(0) Obligation:
Clauses:
append([], L, L).
append(.(H, L1), L2, .(H, L3)) :- append(L1, L2, L3).
append3(A, B, C, D) :- ','(append(A, B, E), append(E, C, D)).
Queries:
append3(g,g,g,a).
(1) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
append3_in: (b,b,b,f)
append_in: (b,b,f)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
append3_in_ggga(A, B, C, D) → U2_ggga(A, B, C, D, append_in_gga(A, B, E))
append_in_gga([], L, L) → append_out_gga([], L, L)
append_in_gga(.(H, L1), L2, .(H, L3)) → U1_gga(H, L1, L2, L3, append_in_gga(L1, L2, L3))
U1_gga(H, L1, L2, L3, append_out_gga(L1, L2, L3)) → append_out_gga(.(H, L1), L2, .(H, L3))
U2_ggga(A, B, C, D, append_out_gga(A, B, E)) → U3_ggga(A, B, C, D, append_in_gga(E, C, D))
U3_ggga(A, B, C, D, append_out_gga(E, C, D)) → append3_out_ggga(A, B, C, D)
The argument filtering Pi contains the following mapping:
append3_in_ggga(
x1,
x2,
x3,
x4) =
append3_in_ggga(
x1,
x2,
x3)
U2_ggga(
x1,
x2,
x3,
x4,
x5) =
U2_ggga(
x3,
x5)
append_in_gga(
x1,
x2,
x3) =
append_in_gga(
x1,
x2)
[] =
[]
append_out_gga(
x1,
x2,
x3) =
append_out_gga(
x3)
.(
x1,
x2) =
.(
x1,
x2)
U1_gga(
x1,
x2,
x3,
x4,
x5) =
U1_gga(
x1,
x5)
U3_ggga(
x1,
x2,
x3,
x4,
x5) =
U3_ggga(
x5)
append3_out_ggga(
x1,
x2,
x3,
x4) =
append3_out_ggga(
x4)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(2) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
append3_in_ggga(A, B, C, D) → U2_ggga(A, B, C, D, append_in_gga(A, B, E))
append_in_gga([], L, L) → append_out_gga([], L, L)
append_in_gga(.(H, L1), L2, .(H, L3)) → U1_gga(H, L1, L2, L3, append_in_gga(L1, L2, L3))
U1_gga(H, L1, L2, L3, append_out_gga(L1, L2, L3)) → append_out_gga(.(H, L1), L2, .(H, L3))
U2_ggga(A, B, C, D, append_out_gga(A, B, E)) → U3_ggga(A, B, C, D, append_in_gga(E, C, D))
U3_ggga(A, B, C, D, append_out_gga(E, C, D)) → append3_out_ggga(A, B, C, D)
The argument filtering Pi contains the following mapping:
append3_in_ggga(
x1,
x2,
x3,
x4) =
append3_in_ggga(
x1,
x2,
x3)
U2_ggga(
x1,
x2,
x3,
x4,
x5) =
U2_ggga(
x3,
x5)
append_in_gga(
x1,
x2,
x3) =
append_in_gga(
x1,
x2)
[] =
[]
append_out_gga(
x1,
x2,
x3) =
append_out_gga(
x3)
.(
x1,
x2) =
.(
x1,
x2)
U1_gga(
x1,
x2,
x3,
x4,
x5) =
U1_gga(
x1,
x5)
U3_ggga(
x1,
x2,
x3,
x4,
x5) =
U3_ggga(
x5)
append3_out_ggga(
x1,
x2,
x3,
x4) =
append3_out_ggga(
x4)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
APPEND3_IN_GGGA(A, B, C, D) → U2_GGGA(A, B, C, D, append_in_gga(A, B, E))
APPEND3_IN_GGGA(A, B, C, D) → APPEND_IN_GGA(A, B, E)
APPEND_IN_GGA(.(H, L1), L2, .(H, L3)) → U1_GGA(H, L1, L2, L3, append_in_gga(L1, L2, L3))
APPEND_IN_GGA(.(H, L1), L2, .(H, L3)) → APPEND_IN_GGA(L1, L2, L3)
U2_GGGA(A, B, C, D, append_out_gga(A, B, E)) → U3_GGGA(A, B, C, D, append_in_gga(E, C, D))
U2_GGGA(A, B, C, D, append_out_gga(A, B, E)) → APPEND_IN_GGA(E, C, D)
The TRS R consists of the following rules:
append3_in_ggga(A, B, C, D) → U2_ggga(A, B, C, D, append_in_gga(A, B, E))
append_in_gga([], L, L) → append_out_gga([], L, L)
append_in_gga(.(H, L1), L2, .(H, L3)) → U1_gga(H, L1, L2, L3, append_in_gga(L1, L2, L3))
U1_gga(H, L1, L2, L3, append_out_gga(L1, L2, L3)) → append_out_gga(.(H, L1), L2, .(H, L3))
U2_ggga(A, B, C, D, append_out_gga(A, B, E)) → U3_ggga(A, B, C, D, append_in_gga(E, C, D))
U3_ggga(A, B, C, D, append_out_gga(E, C, D)) → append3_out_ggga(A, B, C, D)
The argument filtering Pi contains the following mapping:
append3_in_ggga(
x1,
x2,
x3,
x4) =
append3_in_ggga(
x1,
x2,
x3)
U2_ggga(
x1,
x2,
x3,
x4,
x5) =
U2_ggga(
x3,
x5)
append_in_gga(
x1,
x2,
x3) =
append_in_gga(
x1,
x2)
[] =
[]
append_out_gga(
x1,
x2,
x3) =
append_out_gga(
x3)
.(
x1,
x2) =
.(
x1,
x2)
U1_gga(
x1,
x2,
x3,
x4,
x5) =
U1_gga(
x1,
x5)
U3_ggga(
x1,
x2,
x3,
x4,
x5) =
U3_ggga(
x5)
append3_out_ggga(
x1,
x2,
x3,
x4) =
append3_out_ggga(
x4)
APPEND3_IN_GGGA(
x1,
x2,
x3,
x4) =
APPEND3_IN_GGGA(
x1,
x2,
x3)
U2_GGGA(
x1,
x2,
x3,
x4,
x5) =
U2_GGGA(
x3,
x5)
APPEND_IN_GGA(
x1,
x2,
x3) =
APPEND_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3,
x4,
x5) =
U1_GGA(
x1,
x5)
U3_GGGA(
x1,
x2,
x3,
x4,
x5) =
U3_GGGA(
x5)
We have to consider all (P,R,Pi)-chains
(4) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
APPEND3_IN_GGGA(A, B, C, D) → U2_GGGA(A, B, C, D, append_in_gga(A, B, E))
APPEND3_IN_GGGA(A, B, C, D) → APPEND_IN_GGA(A, B, E)
APPEND_IN_GGA(.(H, L1), L2, .(H, L3)) → U1_GGA(H, L1, L2, L3, append_in_gga(L1, L2, L3))
APPEND_IN_GGA(.(H, L1), L2, .(H, L3)) → APPEND_IN_GGA(L1, L2, L3)
U2_GGGA(A, B, C, D, append_out_gga(A, B, E)) → U3_GGGA(A, B, C, D, append_in_gga(E, C, D))
U2_GGGA(A, B, C, D, append_out_gga(A, B, E)) → APPEND_IN_GGA(E, C, D)
The TRS R consists of the following rules:
append3_in_ggga(A, B, C, D) → U2_ggga(A, B, C, D, append_in_gga(A, B, E))
append_in_gga([], L, L) → append_out_gga([], L, L)
append_in_gga(.(H, L1), L2, .(H, L3)) → U1_gga(H, L1, L2, L3, append_in_gga(L1, L2, L3))
U1_gga(H, L1, L2, L3, append_out_gga(L1, L2, L3)) → append_out_gga(.(H, L1), L2, .(H, L3))
U2_ggga(A, B, C, D, append_out_gga(A, B, E)) → U3_ggga(A, B, C, D, append_in_gga(E, C, D))
U3_ggga(A, B, C, D, append_out_gga(E, C, D)) → append3_out_ggga(A, B, C, D)
The argument filtering Pi contains the following mapping:
append3_in_ggga(
x1,
x2,
x3,
x4) =
append3_in_ggga(
x1,
x2,
x3)
U2_ggga(
x1,
x2,
x3,
x4,
x5) =
U2_ggga(
x3,
x5)
append_in_gga(
x1,
x2,
x3) =
append_in_gga(
x1,
x2)
[] =
[]
append_out_gga(
x1,
x2,
x3) =
append_out_gga(
x3)
.(
x1,
x2) =
.(
x1,
x2)
U1_gga(
x1,
x2,
x3,
x4,
x5) =
U1_gga(
x1,
x5)
U3_ggga(
x1,
x2,
x3,
x4,
x5) =
U3_ggga(
x5)
append3_out_ggga(
x1,
x2,
x3,
x4) =
append3_out_ggga(
x4)
APPEND3_IN_GGGA(
x1,
x2,
x3,
x4) =
APPEND3_IN_GGGA(
x1,
x2,
x3)
U2_GGGA(
x1,
x2,
x3,
x4,
x5) =
U2_GGGA(
x3,
x5)
APPEND_IN_GGA(
x1,
x2,
x3) =
APPEND_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3,
x4,
x5) =
U1_GGA(
x1,
x5)
U3_GGGA(
x1,
x2,
x3,
x4,
x5) =
U3_GGGA(
x5)
We have to consider all (P,R,Pi)-chains
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 5 less nodes.
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
APPEND_IN_GGA(.(H, L1), L2, .(H, L3)) → APPEND_IN_GGA(L1, L2, L3)
The TRS R consists of the following rules:
append3_in_ggga(A, B, C, D) → U2_ggga(A, B, C, D, append_in_gga(A, B, E))
append_in_gga([], L, L) → append_out_gga([], L, L)
append_in_gga(.(H, L1), L2, .(H, L3)) → U1_gga(H, L1, L2, L3, append_in_gga(L1, L2, L3))
U1_gga(H, L1, L2, L3, append_out_gga(L1, L2, L3)) → append_out_gga(.(H, L1), L2, .(H, L3))
U2_ggga(A, B, C, D, append_out_gga(A, B, E)) → U3_ggga(A, B, C, D, append_in_gga(E, C, D))
U3_ggga(A, B, C, D, append_out_gga(E, C, D)) → append3_out_ggga(A, B, C, D)
The argument filtering Pi contains the following mapping:
append3_in_ggga(
x1,
x2,
x3,
x4) =
append3_in_ggga(
x1,
x2,
x3)
U2_ggga(
x1,
x2,
x3,
x4,
x5) =
U2_ggga(
x3,
x5)
append_in_gga(
x1,
x2,
x3) =
append_in_gga(
x1,
x2)
[] =
[]
append_out_gga(
x1,
x2,
x3) =
append_out_gga(
x3)
.(
x1,
x2) =
.(
x1,
x2)
U1_gga(
x1,
x2,
x3,
x4,
x5) =
U1_gga(
x1,
x5)
U3_ggga(
x1,
x2,
x3,
x4,
x5) =
U3_ggga(
x5)
append3_out_ggga(
x1,
x2,
x3,
x4) =
append3_out_ggga(
x4)
APPEND_IN_GGA(
x1,
x2,
x3) =
APPEND_IN_GGA(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(7) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(8) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
APPEND_IN_GGA(.(H, L1), L2, .(H, L3)) → APPEND_IN_GGA(L1, L2, L3)
R is empty.
The argument filtering Pi contains the following mapping:
.(
x1,
x2) =
.(
x1,
x2)
APPEND_IN_GGA(
x1,
x2,
x3) =
APPEND_IN_GGA(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(9) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APPEND_IN_GGA(.(H, L1), L2) → APPEND_IN_GGA(L1, L2)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(11) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
append3_in: (b,b,b,f)
append_in: (b,b,f)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
append3_in_ggga(A, B, C, D) → U2_ggga(A, B, C, D, append_in_gga(A, B, E))
append_in_gga([], L, L) → append_out_gga([], L, L)
append_in_gga(.(H, L1), L2, .(H, L3)) → U1_gga(H, L1, L2, L3, append_in_gga(L1, L2, L3))
U1_gga(H, L1, L2, L3, append_out_gga(L1, L2, L3)) → append_out_gga(.(H, L1), L2, .(H, L3))
U2_ggga(A, B, C, D, append_out_gga(A, B, E)) → U3_ggga(A, B, C, D, append_in_gga(E, C, D))
U3_ggga(A, B, C, D, append_out_gga(E, C, D)) → append3_out_ggga(A, B, C, D)
The argument filtering Pi contains the following mapping:
append3_in_ggga(
x1,
x2,
x3,
x4) =
append3_in_ggga(
x1,
x2,
x3)
U2_ggga(
x1,
x2,
x3,
x4,
x5) =
U2_ggga(
x1,
x2,
x3,
x5)
append_in_gga(
x1,
x2,
x3) =
append_in_gga(
x1,
x2)
[] =
[]
append_out_gga(
x1,
x2,
x3) =
append_out_gga(
x1,
x2,
x3)
.(
x1,
x2) =
.(
x1,
x2)
U1_gga(
x1,
x2,
x3,
x4,
x5) =
U1_gga(
x1,
x2,
x3,
x5)
U3_ggga(
x1,
x2,
x3,
x4,
x5) =
U3_ggga(
x1,
x2,
x3,
x5)
append3_out_ggga(
x1,
x2,
x3,
x4) =
append3_out_ggga(
x1,
x2,
x3,
x4)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(12) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
append3_in_ggga(A, B, C, D) → U2_ggga(A, B, C, D, append_in_gga(A, B, E))
append_in_gga([], L, L) → append_out_gga([], L, L)
append_in_gga(.(H, L1), L2, .(H, L3)) → U1_gga(H, L1, L2, L3, append_in_gga(L1, L2, L3))
U1_gga(H, L1, L2, L3, append_out_gga(L1, L2, L3)) → append_out_gga(.(H, L1), L2, .(H, L3))
U2_ggga(A, B, C, D, append_out_gga(A, B, E)) → U3_ggga(A, B, C, D, append_in_gga(E, C, D))
U3_ggga(A, B, C, D, append_out_gga(E, C, D)) → append3_out_ggga(A, B, C, D)
The argument filtering Pi contains the following mapping:
append3_in_ggga(
x1,
x2,
x3,
x4) =
append3_in_ggga(
x1,
x2,
x3)
U2_ggga(
x1,
x2,
x3,
x4,
x5) =
U2_ggga(
x1,
x2,
x3,
x5)
append_in_gga(
x1,
x2,
x3) =
append_in_gga(
x1,
x2)
[] =
[]
append_out_gga(
x1,
x2,
x3) =
append_out_gga(
x1,
x2,
x3)
.(
x1,
x2) =
.(
x1,
x2)
U1_gga(
x1,
x2,
x3,
x4,
x5) =
U1_gga(
x1,
x2,
x3,
x5)
U3_ggga(
x1,
x2,
x3,
x4,
x5) =
U3_ggga(
x1,
x2,
x3,
x5)
append3_out_ggga(
x1,
x2,
x3,
x4) =
append3_out_ggga(
x1,
x2,
x3,
x4)
(13) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
APPEND3_IN_GGGA(A, B, C, D) → U2_GGGA(A, B, C, D, append_in_gga(A, B, E))
APPEND3_IN_GGGA(A, B, C, D) → APPEND_IN_GGA(A, B, E)
APPEND_IN_GGA(.(H, L1), L2, .(H, L3)) → U1_GGA(H, L1, L2, L3, append_in_gga(L1, L2, L3))
APPEND_IN_GGA(.(H, L1), L2, .(H, L3)) → APPEND_IN_GGA(L1, L2, L3)
U2_GGGA(A, B, C, D, append_out_gga(A, B, E)) → U3_GGGA(A, B, C, D, append_in_gga(E, C, D))
U2_GGGA(A, B, C, D, append_out_gga(A, B, E)) → APPEND_IN_GGA(E, C, D)
The TRS R consists of the following rules:
append3_in_ggga(A, B, C, D) → U2_ggga(A, B, C, D, append_in_gga(A, B, E))
append_in_gga([], L, L) → append_out_gga([], L, L)
append_in_gga(.(H, L1), L2, .(H, L3)) → U1_gga(H, L1, L2, L3, append_in_gga(L1, L2, L3))
U1_gga(H, L1, L2, L3, append_out_gga(L1, L2, L3)) → append_out_gga(.(H, L1), L2, .(H, L3))
U2_ggga(A, B, C, D, append_out_gga(A, B, E)) → U3_ggga(A, B, C, D, append_in_gga(E, C, D))
U3_ggga(A, B, C, D, append_out_gga(E, C, D)) → append3_out_ggga(A, B, C, D)
The argument filtering Pi contains the following mapping:
append3_in_ggga(
x1,
x2,
x3,
x4) =
append3_in_ggga(
x1,
x2,
x3)
U2_ggga(
x1,
x2,
x3,
x4,
x5) =
U2_ggga(
x1,
x2,
x3,
x5)
append_in_gga(
x1,
x2,
x3) =
append_in_gga(
x1,
x2)
[] =
[]
append_out_gga(
x1,
x2,
x3) =
append_out_gga(
x1,
x2,
x3)
.(
x1,
x2) =
.(
x1,
x2)
U1_gga(
x1,
x2,
x3,
x4,
x5) =
U1_gga(
x1,
x2,
x3,
x5)
U3_ggga(
x1,
x2,
x3,
x4,
x5) =
U3_ggga(
x1,
x2,
x3,
x5)
append3_out_ggga(
x1,
x2,
x3,
x4) =
append3_out_ggga(
x1,
x2,
x3,
x4)
APPEND3_IN_GGGA(
x1,
x2,
x3,
x4) =
APPEND3_IN_GGGA(
x1,
x2,
x3)
U2_GGGA(
x1,
x2,
x3,
x4,
x5) =
U2_GGGA(
x1,
x2,
x3,
x5)
APPEND_IN_GGA(
x1,
x2,
x3) =
APPEND_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3,
x4,
x5) =
U1_GGA(
x1,
x2,
x3,
x5)
U3_GGGA(
x1,
x2,
x3,
x4,
x5) =
U3_GGGA(
x1,
x2,
x3,
x5)
We have to consider all (P,R,Pi)-chains
(14) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
APPEND3_IN_GGGA(A, B, C, D) → U2_GGGA(A, B, C, D, append_in_gga(A, B, E))
APPEND3_IN_GGGA(A, B, C, D) → APPEND_IN_GGA(A, B, E)
APPEND_IN_GGA(.(H, L1), L2, .(H, L3)) → U1_GGA(H, L1, L2, L3, append_in_gga(L1, L2, L3))
APPEND_IN_GGA(.(H, L1), L2, .(H, L3)) → APPEND_IN_GGA(L1, L2, L3)
U2_GGGA(A, B, C, D, append_out_gga(A, B, E)) → U3_GGGA(A, B, C, D, append_in_gga(E, C, D))
U2_GGGA(A, B, C, D, append_out_gga(A, B, E)) → APPEND_IN_GGA(E, C, D)
The TRS R consists of the following rules:
append3_in_ggga(A, B, C, D) → U2_ggga(A, B, C, D, append_in_gga(A, B, E))
append_in_gga([], L, L) → append_out_gga([], L, L)
append_in_gga(.(H, L1), L2, .(H, L3)) → U1_gga(H, L1, L2, L3, append_in_gga(L1, L2, L3))
U1_gga(H, L1, L2, L3, append_out_gga(L1, L2, L3)) → append_out_gga(.(H, L1), L2, .(H, L3))
U2_ggga(A, B, C, D, append_out_gga(A, B, E)) → U3_ggga(A, B, C, D, append_in_gga(E, C, D))
U3_ggga(A, B, C, D, append_out_gga(E, C, D)) → append3_out_ggga(A, B, C, D)
The argument filtering Pi contains the following mapping:
append3_in_ggga(
x1,
x2,
x3,
x4) =
append3_in_ggga(
x1,
x2,
x3)
U2_ggga(
x1,
x2,
x3,
x4,
x5) =
U2_ggga(
x1,
x2,
x3,
x5)
append_in_gga(
x1,
x2,
x3) =
append_in_gga(
x1,
x2)
[] =
[]
append_out_gga(
x1,
x2,
x3) =
append_out_gga(
x1,
x2,
x3)
.(
x1,
x2) =
.(
x1,
x2)
U1_gga(
x1,
x2,
x3,
x4,
x5) =
U1_gga(
x1,
x2,
x3,
x5)
U3_ggga(
x1,
x2,
x3,
x4,
x5) =
U3_ggga(
x1,
x2,
x3,
x5)
append3_out_ggga(
x1,
x2,
x3,
x4) =
append3_out_ggga(
x1,
x2,
x3,
x4)
APPEND3_IN_GGGA(
x1,
x2,
x3,
x4) =
APPEND3_IN_GGGA(
x1,
x2,
x3)
U2_GGGA(
x1,
x2,
x3,
x4,
x5) =
U2_GGGA(
x1,
x2,
x3,
x5)
APPEND_IN_GGA(
x1,
x2,
x3) =
APPEND_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3,
x4,
x5) =
U1_GGA(
x1,
x2,
x3,
x5)
U3_GGGA(
x1,
x2,
x3,
x4,
x5) =
U3_GGGA(
x1,
x2,
x3,
x5)
We have to consider all (P,R,Pi)-chains
(15) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 5 less nodes.
(16) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
APPEND_IN_GGA(.(H, L1), L2, .(H, L3)) → APPEND_IN_GGA(L1, L2, L3)
The TRS R consists of the following rules:
append3_in_ggga(A, B, C, D) → U2_ggga(A, B, C, D, append_in_gga(A, B, E))
append_in_gga([], L, L) → append_out_gga([], L, L)
append_in_gga(.(H, L1), L2, .(H, L3)) → U1_gga(H, L1, L2, L3, append_in_gga(L1, L2, L3))
U1_gga(H, L1, L2, L3, append_out_gga(L1, L2, L3)) → append_out_gga(.(H, L1), L2, .(H, L3))
U2_ggga(A, B, C, D, append_out_gga(A, B, E)) → U3_ggga(A, B, C, D, append_in_gga(E, C, D))
U3_ggga(A, B, C, D, append_out_gga(E, C, D)) → append3_out_ggga(A, B, C, D)
The argument filtering Pi contains the following mapping:
append3_in_ggga(
x1,
x2,
x3,
x4) =
append3_in_ggga(
x1,
x2,
x3)
U2_ggga(
x1,
x2,
x3,
x4,
x5) =
U2_ggga(
x1,
x2,
x3,
x5)
append_in_gga(
x1,
x2,
x3) =
append_in_gga(
x1,
x2)
[] =
[]
append_out_gga(
x1,
x2,
x3) =
append_out_gga(
x1,
x2,
x3)
.(
x1,
x2) =
.(
x1,
x2)
U1_gga(
x1,
x2,
x3,
x4,
x5) =
U1_gga(
x1,
x2,
x3,
x5)
U3_ggga(
x1,
x2,
x3,
x4,
x5) =
U3_ggga(
x1,
x2,
x3,
x5)
append3_out_ggga(
x1,
x2,
x3,
x4) =
append3_out_ggga(
x1,
x2,
x3,
x4)
APPEND_IN_GGA(
x1,
x2,
x3) =
APPEND_IN_GGA(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(17) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(18) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
APPEND_IN_GGA(.(H, L1), L2, .(H, L3)) → APPEND_IN_GGA(L1, L2, L3)
R is empty.
The argument filtering Pi contains the following mapping:
.(
x1,
x2) =
.(
x1,
x2)
APPEND_IN_GGA(
x1,
x2,
x3) =
APPEND_IN_GGA(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(19) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(20) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APPEND_IN_GGA(.(H, L1), L2) → APPEND_IN_GGA(L1, L2)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(21) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- APPEND_IN_GGA(.(H, L1), L2) → APPEND_IN_GGA(L1, L2)
The graph contains the following edges 1 > 1, 2 >= 2
(22) TRUE