X68) → U1_GA(T34, T35, X68, perm28_in_ga(T35, X67))
PERM28_IN_GA(.(T34, T35), X68) → PERM28_IN_GA(T35, X67)
PERM28_IN_GA(.(T34, T35), X68) → U2_GA(T34, T35, X68, permc28_in_ga(T35, T36))
U2_GA(T34, T35, X68, permc28_out_ga(T35, T36)) → U3_GA(T34, T35, X68, insert39_in_gga(T34, T36, X68))
U2_GA(T34, T35, X68, permc28_out_ga(T35, T36)) → INSERT39_IN_GGA(T34, T36, X68)
INSERT39_IN_GGA(T60, .(T61, T62), .(T61, X104)) → U4_GGA(T60, T61, T62, X104, insert39_in_gga(T60, T62, X104))
INSERT39_IN_GGA(T60, .(T61, T62), .(T61, X104)) → INSERT39_IN_GGA(T60, T62, X104)
PERM1_IN_GA(.(T6, .(T27, T28)), T9) → U7_GA(T6, T27, T28, T9, permc28_in_ga(T28, T29))
U7_GA(T6, T27, T28, T9, permc28_out_ga(T28, T29)) → U8_GA(T6, T27, T28, T9, insert39_in_gga(T27, T29, X51))
U7_GA(T6, T27, T28, T9, permc28_out_ga(T28, T29)) → INSERT39_IN_GGA(T27, T29, X51)
U7_GA(T6, T27, T28, T9, permc28_out_ga(T28, T29)) → U9_GA(T6, T27, T28, T9, insertc39_in_gga(T27, T29, T67))
U9_GA(T6, T27, T28, T9, insertc39_out_gga(T27, T29, T67)) → U10_GA(T6, T27, T28, T9, insert53_in_gga(T6, T67, T9))
U9_GA(T6, T27, T28, T9, insertc39_out_gga(T27, T29, T67)) → INSERT53_IN_GGA(T6, T67, T9)
INSERT53_IN_GGA(T95, .(T96, T97), .(T96, T99)) → U5_GGA(T95, T96, T97, T99, insert53_in_gga(T95, T97, T99))
INSERT53_IN_GGA(T95, .(T96, T97), .(T96, T99)) → INSERT53_IN_GGA(T95, T97, T99)

The TRS R consists of the following rules:

permc28_in_ga([], []) → permc28_out_ga([], [])
permc28_in_ga(.(T34, T35), X68) → U12_ga(T34, T35, X68, permc28_in_ga(T35, T36))
U12_ga(T34, T35, X68, permc28_out_ga(T35, T36)) → U13_ga(T34, T35, X68, insertc39_in_gga(T34, T36, X68))
insertc39_in_gga(T43, [], .(T43, [])) → insertc39_out_gga(T43, [], .(T43, []))
insertc39_in_gga(T52, T53, .(T52, T53)) → insertc39_out_gga(T52, T53, .(T52, T53))
insertc39_in_gga(T60, .(T61, T62), .(T61, X104)) → U14_gga(T60, T61, T62, X104, insertc39_in_gga(T60, T62, X104))
U14_gga(T60, T61, T62, X104, insertc39_out_gga(T60, T62, X104)) → insertc39_out_gga(T60, .(T61, T62), .(T61, X104))
U13_ga(T34, T35, X68, insertc39_out_gga(T34, T36, X68)) → permc28_out_ga(.(T34, T35), X68)

The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
perm28_in_ga(x1, x2)  =  perm28_in_ga(x1)
permc28_in_ga(x1, x2)  =  permc28_in_ga(x1)
[]  =  []
permc28_out_ga(x1, x2)  =  permc28_out_ga(x1, x2)
U12_ga(x1, x2, x3, x4)  =  U12_ga(x1, x2, x4)
U13_ga(x1, x2, x3, x4)  =  U13_ga(x1, x2, x4)
insertc39_in_gga(x1, x2, x3)  =  insertc39_in_gga(x1, x2)
insertc39_out_gga(x1, x2, x3)  =  insertc39_out_gga(x1, x2, x3)
U14_gga(x1, x2, x3, x4, x5)  =  U14_gga(x1, x2, x3, x5)
insert39_in_gga(x1, x2, x3)  =  insert39_in_gga(x1, x2)
insert53_in_gga(x1, x2, x3)  =  insert53_in_gga(x1, x2)
PERM1_IN_GA(x1, x2)  =  PERM1_IN_GA(x1)
U6_GA(x1, x2, x3, x4, x5)  =  U6_GA(x1, x2, x3, x5)
PERM28_IN_GA(x1, x2)  =  PERM28_IN_GA(x1)
U1_GA(x1, x2, x3, x4)  =  U1_GA(x1, x2, x4)
U2_GA(x1, x2, x3, x4)  =  U2_GA(x1, x2, x4)
U3_GA(x1, x2, x3, x4)  =  U3_GA(x1, x2, x4)
INSERT39_IN_GGA(x1, x2, x3)  =  INSERT39_IN_GGA(x1, x2)
U4_GGA(x1, x2, x3, x4, x5)  =  U4_GGA(x1, x2, x3, x5)
U7_GA(x1, x2, x3, x4, x5)  =  U7_GA(x1, x2, x3, x5)
U8_GA(x1, x2, x3, x4, x5)  =  U8_GA(x1, x2, x3, x5)
U9_GA(x1, x2, x3, x4, x5)  =  U9_GA(x1, x2, x3, x5)
U10_GA(x1, x2, x3, x4, x5)  =  U10_GA(x1, x2, x3, x5)
INSERT53_IN_GGA(x1, x2, x3)  =  INSERT53_IN_GGA(x1, x2)
U5_GGA(x1, x2, x3, x4, x5)  =  U5_GGA(x1, x2, x3, x5)

We have to consider all (P,R,Pi)-chains

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 3 SCCs with 14 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

INSERT53_IN_GGA(T95, .(T96, T97), .(T96, T99)) → INSERT53_IN_GGA(T95, T97, T99)

The TRS R consists of the following rules:

permc28_in_ga([], []) → permc28_out_ga([], [])
permc28_in_ga(.(T34, T35), X68) → U12_ga(T34, T35, X68, permc28_in_ga(T35, T36))
U12_ga(T34, T35, X68, permc28_out_ga(T35, T36)) → U13_ga(T34, T35, X68, insertc39_in_gga(T34, T36, X68))
insertc39_in_gga(T43, [], .(T43, [])) → insertc39_out_gga(T43, [], .(T43, []))
insertc39_in_gga(T52, T53, .(T52, T53)) → insertc39_out_gga(T52, T53, .(T52, T53))
insertc39_in_gga(T60, .(T61, T62), .(T61, X104)) → U14_gga(T60, T61, T62, X104, insertc39_in_gga(T60, T62, X104))
U14_gga(T60, T61, T62, X104, insertc39_out_gga(T60, T62, X104)) → insertc39_out_gga(T60, .(T61, T62), .(T61, X104))
U13_ga(T34, T35, X68, insertc39_out_gga(T34, T36, X68)) → permc28_out_ga(.(T34, T35), X68)

The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
permc28_in_ga(x1, x2)  =  permc28_in_ga(x1)
[]  =  []
permc28_out_ga(x1, x2)  =  permc28_out_ga(x1, x2)
U12_ga(x1, x2, x3, x4)  =  U12_ga(x1, x2, x4)
U13_ga(x1, x2, x3, x4)  =  U13_ga(x1, x2, x4)
insertc39_in_gga(x1, x2, x3)  =  insertc39_in_gga(x1, x2)
insertc39_out_gga(x1, x2, x3)  =  insertc39_out_gga(x1, x2, x3)
U14_gga(x1, x2, x3, x4, x5)  =  U14_gga(x1, x2, x3, x5)
INSERT53_IN_GGA(x1, x2, x3)  =  INSERT53_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(8) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

INSERT53_IN_GGA(T95, .(T96, T97), .(T96, T99)) → INSERT53_IN_GGA(T95, T97, T99)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
INSERT53_IN_GGA(x1, x2, x3)  =  INSERT53_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(10) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

INSERT53_IN_GGA(T95, .(T96, T97)) → INSERT53_IN_GGA(T95, T97)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(12) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • INSERT53_IN_GGA(T95, .(T96, T97)) → INSERT53_IN_GGA(T95, T97)
    The graph contains the following edges 1 >= 1, 2 > 2

(13) YES

(14) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

INSERT39_IN_GGA(T60, .(T61, T62), .(T61, X104)) → INSERT39_IN_GGA(T60, T62, X104)

The TRS R consists of the following rules:

permc28_in_ga([], []) → permc28_out_ga([], [])
permc28_in_ga(.(T34, T35), X68) → U12_ga(T34, T35, X68, permc28_in_ga(T35, T36))
U12_ga(T34, T35, X68, permc28_out_ga(T35, T36)) → U13_ga(T34, T35, X68, insertc39_in_gga(T34, T36, X68))
insertc39_in_gga(T43, [], .(T43, [])) → insertc39_out_gga(T43, [], .(T43, []))
insertc39_in_gga(T52, T53, .(T52, T53)) → insertc39_out_gga(T52, T53, .(T52, T53))
insertc39_in_gga(T60, .(T61, T62), .(T61, X104)) → U14_gga(T60, T61, T62, X104, insertc39_in_gga(T60, T62, X104))
U14_gga(T60, T61, T62, X104, insertc39_out_gga(T60, T62, X104)) → insertc39_out_gga(T60, .(T61, T62), .(T61, X104))
U13_ga(T34, T35, X68, insertc39_out_gga(T34, T36, X68)) → permc28_out_ga(.(T34, T35), X68)

The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
permc28_in_ga(x1, x2)  =  permc28_in_ga(x1)
[]  =  []
permc28_out_ga(x1, x2)  =  permc28_out_ga(x1, x2)
U12_ga(x1, x2, x3, x4)  =  U12_ga(x1, x2, x4)
U13_ga(x1, x2, x3, x4)  =  U13_ga(x1, x2, x4)
insertc39_in_gga(x1, x2, x3)  =  insertc39_in_gga(x1, x2)
insertc39_out_gga(x1, x2, x3)  =  insertc39_out_gga(x1, x2, x3)
U14_gga(x1, x2, x3, x4, x5)  =  U14_gga(x1, x2, x3, x5)
INSERT39_IN_GGA(x1, x2, x3)  =  INSERT39_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(15) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

INSERT39_IN_GGA(T60, .(T61, T62), .(T61, X104)) → INSERT39_IN_GGA(T60, T62, X104)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
INSERT39_IN_GGA(x1, x2, x3)  =  INSERT39_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(17) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

INSERT39_IN_GGA(T60, .(T61, T62)) → INSERT39_IN_GGA(T60, T62)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(19) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • INSERT39_IN_GGA(T60, .(T61, T62)) → INSERT39_IN_GGA(T60, T62)
    The graph contains the following edges 1 >= 1, 2 > 2

(20) YES

(21) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

PERM28_IN_GA(.(T34, T35), X68) → PERM28_IN_GA(T35, X67)

The TRS R consists of the following rules:

permc28_in_ga([], []) → permc28_out_ga([], [])
permc28_in_ga(.(T34, T35), X68) → U12_ga(T34, T35, X68, permc28_in_ga(T35, T36))
U12_ga(T34, T35, X68, permc28_out_ga(T35, T36)) → U13_ga(T34, T35, X68, insertc39_in_gga(T34, T36, X68))
insertc39_in_gga(T43, [], .(T43, [])) → insertc39_out_gga(T43, [], .(T43, []))
insertc39_in_gga(T52, T53, .(T52, T53)) → insertc39_out_gga(T52, T53, .(T52, T53))
insertc39_in_gga(T60, .(T61, T62), .(T61, X104)) → U14_gga(T60, T61, T62, X104, insertc39_in_gga(T60, T62, X104))
U14_gga(T60, T61, T62, X104, insertc39_out_gga(T60, T62, X104)) → insertc39_out_gga(T60, .(T61, T62), .(T61, X104))
U13_ga(T34, T35, X68, insertc39_out_gga(T34, T36, X68)) → permc28_out_ga(.(T34, T35), X68)

The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
permc28_in_ga(x1, x2)  =  permc28_in_ga(x1)
[]  =  []
permc28_out_ga(x1, x2)  =  permc28_out_ga(x1, x2)
U12_ga(x1, x2, x3, x4)  =  U12_ga(x1, x2, x4)
U13_ga(x1, x2, x3, x4)  =  U13_ga(x1, x2, x4)
insertc39_in_gga(x1, x2, x3)  =  insertc39_in_gga(x1, x2)
insertc39_out_gga(x1, x2, x3)  =  insertc39_out_gga(x1, x2, x3)
U14_gga(x1, x2, x3, x4, x5)  =  U14_gga(x1, x2, x3, x5)
PERM28_IN_GA(x1, x2)  =  PERM28_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(22) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(23) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

PERM28_IN_GA(.(T34, T35), X68) → PERM28_IN_GA(T35, X67)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
PERM28_IN_GA(x1, x2)  =  PERM28_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(24) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PERM28_IN_GA(.(T34, T35)) → PERM28_IN_GA(T35)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(26) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • PERM28_IN_GA(.(T34, T35)) → PERM28_IN_GA(T35)
    The graph contains the following edges 1 > 1

(27) YES