(0) Obligation:
Clauses:
right(tree(X, XS1, XS2), XS2).
flat(niltree, nil).
flat(tree(X, niltree, XS), cons(X, YS)) :- ','(right(tree(X, niltree, XS), ZS), flat(ZS, YS)).
flat(tree(X, tree(Y, YS1, YS2), XS), ZS) :- flat(tree(Y, YS1, tree(X, YS2, XS)), ZS).
Queries:
flat(a,g).
(1) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
flat_in: (f,b)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
flat_in_ag(niltree, nil) → flat_out_ag(niltree, nil)
flat_in_ag(tree(X, niltree, XS), cons(X, YS)) → U1_ag(X, XS, YS, right_in_aa(tree(X, niltree, XS), ZS))
right_in_aa(tree(X, XS1, XS2), XS2) → right_out_aa(tree(X, XS1, XS2), XS2)
U1_ag(X, XS, YS, right_out_aa(tree(X, niltree, XS), ZS)) → U2_ag(X, XS, YS, flat_in_ag(ZS, YS))
flat_in_ag(tree(X, tree(Y, YS1, YS2), XS), ZS) → U3_ag(X, Y, YS1, YS2, XS, ZS, flat_in_ag(tree(Y, YS1, tree(X, YS2, XS)), ZS))
U3_ag(X, Y, YS1, YS2, XS, ZS, flat_out_ag(tree(Y, YS1, tree(X, YS2, XS)), ZS)) → flat_out_ag(tree(X, tree(Y, YS1, YS2), XS), ZS)
U2_ag(X, XS, YS, flat_out_ag(ZS, YS)) → flat_out_ag(tree(X, niltree, XS), cons(X, YS))
The argument filtering Pi contains the following mapping:
flat_in_ag(
x1,
x2) =
flat_in_ag(
x2)
nil =
nil
flat_out_ag(
x1,
x2) =
flat_out_ag
cons(
x1,
x2) =
cons(
x1,
x2)
U1_ag(
x1,
x2,
x3,
x4) =
U1_ag(
x3,
x4)
right_in_aa(
x1,
x2) =
right_in_aa
right_out_aa(
x1,
x2) =
right_out_aa
tree(
x1,
x2,
x3) =
tree(
x2,
x3)
U2_ag(
x1,
x2,
x3,
x4) =
U2_ag(
x4)
U3_ag(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U3_ag(
x7)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(2) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
flat_in_ag(niltree, nil) → flat_out_ag(niltree, nil)
flat_in_ag(tree(X, niltree, XS), cons(X, YS)) → U1_ag(X, XS, YS, right_in_aa(tree(X, niltree, XS), ZS))
right_in_aa(tree(X, XS1, XS2), XS2) → right_out_aa(tree(X, XS1, XS2), XS2)
U1_ag(X, XS, YS, right_out_aa(tree(X, niltree, XS), ZS)) → U2_ag(X, XS, YS, flat_in_ag(ZS, YS))
flat_in_ag(tree(X, tree(Y, YS1, YS2), XS), ZS) → U3_ag(X, Y, YS1, YS2, XS, ZS, flat_in_ag(tree(Y, YS1, tree(X, YS2, XS)), ZS))
U3_ag(X, Y, YS1, YS2, XS, ZS, flat_out_ag(tree(Y, YS1, tree(X, YS2, XS)), ZS)) → flat_out_ag(tree(X, tree(Y, YS1, YS2), XS), ZS)
U2_ag(X, XS, YS, flat_out_ag(ZS, YS)) → flat_out_ag(tree(X, niltree, XS), cons(X, YS))
The argument filtering Pi contains the following mapping:
flat_in_ag(
x1,
x2) =
flat_in_ag(
x2)
nil =
nil
flat_out_ag(
x1,
x2) =
flat_out_ag
cons(
x1,
x2) =
cons(
x1,
x2)
U1_ag(
x1,
x2,
x3,
x4) =
U1_ag(
x3,
x4)
right_in_aa(
x1,
x2) =
right_in_aa
right_out_aa(
x1,
x2) =
right_out_aa
tree(
x1,
x2,
x3) =
tree(
x2,
x3)
U2_ag(
x1,
x2,
x3,
x4) =
U2_ag(
x4)
U3_ag(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U3_ag(
x7)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
FLAT_IN_AG(tree(X, niltree, XS), cons(X, YS)) → U1_AG(X, XS, YS, right_in_aa(tree(X, niltree, XS), ZS))
FLAT_IN_AG(tree(X, niltree, XS), cons(X, YS)) → RIGHT_IN_AA(tree(X, niltree, XS), ZS)
U1_AG(X, XS, YS, right_out_aa(tree(X, niltree, XS), ZS)) → U2_AG(X, XS, YS, flat_in_ag(ZS, YS))
U1_AG(X, XS, YS, right_out_aa(tree(X, niltree, XS), ZS)) → FLAT_IN_AG(ZS, YS)
FLAT_IN_AG(tree(X, tree(Y, YS1, YS2), XS), ZS) → U3_AG(X, Y, YS1, YS2, XS, ZS, flat_in_ag(tree(Y, YS1, tree(X, YS2, XS)), ZS))
FLAT_IN_AG(tree(X, tree(Y, YS1, YS2), XS), ZS) → FLAT_IN_AG(tree(Y, YS1, tree(X, YS2, XS)), ZS)
The TRS R consists of the following rules:
flat_in_ag(niltree, nil) → flat_out_ag(niltree, nil)
flat_in_ag(tree(X, niltree, XS), cons(X, YS)) → U1_ag(X, XS, YS, right_in_aa(tree(X, niltree, XS), ZS))
right_in_aa(tree(X, XS1, XS2), XS2) → right_out_aa(tree(X, XS1, XS2), XS2)
U1_ag(X, XS, YS, right_out_aa(tree(X, niltree, XS), ZS)) → U2_ag(X, XS, YS, flat_in_ag(ZS, YS))
flat_in_ag(tree(X, tree(Y, YS1, YS2), XS), ZS) → U3_ag(X, Y, YS1, YS2, XS, ZS, flat_in_ag(tree(Y, YS1, tree(X, YS2, XS)), ZS))
U3_ag(X, Y, YS1, YS2, XS, ZS, flat_out_ag(tree(Y, YS1, tree(X, YS2, XS)), ZS)) → flat_out_ag(tree(X, tree(Y, YS1, YS2), XS), ZS)
U2_ag(X, XS, YS, flat_out_ag(ZS, YS)) → flat_out_ag(tree(X, niltree, XS), cons(X, YS))
The argument filtering Pi contains the following mapping:
flat_in_ag(
x1,
x2) =
flat_in_ag(
x2)
nil =
nil
flat_out_ag(
x1,
x2) =
flat_out_ag
cons(
x1,
x2) =
cons(
x1,
x2)
U1_ag(
x1,
x2,
x3,
x4) =
U1_ag(
x3,
x4)
right_in_aa(
x1,
x2) =
right_in_aa
right_out_aa(
x1,
x2) =
right_out_aa
tree(
x1,
x2,
x3) =
tree(
x2,
x3)
U2_ag(
x1,
x2,
x3,
x4) =
U2_ag(
x4)
U3_ag(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U3_ag(
x7)
FLAT_IN_AG(
x1,
x2) =
FLAT_IN_AG(
x2)
U1_AG(
x1,
x2,
x3,
x4) =
U1_AG(
x3,
x4)
RIGHT_IN_AA(
x1,
x2) =
RIGHT_IN_AA
U2_AG(
x1,
x2,
x3,
x4) =
U2_AG(
x4)
U3_AG(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U3_AG(
x7)
We have to consider all (P,R,Pi)-chains
(4) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
FLAT_IN_AG(tree(X, niltree, XS), cons(X, YS)) → U1_AG(X, XS, YS, right_in_aa(tree(X, niltree, XS), ZS))
FLAT_IN_AG(tree(X, niltree, XS), cons(X, YS)) → RIGHT_IN_AA(tree(X, niltree, XS), ZS)
U1_AG(X, XS, YS, right_out_aa(tree(X, niltree, XS), ZS)) → U2_AG(X, XS, YS, flat_in_ag(ZS, YS))
U1_AG(X, XS, YS, right_out_aa(tree(X, niltree, XS), ZS)) → FLAT_IN_AG(ZS, YS)
FLAT_IN_AG(tree(X, tree(Y, YS1, YS2), XS), ZS) → U3_AG(X, Y, YS1, YS2, XS, ZS, flat_in_ag(tree(Y, YS1, tree(X, YS2, XS)), ZS))
FLAT_IN_AG(tree(X, tree(Y, YS1, YS2), XS), ZS) → FLAT_IN_AG(tree(Y, YS1, tree(X, YS2, XS)), ZS)
The TRS R consists of the following rules:
flat_in_ag(niltree, nil) → flat_out_ag(niltree, nil)
flat_in_ag(tree(X, niltree, XS), cons(X, YS)) → U1_ag(X, XS, YS, right_in_aa(tree(X, niltree, XS), ZS))
right_in_aa(tree(X, XS1, XS2), XS2) → right_out_aa(tree(X, XS1, XS2), XS2)
U1_ag(X, XS, YS, right_out_aa(tree(X, niltree, XS), ZS)) → U2_ag(X, XS, YS, flat_in_ag(ZS, YS))
flat_in_ag(tree(X, tree(Y, YS1, YS2), XS), ZS) → U3_ag(X, Y, YS1, YS2, XS, ZS, flat_in_ag(tree(Y, YS1, tree(X, YS2, XS)), ZS))
U3_ag(X, Y, YS1, YS2, XS, ZS, flat_out_ag(tree(Y, YS1, tree(X, YS2, XS)), ZS)) → flat_out_ag(tree(X, tree(Y, YS1, YS2), XS), ZS)
U2_ag(X, XS, YS, flat_out_ag(ZS, YS)) → flat_out_ag(tree(X, niltree, XS), cons(X, YS))
The argument filtering Pi contains the following mapping:
flat_in_ag(
x1,
x2) =
flat_in_ag(
x2)
nil =
nil
flat_out_ag(
x1,
x2) =
flat_out_ag
cons(
x1,
x2) =
cons(
x1,
x2)
U1_ag(
x1,
x2,
x3,
x4) =
U1_ag(
x3,
x4)
right_in_aa(
x1,
x2) =
right_in_aa
right_out_aa(
x1,
x2) =
right_out_aa
tree(
x1,
x2,
x3) =
tree(
x2,
x3)
U2_ag(
x1,
x2,
x3,
x4) =
U2_ag(
x4)
U3_ag(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U3_ag(
x7)
FLAT_IN_AG(
x1,
x2) =
FLAT_IN_AG(
x2)
U1_AG(
x1,
x2,
x3,
x4) =
U1_AG(
x3,
x4)
RIGHT_IN_AA(
x1,
x2) =
RIGHT_IN_AA
U2_AG(
x1,
x2,
x3,
x4) =
U2_AG(
x4)
U3_AG(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U3_AG(
x7)
We have to consider all (P,R,Pi)-chains
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 3 less nodes.
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
U1_AG(X, XS, YS, right_out_aa(tree(X, niltree, XS), ZS)) → FLAT_IN_AG(ZS, YS)
FLAT_IN_AG(tree(X, niltree, XS), cons(X, YS)) → U1_AG(X, XS, YS, right_in_aa(tree(X, niltree, XS), ZS))
FLAT_IN_AG(tree(X, tree(Y, YS1, YS2), XS), ZS) → FLAT_IN_AG(tree(Y, YS1, tree(X, YS2, XS)), ZS)
The TRS R consists of the following rules:
flat_in_ag(niltree, nil) → flat_out_ag(niltree, nil)
flat_in_ag(tree(X, niltree, XS), cons(X, YS)) → U1_ag(X, XS, YS, right_in_aa(tree(X, niltree, XS), ZS))
right_in_aa(tree(X, XS1, XS2), XS2) → right_out_aa(tree(X, XS1, XS2), XS2)
U1_ag(X, XS, YS, right_out_aa(tree(X, niltree, XS), ZS)) → U2_ag(X, XS, YS, flat_in_ag(ZS, YS))
flat_in_ag(tree(X, tree(Y, YS1, YS2), XS), ZS) → U3_ag(X, Y, YS1, YS2, XS, ZS, flat_in_ag(tree(Y, YS1, tree(X, YS2, XS)), ZS))
U3_ag(X, Y, YS1, YS2, XS, ZS, flat_out_ag(tree(Y, YS1, tree(X, YS2, XS)), ZS)) → flat_out_ag(tree(X, tree(Y, YS1, YS2), XS), ZS)
U2_ag(X, XS, YS, flat_out_ag(ZS, YS)) → flat_out_ag(tree(X, niltree, XS), cons(X, YS))
The argument filtering Pi contains the following mapping:
flat_in_ag(
x1,
x2) =
flat_in_ag(
x2)
nil =
nil
flat_out_ag(
x1,
x2) =
flat_out_ag
cons(
x1,
x2) =
cons(
x1,
x2)
U1_ag(
x1,
x2,
x3,
x4) =
U1_ag(
x3,
x4)
right_in_aa(
x1,
x2) =
right_in_aa
right_out_aa(
x1,
x2) =
right_out_aa
tree(
x1,
x2,
x3) =
tree(
x2,
x3)
U2_ag(
x1,
x2,
x3,
x4) =
U2_ag(
x4)
U3_ag(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U3_ag(
x7)
FLAT_IN_AG(
x1,
x2) =
FLAT_IN_AG(
x2)
U1_AG(
x1,
x2,
x3,
x4) =
U1_AG(
x3,
x4)
We have to consider all (P,R,Pi)-chains
(7) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(8) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
U1_AG(X, XS, YS, right_out_aa(tree(X, niltree, XS), ZS)) → FLAT_IN_AG(ZS, YS)
FLAT_IN_AG(tree(X, niltree, XS), cons(X, YS)) → U1_AG(X, XS, YS, right_in_aa(tree(X, niltree, XS), ZS))
FLAT_IN_AG(tree(X, tree(Y, YS1, YS2), XS), ZS) → FLAT_IN_AG(tree(Y, YS1, tree(X, YS2, XS)), ZS)
The TRS R consists of the following rules:
right_in_aa(tree(X, XS1, XS2), XS2) → right_out_aa(tree(X, XS1, XS2), XS2)
The argument filtering Pi contains the following mapping:
cons(
x1,
x2) =
cons(
x1,
x2)
right_in_aa(
x1,
x2) =
right_in_aa
right_out_aa(
x1,
x2) =
right_out_aa
tree(
x1,
x2,
x3) =
tree(
x2,
x3)
FLAT_IN_AG(
x1,
x2) =
FLAT_IN_AG(
x2)
U1_AG(
x1,
x2,
x3,
x4) =
U1_AG(
x3,
x4)
We have to consider all (P,R,Pi)-chains
(9) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U1_AG(YS, right_out_aa) → FLAT_IN_AG(YS)
FLAT_IN_AG(cons(X, YS)) → U1_AG(YS, right_in_aa)
FLAT_IN_AG(ZS) → FLAT_IN_AG(ZS)
The TRS R consists of the following rules:
right_in_aa → right_out_aa
The set Q consists of the following terms:
right_in_aa
We have to consider all (P,Q,R)-chains.
(11) UsableRulesReductionPairsProof (EQUIVALENT transformation)
By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.
The following dependency pairs can be deleted:
U1_AG(YS, right_out_aa) → FLAT_IN_AG(YS)
FLAT_IN_AG(cons(X, YS)) → U1_AG(YS, right_in_aa)
No rules are removed from R.
Used ordering: POLO with Polynomial interpretation [POLO]:
POL(FLAT_IN_AG(x1)) = 2 + x1
POL(U1_AG(x1, x2)) = 1 + x1 + x2
POL(cons(x1, x2)) = 2 + x1 + 2·x2
POL(right_in_aa) = 2
POL(right_out_aa) = 2
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FLAT_IN_AG(ZS) → FLAT_IN_AG(ZS)
The TRS R consists of the following rules:
right_in_aa → right_out_aa
The set Q consists of the following terms:
right_in_aa
We have to consider all (P,Q,R)-chains.
(13) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(14) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FLAT_IN_AG(ZS) → FLAT_IN_AG(ZS)
R is empty.
The set Q consists of the following terms:
right_in_aa
We have to consider all (P,Q,R)-chains.
(15) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
right_in_aa
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FLAT_IN_AG(ZS) → FLAT_IN_AG(ZS)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(17) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.
s =
FLAT_IN_AG(
ZS) evaluates to t =
FLAT_IN_AG(
ZS)
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Semiunifier: [ ]
- Matcher: [ ]
Rewriting sequenceThe DP semiunifies directly so there is only one rewrite step from FLAT_IN_AG(ZS) to FLAT_IN_AG(ZS).
(18) FALSE
(19) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
flat_in: (f,b)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
flat_in_ag(niltree, nil) → flat_out_ag(niltree, nil)
flat_in_ag(tree(X, niltree, XS), cons(X, YS)) → U1_ag(X, XS, YS, right_in_aa(tree(X, niltree, XS), ZS))
right_in_aa(tree(X, XS1, XS2), XS2) → right_out_aa(tree(X, XS1, XS2), XS2)
U1_ag(X, XS, YS, right_out_aa(tree(X, niltree, XS), ZS)) → U2_ag(X, XS, YS, flat_in_ag(ZS, YS))
flat_in_ag(tree(X, tree(Y, YS1, YS2), XS), ZS) → U3_ag(X, Y, YS1, YS2, XS, ZS, flat_in_ag(tree(Y, YS1, tree(X, YS2, XS)), ZS))
U3_ag(X, Y, YS1, YS2, XS, ZS, flat_out_ag(tree(Y, YS1, tree(X, YS2, XS)), ZS)) → flat_out_ag(tree(X, tree(Y, YS1, YS2), XS), ZS)
U2_ag(X, XS, YS, flat_out_ag(ZS, YS)) → flat_out_ag(tree(X, niltree, XS), cons(X, YS))
The argument filtering Pi contains the following mapping:
flat_in_ag(
x1,
x2) =
flat_in_ag(
x2)
nil =
nil
flat_out_ag(
x1,
x2) =
flat_out_ag(
x2)
cons(
x1,
x2) =
cons(
x1,
x2)
U1_ag(
x1,
x2,
x3,
x4) =
U1_ag(
x1,
x3,
x4)
right_in_aa(
x1,
x2) =
right_in_aa
right_out_aa(
x1,
x2) =
right_out_aa
tree(
x1,
x2,
x3) =
tree(
x2,
x3)
U2_ag(
x1,
x2,
x3,
x4) =
U2_ag(
x1,
x3,
x4)
U3_ag(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U3_ag(
x6,
x7)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(20) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
flat_in_ag(niltree, nil) → flat_out_ag(niltree, nil)
flat_in_ag(tree(X, niltree, XS), cons(X, YS)) → U1_ag(X, XS, YS, right_in_aa(tree(X, niltree, XS), ZS))
right_in_aa(tree(X, XS1, XS2), XS2) → right_out_aa(tree(X, XS1, XS2), XS2)
U1_ag(X, XS, YS, right_out_aa(tree(X, niltree, XS), ZS)) → U2_ag(X, XS, YS, flat_in_ag(ZS, YS))
flat_in_ag(tree(X, tree(Y, YS1, YS2), XS), ZS) → U3_ag(X, Y, YS1, YS2, XS, ZS, flat_in_ag(tree(Y, YS1, tree(X, YS2, XS)), ZS))
U3_ag(X, Y, YS1, YS2, XS, ZS, flat_out_ag(tree(Y, YS1, tree(X, YS2, XS)), ZS)) → flat_out_ag(tree(X, tree(Y, YS1, YS2), XS), ZS)
U2_ag(X, XS, YS, flat_out_ag(ZS, YS)) → flat_out_ag(tree(X, niltree, XS), cons(X, YS))
The argument filtering Pi contains the following mapping:
flat_in_ag(
x1,
x2) =
flat_in_ag(
x2)
nil =
nil
flat_out_ag(
x1,
x2) =
flat_out_ag(
x2)
cons(
x1,
x2) =
cons(
x1,
x2)
U1_ag(
x1,
x2,
x3,
x4) =
U1_ag(
x1,
x3,
x4)
right_in_aa(
x1,
x2) =
right_in_aa
right_out_aa(
x1,
x2) =
right_out_aa
tree(
x1,
x2,
x3) =
tree(
x2,
x3)
U2_ag(
x1,
x2,
x3,
x4) =
U2_ag(
x1,
x3,
x4)
U3_ag(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U3_ag(
x6,
x7)
(21) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
FLAT_IN_AG(tree(X, niltree, XS), cons(X, YS)) → U1_AG(X, XS, YS, right_in_aa(tree(X, niltree, XS), ZS))
FLAT_IN_AG(tree(X, niltree, XS), cons(X, YS)) → RIGHT_IN_AA(tree(X, niltree, XS), ZS)
U1_AG(X, XS, YS, right_out_aa(tree(X, niltree, XS), ZS)) → U2_AG(X, XS, YS, flat_in_ag(ZS, YS))
U1_AG(X, XS, YS, right_out_aa(tree(X, niltree, XS), ZS)) → FLAT_IN_AG(ZS, YS)
FLAT_IN_AG(tree(X, tree(Y, YS1, YS2), XS), ZS) → U3_AG(X, Y, YS1, YS2, XS, ZS, flat_in_ag(tree(Y, YS1, tree(X, YS2, XS)), ZS))
FLAT_IN_AG(tree(X, tree(Y, YS1, YS2), XS), ZS) → FLAT_IN_AG(tree(Y, YS1, tree(X, YS2, XS)), ZS)
The TRS R consists of the following rules:
flat_in_ag(niltree, nil) → flat_out_ag(niltree, nil)
flat_in_ag(tree(X, niltree, XS), cons(X, YS)) → U1_ag(X, XS, YS, right_in_aa(tree(X, niltree, XS), ZS))
right_in_aa(tree(X, XS1, XS2), XS2) → right_out_aa(tree(X, XS1, XS2), XS2)
U1_ag(X, XS, YS, right_out_aa(tree(X, niltree, XS), ZS)) → U2_ag(X, XS, YS, flat_in_ag(ZS, YS))
flat_in_ag(tree(X, tree(Y, YS1, YS2), XS), ZS) → U3_ag(X, Y, YS1, YS2, XS, ZS, flat_in_ag(tree(Y, YS1, tree(X, YS2, XS)), ZS))
U3_ag(X, Y, YS1, YS2, XS, ZS, flat_out_ag(tree(Y, YS1, tree(X, YS2, XS)), ZS)) → flat_out_ag(tree(X, tree(Y, YS1, YS2), XS), ZS)
U2_ag(X, XS, YS, flat_out_ag(ZS, YS)) → flat_out_ag(tree(X, niltree, XS), cons(X, YS))
The argument filtering Pi contains the following mapping:
flat_in_ag(
x1,
x2) =
flat_in_ag(
x2)
nil =
nil
flat_out_ag(
x1,
x2) =
flat_out_ag(
x2)
cons(
x1,
x2) =
cons(
x1,
x2)
U1_ag(
x1,
x2,
x3,
x4) =
U1_ag(
x1,
x3,
x4)
right_in_aa(
x1,
x2) =
right_in_aa
right_out_aa(
x1,
x2) =
right_out_aa
tree(
x1,
x2,
x3) =
tree(
x2,
x3)
U2_ag(
x1,
x2,
x3,
x4) =
U2_ag(
x1,
x3,
x4)
U3_ag(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U3_ag(
x6,
x7)
FLAT_IN_AG(
x1,
x2) =
FLAT_IN_AG(
x2)
U1_AG(
x1,
x2,
x3,
x4) =
U1_AG(
x1,
x3,
x4)
RIGHT_IN_AA(
x1,
x2) =
RIGHT_IN_AA
U2_AG(
x1,
x2,
x3,
x4) =
U2_AG(
x1,
x3,
x4)
U3_AG(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U3_AG(
x6,
x7)
We have to consider all (P,R,Pi)-chains
(22) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
FLAT_IN_AG(tree(X, niltree, XS), cons(X, YS)) → U1_AG(X, XS, YS, right_in_aa(tree(X, niltree, XS), ZS))
FLAT_IN_AG(tree(X, niltree, XS), cons(X, YS)) → RIGHT_IN_AA(tree(X, niltree, XS), ZS)
U1_AG(X, XS, YS, right_out_aa(tree(X, niltree, XS), ZS)) → U2_AG(X, XS, YS, flat_in_ag(ZS, YS))
U1_AG(X, XS, YS, right_out_aa(tree(X, niltree, XS), ZS)) → FLAT_IN_AG(ZS, YS)
FLAT_IN_AG(tree(X, tree(Y, YS1, YS2), XS), ZS) → U3_AG(X, Y, YS1, YS2, XS, ZS, flat_in_ag(tree(Y, YS1, tree(X, YS2, XS)), ZS))
FLAT_IN_AG(tree(X, tree(Y, YS1, YS2), XS), ZS) → FLAT_IN_AG(tree(Y, YS1, tree(X, YS2, XS)), ZS)
The TRS R consists of the following rules:
flat_in_ag(niltree, nil) → flat_out_ag(niltree, nil)
flat_in_ag(tree(X, niltree, XS), cons(X, YS)) → U1_ag(X, XS, YS, right_in_aa(tree(X, niltree, XS), ZS))
right_in_aa(tree(X, XS1, XS2), XS2) → right_out_aa(tree(X, XS1, XS2), XS2)
U1_ag(X, XS, YS, right_out_aa(tree(X, niltree, XS), ZS)) → U2_ag(X, XS, YS, flat_in_ag(ZS, YS))
flat_in_ag(tree(X, tree(Y, YS1, YS2), XS), ZS) → U3_ag(X, Y, YS1, YS2, XS, ZS, flat_in_ag(tree(Y, YS1, tree(X, YS2, XS)), ZS))
U3_ag(X, Y, YS1, YS2, XS, ZS, flat_out_ag(tree(Y, YS1, tree(X, YS2, XS)), ZS)) → flat_out_ag(tree(X, tree(Y, YS1, YS2), XS), ZS)
U2_ag(X, XS, YS, flat_out_ag(ZS, YS)) → flat_out_ag(tree(X, niltree, XS), cons(X, YS))
The argument filtering Pi contains the following mapping:
flat_in_ag(
x1,
x2) =
flat_in_ag(
x2)
nil =
nil
flat_out_ag(
x1,
x2) =
flat_out_ag(
x2)
cons(
x1,
x2) =
cons(
x1,
x2)
U1_ag(
x1,
x2,
x3,
x4) =
U1_ag(
x1,
x3,
x4)
right_in_aa(
x1,
x2) =
right_in_aa
right_out_aa(
x1,
x2) =
right_out_aa
tree(
x1,
x2,
x3) =
tree(
x2,
x3)
U2_ag(
x1,
x2,
x3,
x4) =
U2_ag(
x1,
x3,
x4)
U3_ag(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U3_ag(
x6,
x7)
FLAT_IN_AG(
x1,
x2) =
FLAT_IN_AG(
x2)
U1_AG(
x1,
x2,
x3,
x4) =
U1_AG(
x1,
x3,
x4)
RIGHT_IN_AA(
x1,
x2) =
RIGHT_IN_AA
U2_AG(
x1,
x2,
x3,
x4) =
U2_AG(
x1,
x3,
x4)
U3_AG(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U3_AG(
x6,
x7)
We have to consider all (P,R,Pi)-chains
(23) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 3 less nodes.
(24) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
U1_AG(X, XS, YS, right_out_aa(tree(X, niltree, XS), ZS)) → FLAT_IN_AG(ZS, YS)
FLAT_IN_AG(tree(X, niltree, XS), cons(X, YS)) → U1_AG(X, XS, YS, right_in_aa(tree(X, niltree, XS), ZS))
FLAT_IN_AG(tree(X, tree(Y, YS1, YS2), XS), ZS) → FLAT_IN_AG(tree(Y, YS1, tree(X, YS2, XS)), ZS)
The TRS R consists of the following rules:
flat_in_ag(niltree, nil) → flat_out_ag(niltree, nil)
flat_in_ag(tree(X, niltree, XS), cons(X, YS)) → U1_ag(X, XS, YS, right_in_aa(tree(X, niltree, XS), ZS))
right_in_aa(tree(X, XS1, XS2), XS2) → right_out_aa(tree(X, XS1, XS2), XS2)
U1_ag(X, XS, YS, right_out_aa(tree(X, niltree, XS), ZS)) → U2_ag(X, XS, YS, flat_in_ag(ZS, YS))
flat_in_ag(tree(X, tree(Y, YS1, YS2), XS), ZS) → U3_ag(X, Y, YS1, YS2, XS, ZS, flat_in_ag(tree(Y, YS1, tree(X, YS2, XS)), ZS))
U3_ag(X, Y, YS1, YS2, XS, ZS, flat_out_ag(tree(Y, YS1, tree(X, YS2, XS)), ZS)) → flat_out_ag(tree(X, tree(Y, YS1, YS2), XS), ZS)
U2_ag(X, XS, YS, flat_out_ag(ZS, YS)) → flat_out_ag(tree(X, niltree, XS), cons(X, YS))
The argument filtering Pi contains the following mapping:
flat_in_ag(
x1,
x2) =
flat_in_ag(
x2)
nil =
nil
flat_out_ag(
x1,
x2) =
flat_out_ag(
x2)
cons(
x1,
x2) =
cons(
x1,
x2)
U1_ag(
x1,
x2,
x3,
x4) =
U1_ag(
x1,
x3,
x4)
right_in_aa(
x1,
x2) =
right_in_aa
right_out_aa(
x1,
x2) =
right_out_aa
tree(
x1,
x2,
x3) =
tree(
x2,
x3)
U2_ag(
x1,
x2,
x3,
x4) =
U2_ag(
x1,
x3,
x4)
U3_ag(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U3_ag(
x6,
x7)
FLAT_IN_AG(
x1,
x2) =
FLAT_IN_AG(
x2)
U1_AG(
x1,
x2,
x3,
x4) =
U1_AG(
x1,
x3,
x4)
We have to consider all (P,R,Pi)-chains
(25) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(26) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
U1_AG(X, XS, YS, right_out_aa(tree(X, niltree, XS), ZS)) → FLAT_IN_AG(ZS, YS)
FLAT_IN_AG(tree(X, niltree, XS), cons(X, YS)) → U1_AG(X, XS, YS, right_in_aa(tree(X, niltree, XS), ZS))
FLAT_IN_AG(tree(X, tree(Y, YS1, YS2), XS), ZS) → FLAT_IN_AG(tree(Y, YS1, tree(X, YS2, XS)), ZS)
The TRS R consists of the following rules:
right_in_aa(tree(X, XS1, XS2), XS2) → right_out_aa(tree(X, XS1, XS2), XS2)
The argument filtering Pi contains the following mapping:
cons(
x1,
x2) =
cons(
x1,
x2)
right_in_aa(
x1,
x2) =
right_in_aa
right_out_aa(
x1,
x2) =
right_out_aa
tree(
x1,
x2,
x3) =
tree(
x2,
x3)
FLAT_IN_AG(
x1,
x2) =
FLAT_IN_AG(
x2)
U1_AG(
x1,
x2,
x3,
x4) =
U1_AG(
x1,
x3,
x4)
We have to consider all (P,R,Pi)-chains
(27) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(28) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U1_AG(X, YS, right_out_aa) → FLAT_IN_AG(YS)
FLAT_IN_AG(cons(X, YS)) → U1_AG(X, YS, right_in_aa)
FLAT_IN_AG(ZS) → FLAT_IN_AG(ZS)
The TRS R consists of the following rules:
right_in_aa → right_out_aa
The set Q consists of the following terms:
right_in_aa
We have to consider all (P,Q,R)-chains.
(29) UsableRulesReductionPairsProof (EQUIVALENT transformation)
By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.
The following dependency pairs can be deleted:
U1_AG(X, YS, right_out_aa) → FLAT_IN_AG(YS)
FLAT_IN_AG(cons(X, YS)) → U1_AG(X, YS, right_in_aa)
No rules are removed from R.
Used ordering: POLO with Polynomial interpretation [POLO]:
POL(FLAT_IN_AG(x1)) = 2 + x1
POL(U1_AG(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(cons(x1, x2)) = 2 + 2·x1 + 2·x2
POL(right_in_aa) = 2
POL(right_out_aa) = 2
(30) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FLAT_IN_AG(ZS) → FLAT_IN_AG(ZS)
The TRS R consists of the following rules:
right_in_aa → right_out_aa
The set Q consists of the following terms:
right_in_aa
We have to consider all (P,Q,R)-chains.
(31) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(32) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FLAT_IN_AG(ZS) → FLAT_IN_AG(ZS)
R is empty.
The set Q consists of the following terms:
right_in_aa
We have to consider all (P,Q,R)-chains.
(33) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
right_in_aa
(34) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FLAT_IN_AG(ZS) → FLAT_IN_AG(ZS)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(35) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.
s =
FLAT_IN_AG(
ZS) evaluates to t =
FLAT_IN_AG(
ZS)
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Semiunifier: [ ]
- Matcher: [ ]
Rewriting sequenceThe DP semiunifies directly so there is only one rewrite step from FLAT_IN_AG(ZS) to FLAT_IN_AG(ZS).
(36) FALSE