(0) Obligation:
Clauses:
p(X) :- ','(l(X), q(X)).
q(.(A, [])).
r(1).
l([]).
l(.(H, T)) :- ','(r(H), l(T)).
Queries:
p(a).
(1) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
p_in: (f)
l_in: (f)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
p_in_a(X) → U1_a(X, l_in_a(X))
l_in_a([]) → l_out_a([])
l_in_a(.(H, T)) → U3_a(H, T, r_in_a(H))
r_in_a(1) → r_out_a(1)
U3_a(H, T, r_out_a(H)) → U4_a(H, T, l_in_a(T))
U4_a(H, T, l_out_a(T)) → l_out_a(.(H, T))
U1_a(X, l_out_a(X)) → U2_a(X, q_in_g(X))
q_in_g(.(A, [])) → q_out_g(.(A, []))
U2_a(X, q_out_g(X)) → p_out_a(X)
The argument filtering Pi contains the following mapping:
p_in_a(
x1) =
p_in_a
U1_a(
x1,
x2) =
U1_a(
x2)
l_in_a(
x1) =
l_in_a
l_out_a(
x1) =
l_out_a(
x1)
U3_a(
x1,
x2,
x3) =
U3_a(
x3)
r_in_a(
x1) =
r_in_a
r_out_a(
x1) =
r_out_a(
x1)
U4_a(
x1,
x2,
x3) =
U4_a(
x1,
x3)
U2_a(
x1,
x2) =
U2_a(
x1,
x2)
q_in_g(
x1) =
q_in_g(
x1)
.(
x1,
x2) =
.(
x1,
x2)
[] =
[]
q_out_g(
x1) =
q_out_g
p_out_a(
x1) =
p_out_a(
x1)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(2) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
p_in_a(X) → U1_a(X, l_in_a(X))
l_in_a([]) → l_out_a([])
l_in_a(.(H, T)) → U3_a(H, T, r_in_a(H))
r_in_a(1) → r_out_a(1)
U3_a(H, T, r_out_a(H)) → U4_a(H, T, l_in_a(T))
U4_a(H, T, l_out_a(T)) → l_out_a(.(H, T))
U1_a(X, l_out_a(X)) → U2_a(X, q_in_g(X))
q_in_g(.(A, [])) → q_out_g(.(A, []))
U2_a(X, q_out_g(X)) → p_out_a(X)
The argument filtering Pi contains the following mapping:
p_in_a(
x1) =
p_in_a
U1_a(
x1,
x2) =
U1_a(
x2)
l_in_a(
x1) =
l_in_a
l_out_a(
x1) =
l_out_a(
x1)
U3_a(
x1,
x2,
x3) =
U3_a(
x3)
r_in_a(
x1) =
r_in_a
r_out_a(
x1) =
r_out_a(
x1)
U4_a(
x1,
x2,
x3) =
U4_a(
x1,
x3)
U2_a(
x1,
x2) =
U2_a(
x1,
x2)
q_in_g(
x1) =
q_in_g(
x1)
.(
x1,
x2) =
.(
x1,
x2)
[] =
[]
q_out_g(
x1) =
q_out_g
p_out_a(
x1) =
p_out_a(
x1)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_A(X) → U1_A(X, l_in_a(X))
P_IN_A(X) → L_IN_A(X)
L_IN_A(.(H, T)) → U3_A(H, T, r_in_a(H))
L_IN_A(.(H, T)) → R_IN_A(H)
U3_A(H, T, r_out_a(H)) → U4_A(H, T, l_in_a(T))
U3_A(H, T, r_out_a(H)) → L_IN_A(T)
U1_A(X, l_out_a(X)) → U2_A(X, q_in_g(X))
U1_A(X, l_out_a(X)) → Q_IN_G(X)
The TRS R consists of the following rules:
p_in_a(X) → U1_a(X, l_in_a(X))
l_in_a([]) → l_out_a([])
l_in_a(.(H, T)) → U3_a(H, T, r_in_a(H))
r_in_a(1) → r_out_a(1)
U3_a(H, T, r_out_a(H)) → U4_a(H, T, l_in_a(T))
U4_a(H, T, l_out_a(T)) → l_out_a(.(H, T))
U1_a(X, l_out_a(X)) → U2_a(X, q_in_g(X))
q_in_g(.(A, [])) → q_out_g(.(A, []))
U2_a(X, q_out_g(X)) → p_out_a(X)
The argument filtering Pi contains the following mapping:
p_in_a(
x1) =
p_in_a
U1_a(
x1,
x2) =
U1_a(
x2)
l_in_a(
x1) =
l_in_a
l_out_a(
x1) =
l_out_a(
x1)
U3_a(
x1,
x2,
x3) =
U3_a(
x3)
r_in_a(
x1) =
r_in_a
r_out_a(
x1) =
r_out_a(
x1)
U4_a(
x1,
x2,
x3) =
U4_a(
x1,
x3)
U2_a(
x1,
x2) =
U2_a(
x1,
x2)
q_in_g(
x1) =
q_in_g(
x1)
.(
x1,
x2) =
.(
x1,
x2)
[] =
[]
q_out_g(
x1) =
q_out_g
p_out_a(
x1) =
p_out_a(
x1)
P_IN_A(
x1) =
P_IN_A
U1_A(
x1,
x2) =
U1_A(
x2)
L_IN_A(
x1) =
L_IN_A
U3_A(
x1,
x2,
x3) =
U3_A(
x3)
R_IN_A(
x1) =
R_IN_A
U4_A(
x1,
x2,
x3) =
U4_A(
x1,
x3)
U2_A(
x1,
x2) =
U2_A(
x1,
x2)
Q_IN_G(
x1) =
Q_IN_G(
x1)
We have to consider all (P,R,Pi)-chains
(4) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_A(X) → U1_A(X, l_in_a(X))
P_IN_A(X) → L_IN_A(X)
L_IN_A(.(H, T)) → U3_A(H, T, r_in_a(H))
L_IN_A(.(H, T)) → R_IN_A(H)
U3_A(H, T, r_out_a(H)) → U4_A(H, T, l_in_a(T))
U3_A(H, T, r_out_a(H)) → L_IN_A(T)
U1_A(X, l_out_a(X)) → U2_A(X, q_in_g(X))
U1_A(X, l_out_a(X)) → Q_IN_G(X)
The TRS R consists of the following rules:
p_in_a(X) → U1_a(X, l_in_a(X))
l_in_a([]) → l_out_a([])
l_in_a(.(H, T)) → U3_a(H, T, r_in_a(H))
r_in_a(1) → r_out_a(1)
U3_a(H, T, r_out_a(H)) → U4_a(H, T, l_in_a(T))
U4_a(H, T, l_out_a(T)) → l_out_a(.(H, T))
U1_a(X, l_out_a(X)) → U2_a(X, q_in_g(X))
q_in_g(.(A, [])) → q_out_g(.(A, []))
U2_a(X, q_out_g(X)) → p_out_a(X)
The argument filtering Pi contains the following mapping:
p_in_a(
x1) =
p_in_a
U1_a(
x1,
x2) =
U1_a(
x2)
l_in_a(
x1) =
l_in_a
l_out_a(
x1) =
l_out_a(
x1)
U3_a(
x1,
x2,
x3) =
U3_a(
x3)
r_in_a(
x1) =
r_in_a
r_out_a(
x1) =
r_out_a(
x1)
U4_a(
x1,
x2,
x3) =
U4_a(
x1,
x3)
U2_a(
x1,
x2) =
U2_a(
x1,
x2)
q_in_g(
x1) =
q_in_g(
x1)
.(
x1,
x2) =
.(
x1,
x2)
[] =
[]
q_out_g(
x1) =
q_out_g
p_out_a(
x1) =
p_out_a(
x1)
P_IN_A(
x1) =
P_IN_A
U1_A(
x1,
x2) =
U1_A(
x2)
L_IN_A(
x1) =
L_IN_A
U3_A(
x1,
x2,
x3) =
U3_A(
x3)
R_IN_A(
x1) =
R_IN_A
U4_A(
x1,
x2,
x3) =
U4_A(
x1,
x3)
U2_A(
x1,
x2) =
U2_A(
x1,
x2)
Q_IN_G(
x1) =
Q_IN_G(
x1)
We have to consider all (P,R,Pi)-chains
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 6 less nodes.
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
U3_A(H, T, r_out_a(H)) → L_IN_A(T)
L_IN_A(.(H, T)) → U3_A(H, T, r_in_a(H))
The TRS R consists of the following rules:
p_in_a(X) → U1_a(X, l_in_a(X))
l_in_a([]) → l_out_a([])
l_in_a(.(H, T)) → U3_a(H, T, r_in_a(H))
r_in_a(1) → r_out_a(1)
U3_a(H, T, r_out_a(H)) → U4_a(H, T, l_in_a(T))
U4_a(H, T, l_out_a(T)) → l_out_a(.(H, T))
U1_a(X, l_out_a(X)) → U2_a(X, q_in_g(X))
q_in_g(.(A, [])) → q_out_g(.(A, []))
U2_a(X, q_out_g(X)) → p_out_a(X)
The argument filtering Pi contains the following mapping:
p_in_a(
x1) =
p_in_a
U1_a(
x1,
x2) =
U1_a(
x2)
l_in_a(
x1) =
l_in_a
l_out_a(
x1) =
l_out_a(
x1)
U3_a(
x1,
x2,
x3) =
U3_a(
x3)
r_in_a(
x1) =
r_in_a
r_out_a(
x1) =
r_out_a(
x1)
U4_a(
x1,
x2,
x3) =
U4_a(
x1,
x3)
U2_a(
x1,
x2) =
U2_a(
x1,
x2)
q_in_g(
x1) =
q_in_g(
x1)
.(
x1,
x2) =
.(
x1,
x2)
[] =
[]
q_out_g(
x1) =
q_out_g
p_out_a(
x1) =
p_out_a(
x1)
L_IN_A(
x1) =
L_IN_A
U3_A(
x1,
x2,
x3) =
U3_A(
x3)
We have to consider all (P,R,Pi)-chains
(7) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(8) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
U3_A(H, T, r_out_a(H)) → L_IN_A(T)
L_IN_A(.(H, T)) → U3_A(H, T, r_in_a(H))
The TRS R consists of the following rules:
r_in_a(1) → r_out_a(1)
The argument filtering Pi contains the following mapping:
r_in_a(
x1) =
r_in_a
r_out_a(
x1) =
r_out_a(
x1)
.(
x1,
x2) =
.(
x1,
x2)
L_IN_A(
x1) =
L_IN_A
U3_A(
x1,
x2,
x3) =
U3_A(
x3)
We have to consider all (P,R,Pi)-chains
(9) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U3_A(r_out_a(H)) → L_IN_A
L_IN_A → U3_A(r_in_a)
The TRS R consists of the following rules:
r_in_a → r_out_a(1)
The set Q consists of the following terms:
r_in_a
We have to consider all (P,Q,R)-chains.
(11) Rewriting (EQUIVALENT transformation)
By rewriting [LPAR04] the rule
L_IN_A →
U3_A(
r_in_a) at position [0] we obtained the following new rules [LPAR04]:
L_IN_A → U3_A(r_out_a(1))
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U3_A(r_out_a(H)) → L_IN_A
L_IN_A → U3_A(r_out_a(1))
The TRS R consists of the following rules:
r_in_a → r_out_a(1)
The set Q consists of the following terms:
r_in_a
We have to consider all (P,Q,R)-chains.
(13) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(14) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U3_A(r_out_a(H)) → L_IN_A
L_IN_A → U3_A(r_out_a(1))
R is empty.
The set Q consists of the following terms:
r_in_a
We have to consider all (P,Q,R)-chains.
(15) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
r_in_a
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U3_A(r_out_a(H)) → L_IN_A
L_IN_A → U3_A(r_out_a(1))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(17) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
U3_A(
r_out_a(
H)) →
L_IN_A we obtained the following new rules [LPAR04]:
U3_A(r_out_a(1)) → L_IN_A
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
L_IN_A → U3_A(r_out_a(1))
U3_A(r_out_a(1)) → L_IN_A
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(19) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:
s =
U3_A(
r_out_a(
1)) evaluates to t =
U3_A(
r_out_a(
1))
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Matcher: [ ]
- Semiunifier: [ ]
Rewriting sequenceU3_A(r_out_a(1)) →
L_IN_Awith rule
U3_A(
r_out_a(
1)) →
L_IN_A at position [] and matcher [ ]
L_IN_A →
U3_A(
r_out_a(
1))
with rule
L_IN_A →
U3_A(
r_out_a(
1))
Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence
All these steps are and every following step will be a correct step w.r.t to Q.
(20) FALSE
(21) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
p_in: (f)
l_in: (f)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
p_in_a(X) → U1_a(X, l_in_a(X))
l_in_a([]) → l_out_a([])
l_in_a(.(H, T)) → U3_a(H, T, r_in_a(H))
r_in_a(1) → r_out_a(1)
U3_a(H, T, r_out_a(H)) → U4_a(H, T, l_in_a(T))
U4_a(H, T, l_out_a(T)) → l_out_a(.(H, T))
U1_a(X, l_out_a(X)) → U2_a(X, q_in_g(X))
q_in_g(.(A, [])) → q_out_g(.(A, []))
U2_a(X, q_out_g(X)) → p_out_a(X)
The argument filtering Pi contains the following mapping:
p_in_a(
x1) =
p_in_a
U1_a(
x1,
x2) =
U1_a(
x2)
l_in_a(
x1) =
l_in_a
l_out_a(
x1) =
l_out_a(
x1)
U3_a(
x1,
x2,
x3) =
U3_a(
x3)
r_in_a(
x1) =
r_in_a
r_out_a(
x1) =
r_out_a(
x1)
U4_a(
x1,
x2,
x3) =
U4_a(
x1,
x3)
U2_a(
x1,
x2) =
U2_a(
x1,
x2)
q_in_g(
x1) =
q_in_g(
x1)
.(
x1,
x2) =
.(
x1,
x2)
[] =
[]
q_out_g(
x1) =
q_out_g(
x1)
p_out_a(
x1) =
p_out_a(
x1)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(22) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
p_in_a(X) → U1_a(X, l_in_a(X))
l_in_a([]) → l_out_a([])
l_in_a(.(H, T)) → U3_a(H, T, r_in_a(H))
r_in_a(1) → r_out_a(1)
U3_a(H, T, r_out_a(H)) → U4_a(H, T, l_in_a(T))
U4_a(H, T, l_out_a(T)) → l_out_a(.(H, T))
U1_a(X, l_out_a(X)) → U2_a(X, q_in_g(X))
q_in_g(.(A, [])) → q_out_g(.(A, []))
U2_a(X, q_out_g(X)) → p_out_a(X)
The argument filtering Pi contains the following mapping:
p_in_a(
x1) =
p_in_a
U1_a(
x1,
x2) =
U1_a(
x2)
l_in_a(
x1) =
l_in_a
l_out_a(
x1) =
l_out_a(
x1)
U3_a(
x1,
x2,
x3) =
U3_a(
x3)
r_in_a(
x1) =
r_in_a
r_out_a(
x1) =
r_out_a(
x1)
U4_a(
x1,
x2,
x3) =
U4_a(
x1,
x3)
U2_a(
x1,
x2) =
U2_a(
x1,
x2)
q_in_g(
x1) =
q_in_g(
x1)
.(
x1,
x2) =
.(
x1,
x2)
[] =
[]
q_out_g(
x1) =
q_out_g(
x1)
p_out_a(
x1) =
p_out_a(
x1)
(23) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_A(X) → U1_A(X, l_in_a(X))
P_IN_A(X) → L_IN_A(X)
L_IN_A(.(H, T)) → U3_A(H, T, r_in_a(H))
L_IN_A(.(H, T)) → R_IN_A(H)
U3_A(H, T, r_out_a(H)) → U4_A(H, T, l_in_a(T))
U3_A(H, T, r_out_a(H)) → L_IN_A(T)
U1_A(X, l_out_a(X)) → U2_A(X, q_in_g(X))
U1_A(X, l_out_a(X)) → Q_IN_G(X)
The TRS R consists of the following rules:
p_in_a(X) → U1_a(X, l_in_a(X))
l_in_a([]) → l_out_a([])
l_in_a(.(H, T)) → U3_a(H, T, r_in_a(H))
r_in_a(1) → r_out_a(1)
U3_a(H, T, r_out_a(H)) → U4_a(H, T, l_in_a(T))
U4_a(H, T, l_out_a(T)) → l_out_a(.(H, T))
U1_a(X, l_out_a(X)) → U2_a(X, q_in_g(X))
q_in_g(.(A, [])) → q_out_g(.(A, []))
U2_a(X, q_out_g(X)) → p_out_a(X)
The argument filtering Pi contains the following mapping:
p_in_a(
x1) =
p_in_a
U1_a(
x1,
x2) =
U1_a(
x2)
l_in_a(
x1) =
l_in_a
l_out_a(
x1) =
l_out_a(
x1)
U3_a(
x1,
x2,
x3) =
U3_a(
x3)
r_in_a(
x1) =
r_in_a
r_out_a(
x1) =
r_out_a(
x1)
U4_a(
x1,
x2,
x3) =
U4_a(
x1,
x3)
U2_a(
x1,
x2) =
U2_a(
x1,
x2)
q_in_g(
x1) =
q_in_g(
x1)
.(
x1,
x2) =
.(
x1,
x2)
[] =
[]
q_out_g(
x1) =
q_out_g(
x1)
p_out_a(
x1) =
p_out_a(
x1)
P_IN_A(
x1) =
P_IN_A
U1_A(
x1,
x2) =
U1_A(
x2)
L_IN_A(
x1) =
L_IN_A
U3_A(
x1,
x2,
x3) =
U3_A(
x3)
R_IN_A(
x1) =
R_IN_A
U4_A(
x1,
x2,
x3) =
U4_A(
x1,
x3)
U2_A(
x1,
x2) =
U2_A(
x1,
x2)
Q_IN_G(
x1) =
Q_IN_G(
x1)
We have to consider all (P,R,Pi)-chains
(24) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_A(X) → U1_A(X, l_in_a(X))
P_IN_A(X) → L_IN_A(X)
L_IN_A(.(H, T)) → U3_A(H, T, r_in_a(H))
L_IN_A(.(H, T)) → R_IN_A(H)
U3_A(H, T, r_out_a(H)) → U4_A(H, T, l_in_a(T))
U3_A(H, T, r_out_a(H)) → L_IN_A(T)
U1_A(X, l_out_a(X)) → U2_A(X, q_in_g(X))
U1_A(X, l_out_a(X)) → Q_IN_G(X)
The TRS R consists of the following rules:
p_in_a(X) → U1_a(X, l_in_a(X))
l_in_a([]) → l_out_a([])
l_in_a(.(H, T)) → U3_a(H, T, r_in_a(H))
r_in_a(1) → r_out_a(1)
U3_a(H, T, r_out_a(H)) → U4_a(H, T, l_in_a(T))
U4_a(H, T, l_out_a(T)) → l_out_a(.(H, T))
U1_a(X, l_out_a(X)) → U2_a(X, q_in_g(X))
q_in_g(.(A, [])) → q_out_g(.(A, []))
U2_a(X, q_out_g(X)) → p_out_a(X)
The argument filtering Pi contains the following mapping:
p_in_a(
x1) =
p_in_a
U1_a(
x1,
x2) =
U1_a(
x2)
l_in_a(
x1) =
l_in_a
l_out_a(
x1) =
l_out_a(
x1)
U3_a(
x1,
x2,
x3) =
U3_a(
x3)
r_in_a(
x1) =
r_in_a
r_out_a(
x1) =
r_out_a(
x1)
U4_a(
x1,
x2,
x3) =
U4_a(
x1,
x3)
U2_a(
x1,
x2) =
U2_a(
x1,
x2)
q_in_g(
x1) =
q_in_g(
x1)
.(
x1,
x2) =
.(
x1,
x2)
[] =
[]
q_out_g(
x1) =
q_out_g(
x1)
p_out_a(
x1) =
p_out_a(
x1)
P_IN_A(
x1) =
P_IN_A
U1_A(
x1,
x2) =
U1_A(
x2)
L_IN_A(
x1) =
L_IN_A
U3_A(
x1,
x2,
x3) =
U3_A(
x3)
R_IN_A(
x1) =
R_IN_A
U4_A(
x1,
x2,
x3) =
U4_A(
x1,
x3)
U2_A(
x1,
x2) =
U2_A(
x1,
x2)
Q_IN_G(
x1) =
Q_IN_G(
x1)
We have to consider all (P,R,Pi)-chains
(25) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 6 less nodes.
(26) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
U3_A(H, T, r_out_a(H)) → L_IN_A(T)
L_IN_A(.(H, T)) → U3_A(H, T, r_in_a(H))
The TRS R consists of the following rules:
p_in_a(X) → U1_a(X, l_in_a(X))
l_in_a([]) → l_out_a([])
l_in_a(.(H, T)) → U3_a(H, T, r_in_a(H))
r_in_a(1) → r_out_a(1)
U3_a(H, T, r_out_a(H)) → U4_a(H, T, l_in_a(T))
U4_a(H, T, l_out_a(T)) → l_out_a(.(H, T))
U1_a(X, l_out_a(X)) → U2_a(X, q_in_g(X))
q_in_g(.(A, [])) → q_out_g(.(A, []))
U2_a(X, q_out_g(X)) → p_out_a(X)
The argument filtering Pi contains the following mapping:
p_in_a(
x1) =
p_in_a
U1_a(
x1,
x2) =
U1_a(
x2)
l_in_a(
x1) =
l_in_a
l_out_a(
x1) =
l_out_a(
x1)
U3_a(
x1,
x2,
x3) =
U3_a(
x3)
r_in_a(
x1) =
r_in_a
r_out_a(
x1) =
r_out_a(
x1)
U4_a(
x1,
x2,
x3) =
U4_a(
x1,
x3)
U2_a(
x1,
x2) =
U2_a(
x1,
x2)
q_in_g(
x1) =
q_in_g(
x1)
.(
x1,
x2) =
.(
x1,
x2)
[] =
[]
q_out_g(
x1) =
q_out_g(
x1)
p_out_a(
x1) =
p_out_a(
x1)
L_IN_A(
x1) =
L_IN_A
U3_A(
x1,
x2,
x3) =
U3_A(
x3)
We have to consider all (P,R,Pi)-chains
(27) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(28) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
U3_A(H, T, r_out_a(H)) → L_IN_A(T)
L_IN_A(.(H, T)) → U3_A(H, T, r_in_a(H))
The TRS R consists of the following rules:
r_in_a(1) → r_out_a(1)
The argument filtering Pi contains the following mapping:
r_in_a(
x1) =
r_in_a
r_out_a(
x1) =
r_out_a(
x1)
.(
x1,
x2) =
.(
x1,
x2)
L_IN_A(
x1) =
L_IN_A
U3_A(
x1,
x2,
x3) =
U3_A(
x3)
We have to consider all (P,R,Pi)-chains
(29) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(30) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U3_A(r_out_a(H)) → L_IN_A
L_IN_A → U3_A(r_in_a)
The TRS R consists of the following rules:
r_in_a → r_out_a(1)
The set Q consists of the following terms:
r_in_a
We have to consider all (P,Q,R)-chains.
(31) Rewriting (EQUIVALENT transformation)
By rewriting [LPAR04] the rule
L_IN_A →
U3_A(
r_in_a) at position [0] we obtained the following new rules [LPAR04]:
L_IN_A → U3_A(r_out_a(1))
(32) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U3_A(r_out_a(H)) → L_IN_A
L_IN_A → U3_A(r_out_a(1))
The TRS R consists of the following rules:
r_in_a → r_out_a(1)
The set Q consists of the following terms:
r_in_a
We have to consider all (P,Q,R)-chains.
(33) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(34) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U3_A(r_out_a(H)) → L_IN_A
L_IN_A → U3_A(r_out_a(1))
R is empty.
The set Q consists of the following terms:
r_in_a
We have to consider all (P,Q,R)-chains.
(35) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
r_in_a
(36) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U3_A(r_out_a(H)) → L_IN_A
L_IN_A → U3_A(r_out_a(1))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(37) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
U3_A(
r_out_a(
H)) →
L_IN_A we obtained the following new rules [LPAR04]:
U3_A(r_out_a(1)) → L_IN_A
(38) Obligation:
Q DP problem:
The TRS P consists of the following rules:
L_IN_A → U3_A(r_out_a(1))
U3_A(r_out_a(1)) → L_IN_A
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(39) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:
s =
U3_A(
r_out_a(
1)) evaluates to t =
U3_A(
r_out_a(
1))
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Matcher: [ ]
- Semiunifier: [ ]
Rewriting sequenceU3_A(r_out_a(1)) →
L_IN_Awith rule
U3_A(
r_out_a(
1)) →
L_IN_A at position [] and matcher [ ]
L_IN_A →
U3_A(
r_out_a(
1))
with rule
L_IN_A →
U3_A(
r_out_a(
1))
Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence
All these steps are and every following step will be a correct step w.r.t to Q.
(40) FALSE