(0) Obligation:
Clauses:
p(X) :- ','(l(X), q(X)).
q(.(A, [])).
r(1).
l([]).
l(.(H, T)) :- ','(r(H), l(T)).
Queries:
p(a).
(1) PrologToPrologProblemTransformerProof (SOUND transformation)
Built Prolog problem from termination graph.
(2) Obligation:
Clauses:
l16([]).
l16(.(1, T23)) :- l16(T23).
p1(.(1, T13)) :- l16(T13).
p1(.(1, [])) :- l16([]).
Queries:
p1(a).
(3) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
p1_in: (f)
l16_in: (f) (b)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
p1_in_a(.(1, T13)) → U2_a(T13, l16_in_a(T13))
l16_in_a([]) → l16_out_a([])
l16_in_a(.(1, T23)) → U1_a(T23, l16_in_a(T23))
U1_a(T23, l16_out_a(T23)) → l16_out_a(.(1, T23))
U2_a(T13, l16_out_a(T13)) → p1_out_a(.(1, T13))
p1_in_a(.(1, [])) → U3_a(l16_in_g([]))
l16_in_g([]) → l16_out_g([])
l16_in_g(.(1, T23)) → U1_g(T23, l16_in_g(T23))
U1_g(T23, l16_out_g(T23)) → l16_out_g(.(1, T23))
U3_a(l16_out_g([])) → p1_out_a(.(1, []))
The argument filtering Pi contains the following mapping:
p1_in_a(
x1) =
p1_in_a
U2_a(
x1,
x2) =
U2_a(
x2)
l16_in_a(
x1) =
l16_in_a
l16_out_a(
x1) =
l16_out_a(
x1)
U1_a(
x1,
x2) =
U1_a(
x2)
p1_out_a(
x1) =
p1_out_a(
x1)
U3_a(
x1) =
U3_a(
x1)
l16_in_g(
x1) =
l16_in_g(
x1)
[] =
[]
l16_out_g(
x1) =
l16_out_g
.(
x1,
x2) =
.(
x1,
x2)
1 =
1
U1_g(
x1,
x2) =
U1_g(
x2)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(4) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
p1_in_a(.(1, T13)) → U2_a(T13, l16_in_a(T13))
l16_in_a([]) → l16_out_a([])
l16_in_a(.(1, T23)) → U1_a(T23, l16_in_a(T23))
U1_a(T23, l16_out_a(T23)) → l16_out_a(.(1, T23))
U2_a(T13, l16_out_a(T13)) → p1_out_a(.(1, T13))
p1_in_a(.(1, [])) → U3_a(l16_in_g([]))
l16_in_g([]) → l16_out_g([])
l16_in_g(.(1, T23)) → U1_g(T23, l16_in_g(T23))
U1_g(T23, l16_out_g(T23)) → l16_out_g(.(1, T23))
U3_a(l16_out_g([])) → p1_out_a(.(1, []))
The argument filtering Pi contains the following mapping:
p1_in_a(
x1) =
p1_in_a
U2_a(
x1,
x2) =
U2_a(
x2)
l16_in_a(
x1) =
l16_in_a
l16_out_a(
x1) =
l16_out_a(
x1)
U1_a(
x1,
x2) =
U1_a(
x2)
p1_out_a(
x1) =
p1_out_a(
x1)
U3_a(
x1) =
U3_a(
x1)
l16_in_g(
x1) =
l16_in_g(
x1)
[] =
[]
l16_out_g(
x1) =
l16_out_g
.(
x1,
x2) =
.(
x1,
x2)
1 =
1
U1_g(
x1,
x2) =
U1_g(
x2)
(5) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
P1_IN_A(.(1, T13)) → U2_A(T13, l16_in_a(T13))
P1_IN_A(.(1, T13)) → L16_IN_A(T13)
L16_IN_A(.(1, T23)) → U1_A(T23, l16_in_a(T23))
L16_IN_A(.(1, T23)) → L16_IN_A(T23)
P1_IN_A(.(1, [])) → U3_A(l16_in_g([]))
P1_IN_A(.(1, [])) → L16_IN_G([])
L16_IN_G(.(1, T23)) → U1_G(T23, l16_in_g(T23))
L16_IN_G(.(1, T23)) → L16_IN_G(T23)
The TRS R consists of the following rules:
p1_in_a(.(1, T13)) → U2_a(T13, l16_in_a(T13))
l16_in_a([]) → l16_out_a([])
l16_in_a(.(1, T23)) → U1_a(T23, l16_in_a(T23))
U1_a(T23, l16_out_a(T23)) → l16_out_a(.(1, T23))
U2_a(T13, l16_out_a(T13)) → p1_out_a(.(1, T13))
p1_in_a(.(1, [])) → U3_a(l16_in_g([]))
l16_in_g([]) → l16_out_g([])
l16_in_g(.(1, T23)) → U1_g(T23, l16_in_g(T23))
U1_g(T23, l16_out_g(T23)) → l16_out_g(.(1, T23))
U3_a(l16_out_g([])) → p1_out_a(.(1, []))
The argument filtering Pi contains the following mapping:
p1_in_a(
x1) =
p1_in_a
U2_a(
x1,
x2) =
U2_a(
x2)
l16_in_a(
x1) =
l16_in_a
l16_out_a(
x1) =
l16_out_a(
x1)
U1_a(
x1,
x2) =
U1_a(
x2)
p1_out_a(
x1) =
p1_out_a(
x1)
U3_a(
x1) =
U3_a(
x1)
l16_in_g(
x1) =
l16_in_g(
x1)
[] =
[]
l16_out_g(
x1) =
l16_out_g
.(
x1,
x2) =
.(
x1,
x2)
1 =
1
U1_g(
x1,
x2) =
U1_g(
x2)
P1_IN_A(
x1) =
P1_IN_A
U2_A(
x1,
x2) =
U2_A(
x2)
L16_IN_A(
x1) =
L16_IN_A
U1_A(
x1,
x2) =
U1_A(
x2)
U3_A(
x1) =
U3_A(
x1)
L16_IN_G(
x1) =
L16_IN_G(
x1)
U1_G(
x1,
x2) =
U1_G(
x2)
We have to consider all (P,R,Pi)-chains
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P1_IN_A(.(1, T13)) → U2_A(T13, l16_in_a(T13))
P1_IN_A(.(1, T13)) → L16_IN_A(T13)
L16_IN_A(.(1, T23)) → U1_A(T23, l16_in_a(T23))
L16_IN_A(.(1, T23)) → L16_IN_A(T23)
P1_IN_A(.(1, [])) → U3_A(l16_in_g([]))
P1_IN_A(.(1, [])) → L16_IN_G([])
L16_IN_G(.(1, T23)) → U1_G(T23, l16_in_g(T23))
L16_IN_G(.(1, T23)) → L16_IN_G(T23)
The TRS R consists of the following rules:
p1_in_a(.(1, T13)) → U2_a(T13, l16_in_a(T13))
l16_in_a([]) → l16_out_a([])
l16_in_a(.(1, T23)) → U1_a(T23, l16_in_a(T23))
U1_a(T23, l16_out_a(T23)) → l16_out_a(.(1, T23))
U2_a(T13, l16_out_a(T13)) → p1_out_a(.(1, T13))
p1_in_a(.(1, [])) → U3_a(l16_in_g([]))
l16_in_g([]) → l16_out_g([])
l16_in_g(.(1, T23)) → U1_g(T23, l16_in_g(T23))
U1_g(T23, l16_out_g(T23)) → l16_out_g(.(1, T23))
U3_a(l16_out_g([])) → p1_out_a(.(1, []))
The argument filtering Pi contains the following mapping:
p1_in_a(
x1) =
p1_in_a
U2_a(
x1,
x2) =
U2_a(
x2)
l16_in_a(
x1) =
l16_in_a
l16_out_a(
x1) =
l16_out_a(
x1)
U1_a(
x1,
x2) =
U1_a(
x2)
p1_out_a(
x1) =
p1_out_a(
x1)
U3_a(
x1) =
U3_a(
x1)
l16_in_g(
x1) =
l16_in_g(
x1)
[] =
[]
l16_out_g(
x1) =
l16_out_g
.(
x1,
x2) =
.(
x1,
x2)
1 =
1
U1_g(
x1,
x2) =
U1_g(
x2)
P1_IN_A(
x1) =
P1_IN_A
U2_A(
x1,
x2) =
U2_A(
x2)
L16_IN_A(
x1) =
L16_IN_A
U1_A(
x1,
x2) =
U1_A(
x2)
U3_A(
x1) =
U3_A(
x1)
L16_IN_G(
x1) =
L16_IN_G(
x1)
U1_G(
x1,
x2) =
U1_G(
x2)
We have to consider all (P,R,Pi)-chains
(7) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 6 less nodes.
(8) Complex Obligation (AND)
(9) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
L16_IN_G(.(1, T23)) → L16_IN_G(T23)
The TRS R consists of the following rules:
p1_in_a(.(1, T13)) → U2_a(T13, l16_in_a(T13))
l16_in_a([]) → l16_out_a([])
l16_in_a(.(1, T23)) → U1_a(T23, l16_in_a(T23))
U1_a(T23, l16_out_a(T23)) → l16_out_a(.(1, T23))
U2_a(T13, l16_out_a(T13)) → p1_out_a(.(1, T13))
p1_in_a(.(1, [])) → U3_a(l16_in_g([]))
l16_in_g([]) → l16_out_g([])
l16_in_g(.(1, T23)) → U1_g(T23, l16_in_g(T23))
U1_g(T23, l16_out_g(T23)) → l16_out_g(.(1, T23))
U3_a(l16_out_g([])) → p1_out_a(.(1, []))
The argument filtering Pi contains the following mapping:
p1_in_a(
x1) =
p1_in_a
U2_a(
x1,
x2) =
U2_a(
x2)
l16_in_a(
x1) =
l16_in_a
l16_out_a(
x1) =
l16_out_a(
x1)
U1_a(
x1,
x2) =
U1_a(
x2)
p1_out_a(
x1) =
p1_out_a(
x1)
U3_a(
x1) =
U3_a(
x1)
l16_in_g(
x1) =
l16_in_g(
x1)
[] =
[]
l16_out_g(
x1) =
l16_out_g
.(
x1,
x2) =
.(
x1,
x2)
1 =
1
U1_g(
x1,
x2) =
U1_g(
x2)
L16_IN_G(
x1) =
L16_IN_G(
x1)
We have to consider all (P,R,Pi)-chains
(10) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(11) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
L16_IN_G(.(1, T23)) → L16_IN_G(T23)
R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains
(12) PiDPToQDPProof (EQUIVALENT transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(13) Obligation:
Q DP problem:
The TRS P consists of the following rules:
L16_IN_G(.(1, T23)) → L16_IN_G(T23)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(14) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- L16_IN_G(.(1, T23)) → L16_IN_G(T23)
The graph contains the following edges 1 > 1
(15) YES
(16) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
L16_IN_A(.(1, T23)) → L16_IN_A(T23)
The TRS R consists of the following rules:
p1_in_a(.(1, T13)) → U2_a(T13, l16_in_a(T13))
l16_in_a([]) → l16_out_a([])
l16_in_a(.(1, T23)) → U1_a(T23, l16_in_a(T23))
U1_a(T23, l16_out_a(T23)) → l16_out_a(.(1, T23))
U2_a(T13, l16_out_a(T13)) → p1_out_a(.(1, T13))
p1_in_a(.(1, [])) → U3_a(l16_in_g([]))
l16_in_g([]) → l16_out_g([])
l16_in_g(.(1, T23)) → U1_g(T23, l16_in_g(T23))
U1_g(T23, l16_out_g(T23)) → l16_out_g(.(1, T23))
U3_a(l16_out_g([])) → p1_out_a(.(1, []))
The argument filtering Pi contains the following mapping:
p1_in_a(
x1) =
p1_in_a
U2_a(
x1,
x2) =
U2_a(
x2)
l16_in_a(
x1) =
l16_in_a
l16_out_a(
x1) =
l16_out_a(
x1)
U1_a(
x1,
x2) =
U1_a(
x2)
p1_out_a(
x1) =
p1_out_a(
x1)
U3_a(
x1) =
U3_a(
x1)
l16_in_g(
x1) =
l16_in_g(
x1)
[] =
[]
l16_out_g(
x1) =
l16_out_g
.(
x1,
x2) =
.(
x1,
x2)
1 =
1
U1_g(
x1,
x2) =
U1_g(
x2)
L16_IN_A(
x1) =
L16_IN_A
We have to consider all (P,R,Pi)-chains
(17) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(18) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
L16_IN_A(.(1, T23)) → L16_IN_A(T23)
R is empty.
The argument filtering Pi contains the following mapping:
.(
x1,
x2) =
.(
x1,
x2)
1 =
1
L16_IN_A(
x1) =
L16_IN_A
We have to consider all (P,R,Pi)-chains
(19) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(20) Obligation:
Q DP problem:
The TRS P consists of the following rules:
L16_IN_A → L16_IN_A
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(21) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.
s =
L16_IN_A evaluates to t =
L16_IN_AThus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Matcher: [ ]
- Semiunifier: [ ]
Rewriting sequenceThe DP semiunifies directly so there is only one rewrite step from L16_IN_A to L16_IN_A.
(22) NO
(23) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
p1_in: (f)
l16_in: (f) (b)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
p1_in_a(.(1, T13)) → U2_a(T13, l16_in_a(T13))
l16_in_a([]) → l16_out_a([])
l16_in_a(.(1, T23)) → U1_a(T23, l16_in_a(T23))
U1_a(T23, l16_out_a(T23)) → l16_out_a(.(1, T23))
U2_a(T13, l16_out_a(T13)) → p1_out_a(.(1, T13))
p1_in_a(.(1, [])) → U3_a(l16_in_g([]))
l16_in_g([]) → l16_out_g([])
l16_in_g(.(1, T23)) → U1_g(T23, l16_in_g(T23))
U1_g(T23, l16_out_g(T23)) → l16_out_g(.(1, T23))
U3_a(l16_out_g([])) → p1_out_a(.(1, []))
The argument filtering Pi contains the following mapping:
p1_in_a(
x1) =
p1_in_a
U2_a(
x1,
x2) =
U2_a(
x2)
l16_in_a(
x1) =
l16_in_a
l16_out_a(
x1) =
l16_out_a(
x1)
U1_a(
x1,
x2) =
U1_a(
x2)
p1_out_a(
x1) =
p1_out_a(
x1)
U3_a(
x1) =
U3_a(
x1)
l16_in_g(
x1) =
l16_in_g(
x1)
[] =
[]
l16_out_g(
x1) =
l16_out_g(
x1)
.(
x1,
x2) =
.(
x1,
x2)
1 =
1
U1_g(
x1,
x2) =
U1_g(
x1,
x2)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(24) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
p1_in_a(.(1, T13)) → U2_a(T13, l16_in_a(T13))
l16_in_a([]) → l16_out_a([])
l16_in_a(.(1, T23)) → U1_a(T23, l16_in_a(T23))
U1_a(T23, l16_out_a(T23)) → l16_out_a(.(1, T23))
U2_a(T13, l16_out_a(T13)) → p1_out_a(.(1, T13))
p1_in_a(.(1, [])) → U3_a(l16_in_g([]))
l16_in_g([]) → l16_out_g([])
l16_in_g(.(1, T23)) → U1_g(T23, l16_in_g(T23))
U1_g(T23, l16_out_g(T23)) → l16_out_g(.(1, T23))
U3_a(l16_out_g([])) → p1_out_a(.(1, []))
The argument filtering Pi contains the following mapping:
p1_in_a(
x1) =
p1_in_a
U2_a(
x1,
x2) =
U2_a(
x2)
l16_in_a(
x1) =
l16_in_a
l16_out_a(
x1) =
l16_out_a(
x1)
U1_a(
x1,
x2) =
U1_a(
x2)
p1_out_a(
x1) =
p1_out_a(
x1)
U3_a(
x1) =
U3_a(
x1)
l16_in_g(
x1) =
l16_in_g(
x1)
[] =
[]
l16_out_g(
x1) =
l16_out_g(
x1)
.(
x1,
x2) =
.(
x1,
x2)
1 =
1
U1_g(
x1,
x2) =
U1_g(
x1,
x2)
(25) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
P1_IN_A(.(1, T13)) → U2_A(T13, l16_in_a(T13))
P1_IN_A(.(1, T13)) → L16_IN_A(T13)
L16_IN_A(.(1, T23)) → U1_A(T23, l16_in_a(T23))
L16_IN_A(.(1, T23)) → L16_IN_A(T23)
P1_IN_A(.(1, [])) → U3_A(l16_in_g([]))
P1_IN_A(.(1, [])) → L16_IN_G([])
L16_IN_G(.(1, T23)) → U1_G(T23, l16_in_g(T23))
L16_IN_G(.(1, T23)) → L16_IN_G(T23)
The TRS R consists of the following rules:
p1_in_a(.(1, T13)) → U2_a(T13, l16_in_a(T13))
l16_in_a([]) → l16_out_a([])
l16_in_a(.(1, T23)) → U1_a(T23, l16_in_a(T23))
U1_a(T23, l16_out_a(T23)) → l16_out_a(.(1, T23))
U2_a(T13, l16_out_a(T13)) → p1_out_a(.(1, T13))
p1_in_a(.(1, [])) → U3_a(l16_in_g([]))
l16_in_g([]) → l16_out_g([])
l16_in_g(.(1, T23)) → U1_g(T23, l16_in_g(T23))
U1_g(T23, l16_out_g(T23)) → l16_out_g(.(1, T23))
U3_a(l16_out_g([])) → p1_out_a(.(1, []))
The argument filtering Pi contains the following mapping:
p1_in_a(
x1) =
p1_in_a
U2_a(
x1,
x2) =
U2_a(
x2)
l16_in_a(
x1) =
l16_in_a
l16_out_a(
x1) =
l16_out_a(
x1)
U1_a(
x1,
x2) =
U1_a(
x2)
p1_out_a(
x1) =
p1_out_a(
x1)
U3_a(
x1) =
U3_a(
x1)
l16_in_g(
x1) =
l16_in_g(
x1)
[] =
[]
l16_out_g(
x1) =
l16_out_g(
x1)
.(
x1,
x2) =
.(
x1,
x2)
1 =
1
U1_g(
x1,
x2) =
U1_g(
x1,
x2)
P1_IN_A(
x1) =
P1_IN_A
U2_A(
x1,
x2) =
U2_A(
x2)
L16_IN_A(
x1) =
L16_IN_A
U1_A(
x1,
x2) =
U1_A(
x2)
U3_A(
x1) =
U3_A(
x1)
L16_IN_G(
x1) =
L16_IN_G(
x1)
U1_G(
x1,
x2) =
U1_G(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(26) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P1_IN_A(.(1, T13)) → U2_A(T13, l16_in_a(T13))
P1_IN_A(.(1, T13)) → L16_IN_A(T13)
L16_IN_A(.(1, T23)) → U1_A(T23, l16_in_a(T23))
L16_IN_A(.(1, T23)) → L16_IN_A(T23)
P1_IN_A(.(1, [])) → U3_A(l16_in_g([]))
P1_IN_A(.(1, [])) → L16_IN_G([])
L16_IN_G(.(1, T23)) → U1_G(T23, l16_in_g(T23))
L16_IN_G(.(1, T23)) → L16_IN_G(T23)
The TRS R consists of the following rules:
p1_in_a(.(1, T13)) → U2_a(T13, l16_in_a(T13))
l16_in_a([]) → l16_out_a([])
l16_in_a(.(1, T23)) → U1_a(T23, l16_in_a(T23))
U1_a(T23, l16_out_a(T23)) → l16_out_a(.(1, T23))
U2_a(T13, l16_out_a(T13)) → p1_out_a(.(1, T13))
p1_in_a(.(1, [])) → U3_a(l16_in_g([]))
l16_in_g([]) → l16_out_g([])
l16_in_g(.(1, T23)) → U1_g(T23, l16_in_g(T23))
U1_g(T23, l16_out_g(T23)) → l16_out_g(.(1, T23))
U3_a(l16_out_g([])) → p1_out_a(.(1, []))
The argument filtering Pi contains the following mapping:
p1_in_a(
x1) =
p1_in_a
U2_a(
x1,
x2) =
U2_a(
x2)
l16_in_a(
x1) =
l16_in_a
l16_out_a(
x1) =
l16_out_a(
x1)
U1_a(
x1,
x2) =
U1_a(
x2)
p1_out_a(
x1) =
p1_out_a(
x1)
U3_a(
x1) =
U3_a(
x1)
l16_in_g(
x1) =
l16_in_g(
x1)
[] =
[]
l16_out_g(
x1) =
l16_out_g(
x1)
.(
x1,
x2) =
.(
x1,
x2)
1 =
1
U1_g(
x1,
x2) =
U1_g(
x1,
x2)
P1_IN_A(
x1) =
P1_IN_A
U2_A(
x1,
x2) =
U2_A(
x2)
L16_IN_A(
x1) =
L16_IN_A
U1_A(
x1,
x2) =
U1_A(
x2)
U3_A(
x1) =
U3_A(
x1)
L16_IN_G(
x1) =
L16_IN_G(
x1)
U1_G(
x1,
x2) =
U1_G(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(27) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 6 less nodes.
(28) Complex Obligation (AND)
(29) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
L16_IN_G(.(1, T23)) → L16_IN_G(T23)
The TRS R consists of the following rules:
p1_in_a(.(1, T13)) → U2_a(T13, l16_in_a(T13))
l16_in_a([]) → l16_out_a([])
l16_in_a(.(1, T23)) → U1_a(T23, l16_in_a(T23))
U1_a(T23, l16_out_a(T23)) → l16_out_a(.(1, T23))
U2_a(T13, l16_out_a(T13)) → p1_out_a(.(1, T13))
p1_in_a(.(1, [])) → U3_a(l16_in_g([]))
l16_in_g([]) → l16_out_g([])
l16_in_g(.(1, T23)) → U1_g(T23, l16_in_g(T23))
U1_g(T23, l16_out_g(T23)) → l16_out_g(.(1, T23))
U3_a(l16_out_g([])) → p1_out_a(.(1, []))
The argument filtering Pi contains the following mapping:
p1_in_a(
x1) =
p1_in_a
U2_a(
x1,
x2) =
U2_a(
x2)
l16_in_a(
x1) =
l16_in_a
l16_out_a(
x1) =
l16_out_a(
x1)
U1_a(
x1,
x2) =
U1_a(
x2)
p1_out_a(
x1) =
p1_out_a(
x1)
U3_a(
x1) =
U3_a(
x1)
l16_in_g(
x1) =
l16_in_g(
x1)
[] =
[]
l16_out_g(
x1) =
l16_out_g(
x1)
.(
x1,
x2) =
.(
x1,
x2)
1 =
1
U1_g(
x1,
x2) =
U1_g(
x1,
x2)
L16_IN_G(
x1) =
L16_IN_G(
x1)
We have to consider all (P,R,Pi)-chains
(30) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(31) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
L16_IN_G(.(1, T23)) → L16_IN_G(T23)
R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains
(32) PiDPToQDPProof (EQUIVALENT transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(33) Obligation:
Q DP problem:
The TRS P consists of the following rules:
L16_IN_G(.(1, T23)) → L16_IN_G(T23)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(34) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- L16_IN_G(.(1, T23)) → L16_IN_G(T23)
The graph contains the following edges 1 > 1
(35) YES
(36) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
L16_IN_A(.(1, T23)) → L16_IN_A(T23)
The TRS R consists of the following rules:
p1_in_a(.(1, T13)) → U2_a(T13, l16_in_a(T13))
l16_in_a([]) → l16_out_a([])
l16_in_a(.(1, T23)) → U1_a(T23, l16_in_a(T23))
U1_a(T23, l16_out_a(T23)) → l16_out_a(.(1, T23))
U2_a(T13, l16_out_a(T13)) → p1_out_a(.(1, T13))
p1_in_a(.(1, [])) → U3_a(l16_in_g([]))
l16_in_g([]) → l16_out_g([])
l16_in_g(.(1, T23)) → U1_g(T23, l16_in_g(T23))
U1_g(T23, l16_out_g(T23)) → l16_out_g(.(1, T23))
U3_a(l16_out_g([])) → p1_out_a(.(1, []))
The argument filtering Pi contains the following mapping:
p1_in_a(
x1) =
p1_in_a
U2_a(
x1,
x2) =
U2_a(
x2)
l16_in_a(
x1) =
l16_in_a
l16_out_a(
x1) =
l16_out_a(
x1)
U1_a(
x1,
x2) =
U1_a(
x2)
p1_out_a(
x1) =
p1_out_a(
x1)
U3_a(
x1) =
U3_a(
x1)
l16_in_g(
x1) =
l16_in_g(
x1)
[] =
[]
l16_out_g(
x1) =
l16_out_g(
x1)
.(
x1,
x2) =
.(
x1,
x2)
1 =
1
U1_g(
x1,
x2) =
U1_g(
x1,
x2)
L16_IN_A(
x1) =
L16_IN_A
We have to consider all (P,R,Pi)-chains
(37) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(38) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
L16_IN_A(.(1, T23)) → L16_IN_A(T23)
R is empty.
The argument filtering Pi contains the following mapping:
.(
x1,
x2) =
.(
x1,
x2)
1 =
1
L16_IN_A(
x1) =
L16_IN_A
We have to consider all (P,R,Pi)-chains
(39) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(40) Obligation:
Q DP problem:
The TRS P consists of the following rules:
L16_IN_A → L16_IN_A
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(41) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.
s =
L16_IN_A evaluates to t =
L16_IN_AThus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Semiunifier: [ ]
- Matcher: [ ]
Rewriting sequenceThe DP semiunifies directly so there is only one rewrite step from L16_IN_A to L16_IN_A.
(42) NO