(0) Obligation:
Clauses:
append([], L, L).
append(.(H, L1), L2, .(H, L3)) :- append(L1, L2, L3).
append3(A, B, C, D) :- ','(append(A, B, E), append(E, C, D)).
Queries:
append3(g,g,g,a).
(1) PrologToDTProblemTransformerProof (SOUND transformation)
Built DT problem from termination graph.
(2) Obligation:
Triples:
append7(.(T34, T35), T36, .(T34, T38)) :- append7(T35, T36, T38).
append19(.(T66, T67), T68, .(T66, X85)) :- append19(T67, T68, X85).
append31([], T18, T11, T13) :- append7(T18, T11, T13).
append31(.(T47, T48), T49, T11, T13) :- append19(T48, T49, X56).
append31(.(T47, T48), T49, T11, T13) :- ','(appendc19(T48, T49, T52), append7(.(T47, T52), T11, T13)).
Clauses:
appendc7([], T25, T25).
appendc7(.(T34, T35), T36, .(T34, T38)) :- appendc7(T35, T36, T38).
appendc19([], T59, T59).
appendc19(.(T66, T67), T68, .(T66, X85)) :- appendc19(T67, T68, X85).
Afs:
append31(x1, x2, x3, x4) = append31(x1, x2, x3)
(3) TriplesToPiDPProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
append31_in: (b,b,b,f)
append7_in: (b,b,f)
append19_in: (b,b,f)
appendc19_in: (b,b,f)
Transforming
TRIPLES into the following
Term Rewriting System:
Pi DP problem:
The TRS P consists of the following rules:
APPEND31_IN_GGGA([], T18, T11, T13) → U3_GGGA(T18, T11, T13, append7_in_gga(T18, T11, T13))
APPEND31_IN_GGGA([], T18, T11, T13) → APPEND7_IN_GGA(T18, T11, T13)
APPEND7_IN_GGA(.(T34, T35), T36, .(T34, T38)) → U1_GGA(T34, T35, T36, T38, append7_in_gga(T35, T36, T38))
APPEND7_IN_GGA(.(T34, T35), T36, .(T34, T38)) → APPEND7_IN_GGA(T35, T36, T38)
APPEND31_IN_GGGA(.(T47, T48), T49, T11, T13) → U4_GGGA(T47, T48, T49, T11, T13, append19_in_gga(T48, T49, X56))
APPEND31_IN_GGGA(.(T47, T48), T49, T11, T13) → APPEND19_IN_GGA(T48, T49, X56)
APPEND19_IN_GGA(.(T66, T67), T68, .(T66, X85)) → U2_GGA(T66, T67, T68, X85, append19_in_gga(T67, T68, X85))
APPEND19_IN_GGA(.(T66, T67), T68, .(T66, X85)) → APPEND19_IN_GGA(T67, T68, X85)
APPEND31_IN_GGGA(.(T47, T48), T49, T11, T13) → U5_GGGA(T47, T48, T49, T11, T13, appendc19_in_gga(T48, T49, T52))
U5_GGGA(T47, T48, T49, T11, T13, appendc19_out_gga(T48, T49, T52)) → U6_GGGA(T47, T48, T49, T11, T13, append7_in_gga(.(T47, T52), T11, T13))
U5_GGGA(T47, T48, T49, T11, T13, appendc19_out_gga(T48, T49, T52)) → APPEND7_IN_GGA(.(T47, T52), T11, T13)
The TRS R consists of the following rules:
appendc19_in_gga([], T59, T59) → appendc19_out_gga([], T59, T59)
appendc19_in_gga(.(T66, T67), T68, .(T66, X85)) → U9_gga(T66, T67, T68, X85, appendc19_in_gga(T67, T68, X85))
U9_gga(T66, T67, T68, X85, appendc19_out_gga(T67, T68, X85)) → appendc19_out_gga(.(T66, T67), T68, .(T66, X85))
The argument filtering Pi contains the following mapping:
[] =
[]
append7_in_gga(
x1,
x2,
x3) =
append7_in_gga(
x1,
x2)
.(
x1,
x2) =
.(
x1,
x2)
append19_in_gga(
x1,
x2,
x3) =
append19_in_gga(
x1,
x2)
appendc19_in_gga(
x1,
x2,
x3) =
appendc19_in_gga(
x1,
x2)
appendc19_out_gga(
x1,
x2,
x3) =
appendc19_out_gga(
x1,
x2,
x3)
U9_gga(
x1,
x2,
x3,
x4,
x5) =
U9_gga(
x1,
x2,
x3,
x5)
APPEND31_IN_GGGA(
x1,
x2,
x3,
x4) =
APPEND31_IN_GGGA(
x1,
x2,
x3)
U3_GGGA(
x1,
x2,
x3,
x4) =
U3_GGGA(
x1,
x2,
x4)
APPEND7_IN_GGA(
x1,
x2,
x3) =
APPEND7_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3,
x4,
x5) =
U1_GGA(
x1,
x2,
x3,
x5)
U4_GGGA(
x1,
x2,
x3,
x4,
x5,
x6) =
U4_GGGA(
x1,
x2,
x3,
x4,
x6)
APPEND19_IN_GGA(
x1,
x2,
x3) =
APPEND19_IN_GGA(
x1,
x2)
U2_GGA(
x1,
x2,
x3,
x4,
x5) =
U2_GGA(
x1,
x2,
x3,
x5)
U5_GGGA(
x1,
x2,
x3,
x4,
x5,
x6) =
U5_GGGA(
x1,
x2,
x3,
x4,
x6)
U6_GGGA(
x1,
x2,
x3,
x4,
x5,
x6) =
U6_GGGA(
x1,
x2,
x3,
x4,
x6)
We have to consider all (P,R,Pi)-chains
Infinitary Constructor Rewriting Termination of PiDP implies Termination of TRIPLES
(4) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
APPEND31_IN_GGGA([], T18, T11, T13) → U3_GGGA(T18, T11, T13, append7_in_gga(T18, T11, T13))
APPEND31_IN_GGGA([], T18, T11, T13) → APPEND7_IN_GGA(T18, T11, T13)
APPEND7_IN_GGA(.(T34, T35), T36, .(T34, T38)) → U1_GGA(T34, T35, T36, T38, append7_in_gga(T35, T36, T38))
APPEND7_IN_GGA(.(T34, T35), T36, .(T34, T38)) → APPEND7_IN_GGA(T35, T36, T38)
APPEND31_IN_GGGA(.(T47, T48), T49, T11, T13) → U4_GGGA(T47, T48, T49, T11, T13, append19_in_gga(T48, T49, X56))
APPEND31_IN_GGGA(.(T47, T48), T49, T11, T13) → APPEND19_IN_GGA(T48, T49, X56)
APPEND19_IN_GGA(.(T66, T67), T68, .(T66, X85)) → U2_GGA(T66, T67, T68, X85, append19_in_gga(T67, T68, X85))
APPEND19_IN_GGA(.(T66, T67), T68, .(T66, X85)) → APPEND19_IN_GGA(T67, T68, X85)
APPEND31_IN_GGGA(.(T47, T48), T49, T11, T13) → U5_GGGA(T47, T48, T49, T11, T13, appendc19_in_gga(T48, T49, T52))
U5_GGGA(T47, T48, T49, T11, T13, appendc19_out_gga(T48, T49, T52)) → U6_GGGA(T47, T48, T49, T11, T13, append7_in_gga(.(T47, T52), T11, T13))
U5_GGGA(T47, T48, T49, T11, T13, appendc19_out_gga(T48, T49, T52)) → APPEND7_IN_GGA(.(T47, T52), T11, T13)
The TRS R consists of the following rules:
appendc19_in_gga([], T59, T59) → appendc19_out_gga([], T59, T59)
appendc19_in_gga(.(T66, T67), T68, .(T66, X85)) → U9_gga(T66, T67, T68, X85, appendc19_in_gga(T67, T68, X85))
U9_gga(T66, T67, T68, X85, appendc19_out_gga(T67, T68, X85)) → appendc19_out_gga(.(T66, T67), T68, .(T66, X85))
The argument filtering Pi contains the following mapping:
[] =
[]
append7_in_gga(
x1,
x2,
x3) =
append7_in_gga(
x1,
x2)
.(
x1,
x2) =
.(
x1,
x2)
append19_in_gga(
x1,
x2,
x3) =
append19_in_gga(
x1,
x2)
appendc19_in_gga(
x1,
x2,
x3) =
appendc19_in_gga(
x1,
x2)
appendc19_out_gga(
x1,
x2,
x3) =
appendc19_out_gga(
x1,
x2,
x3)
U9_gga(
x1,
x2,
x3,
x4,
x5) =
U9_gga(
x1,
x2,
x3,
x5)
APPEND31_IN_GGGA(
x1,
x2,
x3,
x4) =
APPEND31_IN_GGGA(
x1,
x2,
x3)
U3_GGGA(
x1,
x2,
x3,
x4) =
U3_GGGA(
x1,
x2,
x4)
APPEND7_IN_GGA(
x1,
x2,
x3) =
APPEND7_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3,
x4,
x5) =
U1_GGA(
x1,
x2,
x3,
x5)
U4_GGGA(
x1,
x2,
x3,
x4,
x5,
x6) =
U4_GGGA(
x1,
x2,
x3,
x4,
x6)
APPEND19_IN_GGA(
x1,
x2,
x3) =
APPEND19_IN_GGA(
x1,
x2)
U2_GGA(
x1,
x2,
x3,
x4,
x5) =
U2_GGA(
x1,
x2,
x3,
x5)
U5_GGGA(
x1,
x2,
x3,
x4,
x5,
x6) =
U5_GGGA(
x1,
x2,
x3,
x4,
x6)
U6_GGGA(
x1,
x2,
x3,
x4,
x5,
x6) =
U6_GGGA(
x1,
x2,
x3,
x4,
x6)
We have to consider all (P,R,Pi)-chains
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 9 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
APPEND19_IN_GGA(.(T66, T67), T68, .(T66, X85)) → APPEND19_IN_GGA(T67, T68, X85)
The TRS R consists of the following rules:
appendc19_in_gga([], T59, T59) → appendc19_out_gga([], T59, T59)
appendc19_in_gga(.(T66, T67), T68, .(T66, X85)) → U9_gga(T66, T67, T68, X85, appendc19_in_gga(T67, T68, X85))
U9_gga(T66, T67, T68, X85, appendc19_out_gga(T67, T68, X85)) → appendc19_out_gga(.(T66, T67), T68, .(T66, X85))
The argument filtering Pi contains the following mapping:
[] =
[]
.(
x1,
x2) =
.(
x1,
x2)
appendc19_in_gga(
x1,
x2,
x3) =
appendc19_in_gga(
x1,
x2)
appendc19_out_gga(
x1,
x2,
x3) =
appendc19_out_gga(
x1,
x2,
x3)
U9_gga(
x1,
x2,
x3,
x4,
x5) =
U9_gga(
x1,
x2,
x3,
x5)
APPEND19_IN_GGA(
x1,
x2,
x3) =
APPEND19_IN_GGA(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(8) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(9) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
APPEND19_IN_GGA(.(T66, T67), T68, .(T66, X85)) → APPEND19_IN_GGA(T67, T68, X85)
R is empty.
The argument filtering Pi contains the following mapping:
.(
x1,
x2) =
.(
x1,
x2)
APPEND19_IN_GGA(
x1,
x2,
x3) =
APPEND19_IN_GGA(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(10) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APPEND19_IN_GGA(.(T66, T67), T68) → APPEND19_IN_GGA(T67, T68)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(12) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- APPEND19_IN_GGA(.(T66, T67), T68) → APPEND19_IN_GGA(T67, T68)
The graph contains the following edges 1 > 1, 2 >= 2
(13) YES
(14) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
APPEND7_IN_GGA(.(T34, T35), T36, .(T34, T38)) → APPEND7_IN_GGA(T35, T36, T38)
The TRS R consists of the following rules:
appendc19_in_gga([], T59, T59) → appendc19_out_gga([], T59, T59)
appendc19_in_gga(.(T66, T67), T68, .(T66, X85)) → U9_gga(T66, T67, T68, X85, appendc19_in_gga(T67, T68, X85))
U9_gga(T66, T67, T68, X85, appendc19_out_gga(T67, T68, X85)) → appendc19_out_gga(.(T66, T67), T68, .(T66, X85))
The argument filtering Pi contains the following mapping:
[] =
[]
.(
x1,
x2) =
.(
x1,
x2)
appendc19_in_gga(
x1,
x2,
x3) =
appendc19_in_gga(
x1,
x2)
appendc19_out_gga(
x1,
x2,
x3) =
appendc19_out_gga(
x1,
x2,
x3)
U9_gga(
x1,
x2,
x3,
x4,
x5) =
U9_gga(
x1,
x2,
x3,
x5)
APPEND7_IN_GGA(
x1,
x2,
x3) =
APPEND7_IN_GGA(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(15) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(16) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
APPEND7_IN_GGA(.(T34, T35), T36, .(T34, T38)) → APPEND7_IN_GGA(T35, T36, T38)
R is empty.
The argument filtering Pi contains the following mapping:
.(
x1,
x2) =
.(
x1,
x2)
APPEND7_IN_GGA(
x1,
x2,
x3) =
APPEND7_IN_GGA(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(17) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APPEND7_IN_GGA(.(T34, T35), T36) → APPEND7_IN_GGA(T35, T36)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(19) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- APPEND7_IN_GGA(.(T34, T35), T36) → APPEND7_IN_GGA(T35, T36)
The graph contains the following edges 1 > 1, 2 >= 2
(20) YES