(0) Obligation:
Clauses:
append([], Ys, Ys).
append(.(X, Xs), Ys, .(X, Zs)) :- append(Xs, Ys, Zs).
sublist(X, Y) :- ','(append(P, X1, Y), append(X2, X, P)).
Queries:
sublist(a,g).
(1) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
sublist_in: (f,b)
append_in: (f,f,b)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
sublist_in_ag(X, Y) → U2_ag(X, Y, append_in_aag(P, X1, Y))
append_in_aag([], Ys, Ys) → append_out_aag([], Ys, Ys)
append_in_aag(.(X, Xs), Ys, .(X, Zs)) → U1_aag(X, Xs, Ys, Zs, append_in_aag(Xs, Ys, Zs))
U1_aag(X, Xs, Ys, Zs, append_out_aag(Xs, Ys, Zs)) → append_out_aag(.(X, Xs), Ys, .(X, Zs))
U2_ag(X, Y, append_out_aag(P, X1, Y)) → U3_ag(X, Y, append_in_aag(X2, X, P))
U3_ag(X, Y, append_out_aag(X2, X, P)) → sublist_out_ag(X, Y)
The argument filtering Pi contains the following mapping:
sublist_in_ag(
x1,
x2) =
sublist_in_ag(
x2)
U2_ag(
x1,
x2,
x3) =
U2_ag(
x3)
append_in_aag(
x1,
x2,
x3) =
append_in_aag(
x3)
append_out_aag(
x1,
x2,
x3) =
append_out_aag(
x1,
x2)
.(
x1,
x2) =
.(
x1,
x2)
U1_aag(
x1,
x2,
x3,
x4,
x5) =
U1_aag(
x1,
x5)
U3_ag(
x1,
x2,
x3) =
U3_ag(
x3)
sublist_out_ag(
x1,
x2) =
sublist_out_ag(
x1)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(2) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
sublist_in_ag(X, Y) → U2_ag(X, Y, append_in_aag(P, X1, Y))
append_in_aag([], Ys, Ys) → append_out_aag([], Ys, Ys)
append_in_aag(.(X, Xs), Ys, .(X, Zs)) → U1_aag(X, Xs, Ys, Zs, append_in_aag(Xs, Ys, Zs))
U1_aag(X, Xs, Ys, Zs, append_out_aag(Xs, Ys, Zs)) → append_out_aag(.(X, Xs), Ys, .(X, Zs))
U2_ag(X, Y, append_out_aag(P, X1, Y)) → U3_ag(X, Y, append_in_aag(X2, X, P))
U3_ag(X, Y, append_out_aag(X2, X, P)) → sublist_out_ag(X, Y)
The argument filtering Pi contains the following mapping:
sublist_in_ag(
x1,
x2) =
sublist_in_ag(
x2)
U2_ag(
x1,
x2,
x3) =
U2_ag(
x3)
append_in_aag(
x1,
x2,
x3) =
append_in_aag(
x3)
append_out_aag(
x1,
x2,
x3) =
append_out_aag(
x1,
x2)
.(
x1,
x2) =
.(
x1,
x2)
U1_aag(
x1,
x2,
x3,
x4,
x5) =
U1_aag(
x1,
x5)
U3_ag(
x1,
x2,
x3) =
U3_ag(
x3)
sublist_out_ag(
x1,
x2) =
sublist_out_ag(
x1)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
SUBLIST_IN_AG(X, Y) → U2_AG(X, Y, append_in_aag(P, X1, Y))
SUBLIST_IN_AG(X, Y) → APPEND_IN_AAG(P, X1, Y)
APPEND_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → U1_AAG(X, Xs, Ys, Zs, append_in_aag(Xs, Ys, Zs))
APPEND_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → APPEND_IN_AAG(Xs, Ys, Zs)
U2_AG(X, Y, append_out_aag(P, X1, Y)) → U3_AG(X, Y, append_in_aag(X2, X, P))
U2_AG(X, Y, append_out_aag(P, X1, Y)) → APPEND_IN_AAG(X2, X, P)
The TRS R consists of the following rules:
sublist_in_ag(X, Y) → U2_ag(X, Y, append_in_aag(P, X1, Y))
append_in_aag([], Ys, Ys) → append_out_aag([], Ys, Ys)
append_in_aag(.(X, Xs), Ys, .(X, Zs)) → U1_aag(X, Xs, Ys, Zs, append_in_aag(Xs, Ys, Zs))
U1_aag(X, Xs, Ys, Zs, append_out_aag(Xs, Ys, Zs)) → append_out_aag(.(X, Xs), Ys, .(X, Zs))
U2_ag(X, Y, append_out_aag(P, X1, Y)) → U3_ag(X, Y, append_in_aag(X2, X, P))
U3_ag(X, Y, append_out_aag(X2, X, P)) → sublist_out_ag(X, Y)
The argument filtering Pi contains the following mapping:
sublist_in_ag(
x1,
x2) =
sublist_in_ag(
x2)
U2_ag(
x1,
x2,
x3) =
U2_ag(
x3)
append_in_aag(
x1,
x2,
x3) =
append_in_aag(
x3)
append_out_aag(
x1,
x2,
x3) =
append_out_aag(
x1,
x2)
.(
x1,
x2) =
.(
x1,
x2)
U1_aag(
x1,
x2,
x3,
x4,
x5) =
U1_aag(
x1,
x5)
U3_ag(
x1,
x2,
x3) =
U3_ag(
x3)
sublist_out_ag(
x1,
x2) =
sublist_out_ag(
x1)
SUBLIST_IN_AG(
x1,
x2) =
SUBLIST_IN_AG(
x2)
U2_AG(
x1,
x2,
x3) =
U2_AG(
x3)
APPEND_IN_AAG(
x1,
x2,
x3) =
APPEND_IN_AAG(
x3)
U1_AAG(
x1,
x2,
x3,
x4,
x5) =
U1_AAG(
x1,
x5)
U3_AG(
x1,
x2,
x3) =
U3_AG(
x3)
We have to consider all (P,R,Pi)-chains
(4) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
SUBLIST_IN_AG(X, Y) → U2_AG(X, Y, append_in_aag(P, X1, Y))
SUBLIST_IN_AG(X, Y) → APPEND_IN_AAG(P, X1, Y)
APPEND_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → U1_AAG(X, Xs, Ys, Zs, append_in_aag(Xs, Ys, Zs))
APPEND_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → APPEND_IN_AAG(Xs, Ys, Zs)
U2_AG(X, Y, append_out_aag(P, X1, Y)) → U3_AG(X, Y, append_in_aag(X2, X, P))
U2_AG(X, Y, append_out_aag(P, X1, Y)) → APPEND_IN_AAG(X2, X, P)
The TRS R consists of the following rules:
sublist_in_ag(X, Y) → U2_ag(X, Y, append_in_aag(P, X1, Y))
append_in_aag([], Ys, Ys) → append_out_aag([], Ys, Ys)
append_in_aag(.(X, Xs), Ys, .(X, Zs)) → U1_aag(X, Xs, Ys, Zs, append_in_aag(Xs, Ys, Zs))
U1_aag(X, Xs, Ys, Zs, append_out_aag(Xs, Ys, Zs)) → append_out_aag(.(X, Xs), Ys, .(X, Zs))
U2_ag(X, Y, append_out_aag(P, X1, Y)) → U3_ag(X, Y, append_in_aag(X2, X, P))
U3_ag(X, Y, append_out_aag(X2, X, P)) → sublist_out_ag(X, Y)
The argument filtering Pi contains the following mapping:
sublist_in_ag(
x1,
x2) =
sublist_in_ag(
x2)
U2_ag(
x1,
x2,
x3) =
U2_ag(
x3)
append_in_aag(
x1,
x2,
x3) =
append_in_aag(
x3)
append_out_aag(
x1,
x2,
x3) =
append_out_aag(
x1,
x2)
.(
x1,
x2) =
.(
x1,
x2)
U1_aag(
x1,
x2,
x3,
x4,
x5) =
U1_aag(
x1,
x5)
U3_ag(
x1,
x2,
x3) =
U3_ag(
x3)
sublist_out_ag(
x1,
x2) =
sublist_out_ag(
x1)
SUBLIST_IN_AG(
x1,
x2) =
SUBLIST_IN_AG(
x2)
U2_AG(
x1,
x2,
x3) =
U2_AG(
x3)
APPEND_IN_AAG(
x1,
x2,
x3) =
APPEND_IN_AAG(
x3)
U1_AAG(
x1,
x2,
x3,
x4,
x5) =
U1_AAG(
x1,
x5)
U3_AG(
x1,
x2,
x3) =
U3_AG(
x3)
We have to consider all (P,R,Pi)-chains
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 5 less nodes.
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
APPEND_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → APPEND_IN_AAG(Xs, Ys, Zs)
The TRS R consists of the following rules:
sublist_in_ag(X, Y) → U2_ag(X, Y, append_in_aag(P, X1, Y))
append_in_aag([], Ys, Ys) → append_out_aag([], Ys, Ys)
append_in_aag(.(X, Xs), Ys, .(X, Zs)) → U1_aag(X, Xs, Ys, Zs, append_in_aag(Xs, Ys, Zs))
U1_aag(X, Xs, Ys, Zs, append_out_aag(Xs, Ys, Zs)) → append_out_aag(.(X, Xs), Ys, .(X, Zs))
U2_ag(X, Y, append_out_aag(P, X1, Y)) → U3_ag(X, Y, append_in_aag(X2, X, P))
U3_ag(X, Y, append_out_aag(X2, X, P)) → sublist_out_ag(X, Y)
The argument filtering Pi contains the following mapping:
sublist_in_ag(
x1,
x2) =
sublist_in_ag(
x2)
U2_ag(
x1,
x2,
x3) =
U2_ag(
x3)
append_in_aag(
x1,
x2,
x3) =
append_in_aag(
x3)
append_out_aag(
x1,
x2,
x3) =
append_out_aag(
x1,
x2)
.(
x1,
x2) =
.(
x1,
x2)
U1_aag(
x1,
x2,
x3,
x4,
x5) =
U1_aag(
x1,
x5)
U3_ag(
x1,
x2,
x3) =
U3_ag(
x3)
sublist_out_ag(
x1,
x2) =
sublist_out_ag(
x1)
APPEND_IN_AAG(
x1,
x2,
x3) =
APPEND_IN_AAG(
x3)
We have to consider all (P,R,Pi)-chains
(7) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(8) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
APPEND_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → APPEND_IN_AAG(Xs, Ys, Zs)
R is empty.
The argument filtering Pi contains the following mapping:
.(
x1,
x2) =
.(
x1,
x2)
APPEND_IN_AAG(
x1,
x2,
x3) =
APPEND_IN_AAG(
x3)
We have to consider all (P,R,Pi)-chains
(9) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APPEND_IN_AAG(.(X, Zs)) → APPEND_IN_AAG(Zs)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(11) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- APPEND_IN_AAG(.(X, Zs)) → APPEND_IN_AAG(Zs)
The graph contains the following edges 1 > 1
(12) TRUE
(13) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
sublist_in: (f,b)
append_in: (f,f,b)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
sublist_in_ag(X, Y) → U2_ag(X, Y, append_in_aag(P, X1, Y))
append_in_aag([], Ys, Ys) → append_out_aag([], Ys, Ys)
append_in_aag(.(X, Xs), Ys, .(X, Zs)) → U1_aag(X, Xs, Ys, Zs, append_in_aag(Xs, Ys, Zs))
U1_aag(X, Xs, Ys, Zs, append_out_aag(Xs, Ys, Zs)) → append_out_aag(.(X, Xs), Ys, .(X, Zs))
U2_ag(X, Y, append_out_aag(P, X1, Y)) → U3_ag(X, Y, append_in_aag(X2, X, P))
U3_ag(X, Y, append_out_aag(X2, X, P)) → sublist_out_ag(X, Y)
The argument filtering Pi contains the following mapping:
sublist_in_ag(
x1,
x2) =
sublist_in_ag(
x2)
U2_ag(
x1,
x2,
x3) =
U2_ag(
x2,
x3)
append_in_aag(
x1,
x2,
x3) =
append_in_aag(
x3)
append_out_aag(
x1,
x2,
x3) =
append_out_aag(
x1,
x2,
x3)
.(
x1,
x2) =
.(
x1,
x2)
U1_aag(
x1,
x2,
x3,
x4,
x5) =
U1_aag(
x1,
x4,
x5)
U3_ag(
x1,
x2,
x3) =
U3_ag(
x2,
x3)
sublist_out_ag(
x1,
x2) =
sublist_out_ag(
x1,
x2)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(14) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
sublist_in_ag(X, Y) → U2_ag(X, Y, append_in_aag(P, X1, Y))
append_in_aag([], Ys, Ys) → append_out_aag([], Ys, Ys)
append_in_aag(.(X, Xs), Ys, .(X, Zs)) → U1_aag(X, Xs, Ys, Zs, append_in_aag(Xs, Ys, Zs))
U1_aag(X, Xs, Ys, Zs, append_out_aag(Xs, Ys, Zs)) → append_out_aag(.(X, Xs), Ys, .(X, Zs))
U2_ag(X, Y, append_out_aag(P, X1, Y)) → U3_ag(X, Y, append_in_aag(X2, X, P))
U3_ag(X, Y, append_out_aag(X2, X, P)) → sublist_out_ag(X, Y)
The argument filtering Pi contains the following mapping:
sublist_in_ag(
x1,
x2) =
sublist_in_ag(
x2)
U2_ag(
x1,
x2,
x3) =
U2_ag(
x2,
x3)
append_in_aag(
x1,
x2,
x3) =
append_in_aag(
x3)
append_out_aag(
x1,
x2,
x3) =
append_out_aag(
x1,
x2,
x3)
.(
x1,
x2) =
.(
x1,
x2)
U1_aag(
x1,
x2,
x3,
x4,
x5) =
U1_aag(
x1,
x4,
x5)
U3_ag(
x1,
x2,
x3) =
U3_ag(
x2,
x3)
sublist_out_ag(
x1,
x2) =
sublist_out_ag(
x1,
x2)
(15) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
SUBLIST_IN_AG(X, Y) → U2_AG(X, Y, append_in_aag(P, X1, Y))
SUBLIST_IN_AG(X, Y) → APPEND_IN_AAG(P, X1, Y)
APPEND_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → U1_AAG(X, Xs, Ys, Zs, append_in_aag(Xs, Ys, Zs))
APPEND_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → APPEND_IN_AAG(Xs, Ys, Zs)
U2_AG(X, Y, append_out_aag(P, X1, Y)) → U3_AG(X, Y, append_in_aag(X2, X, P))
U2_AG(X, Y, append_out_aag(P, X1, Y)) → APPEND_IN_AAG(X2, X, P)
The TRS R consists of the following rules:
sublist_in_ag(X, Y) → U2_ag(X, Y, append_in_aag(P, X1, Y))
append_in_aag([], Ys, Ys) → append_out_aag([], Ys, Ys)
append_in_aag(.(X, Xs), Ys, .(X, Zs)) → U1_aag(X, Xs, Ys, Zs, append_in_aag(Xs, Ys, Zs))
U1_aag(X, Xs, Ys, Zs, append_out_aag(Xs, Ys, Zs)) → append_out_aag(.(X, Xs), Ys, .(X, Zs))
U2_ag(X, Y, append_out_aag(P, X1, Y)) → U3_ag(X, Y, append_in_aag(X2, X, P))
U3_ag(X, Y, append_out_aag(X2, X, P)) → sublist_out_ag(X, Y)
The argument filtering Pi contains the following mapping:
sublist_in_ag(
x1,
x2) =
sublist_in_ag(
x2)
U2_ag(
x1,
x2,
x3) =
U2_ag(
x2,
x3)
append_in_aag(
x1,
x2,
x3) =
append_in_aag(
x3)
append_out_aag(
x1,
x2,
x3) =
append_out_aag(
x1,
x2,
x3)
.(
x1,
x2) =
.(
x1,
x2)
U1_aag(
x1,
x2,
x3,
x4,
x5) =
U1_aag(
x1,
x4,
x5)
U3_ag(
x1,
x2,
x3) =
U3_ag(
x2,
x3)
sublist_out_ag(
x1,
x2) =
sublist_out_ag(
x1,
x2)
SUBLIST_IN_AG(
x1,
x2) =
SUBLIST_IN_AG(
x2)
U2_AG(
x1,
x2,
x3) =
U2_AG(
x2,
x3)
APPEND_IN_AAG(
x1,
x2,
x3) =
APPEND_IN_AAG(
x3)
U1_AAG(
x1,
x2,
x3,
x4,
x5) =
U1_AAG(
x1,
x4,
x5)
U3_AG(
x1,
x2,
x3) =
U3_AG(
x2,
x3)
We have to consider all (P,R,Pi)-chains
(16) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
SUBLIST_IN_AG(X, Y) → U2_AG(X, Y, append_in_aag(P, X1, Y))
SUBLIST_IN_AG(X, Y) → APPEND_IN_AAG(P, X1, Y)
APPEND_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → U1_AAG(X, Xs, Ys, Zs, append_in_aag(Xs, Ys, Zs))
APPEND_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → APPEND_IN_AAG(Xs, Ys, Zs)
U2_AG(X, Y, append_out_aag(P, X1, Y)) → U3_AG(X, Y, append_in_aag(X2, X, P))
U2_AG(X, Y, append_out_aag(P, X1, Y)) → APPEND_IN_AAG(X2, X, P)
The TRS R consists of the following rules:
sublist_in_ag(X, Y) → U2_ag(X, Y, append_in_aag(P, X1, Y))
append_in_aag([], Ys, Ys) → append_out_aag([], Ys, Ys)
append_in_aag(.(X, Xs), Ys, .(X, Zs)) → U1_aag(X, Xs, Ys, Zs, append_in_aag(Xs, Ys, Zs))
U1_aag(X, Xs, Ys, Zs, append_out_aag(Xs, Ys, Zs)) → append_out_aag(.(X, Xs), Ys, .(X, Zs))
U2_ag(X, Y, append_out_aag(P, X1, Y)) → U3_ag(X, Y, append_in_aag(X2, X, P))
U3_ag(X, Y, append_out_aag(X2, X, P)) → sublist_out_ag(X, Y)
The argument filtering Pi contains the following mapping:
sublist_in_ag(
x1,
x2) =
sublist_in_ag(
x2)
U2_ag(
x1,
x2,
x3) =
U2_ag(
x2,
x3)
append_in_aag(
x1,
x2,
x3) =
append_in_aag(
x3)
append_out_aag(
x1,
x2,
x3) =
append_out_aag(
x1,
x2,
x3)
.(
x1,
x2) =
.(
x1,
x2)
U1_aag(
x1,
x2,
x3,
x4,
x5) =
U1_aag(
x1,
x4,
x5)
U3_ag(
x1,
x2,
x3) =
U3_ag(
x2,
x3)
sublist_out_ag(
x1,
x2) =
sublist_out_ag(
x1,
x2)
SUBLIST_IN_AG(
x1,
x2) =
SUBLIST_IN_AG(
x2)
U2_AG(
x1,
x2,
x3) =
U2_AG(
x2,
x3)
APPEND_IN_AAG(
x1,
x2,
x3) =
APPEND_IN_AAG(
x3)
U1_AAG(
x1,
x2,
x3,
x4,
x5) =
U1_AAG(
x1,
x4,
x5)
U3_AG(
x1,
x2,
x3) =
U3_AG(
x2,
x3)
We have to consider all (P,R,Pi)-chains
(17) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 5 less nodes.
(18) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
APPEND_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → APPEND_IN_AAG(Xs, Ys, Zs)
The TRS R consists of the following rules:
sublist_in_ag(X, Y) → U2_ag(X, Y, append_in_aag(P, X1, Y))
append_in_aag([], Ys, Ys) → append_out_aag([], Ys, Ys)
append_in_aag(.(X, Xs), Ys, .(X, Zs)) → U1_aag(X, Xs, Ys, Zs, append_in_aag(Xs, Ys, Zs))
U1_aag(X, Xs, Ys, Zs, append_out_aag(Xs, Ys, Zs)) → append_out_aag(.(X, Xs), Ys, .(X, Zs))
U2_ag(X, Y, append_out_aag(P, X1, Y)) → U3_ag(X, Y, append_in_aag(X2, X, P))
U3_ag(X, Y, append_out_aag(X2, X, P)) → sublist_out_ag(X, Y)
The argument filtering Pi contains the following mapping:
sublist_in_ag(
x1,
x2) =
sublist_in_ag(
x2)
U2_ag(
x1,
x2,
x3) =
U2_ag(
x2,
x3)
append_in_aag(
x1,
x2,
x3) =
append_in_aag(
x3)
append_out_aag(
x1,
x2,
x3) =
append_out_aag(
x1,
x2,
x3)
.(
x1,
x2) =
.(
x1,
x2)
U1_aag(
x1,
x2,
x3,
x4,
x5) =
U1_aag(
x1,
x4,
x5)
U3_ag(
x1,
x2,
x3) =
U3_ag(
x2,
x3)
sublist_out_ag(
x1,
x2) =
sublist_out_ag(
x1,
x2)
APPEND_IN_AAG(
x1,
x2,
x3) =
APPEND_IN_AAG(
x3)
We have to consider all (P,R,Pi)-chains
(19) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(20) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
APPEND_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → APPEND_IN_AAG(Xs, Ys, Zs)
R is empty.
The argument filtering Pi contains the following mapping:
.(
x1,
x2) =
.(
x1,
x2)
APPEND_IN_AAG(
x1,
x2,
x3) =
APPEND_IN_AAG(
x3)
We have to consider all (P,R,Pi)-chains
(21) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(22) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APPEND_IN_AAG(.(X, Zs)) → APPEND_IN_AAG(Zs)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.