(0) Obligation:
Clauses:
concatenate([], L, L).
concatenate(.(X, L1), L2, .(X, L3)) :- concatenate(L1, L2, L3).
member(X, .(X, L)).
member(X, .(Y, L)) :- member(X, L).
reverse(L, L1) :- reverse_concatenate(L, [], L1).
reverse_concatenate([], L, L).
reverse_concatenate(.(X, L1), L2, L3) :- reverse_concatenate(L1, .(X, L2), L3).
Queries:
reverse_concatenate(g,g,a).
(1) PrologToPrologProblemTransformerProof (SOUND transformation)
Built Prolog problem from termination graph.
(2) Obligation:
Clauses:
reverse_concatenate1([], T5, T5).
reverse_concatenate1(.(T23, []), T24, .(T23, T24)).
reverse_concatenate1(.(T37, .(T35, T36)), T38, T40) :- reverse_concatenate1(T36, .(T35, .(T37, T38)), T40).
Queries:
reverse_concatenate1(g,g,a).
(3) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
reverse_concatenate1_in: (b,b,f)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
reverse_concatenate1_in_gga([], T5, T5) → reverse_concatenate1_out_gga([], T5, T5)
reverse_concatenate1_in_gga(.(T23, []), T24, .(T23, T24)) → reverse_concatenate1_out_gga(.(T23, []), T24, .(T23, T24))
reverse_concatenate1_in_gga(.(T37, .(T35, T36)), T38, T40) → U1_gga(T37, T35, T36, T38, T40, reverse_concatenate1_in_gga(T36, .(T35, .(T37, T38)), T40))
U1_gga(T37, T35, T36, T38, T40, reverse_concatenate1_out_gga(T36, .(T35, .(T37, T38)), T40)) → reverse_concatenate1_out_gga(.(T37, .(T35, T36)), T38, T40)
The argument filtering Pi contains the following mapping:
reverse_concatenate1_in_gga(
x1,
x2,
x3) =
reverse_concatenate1_in_gga(
x1,
x2)
[] =
[]
reverse_concatenate1_out_gga(
x1,
x2,
x3) =
reverse_concatenate1_out_gga(
x3)
.(
x1,
x2) =
.(
x1,
x2)
U1_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U1_gga(
x6)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(4) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
reverse_concatenate1_in_gga([], T5, T5) → reverse_concatenate1_out_gga([], T5, T5)
reverse_concatenate1_in_gga(.(T23, []), T24, .(T23, T24)) → reverse_concatenate1_out_gga(.(T23, []), T24, .(T23, T24))
reverse_concatenate1_in_gga(.(T37, .(T35, T36)), T38, T40) → U1_gga(T37, T35, T36, T38, T40, reverse_concatenate1_in_gga(T36, .(T35, .(T37, T38)), T40))
U1_gga(T37, T35, T36, T38, T40, reverse_concatenate1_out_gga(T36, .(T35, .(T37, T38)), T40)) → reverse_concatenate1_out_gga(.(T37, .(T35, T36)), T38, T40)
The argument filtering Pi contains the following mapping:
reverse_concatenate1_in_gga(
x1,
x2,
x3) =
reverse_concatenate1_in_gga(
x1,
x2)
[] =
[]
reverse_concatenate1_out_gga(
x1,
x2,
x3) =
reverse_concatenate1_out_gga(
x3)
.(
x1,
x2) =
.(
x1,
x2)
U1_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U1_gga(
x6)
(5) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
REVERSE_CONCATENATE1_IN_GGA(.(T37, .(T35, T36)), T38, T40) → U1_GGA(T37, T35, T36, T38, T40, reverse_concatenate1_in_gga(T36, .(T35, .(T37, T38)), T40))
REVERSE_CONCATENATE1_IN_GGA(.(T37, .(T35, T36)), T38, T40) → REVERSE_CONCATENATE1_IN_GGA(T36, .(T35, .(T37, T38)), T40)
The TRS R consists of the following rules:
reverse_concatenate1_in_gga([], T5, T5) → reverse_concatenate1_out_gga([], T5, T5)
reverse_concatenate1_in_gga(.(T23, []), T24, .(T23, T24)) → reverse_concatenate1_out_gga(.(T23, []), T24, .(T23, T24))
reverse_concatenate1_in_gga(.(T37, .(T35, T36)), T38, T40) → U1_gga(T37, T35, T36, T38, T40, reverse_concatenate1_in_gga(T36, .(T35, .(T37, T38)), T40))
U1_gga(T37, T35, T36, T38, T40, reverse_concatenate1_out_gga(T36, .(T35, .(T37, T38)), T40)) → reverse_concatenate1_out_gga(.(T37, .(T35, T36)), T38, T40)
The argument filtering Pi contains the following mapping:
reverse_concatenate1_in_gga(
x1,
x2,
x3) =
reverse_concatenate1_in_gga(
x1,
x2)
[] =
[]
reverse_concatenate1_out_gga(
x1,
x2,
x3) =
reverse_concatenate1_out_gga(
x3)
.(
x1,
x2) =
.(
x1,
x2)
U1_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U1_gga(
x6)
REVERSE_CONCATENATE1_IN_GGA(
x1,
x2,
x3) =
REVERSE_CONCATENATE1_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3,
x4,
x5,
x6) =
U1_GGA(
x6)
We have to consider all (P,R,Pi)-chains
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
REVERSE_CONCATENATE1_IN_GGA(.(T37, .(T35, T36)), T38, T40) → U1_GGA(T37, T35, T36, T38, T40, reverse_concatenate1_in_gga(T36, .(T35, .(T37, T38)), T40))
REVERSE_CONCATENATE1_IN_GGA(.(T37, .(T35, T36)), T38, T40) → REVERSE_CONCATENATE1_IN_GGA(T36, .(T35, .(T37, T38)), T40)
The TRS R consists of the following rules:
reverse_concatenate1_in_gga([], T5, T5) → reverse_concatenate1_out_gga([], T5, T5)
reverse_concatenate1_in_gga(.(T23, []), T24, .(T23, T24)) → reverse_concatenate1_out_gga(.(T23, []), T24, .(T23, T24))
reverse_concatenate1_in_gga(.(T37, .(T35, T36)), T38, T40) → U1_gga(T37, T35, T36, T38, T40, reverse_concatenate1_in_gga(T36, .(T35, .(T37, T38)), T40))
U1_gga(T37, T35, T36, T38, T40, reverse_concatenate1_out_gga(T36, .(T35, .(T37, T38)), T40)) → reverse_concatenate1_out_gga(.(T37, .(T35, T36)), T38, T40)
The argument filtering Pi contains the following mapping:
reverse_concatenate1_in_gga(
x1,
x2,
x3) =
reverse_concatenate1_in_gga(
x1,
x2)
[] =
[]
reverse_concatenate1_out_gga(
x1,
x2,
x3) =
reverse_concatenate1_out_gga(
x3)
.(
x1,
x2) =
.(
x1,
x2)
U1_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U1_gga(
x6)
REVERSE_CONCATENATE1_IN_GGA(
x1,
x2,
x3) =
REVERSE_CONCATENATE1_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3,
x4,
x5,
x6) =
U1_GGA(
x6)
We have to consider all (P,R,Pi)-chains
(7) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 1 less node.
(8) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
REVERSE_CONCATENATE1_IN_GGA(.(T37, .(T35, T36)), T38, T40) → REVERSE_CONCATENATE1_IN_GGA(T36, .(T35, .(T37, T38)), T40)
The TRS R consists of the following rules:
reverse_concatenate1_in_gga([], T5, T5) → reverse_concatenate1_out_gga([], T5, T5)
reverse_concatenate1_in_gga(.(T23, []), T24, .(T23, T24)) → reverse_concatenate1_out_gga(.(T23, []), T24, .(T23, T24))
reverse_concatenate1_in_gga(.(T37, .(T35, T36)), T38, T40) → U1_gga(T37, T35, T36, T38, T40, reverse_concatenate1_in_gga(T36, .(T35, .(T37, T38)), T40))
U1_gga(T37, T35, T36, T38, T40, reverse_concatenate1_out_gga(T36, .(T35, .(T37, T38)), T40)) → reverse_concatenate1_out_gga(.(T37, .(T35, T36)), T38, T40)
The argument filtering Pi contains the following mapping:
reverse_concatenate1_in_gga(
x1,
x2,
x3) =
reverse_concatenate1_in_gga(
x1,
x2)
[] =
[]
reverse_concatenate1_out_gga(
x1,
x2,
x3) =
reverse_concatenate1_out_gga(
x3)
.(
x1,
x2) =
.(
x1,
x2)
U1_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U1_gga(
x6)
REVERSE_CONCATENATE1_IN_GGA(
x1,
x2,
x3) =
REVERSE_CONCATENATE1_IN_GGA(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(9) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(10) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
REVERSE_CONCATENATE1_IN_GGA(.(T37, .(T35, T36)), T38, T40) → REVERSE_CONCATENATE1_IN_GGA(T36, .(T35, .(T37, T38)), T40)
R is empty.
The argument filtering Pi contains the following mapping:
.(
x1,
x2) =
.(
x1,
x2)
REVERSE_CONCATENATE1_IN_GGA(
x1,
x2,
x3) =
REVERSE_CONCATENATE1_IN_GGA(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(11) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
REVERSE_CONCATENATE1_IN_GGA(.(T37, .(T35, T36)), T38) → REVERSE_CONCATENATE1_IN_GGA(T36, .(T35, .(T37, T38)))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(13) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- REVERSE_CONCATENATE1_IN_GGA(.(T37, .(T35, T36)), T38) → REVERSE_CONCATENATE1_IN_GGA(T36, .(T35, .(T37, T38)))
The graph contains the following edges 1 > 1
(14) YES