(0) Obligation:
Clauses:
p(0).
p(s(X)) :- ','(geq(X, Y), p(Y)).
geq(X, X).
geq(s(X), Y) :- geq(X, Y).
Queries:
p(g).
(1) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
p_in: (b)
geq_in: (b,f)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
p_in_g(0) → p_out_g(0)
p_in_g(s(X)) → U1_g(X, geq_in_ga(X, Y))
geq_in_ga(X, X) → geq_out_ga(X, X)
geq_in_ga(s(X), Y) → U3_ga(X, Y, geq_in_ga(X, Y))
U3_ga(X, Y, geq_out_ga(X, Y)) → geq_out_ga(s(X), Y)
U1_g(X, geq_out_ga(X, Y)) → U2_g(X, p_in_g(Y))
U2_g(X, p_out_g(Y)) → p_out_g(s(X))
The argument filtering Pi contains the following mapping:
p_in_g(
x1) =
p_in_g(
x1)
0 =
0
p_out_g(
x1) =
p_out_g
s(
x1) =
s(
x1)
U1_g(
x1,
x2) =
U1_g(
x2)
geq_in_ga(
x1,
x2) =
geq_in_ga(
x1)
geq_out_ga(
x1,
x2) =
geq_out_ga(
x2)
U3_ga(
x1,
x2,
x3) =
U3_ga(
x3)
U2_g(
x1,
x2) =
U2_g(
x2)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(2) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
p_in_g(0) → p_out_g(0)
p_in_g(s(X)) → U1_g(X, geq_in_ga(X, Y))
geq_in_ga(X, X) → geq_out_ga(X, X)
geq_in_ga(s(X), Y) → U3_ga(X, Y, geq_in_ga(X, Y))
U3_ga(X, Y, geq_out_ga(X, Y)) → geq_out_ga(s(X), Y)
U1_g(X, geq_out_ga(X, Y)) → U2_g(X, p_in_g(Y))
U2_g(X, p_out_g(Y)) → p_out_g(s(X))
The argument filtering Pi contains the following mapping:
p_in_g(
x1) =
p_in_g(
x1)
0 =
0
p_out_g(
x1) =
p_out_g
s(
x1) =
s(
x1)
U1_g(
x1,
x2) =
U1_g(
x2)
geq_in_ga(
x1,
x2) =
geq_in_ga(
x1)
geq_out_ga(
x1,
x2) =
geq_out_ga(
x2)
U3_ga(
x1,
x2,
x3) =
U3_ga(
x3)
U2_g(
x1,
x2) =
U2_g(
x2)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_G(s(X)) → U1_G(X, geq_in_ga(X, Y))
P_IN_G(s(X)) → GEQ_IN_GA(X, Y)
GEQ_IN_GA(s(X), Y) → U3_GA(X, Y, geq_in_ga(X, Y))
GEQ_IN_GA(s(X), Y) → GEQ_IN_GA(X, Y)
U1_G(X, geq_out_ga(X, Y)) → U2_G(X, p_in_g(Y))
U1_G(X, geq_out_ga(X, Y)) → P_IN_G(Y)
The TRS R consists of the following rules:
p_in_g(0) → p_out_g(0)
p_in_g(s(X)) → U1_g(X, geq_in_ga(X, Y))
geq_in_ga(X, X) → geq_out_ga(X, X)
geq_in_ga(s(X), Y) → U3_ga(X, Y, geq_in_ga(X, Y))
U3_ga(X, Y, geq_out_ga(X, Y)) → geq_out_ga(s(X), Y)
U1_g(X, geq_out_ga(X, Y)) → U2_g(X, p_in_g(Y))
U2_g(X, p_out_g(Y)) → p_out_g(s(X))
The argument filtering Pi contains the following mapping:
p_in_g(
x1) =
p_in_g(
x1)
0 =
0
p_out_g(
x1) =
p_out_g
s(
x1) =
s(
x1)
U1_g(
x1,
x2) =
U1_g(
x2)
geq_in_ga(
x1,
x2) =
geq_in_ga(
x1)
geq_out_ga(
x1,
x2) =
geq_out_ga(
x2)
U3_ga(
x1,
x2,
x3) =
U3_ga(
x3)
U2_g(
x1,
x2) =
U2_g(
x2)
P_IN_G(
x1) =
P_IN_G(
x1)
U1_G(
x1,
x2) =
U1_G(
x2)
GEQ_IN_GA(
x1,
x2) =
GEQ_IN_GA(
x1)
U3_GA(
x1,
x2,
x3) =
U3_GA(
x3)
U2_G(
x1,
x2) =
U2_G(
x2)
We have to consider all (P,R,Pi)-chains
(4) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_G(s(X)) → U1_G(X, geq_in_ga(X, Y))
P_IN_G(s(X)) → GEQ_IN_GA(X, Y)
GEQ_IN_GA(s(X), Y) → U3_GA(X, Y, geq_in_ga(X, Y))
GEQ_IN_GA(s(X), Y) → GEQ_IN_GA(X, Y)
U1_G(X, geq_out_ga(X, Y)) → U2_G(X, p_in_g(Y))
U1_G(X, geq_out_ga(X, Y)) → P_IN_G(Y)
The TRS R consists of the following rules:
p_in_g(0) → p_out_g(0)
p_in_g(s(X)) → U1_g(X, geq_in_ga(X, Y))
geq_in_ga(X, X) → geq_out_ga(X, X)
geq_in_ga(s(X), Y) → U3_ga(X, Y, geq_in_ga(X, Y))
U3_ga(X, Y, geq_out_ga(X, Y)) → geq_out_ga(s(X), Y)
U1_g(X, geq_out_ga(X, Y)) → U2_g(X, p_in_g(Y))
U2_g(X, p_out_g(Y)) → p_out_g(s(X))
The argument filtering Pi contains the following mapping:
p_in_g(
x1) =
p_in_g(
x1)
0 =
0
p_out_g(
x1) =
p_out_g
s(
x1) =
s(
x1)
U1_g(
x1,
x2) =
U1_g(
x2)
geq_in_ga(
x1,
x2) =
geq_in_ga(
x1)
geq_out_ga(
x1,
x2) =
geq_out_ga(
x2)
U3_ga(
x1,
x2,
x3) =
U3_ga(
x3)
U2_g(
x1,
x2) =
U2_g(
x2)
P_IN_G(
x1) =
P_IN_G(
x1)
U1_G(
x1,
x2) =
U1_G(
x2)
GEQ_IN_GA(
x1,
x2) =
GEQ_IN_GA(
x1)
U3_GA(
x1,
x2,
x3) =
U3_GA(
x3)
U2_G(
x1,
x2) =
U2_G(
x2)
We have to consider all (P,R,Pi)-chains
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 3 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
GEQ_IN_GA(s(X), Y) → GEQ_IN_GA(X, Y)
The TRS R consists of the following rules:
p_in_g(0) → p_out_g(0)
p_in_g(s(X)) → U1_g(X, geq_in_ga(X, Y))
geq_in_ga(X, X) → geq_out_ga(X, X)
geq_in_ga(s(X), Y) → U3_ga(X, Y, geq_in_ga(X, Y))
U3_ga(X, Y, geq_out_ga(X, Y)) → geq_out_ga(s(X), Y)
U1_g(X, geq_out_ga(X, Y)) → U2_g(X, p_in_g(Y))
U2_g(X, p_out_g(Y)) → p_out_g(s(X))
The argument filtering Pi contains the following mapping:
p_in_g(
x1) =
p_in_g(
x1)
0 =
0
p_out_g(
x1) =
p_out_g
s(
x1) =
s(
x1)
U1_g(
x1,
x2) =
U1_g(
x2)
geq_in_ga(
x1,
x2) =
geq_in_ga(
x1)
geq_out_ga(
x1,
x2) =
geq_out_ga(
x2)
U3_ga(
x1,
x2,
x3) =
U3_ga(
x3)
U2_g(
x1,
x2) =
U2_g(
x2)
GEQ_IN_GA(
x1,
x2) =
GEQ_IN_GA(
x1)
We have to consider all (P,R,Pi)-chains
(8) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(9) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
GEQ_IN_GA(s(X), Y) → GEQ_IN_GA(X, Y)
R is empty.
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
GEQ_IN_GA(
x1,
x2) =
GEQ_IN_GA(
x1)
We have to consider all (P,R,Pi)-chains
(10) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
GEQ_IN_GA(s(X)) → GEQ_IN_GA(X)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(12) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- GEQ_IN_GA(s(X)) → GEQ_IN_GA(X)
The graph contains the following edges 1 > 1
(13) TRUE
(14) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
U1_G(X, geq_out_ga(X, Y)) → P_IN_G(Y)
P_IN_G(s(X)) → U1_G(X, geq_in_ga(X, Y))
The TRS R consists of the following rules:
p_in_g(0) → p_out_g(0)
p_in_g(s(X)) → U1_g(X, geq_in_ga(X, Y))
geq_in_ga(X, X) → geq_out_ga(X, X)
geq_in_ga(s(X), Y) → U3_ga(X, Y, geq_in_ga(X, Y))
U3_ga(X, Y, geq_out_ga(X, Y)) → geq_out_ga(s(X), Y)
U1_g(X, geq_out_ga(X, Y)) → U2_g(X, p_in_g(Y))
U2_g(X, p_out_g(Y)) → p_out_g(s(X))
The argument filtering Pi contains the following mapping:
p_in_g(
x1) =
p_in_g(
x1)
0 =
0
p_out_g(
x1) =
p_out_g
s(
x1) =
s(
x1)
U1_g(
x1,
x2) =
U1_g(
x2)
geq_in_ga(
x1,
x2) =
geq_in_ga(
x1)
geq_out_ga(
x1,
x2) =
geq_out_ga(
x2)
U3_ga(
x1,
x2,
x3) =
U3_ga(
x3)
U2_g(
x1,
x2) =
U2_g(
x2)
P_IN_G(
x1) =
P_IN_G(
x1)
U1_G(
x1,
x2) =
U1_G(
x2)
We have to consider all (P,R,Pi)-chains
(15) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(16) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
U1_G(X, geq_out_ga(X, Y)) → P_IN_G(Y)
P_IN_G(s(X)) → U1_G(X, geq_in_ga(X, Y))
The TRS R consists of the following rules:
geq_in_ga(X, X) → geq_out_ga(X, X)
geq_in_ga(s(X), Y) → U3_ga(X, Y, geq_in_ga(X, Y))
U3_ga(X, Y, geq_out_ga(X, Y)) → geq_out_ga(s(X), Y)
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
geq_in_ga(
x1,
x2) =
geq_in_ga(
x1)
geq_out_ga(
x1,
x2) =
geq_out_ga(
x2)
U3_ga(
x1,
x2,
x3) =
U3_ga(
x3)
P_IN_G(
x1) =
P_IN_G(
x1)
U1_G(
x1,
x2) =
U1_G(
x2)
We have to consider all (P,R,Pi)-chains
(17) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U1_G(geq_out_ga(Y)) → P_IN_G(Y)
P_IN_G(s(X)) → U1_G(geq_in_ga(X))
The TRS R consists of the following rules:
geq_in_ga(X) → geq_out_ga(X)
geq_in_ga(s(X)) → U3_ga(geq_in_ga(X))
U3_ga(geq_out_ga(Y)) → geq_out_ga(Y)
The set Q consists of the following terms:
geq_in_ga(x0)
U3_ga(x0)
We have to consider all (P,Q,R)-chains.
(19) UsableRulesReductionPairsProof (EQUIVALENT transformation)
By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.
The following dependency pairs can be deleted:
U1_G(geq_out_ga(Y)) → P_IN_G(Y)
P_IN_G(s(X)) → U1_G(geq_in_ga(X))
The following rules are removed from R:
geq_in_ga(s(X)) → U3_ga(geq_in_ga(X))
U3_ga(geq_out_ga(Y)) → geq_out_ga(Y)
Used ordering: POLO with Polynomial interpretation [POLO]:
POL(P_IN_G(x1)) = 2 + x1
POL(U1_G(x1)) = 1 + x1
POL(U3_ga(x1)) = 1 + x1
POL(geq_in_ga(x1)) = 2 + x1
POL(geq_out_ga(x1)) = 2 + x1
POL(s(x1)) = 2 + 2·x1
(20) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
geq_in_ga(X) → geq_out_ga(X)
The set Q consists of the following terms:
geq_in_ga(x0)
U3_ga(x0)
We have to consider all (P,Q,R)-chains.
(21) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(22) TRUE
(23) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
p_in: (b)
geq_in: (b,f)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
p_in_g(0) → p_out_g(0)
p_in_g(s(X)) → U1_g(X, geq_in_ga(X, Y))
geq_in_ga(X, X) → geq_out_ga(X, X)
geq_in_ga(s(X), Y) → U3_ga(X, Y, geq_in_ga(X, Y))
U3_ga(X, Y, geq_out_ga(X, Y)) → geq_out_ga(s(X), Y)
U1_g(X, geq_out_ga(X, Y)) → U2_g(X, p_in_g(Y))
U2_g(X, p_out_g(Y)) → p_out_g(s(X))
The argument filtering Pi contains the following mapping:
p_in_g(
x1) =
p_in_g(
x1)
0 =
0
p_out_g(
x1) =
p_out_g(
x1)
s(
x1) =
s(
x1)
U1_g(
x1,
x2) =
U1_g(
x1,
x2)
geq_in_ga(
x1,
x2) =
geq_in_ga(
x1)
geq_out_ga(
x1,
x2) =
geq_out_ga(
x1,
x2)
U3_ga(
x1,
x2,
x3) =
U3_ga(
x1,
x3)
U2_g(
x1,
x2) =
U2_g(
x1,
x2)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(24) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
p_in_g(0) → p_out_g(0)
p_in_g(s(X)) → U1_g(X, geq_in_ga(X, Y))
geq_in_ga(X, X) → geq_out_ga(X, X)
geq_in_ga(s(X), Y) → U3_ga(X, Y, geq_in_ga(X, Y))
U3_ga(X, Y, geq_out_ga(X, Y)) → geq_out_ga(s(X), Y)
U1_g(X, geq_out_ga(X, Y)) → U2_g(X, p_in_g(Y))
U2_g(X, p_out_g(Y)) → p_out_g(s(X))
The argument filtering Pi contains the following mapping:
p_in_g(
x1) =
p_in_g(
x1)
0 =
0
p_out_g(
x1) =
p_out_g(
x1)
s(
x1) =
s(
x1)
U1_g(
x1,
x2) =
U1_g(
x1,
x2)
geq_in_ga(
x1,
x2) =
geq_in_ga(
x1)
geq_out_ga(
x1,
x2) =
geq_out_ga(
x1,
x2)
U3_ga(
x1,
x2,
x3) =
U3_ga(
x1,
x3)
U2_g(
x1,
x2) =
U2_g(
x1,
x2)
(25) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_G(s(X)) → U1_G(X, geq_in_ga(X, Y))
P_IN_G(s(X)) → GEQ_IN_GA(X, Y)
GEQ_IN_GA(s(X), Y) → U3_GA(X, Y, geq_in_ga(X, Y))
GEQ_IN_GA(s(X), Y) → GEQ_IN_GA(X, Y)
U1_G(X, geq_out_ga(X, Y)) → U2_G(X, p_in_g(Y))
U1_G(X, geq_out_ga(X, Y)) → P_IN_G(Y)
The TRS R consists of the following rules:
p_in_g(0) → p_out_g(0)
p_in_g(s(X)) → U1_g(X, geq_in_ga(X, Y))
geq_in_ga(X, X) → geq_out_ga(X, X)
geq_in_ga(s(X), Y) → U3_ga(X, Y, geq_in_ga(X, Y))
U3_ga(X, Y, geq_out_ga(X, Y)) → geq_out_ga(s(X), Y)
U1_g(X, geq_out_ga(X, Y)) → U2_g(X, p_in_g(Y))
U2_g(X, p_out_g(Y)) → p_out_g(s(X))
The argument filtering Pi contains the following mapping:
p_in_g(
x1) =
p_in_g(
x1)
0 =
0
p_out_g(
x1) =
p_out_g(
x1)
s(
x1) =
s(
x1)
U1_g(
x1,
x2) =
U1_g(
x1,
x2)
geq_in_ga(
x1,
x2) =
geq_in_ga(
x1)
geq_out_ga(
x1,
x2) =
geq_out_ga(
x1,
x2)
U3_ga(
x1,
x2,
x3) =
U3_ga(
x1,
x3)
U2_g(
x1,
x2) =
U2_g(
x1,
x2)
P_IN_G(
x1) =
P_IN_G(
x1)
U1_G(
x1,
x2) =
U1_G(
x1,
x2)
GEQ_IN_GA(
x1,
x2) =
GEQ_IN_GA(
x1)
U3_GA(
x1,
x2,
x3) =
U3_GA(
x1,
x3)
U2_G(
x1,
x2) =
U2_G(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(26) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_G(s(X)) → U1_G(X, geq_in_ga(X, Y))
P_IN_G(s(X)) → GEQ_IN_GA(X, Y)
GEQ_IN_GA(s(X), Y) → U3_GA(X, Y, geq_in_ga(X, Y))
GEQ_IN_GA(s(X), Y) → GEQ_IN_GA(X, Y)
U1_G(X, geq_out_ga(X, Y)) → U2_G(X, p_in_g(Y))
U1_G(X, geq_out_ga(X, Y)) → P_IN_G(Y)
The TRS R consists of the following rules:
p_in_g(0) → p_out_g(0)
p_in_g(s(X)) → U1_g(X, geq_in_ga(X, Y))
geq_in_ga(X, X) → geq_out_ga(X, X)
geq_in_ga(s(X), Y) → U3_ga(X, Y, geq_in_ga(X, Y))
U3_ga(X, Y, geq_out_ga(X, Y)) → geq_out_ga(s(X), Y)
U1_g(X, geq_out_ga(X, Y)) → U2_g(X, p_in_g(Y))
U2_g(X, p_out_g(Y)) → p_out_g(s(X))
The argument filtering Pi contains the following mapping:
p_in_g(
x1) =
p_in_g(
x1)
0 =
0
p_out_g(
x1) =
p_out_g(
x1)
s(
x1) =
s(
x1)
U1_g(
x1,
x2) =
U1_g(
x1,
x2)
geq_in_ga(
x1,
x2) =
geq_in_ga(
x1)
geq_out_ga(
x1,
x2) =
geq_out_ga(
x1,
x2)
U3_ga(
x1,
x2,
x3) =
U3_ga(
x1,
x3)
U2_g(
x1,
x2) =
U2_g(
x1,
x2)
P_IN_G(
x1) =
P_IN_G(
x1)
U1_G(
x1,
x2) =
U1_G(
x1,
x2)
GEQ_IN_GA(
x1,
x2) =
GEQ_IN_GA(
x1)
U3_GA(
x1,
x2,
x3) =
U3_GA(
x1,
x3)
U2_G(
x1,
x2) =
U2_G(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(27) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 3 less nodes.
(28) Complex Obligation (AND)
(29) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
GEQ_IN_GA(s(X), Y) → GEQ_IN_GA(X, Y)
The TRS R consists of the following rules:
p_in_g(0) → p_out_g(0)
p_in_g(s(X)) → U1_g(X, geq_in_ga(X, Y))
geq_in_ga(X, X) → geq_out_ga(X, X)
geq_in_ga(s(X), Y) → U3_ga(X, Y, geq_in_ga(X, Y))
U3_ga(X, Y, geq_out_ga(X, Y)) → geq_out_ga(s(X), Y)
U1_g(X, geq_out_ga(X, Y)) → U2_g(X, p_in_g(Y))
U2_g(X, p_out_g(Y)) → p_out_g(s(X))
The argument filtering Pi contains the following mapping:
p_in_g(
x1) =
p_in_g(
x1)
0 =
0
p_out_g(
x1) =
p_out_g(
x1)
s(
x1) =
s(
x1)
U1_g(
x1,
x2) =
U1_g(
x1,
x2)
geq_in_ga(
x1,
x2) =
geq_in_ga(
x1)
geq_out_ga(
x1,
x2) =
geq_out_ga(
x1,
x2)
U3_ga(
x1,
x2,
x3) =
U3_ga(
x1,
x3)
U2_g(
x1,
x2) =
U2_g(
x1,
x2)
GEQ_IN_GA(
x1,
x2) =
GEQ_IN_GA(
x1)
We have to consider all (P,R,Pi)-chains
(30) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(31) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
GEQ_IN_GA(s(X), Y) → GEQ_IN_GA(X, Y)
R is empty.
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
GEQ_IN_GA(
x1,
x2) =
GEQ_IN_GA(
x1)
We have to consider all (P,R,Pi)-chains
(32) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(33) Obligation:
Q DP problem:
The TRS P consists of the following rules:
GEQ_IN_GA(s(X)) → GEQ_IN_GA(X)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(34) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- GEQ_IN_GA(s(X)) → GEQ_IN_GA(X)
The graph contains the following edges 1 > 1
(35) TRUE
(36) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
U1_G(X, geq_out_ga(X, Y)) → P_IN_G(Y)
P_IN_G(s(X)) → U1_G(X, geq_in_ga(X, Y))
The TRS R consists of the following rules:
p_in_g(0) → p_out_g(0)
p_in_g(s(X)) → U1_g(X, geq_in_ga(X, Y))
geq_in_ga(X, X) → geq_out_ga(X, X)
geq_in_ga(s(X), Y) → U3_ga(X, Y, geq_in_ga(X, Y))
U3_ga(X, Y, geq_out_ga(X, Y)) → geq_out_ga(s(X), Y)
U1_g(X, geq_out_ga(X, Y)) → U2_g(X, p_in_g(Y))
U2_g(X, p_out_g(Y)) → p_out_g(s(X))
The argument filtering Pi contains the following mapping:
p_in_g(
x1) =
p_in_g(
x1)
0 =
0
p_out_g(
x1) =
p_out_g(
x1)
s(
x1) =
s(
x1)
U1_g(
x1,
x2) =
U1_g(
x1,
x2)
geq_in_ga(
x1,
x2) =
geq_in_ga(
x1)
geq_out_ga(
x1,
x2) =
geq_out_ga(
x1,
x2)
U3_ga(
x1,
x2,
x3) =
U3_ga(
x1,
x3)
U2_g(
x1,
x2) =
U2_g(
x1,
x2)
P_IN_G(
x1) =
P_IN_G(
x1)
U1_G(
x1,
x2) =
U1_G(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(37) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(38) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
U1_G(X, geq_out_ga(X, Y)) → P_IN_G(Y)
P_IN_G(s(X)) → U1_G(X, geq_in_ga(X, Y))
The TRS R consists of the following rules:
geq_in_ga(X, X) → geq_out_ga(X, X)
geq_in_ga(s(X), Y) → U3_ga(X, Y, geq_in_ga(X, Y))
U3_ga(X, Y, geq_out_ga(X, Y)) → geq_out_ga(s(X), Y)
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
geq_in_ga(
x1,
x2) =
geq_in_ga(
x1)
geq_out_ga(
x1,
x2) =
geq_out_ga(
x1,
x2)
U3_ga(
x1,
x2,
x3) =
U3_ga(
x1,
x3)
P_IN_G(
x1) =
P_IN_G(
x1)
U1_G(
x1,
x2) =
U1_G(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(39) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(40) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U1_G(X, geq_out_ga(X, Y)) → P_IN_G(Y)
P_IN_G(s(X)) → U1_G(X, geq_in_ga(X))
The TRS R consists of the following rules:
geq_in_ga(X) → geq_out_ga(X, X)
geq_in_ga(s(X)) → U3_ga(X, geq_in_ga(X))
U3_ga(X, geq_out_ga(X, Y)) → geq_out_ga(s(X), Y)
The set Q consists of the following terms:
geq_in_ga(x0)
U3_ga(x0, x1)
We have to consider all (P,Q,R)-chains.