(0) Obligation:

Clauses:

reverse(L, LR) :- revacc(L, LR, []).
revacc([], L, L).
revacc(.(EL, T), R, A) :- revacc(T, R, .(EL, A)).

Queries:

reverse(g,a).

(1) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
reverse_in: (b,f)
revacc_in: (b,f,b)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

reverse_in_ga(L, LR) → U1_ga(L, LR, revacc_in_gag(L, LR, []))
revacc_in_gag([], L, L) → revacc_out_gag([], L, L)
revacc_in_gag(.(EL, T), R, A) → U2_gag(EL, T, R, A, revacc_in_gag(T, R, .(EL, A)))
U2_gag(EL, T, R, A, revacc_out_gag(T, R, .(EL, A))) → revacc_out_gag(.(EL, T), R, A)
U1_ga(L, LR, revacc_out_gag(L, LR, [])) → reverse_out_ga(L, LR)

The argument filtering Pi contains the following mapping:
reverse_in_ga(x1, x2)  =  reverse_in_ga(x1)
U1_ga(x1, x2, x3)  =  U1_ga(x3)
revacc_in_gag(x1, x2, x3)  =  revacc_in_gag(x1, x3)
[]  =  []
revacc_out_gag(x1, x2, x3)  =  revacc_out_gag(x2)
.(x1, x2)  =  .(x1, x2)
U2_gag(x1, x2, x3, x4, x5)  =  U2_gag(x5)
reverse_out_ga(x1, x2)  =  reverse_out_ga(x2)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(2) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

reverse_in_ga(L, LR) → U1_ga(L, LR, revacc_in_gag(L, LR, []))
revacc_in_gag([], L, L) → revacc_out_gag([], L, L)
revacc_in_gag(.(EL, T), R, A) → U2_gag(EL, T, R, A, revacc_in_gag(T, R, .(EL, A)))
U2_gag(EL, T, R, A, revacc_out_gag(T, R, .(EL, A))) → revacc_out_gag(.(EL, T), R, A)
U1_ga(L, LR, revacc_out_gag(L, LR, [])) → reverse_out_ga(L, LR)

The argument filtering Pi contains the following mapping:
reverse_in_ga(x1, x2)  =  reverse_in_ga(x1)
U1_ga(x1, x2, x3)  =  U1_ga(x3)
revacc_in_gag(x1, x2, x3)  =  revacc_in_gag(x1, x3)
[]  =  []
revacc_out_gag(x1, x2, x3)  =  revacc_out_gag(x2)
.(x1, x2)  =  .(x1, x2)
U2_gag(x1, x2, x3, x4, x5)  =  U2_gag(x5)
reverse_out_ga(x1, x2)  =  reverse_out_ga(x2)

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

REVERSE_IN_GA(L, LR) → U1_GA(L, LR, revacc_in_gag(L, LR, []))
REVERSE_IN_GA(L, LR) → REVACC_IN_GAG(L, LR, [])
REVACC_IN_GAG(.(EL, T), R, A) → U2_GAG(EL, T, R, A, revacc_in_gag(T, R, .(EL, A)))
REVACC_IN_GAG(.(EL, T), R, A) → REVACC_IN_GAG(T, R, .(EL, A))

The TRS R consists of the following rules:

reverse_in_ga(L, LR) → U1_ga(L, LR, revacc_in_gag(L, LR, []))
revacc_in_gag([], L, L) → revacc_out_gag([], L, L)
revacc_in_gag(.(EL, T), R, A) → U2_gag(EL, T, R, A, revacc_in_gag(T, R, .(EL, A)))
U2_gag(EL, T, R, A, revacc_out_gag(T, R, .(EL, A))) → revacc_out_gag(.(EL, T), R, A)
U1_ga(L, LR, revacc_out_gag(L, LR, [])) → reverse_out_ga(L, LR)

The argument filtering Pi contains the following mapping:
reverse_in_ga(x1, x2)  =  reverse_in_ga(x1)
U1_ga(x1, x2, x3)  =  U1_ga(x3)
revacc_in_gag(x1, x2, x3)  =  revacc_in_gag(x1, x3)
[]  =  []
revacc_out_gag(x1, x2, x3)  =  revacc_out_gag(x2)
.(x1, x2)  =  .(x1, x2)
U2_gag(x1, x2, x3, x4, x5)  =  U2_gag(x5)
reverse_out_ga(x1, x2)  =  reverse_out_ga(x2)
REVERSE_IN_GA(x1, x2)  =  REVERSE_IN_GA(x1)
U1_GA(x1, x2, x3)  =  U1_GA(x3)
REVACC_IN_GAG(x1, x2, x3)  =  REVACC_IN_GAG(x1, x3)
U2_GAG(x1, x2, x3, x4, x5)  =  U2_GAG(x5)

We have to consider all (P,R,Pi)-chains

(4) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

REVERSE_IN_GA(L, LR) → U1_GA(L, LR, revacc_in_gag(L, LR, []))
REVERSE_IN_GA(L, LR) → REVACC_IN_GAG(L, LR, [])
REVACC_IN_GAG(.(EL, T), R, A) → U2_GAG(EL, T, R, A, revacc_in_gag(T, R, .(EL, A)))
REVACC_IN_GAG(.(EL, T), R, A) → REVACC_IN_GAG(T, R, .(EL, A))

The TRS R consists of the following rules:

reverse_in_ga(L, LR) → U1_ga(L, LR, revacc_in_gag(L, LR, []))
revacc_in_gag([], L, L) → revacc_out_gag([], L, L)
revacc_in_gag(.(EL, T), R, A) → U2_gag(EL, T, R, A, revacc_in_gag(T, R, .(EL, A)))
U2_gag(EL, T, R, A, revacc_out_gag(T, R, .(EL, A))) → revacc_out_gag(.(EL, T), R, A)
U1_ga(L, LR, revacc_out_gag(L, LR, [])) → reverse_out_ga(L, LR)

The argument filtering Pi contains the following mapping:
reverse_in_ga(x1, x2)  =  reverse_in_ga(x1)
U1_ga(x1, x2, x3)  =  U1_ga(x3)
revacc_in_gag(x1, x2, x3)  =  revacc_in_gag(x1, x3)
[]  =  []
revacc_out_gag(x1, x2, x3)  =  revacc_out_gag(x2)
.(x1, x2)  =  .(x1, x2)
U2_gag(x1, x2, x3, x4, x5)  =  U2_gag(x5)
reverse_out_ga(x1, x2)  =  reverse_out_ga(x2)
REVERSE_IN_GA(x1, x2)  =  REVERSE_IN_GA(x1)
U1_GA(x1, x2, x3)  =  U1_GA(x3)
REVACC_IN_GAG(x1, x2, x3)  =  REVACC_IN_GAG(x1, x3)
U2_GAG(x1, x2, x3, x4, x5)  =  U2_GAG(x5)

We have to consider all (P,R,Pi)-chains

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 3 less nodes.

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

REVACC_IN_GAG(.(EL, T), R, A) → REVACC_IN_GAG(T, R, .(EL, A))

The TRS R consists of the following rules:

reverse_in_ga(L, LR) → U1_ga(L, LR, revacc_in_gag(L, LR, []))
revacc_in_gag([], L, L) → revacc_out_gag([], L, L)
revacc_in_gag(.(EL, T), R, A) → U2_gag(EL, T, R, A, revacc_in_gag(T, R, .(EL, A)))
U2_gag(EL, T, R, A, revacc_out_gag(T, R, .(EL, A))) → revacc_out_gag(.(EL, T), R, A)
U1_ga(L, LR, revacc_out_gag(L, LR, [])) → reverse_out_ga(L, LR)

The argument filtering Pi contains the following mapping:
reverse_in_ga(x1, x2)  =  reverse_in_ga(x1)
U1_ga(x1, x2, x3)  =  U1_ga(x3)
revacc_in_gag(x1, x2, x3)  =  revacc_in_gag(x1, x3)
[]  =  []
revacc_out_gag(x1, x2, x3)  =  revacc_out_gag(x2)
.(x1, x2)  =  .(x1, x2)
U2_gag(x1, x2, x3, x4, x5)  =  U2_gag(x5)
reverse_out_ga(x1, x2)  =  reverse_out_ga(x2)
REVACC_IN_GAG(x1, x2, x3)  =  REVACC_IN_GAG(x1, x3)

We have to consider all (P,R,Pi)-chains

(7) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(8) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

REVACC_IN_GAG(.(EL, T), R, A) → REVACC_IN_GAG(T, R, .(EL, A))

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
REVACC_IN_GAG(x1, x2, x3)  =  REVACC_IN_GAG(x1, x3)

We have to consider all (P,R,Pi)-chains

(9) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REVACC_IN_GAG(.(EL, T), A) → REVACC_IN_GAG(T, .(EL, A))

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(11) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • REVACC_IN_GAG(.(EL, T), A) → REVACC_IN_GAG(T, .(EL, A))
    The graph contains the following edges 1 > 1

(12) TRUE

(13) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
reverse_in: (b,f)
revacc_in: (b,f,b)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

reverse_in_ga(L, LR) → U1_ga(L, LR, revacc_in_gag(L, LR, []))
revacc_in_gag([], L, L) → revacc_out_gag([], L, L)
revacc_in_gag(.(EL, T), R, A) → U2_gag(EL, T, R, A, revacc_in_gag(T, R, .(EL, A)))
U2_gag(EL, T, R, A, revacc_out_gag(T, R, .(EL, A))) → revacc_out_gag(.(EL, T), R, A)
U1_ga(L, LR, revacc_out_gag(L, LR, [])) → reverse_out_ga(L, LR)

The argument filtering Pi contains the following mapping:
reverse_in_ga(x1, x2)  =  reverse_in_ga(x1)
U1_ga(x1, x2, x3)  =  U1_ga(x1, x3)
revacc_in_gag(x1, x2, x3)  =  revacc_in_gag(x1, x3)
[]  =  []
revacc_out_gag(x1, x2, x3)  =  revacc_out_gag(x1, x2, x3)
.(x1, x2)  =  .(x1, x2)
U2_gag(x1, x2, x3, x4, x5)  =  U2_gag(x1, x2, x4, x5)
reverse_out_ga(x1, x2)  =  reverse_out_ga(x1, x2)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(14) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

reverse_in_ga(L, LR) → U1_ga(L, LR, revacc_in_gag(L, LR, []))
revacc_in_gag([], L, L) → revacc_out_gag([], L, L)
revacc_in_gag(.(EL, T), R, A) → U2_gag(EL, T, R, A, revacc_in_gag(T, R, .(EL, A)))
U2_gag(EL, T, R, A, revacc_out_gag(T, R, .(EL, A))) → revacc_out_gag(.(EL, T), R, A)
U1_ga(L, LR, revacc_out_gag(L, LR, [])) → reverse_out_ga(L, LR)

The argument filtering Pi contains the following mapping:
reverse_in_ga(x1, x2)  =  reverse_in_ga(x1)
U1_ga(x1, x2, x3)  =  U1_ga(x1, x3)
revacc_in_gag(x1, x2, x3)  =  revacc_in_gag(x1, x3)
[]  =  []
revacc_out_gag(x1, x2, x3)  =  revacc_out_gag(x1, x2, x3)
.(x1, x2)  =  .(x1, x2)
U2_gag(x1, x2, x3, x4, x5)  =  U2_gag(x1, x2, x4, x5)
reverse_out_ga(x1, x2)  =  reverse_out_ga(x1, x2)

(15) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

REVERSE_IN_GA(L, LR) → U1_GA(L, LR, revacc_in_gag(L, LR, []))
REVERSE_IN_GA(L, LR) → REVACC_IN_GAG(L, LR, [])
REVACC_IN_GAG(.(EL, T), R, A) → U2_GAG(EL, T, R, A, revacc_in_gag(T, R, .(EL, A)))
REVACC_IN_GAG(.(EL, T), R, A) → REVACC_IN_GAG(T, R, .(EL, A))

The TRS R consists of the following rules:

reverse_in_ga(L, LR) → U1_ga(L, LR, revacc_in_gag(L, LR, []))
revacc_in_gag([], L, L) → revacc_out_gag([], L, L)
revacc_in_gag(.(EL, T), R, A) → U2_gag(EL, T, R, A, revacc_in_gag(T, R, .(EL, A)))
U2_gag(EL, T, R, A, revacc_out_gag(T, R, .(EL, A))) → revacc_out_gag(.(EL, T), R, A)
U1_ga(L, LR, revacc_out_gag(L, LR, [])) → reverse_out_ga(L, LR)

The argument filtering Pi contains the following mapping:
reverse_in_ga(x1, x2)  =  reverse_in_ga(x1)
U1_ga(x1, x2, x3)  =  U1_ga(x1, x3)
revacc_in_gag(x1, x2, x3)  =  revacc_in_gag(x1, x3)
[]  =  []
revacc_out_gag(x1, x2, x3)  =  revacc_out_gag(x1, x2, x3)
.(x1, x2)  =  .(x1, x2)
U2_gag(x1, x2, x3, x4, x5)  =  U2_gag(x1, x2, x4, x5)
reverse_out_ga(x1, x2)  =  reverse_out_ga(x1, x2)
REVERSE_IN_GA(x1, x2)  =  REVERSE_IN_GA(x1)
U1_GA(x1, x2, x3)  =  U1_GA(x1, x3)
REVACC_IN_GAG(x1, x2, x3)  =  REVACC_IN_GAG(x1, x3)
U2_GAG(x1, x2, x3, x4, x5)  =  U2_GAG(x1, x2, x4, x5)

We have to consider all (P,R,Pi)-chains

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

REVERSE_IN_GA(L, LR) → U1_GA(L, LR, revacc_in_gag(L, LR, []))
REVERSE_IN_GA(L, LR) → REVACC_IN_GAG(L, LR, [])
REVACC_IN_GAG(.(EL, T), R, A) → U2_GAG(EL, T, R, A, revacc_in_gag(T, R, .(EL, A)))
REVACC_IN_GAG(.(EL, T), R, A) → REVACC_IN_GAG(T, R, .(EL, A))

The TRS R consists of the following rules:

reverse_in_ga(L, LR) → U1_ga(L, LR, revacc_in_gag(L, LR, []))
revacc_in_gag([], L, L) → revacc_out_gag([], L, L)
revacc_in_gag(.(EL, T), R, A) → U2_gag(EL, T, R, A, revacc_in_gag(T, R, .(EL, A)))
U2_gag(EL, T, R, A, revacc_out_gag(T, R, .(EL, A))) → revacc_out_gag(.(EL, T), R, A)
U1_ga(L, LR, revacc_out_gag(L, LR, [])) → reverse_out_ga(L, LR)

The argument filtering Pi contains the following mapping:
reverse_in_ga(x1, x2)  =  reverse_in_ga(x1)
U1_ga(x1, x2, x3)  =  U1_ga(x1, x3)
revacc_in_gag(x1, x2, x3)  =  revacc_in_gag(x1, x3)
[]  =  []
revacc_out_gag(x1, x2, x3)  =  revacc_out_gag(x1, x2, x3)
.(x1, x2)  =  .(x1, x2)
U2_gag(x1, x2, x3, x4, x5)  =  U2_gag(x1, x2, x4, x5)
reverse_out_ga(x1, x2)  =  reverse_out_ga(x1, x2)
REVERSE_IN_GA(x1, x2)  =  REVERSE_IN_GA(x1)
U1_GA(x1, x2, x3)  =  U1_GA(x1, x3)
REVACC_IN_GAG(x1, x2, x3)  =  REVACC_IN_GAG(x1, x3)
U2_GAG(x1, x2, x3, x4, x5)  =  U2_GAG(x1, x2, x4, x5)

We have to consider all (P,R,Pi)-chains

(17) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 3 less nodes.

(18) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

REVACC_IN_GAG(.(EL, T), R, A) → REVACC_IN_GAG(T, R, .(EL, A))

The TRS R consists of the following rules:

reverse_in_ga(L, LR) → U1_ga(L, LR, revacc_in_gag(L, LR, []))
revacc_in_gag([], L, L) → revacc_out_gag([], L, L)
revacc_in_gag(.(EL, T), R, A) → U2_gag(EL, T, R, A, revacc_in_gag(T, R, .(EL, A)))
U2_gag(EL, T, R, A, revacc_out_gag(T, R, .(EL, A))) → revacc_out_gag(.(EL, T), R, A)
U1_ga(L, LR, revacc_out_gag(L, LR, [])) → reverse_out_ga(L, LR)

The argument filtering Pi contains the following mapping:
reverse_in_ga(x1, x2)  =  reverse_in_ga(x1)
U1_ga(x1, x2, x3)  =  U1_ga(x1, x3)
revacc_in_gag(x1, x2, x3)  =  revacc_in_gag(x1, x3)
[]  =  []
revacc_out_gag(x1, x2, x3)  =  revacc_out_gag(x1, x2, x3)
.(x1, x2)  =  .(x1, x2)
U2_gag(x1, x2, x3, x4, x5)  =  U2_gag(x1, x2, x4, x5)
reverse_out_ga(x1, x2)  =  reverse_out_ga(x1, x2)
REVACC_IN_GAG(x1, x2, x3)  =  REVACC_IN_GAG(x1, x3)

We have to consider all (P,R,Pi)-chains

(19) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(20) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

REVACC_IN_GAG(.(EL, T), R, A) → REVACC_IN_GAG(T, R, .(EL, A))

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
REVACC_IN_GAG(x1, x2, x3)  =  REVACC_IN_GAG(x1, x3)

We have to consider all (P,R,Pi)-chains

(21) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REVACC_IN_GAG(.(EL, T), A) → REVACC_IN_GAG(T, .(EL, A))

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.