(0) Obligation:
Clauses:
p(0).
p(s(X)) :- ','(geq(X, Y), p(Y)).
geq(X, X).
geq(s(X), Y) :- geq(X, Y).
Queries:
p(g).
(1) PrologToDTProblemTransformerProof (SOUND transformation)
Built DT problem from termination graph.
(2) Obligation:
Triples:
p7(T8, T8) :- p1(T8).
p7(s(T11), X19) :- p7(T11, X19).
p1(s(T3)) :- p7(T3, X4).
Clauses:
pc1(0).
pc1(s(T3)) :- qc7(T3, X4).
qc7(T8, T8) :- pc1(T8).
qc7(s(T11), X19) :- qc7(T11, X19).
Afs:
p1(x1) = p1(x1)
(3) TriplesToPiDPProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
p1_in: (b)
p7_in: (b,f)
Transforming
TRIPLES into the following
Term Rewriting System:
Pi DP problem:
The TRS P consists of the following rules:
P1_IN_G(s(T3)) → U3_G(T3, p7_in_ga(T3, X4))
P1_IN_G(s(T3)) → P7_IN_GA(T3, X4)
P7_IN_GA(T8, T8) → U1_GA(T8, p1_in_g(T8))
P7_IN_GA(T8, T8) → P1_IN_G(T8)
P7_IN_GA(s(T11), X19) → U2_GA(T11, X19, p7_in_ga(T11, X19))
P7_IN_GA(s(T11), X19) → P7_IN_GA(T11, X19)
R is empty.
The argument filtering Pi contains the following mapping:
p1_in_g(
x1) =
p1_in_g(
x1)
s(
x1) =
s(
x1)
p7_in_ga(
x1,
x2) =
p7_in_ga(
x1)
P1_IN_G(
x1) =
P1_IN_G(
x1)
U3_G(
x1,
x2) =
U3_G(
x1,
x2)
P7_IN_GA(
x1,
x2) =
P7_IN_GA(
x1)
U1_GA(
x1,
x2) =
U1_GA(
x1,
x2)
U2_GA(
x1,
x2,
x3) =
U2_GA(
x1,
x3)
We have to consider all (P,R,Pi)-chains
Infinitary Constructor Rewriting Termination of PiDP implies Termination of TRIPLES
(4) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P1_IN_G(s(T3)) → U3_G(T3, p7_in_ga(T3, X4))
P1_IN_G(s(T3)) → P7_IN_GA(T3, X4)
P7_IN_GA(T8, T8) → U1_GA(T8, p1_in_g(T8))
P7_IN_GA(T8, T8) → P1_IN_G(T8)
P7_IN_GA(s(T11), X19) → U2_GA(T11, X19, p7_in_ga(T11, X19))
P7_IN_GA(s(T11), X19) → P7_IN_GA(T11, X19)
R is empty.
The argument filtering Pi contains the following mapping:
p1_in_g(
x1) =
p1_in_g(
x1)
s(
x1) =
s(
x1)
p7_in_ga(
x1,
x2) =
p7_in_ga(
x1)
P1_IN_G(
x1) =
P1_IN_G(
x1)
U3_G(
x1,
x2) =
U3_G(
x1,
x2)
P7_IN_GA(
x1,
x2) =
P7_IN_GA(
x1)
U1_GA(
x1,
x2) =
U1_GA(
x1,
x2)
U2_GA(
x1,
x2,
x3) =
U2_GA(
x1,
x3)
We have to consider all (P,R,Pi)-chains
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 3 less nodes.
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P1_IN_G(s(T3)) → P7_IN_GA(T3, X4)
P7_IN_GA(T8, T8) → P1_IN_G(T8)
P7_IN_GA(s(T11), X19) → P7_IN_GA(T11, X19)
R is empty.
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
P1_IN_G(
x1) =
P1_IN_G(
x1)
P7_IN_GA(
x1,
x2) =
P7_IN_GA(
x1)
We have to consider all (P,R,Pi)-chains
(7) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(8) Obligation:
Q DP problem:
The TRS P consists of the following rules:
P1_IN_G(s(T3)) → P7_IN_GA(T3)
P7_IN_GA(T8) → P1_IN_G(T8)
P7_IN_GA(s(T11)) → P7_IN_GA(T11)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(9) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- P7_IN_GA(T8) → P1_IN_G(T8)
The graph contains the following edges 1 >= 1
- P7_IN_GA(s(T11)) → P7_IN_GA(T11)
The graph contains the following edges 1 > 1
- P1_IN_G(s(T3)) → P7_IN_GA(T3)
The graph contains the following edges 1 > 1
(10) YES