(0) Obligation:

Clauses:

sum([], [], []).
sum(.(X1, Y1), .(X2, Y2), .(X3, Y3)) :- ','(add(X1, X2, X3), sum(Y1, Y2, Y3)).
add(0, X, X).
add(s(X), Y, s(Z)) :- add(X, Y, Z).

Queries:

sum(g,g,a).

(1) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
sum_in: (b,b,f)
add_in: (b,b,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

sum_in_gga([], [], []) → sum_out_gga([], [], [])
sum_in_gga(.(X1, Y1), .(X2, Y2), .(X3, Y3)) → U1_gga(X1, Y1, X2, Y2, X3, Y3, add_in_gga(X1, X2, X3))
add_in_gga(0, X, X) → add_out_gga(0, X, X)
add_in_gga(s(X), Y, s(Z)) → U3_gga(X, Y, Z, add_in_gga(X, Y, Z))
U3_gga(X, Y, Z, add_out_gga(X, Y, Z)) → add_out_gga(s(X), Y, s(Z))
U1_gga(X1, Y1, X2, Y2, X3, Y3, add_out_gga(X1, X2, X3)) → U2_gga(X1, Y1, X2, Y2, X3, Y3, sum_in_gga(Y1, Y2, Y3))
U2_gga(X1, Y1, X2, Y2, X3, Y3, sum_out_gga(Y1, Y2, Y3)) → sum_out_gga(.(X1, Y1), .(X2, Y2), .(X3, Y3))

The argument filtering Pi contains the following mapping:
sum_in_gga(x1, x2, x3)  =  sum_in_gga(x1, x2)
[]  =  []
sum_out_gga(x1, x2, x3)  =  sum_out_gga(x1, x2, x3)
.(x1, x2)  =  .(x1, x2)
U1_gga(x1, x2, x3, x4, x5, x6, x7)  =  U1_gga(x1, x2, x3, x4, x7)
add_in_gga(x1, x2, x3)  =  add_in_gga(x1, x2)
0  =  0
add_out_gga(x1, x2, x3)  =  add_out_gga(x1, x2, x3)
s(x1)  =  s(x1)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x1, x2, x4)
U2_gga(x1, x2, x3, x4, x5, x6, x7)  =  U2_gga(x1, x2, x3, x4, x5, x7)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(2) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

sum_in_gga([], [], []) → sum_out_gga([], [], [])
sum_in_gga(.(X1, Y1), .(X2, Y2), .(X3, Y3)) → U1_gga(X1, Y1, X2, Y2, X3, Y3, add_in_gga(X1, X2, X3))
add_in_gga(0, X, X) → add_out_gga(0, X, X)
add_in_gga(s(X), Y, s(Z)) → U3_gga(X, Y, Z, add_in_gga(X, Y, Z))
U3_gga(X, Y, Z, add_out_gga(X, Y, Z)) → add_out_gga(s(X), Y, s(Z))
U1_gga(X1, Y1, X2, Y2, X3, Y3, add_out_gga(X1, X2, X3)) → U2_gga(X1, Y1, X2, Y2, X3, Y3, sum_in_gga(Y1, Y2, Y3))
U2_gga(X1, Y1, X2, Y2, X3, Y3, sum_out_gga(Y1, Y2, Y3)) → sum_out_gga(.(X1, Y1), .(X2, Y2), .(X3, Y3))

The argument filtering Pi contains the following mapping:
sum_in_gga(x1, x2, x3)  =  sum_in_gga(x1, x2)
[]  =  []
sum_out_gga(x1, x2, x3)  =  sum_out_gga(x1, x2, x3)
.(x1, x2)  =  .(x1, x2)
U1_gga(x1, x2, x3, x4, x5, x6, x7)  =  U1_gga(x1, x2, x3, x4, x7)
add_in_gga(x1, x2, x3)  =  add_in_gga(x1, x2)
0  =  0
add_out_gga(x1, x2, x3)  =  add_out_gga(x1, x2, x3)
s(x1)  =  s(x1)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x1, x2, x4)
U2_gga(x1, x2, x3, x4, x5, x6, x7)  =  U2_gga(x1, x2, x3, x4, x5, x7)

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

SUM_IN_GGA(.(X1, Y1), .(X2, Y2), .(X3, Y3)) → U1_GGA(X1, Y1, X2, Y2, X3, Y3, add_in_gga(X1, X2, X3))
SUM_IN_GGA(.(X1, Y1), .(X2, Y2), .(X3, Y3)) → ADD_IN_GGA(X1, X2, X3)
ADD_IN_GGA(s(X), Y, s(Z)) → U3_GGA(X, Y, Z, add_in_gga(X, Y, Z))
ADD_IN_GGA(s(X), Y, s(Z)) → ADD_IN_GGA(X, Y, Z)
U1_GGA(X1, Y1, X2, Y2, X3, Y3, add_out_gga(X1, X2, X3)) → U2_GGA(X1, Y1, X2, Y2, X3, Y3, sum_in_gga(Y1, Y2, Y3))
U1_GGA(X1, Y1, X2, Y2, X3, Y3, add_out_gga(X1, X2, X3)) → SUM_IN_GGA(Y1, Y2, Y3)

The TRS R consists of the following rules:

sum_in_gga([], [], []) → sum_out_gga([], [], [])
sum_in_gga(.(X1, Y1), .(X2, Y2), .(X3, Y3)) → U1_gga(X1, Y1, X2, Y2, X3, Y3, add_in_gga(X1, X2, X3))
add_in_gga(0, X, X) → add_out_gga(0, X, X)
add_in_gga(s(X), Y, s(Z)) → U3_gga(X, Y, Z, add_in_gga(X, Y, Z))
U3_gga(X, Y, Z, add_out_gga(X, Y, Z)) → add_out_gga(s(X), Y, s(Z))
U1_gga(X1, Y1, X2, Y2, X3, Y3, add_out_gga(X1, X2, X3)) → U2_gga(X1, Y1, X2, Y2, X3, Y3, sum_in_gga(Y1, Y2, Y3))
U2_gga(X1, Y1, X2, Y2, X3, Y3, sum_out_gga(Y1, Y2, Y3)) → sum_out_gga(.(X1, Y1), .(X2, Y2), .(X3, Y3))

The argument filtering Pi contains the following mapping:
sum_in_gga(x1, x2, x3)  =  sum_in_gga(x1, x2)
[]  =  []
sum_out_gga(x1, x2, x3)  =  sum_out_gga(x1, x2, x3)
.(x1, x2)  =  .(x1, x2)
U1_gga(x1, x2, x3, x4, x5, x6, x7)  =  U1_gga(x1, x2, x3, x4, x7)
add_in_gga(x1, x2, x3)  =  add_in_gga(x1, x2)
0  =  0
add_out_gga(x1, x2, x3)  =  add_out_gga(x1, x2, x3)
s(x1)  =  s(x1)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x1, x2, x4)
U2_gga(x1, x2, x3, x4, x5, x6, x7)  =  U2_gga(x1, x2, x3, x4, x5, x7)
SUM_IN_GGA(x1, x2, x3)  =  SUM_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4, x5, x6, x7)  =  U1_GGA(x1, x2, x3, x4, x7)
ADD_IN_GGA(x1, x2, x3)  =  ADD_IN_GGA(x1, x2)
U3_GGA(x1, x2, x3, x4)  =  U3_GGA(x1, x2, x4)
U2_GGA(x1, x2, x3, x4, x5, x6, x7)  =  U2_GGA(x1, x2, x3, x4, x5, x7)

We have to consider all (P,R,Pi)-chains

(4) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

SUM_IN_GGA(.(X1, Y1), .(X2, Y2), .(X3, Y3)) → U1_GGA(X1, Y1, X2, Y2, X3, Y3, add_in_gga(X1, X2, X3))
SUM_IN_GGA(.(X1, Y1), .(X2, Y2), .(X3, Y3)) → ADD_IN_GGA(X1, X2, X3)
ADD_IN_GGA(s(X), Y, s(Z)) → U3_GGA(X, Y, Z, add_in_gga(X, Y, Z))
ADD_IN_GGA(s(X), Y, s(Z)) → ADD_IN_GGA(X, Y, Z)
U1_GGA(X1, Y1, X2, Y2, X3, Y3, add_out_gga(X1, X2, X3)) → U2_GGA(X1, Y1, X2, Y2, X3, Y3, sum_in_gga(Y1, Y2, Y3))
U1_GGA(X1, Y1, X2, Y2, X3, Y3, add_out_gga(X1, X2, X3)) → SUM_IN_GGA(Y1, Y2, Y3)

The TRS R consists of the following rules:

sum_in_gga([], [], []) → sum_out_gga([], [], [])
sum_in_gga(.(X1, Y1), .(X2, Y2), .(X3, Y3)) → U1_gga(X1, Y1, X2, Y2, X3, Y3, add_in_gga(X1, X2, X3))
add_in_gga(0, X, X) → add_out_gga(0, X, X)
add_in_gga(s(X), Y, s(Z)) → U3_gga(X, Y, Z, add_in_gga(X, Y, Z))
U3_gga(X, Y, Z, add_out_gga(X, Y, Z)) → add_out_gga(s(X), Y, s(Z))
U1_gga(X1, Y1, X2, Y2, X3, Y3, add_out_gga(X1, X2, X3)) → U2_gga(X1, Y1, X2, Y2, X3, Y3, sum_in_gga(Y1, Y2, Y3))
U2_gga(X1, Y1, X2, Y2, X3, Y3, sum_out_gga(Y1, Y2, Y3)) → sum_out_gga(.(X1, Y1), .(X2, Y2), .(X3, Y3))

The argument filtering Pi contains the following mapping:
sum_in_gga(x1, x2, x3)  =  sum_in_gga(x1, x2)
[]  =  []
sum_out_gga(x1, x2, x3)  =  sum_out_gga(x1, x2, x3)
.(x1, x2)  =  .(x1, x2)
U1_gga(x1, x2, x3, x4, x5, x6, x7)  =  U1_gga(x1, x2, x3, x4, x7)
add_in_gga(x1, x2, x3)  =  add_in_gga(x1, x2)
0  =  0
add_out_gga(x1, x2, x3)  =  add_out_gga(x1, x2, x3)
s(x1)  =  s(x1)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x1, x2, x4)
U2_gga(x1, x2, x3, x4, x5, x6, x7)  =  U2_gga(x1, x2, x3, x4, x5, x7)
SUM_IN_GGA(x1, x2, x3)  =  SUM_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4, x5, x6, x7)  =  U1_GGA(x1, x2, x3, x4, x7)
ADD_IN_GGA(x1, x2, x3)  =  ADD_IN_GGA(x1, x2)
U3_GGA(x1, x2, x3, x4)  =  U3_GGA(x1, x2, x4)
U2_GGA(x1, x2, x3, x4, x5, x6, x7)  =  U2_GGA(x1, x2, x3, x4, x5, x7)

We have to consider all (P,R,Pi)-chains

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 3 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

ADD_IN_GGA(s(X), Y, s(Z)) → ADD_IN_GGA(X, Y, Z)

The TRS R consists of the following rules:

sum_in_gga([], [], []) → sum_out_gga([], [], [])
sum_in_gga(.(X1, Y1), .(X2, Y2), .(X3, Y3)) → U1_gga(X1, Y1, X2, Y2, X3, Y3, add_in_gga(X1, X2, X3))
add_in_gga(0, X, X) → add_out_gga(0, X, X)
add_in_gga(s(X), Y, s(Z)) → U3_gga(X, Y, Z, add_in_gga(X, Y, Z))
U3_gga(X, Y, Z, add_out_gga(X, Y, Z)) → add_out_gga(s(X), Y, s(Z))
U1_gga(X1, Y1, X2, Y2, X3, Y3, add_out_gga(X1, X2, X3)) → U2_gga(X1, Y1, X2, Y2, X3, Y3, sum_in_gga(Y1, Y2, Y3))
U2_gga(X1, Y1, X2, Y2, X3, Y3, sum_out_gga(Y1, Y2, Y3)) → sum_out_gga(.(X1, Y1), .(X2, Y2), .(X3, Y3))

The argument filtering Pi contains the following mapping:
sum_in_gga(x1, x2, x3)  =  sum_in_gga(x1, x2)
[]  =  []
sum_out_gga(x1, x2, x3)  =  sum_out_gga(x1, x2, x3)
.(x1, x2)  =  .(x1, x2)
U1_gga(x1, x2, x3, x4, x5, x6, x7)  =  U1_gga(x1, x2, x3, x4, x7)
add_in_gga(x1, x2, x3)  =  add_in_gga(x1, x2)
0  =  0
add_out_gga(x1, x2, x3)  =  add_out_gga(x1, x2, x3)
s(x1)  =  s(x1)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x1, x2, x4)
U2_gga(x1, x2, x3, x4, x5, x6, x7)  =  U2_gga(x1, x2, x3, x4, x5, x7)
ADD_IN_GGA(x1, x2, x3)  =  ADD_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(8) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

ADD_IN_GGA(s(X), Y, s(Z)) → ADD_IN_GGA(X, Y, Z)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
ADD_IN_GGA(x1, x2, x3)  =  ADD_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(10) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ADD_IN_GGA(s(X), Y) → ADD_IN_GGA(X, Y)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(12) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • ADD_IN_GGA(s(X), Y) → ADD_IN_GGA(X, Y)
    The graph contains the following edges 1 > 1, 2 >= 2

(13) TRUE

(14) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

U1_GGA(X1, Y1, X2, Y2, X3, Y3, add_out_gga(X1, X2, X3)) → SUM_IN_GGA(Y1, Y2, Y3)
SUM_IN_GGA(.(X1, Y1), .(X2, Y2), .(X3, Y3)) → U1_GGA(X1, Y1, X2, Y2, X3, Y3, add_in_gga(X1, X2, X3))

The TRS R consists of the following rules:

sum_in_gga([], [], []) → sum_out_gga([], [], [])
sum_in_gga(.(X1, Y1), .(X2, Y2), .(X3, Y3)) → U1_gga(X1, Y1, X2, Y2, X3, Y3, add_in_gga(X1, X2, X3))
add_in_gga(0, X, X) → add_out_gga(0, X, X)
add_in_gga(s(X), Y, s(Z)) → U3_gga(X, Y, Z, add_in_gga(X, Y, Z))
U3_gga(X, Y, Z, add_out_gga(X, Y, Z)) → add_out_gga(s(X), Y, s(Z))
U1_gga(X1, Y1, X2, Y2, X3, Y3, add_out_gga(X1, X2, X3)) → U2_gga(X1, Y1, X2, Y2, X3, Y3, sum_in_gga(Y1, Y2, Y3))
U2_gga(X1, Y1, X2, Y2, X3, Y3, sum_out_gga(Y1, Y2, Y3)) → sum_out_gga(.(X1, Y1), .(X2, Y2), .(X3, Y3))

The argument filtering Pi contains the following mapping:
sum_in_gga(x1, x2, x3)  =  sum_in_gga(x1, x2)
[]  =  []
sum_out_gga(x1, x2, x3)  =  sum_out_gga(x1, x2, x3)
.(x1, x2)  =  .(x1, x2)
U1_gga(x1, x2, x3, x4, x5, x6, x7)  =  U1_gga(x1, x2, x3, x4, x7)
add_in_gga(x1, x2, x3)  =  add_in_gga(x1, x2)
0  =  0
add_out_gga(x1, x2, x3)  =  add_out_gga(x1, x2, x3)
s(x1)  =  s(x1)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x1, x2, x4)
U2_gga(x1, x2, x3, x4, x5, x6, x7)  =  U2_gga(x1, x2, x3, x4, x5, x7)
SUM_IN_GGA(x1, x2, x3)  =  SUM_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4, x5, x6, x7)  =  U1_GGA(x1, x2, x3, x4, x7)

We have to consider all (P,R,Pi)-chains

(15) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

U1_GGA(X1, Y1, X2, Y2, X3, Y3, add_out_gga(X1, X2, X3)) → SUM_IN_GGA(Y1, Y2, Y3)
SUM_IN_GGA(.(X1, Y1), .(X2, Y2), .(X3, Y3)) → U1_GGA(X1, Y1, X2, Y2, X3, Y3, add_in_gga(X1, X2, X3))

The TRS R consists of the following rules:

add_in_gga(0, X, X) → add_out_gga(0, X, X)
add_in_gga(s(X), Y, s(Z)) → U3_gga(X, Y, Z, add_in_gga(X, Y, Z))
U3_gga(X, Y, Z, add_out_gga(X, Y, Z)) → add_out_gga(s(X), Y, s(Z))

The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
add_in_gga(x1, x2, x3)  =  add_in_gga(x1, x2)
0  =  0
add_out_gga(x1, x2, x3)  =  add_out_gga(x1, x2, x3)
s(x1)  =  s(x1)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x1, x2, x4)
SUM_IN_GGA(x1, x2, x3)  =  SUM_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4, x5, x6, x7)  =  U1_GGA(x1, x2, x3, x4, x7)

We have to consider all (P,R,Pi)-chains

(17) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U1_GGA(X1, Y1, X2, Y2, add_out_gga(X1, X2, X3)) → SUM_IN_GGA(Y1, Y2)
SUM_IN_GGA(.(X1, Y1), .(X2, Y2)) → U1_GGA(X1, Y1, X2, Y2, add_in_gga(X1, X2))

The TRS R consists of the following rules:

add_in_gga(0, X) → add_out_gga(0, X, X)
add_in_gga(s(X), Y) → U3_gga(X, Y, add_in_gga(X, Y))
U3_gga(X, Y, add_out_gga(X, Y, Z)) → add_out_gga(s(X), Y, s(Z))

The set Q consists of the following terms:

add_in_gga(x0, x1)
U3_gga(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(19) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
sum_in: (b,b,f)
add_in: (b,b,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

sum_in_gga([], [], []) → sum_out_gga([], [], [])
sum_in_gga(.(X1, Y1), .(X2, Y2), .(X3, Y3)) → U1_gga(X1, Y1, X2, Y2, X3, Y3, add_in_gga(X1, X2, X3))
add_in_gga(0, X, X) → add_out_gga(0, X, X)
add_in_gga(s(X), Y, s(Z)) → U3_gga(X, Y, Z, add_in_gga(X, Y, Z))
U3_gga(X, Y, Z, add_out_gga(X, Y, Z)) → add_out_gga(s(X), Y, s(Z))
U1_gga(X1, Y1, X2, Y2, X3, Y3, add_out_gga(X1, X2, X3)) → U2_gga(X1, Y1, X2, Y2, X3, Y3, sum_in_gga(Y1, Y2, Y3))
U2_gga(X1, Y1, X2, Y2, X3, Y3, sum_out_gga(Y1, Y2, Y3)) → sum_out_gga(.(X1, Y1), .(X2, Y2), .(X3, Y3))

The argument filtering Pi contains the following mapping:
sum_in_gga(x1, x2, x3)  =  sum_in_gga(x1, x2)
[]  =  []
sum_out_gga(x1, x2, x3)  =  sum_out_gga(x3)
.(x1, x2)  =  .(x1, x2)
U1_gga(x1, x2, x3, x4, x5, x6, x7)  =  U1_gga(x2, x4, x7)
add_in_gga(x1, x2, x3)  =  add_in_gga(x1, x2)
0  =  0
add_out_gga(x1, x2, x3)  =  add_out_gga(x3)
s(x1)  =  s(x1)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x4)
U2_gga(x1, x2, x3, x4, x5, x6, x7)  =  U2_gga(x5, x7)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(20) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

sum_in_gga([], [], []) → sum_out_gga([], [], [])
sum_in_gga(.(X1, Y1), .(X2, Y2), .(X3, Y3)) → U1_gga(X1, Y1, X2, Y2, X3, Y3, add_in_gga(X1, X2, X3))
add_in_gga(0, X, X) → add_out_gga(0, X, X)
add_in_gga(s(X), Y, s(Z)) → U3_gga(X, Y, Z, add_in_gga(X, Y, Z))
U3_gga(X, Y, Z, add_out_gga(X, Y, Z)) → add_out_gga(s(X), Y, s(Z))
U1_gga(X1, Y1, X2, Y2, X3, Y3, add_out_gga(X1, X2, X3)) → U2_gga(X1, Y1, X2, Y2, X3, Y3, sum_in_gga(Y1, Y2, Y3))
U2_gga(X1, Y1, X2, Y2, X3, Y3, sum_out_gga(Y1, Y2, Y3)) → sum_out_gga(.(X1, Y1), .(X2, Y2), .(X3, Y3))

The argument filtering Pi contains the following mapping:
sum_in_gga(x1, x2, x3)  =  sum_in_gga(x1, x2)
[]  =  []
sum_out_gga(x1, x2, x3)  =  sum_out_gga(x3)
.(x1, x2)  =  .(x1, x2)
U1_gga(x1, x2, x3, x4, x5, x6, x7)  =  U1_gga(x2, x4, x7)
add_in_gga(x1, x2, x3)  =  add_in_gga(x1, x2)
0  =  0
add_out_gga(x1, x2, x3)  =  add_out_gga(x3)
s(x1)  =  s(x1)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x4)
U2_gga(x1, x2, x3, x4, x5, x6, x7)  =  U2_gga(x5, x7)

(21) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

SUM_IN_GGA(.(X1, Y1), .(X2, Y2), .(X3, Y3)) → U1_GGA(X1, Y1, X2, Y2, X3, Y3, add_in_gga(X1, X2, X3))
SUM_IN_GGA(.(X1, Y1), .(X2, Y2), .(X3, Y3)) → ADD_IN_GGA(X1, X2, X3)
ADD_IN_GGA(s(X), Y, s(Z)) → U3_GGA(X, Y, Z, add_in_gga(X, Y, Z))
ADD_IN_GGA(s(X), Y, s(Z)) → ADD_IN_GGA(X, Y, Z)
U1_GGA(X1, Y1, X2, Y2, X3, Y3, add_out_gga(X1, X2, X3)) → U2_GGA(X1, Y1, X2, Y2, X3, Y3, sum_in_gga(Y1, Y2, Y3))
U1_GGA(X1, Y1, X2, Y2, X3, Y3, add_out_gga(X1, X2, X3)) → SUM_IN_GGA(Y1, Y2, Y3)

The TRS R consists of the following rules:

sum_in_gga([], [], []) → sum_out_gga([], [], [])
sum_in_gga(.(X1, Y1), .(X2, Y2), .(X3, Y3)) → U1_gga(X1, Y1, X2, Y2, X3, Y3, add_in_gga(X1, X2, X3))
add_in_gga(0, X, X) → add_out_gga(0, X, X)
add_in_gga(s(X), Y, s(Z)) → U3_gga(X, Y, Z, add_in_gga(X, Y, Z))
U3_gga(X, Y, Z, add_out_gga(X, Y, Z)) → add_out_gga(s(X), Y, s(Z))
U1_gga(X1, Y1, X2, Y2, X3, Y3, add_out_gga(X1, X2, X3)) → U2_gga(X1, Y1, X2, Y2, X3, Y3, sum_in_gga(Y1, Y2, Y3))
U2_gga(X1, Y1, X2, Y2, X3, Y3, sum_out_gga(Y1, Y2, Y3)) → sum_out_gga(.(X1, Y1), .(X2, Y2), .(X3, Y3))

The argument filtering Pi contains the following mapping:
sum_in_gga(x1, x2, x3)  =  sum_in_gga(x1, x2)
[]  =  []
sum_out_gga(x1, x2, x3)  =  sum_out_gga(x3)
.(x1, x2)  =  .(x1, x2)
U1_gga(x1, x2, x3, x4, x5, x6, x7)  =  U1_gga(x2, x4, x7)
add_in_gga(x1, x2, x3)  =  add_in_gga(x1, x2)
0  =  0
add_out_gga(x1, x2, x3)  =  add_out_gga(x3)
s(x1)  =  s(x1)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x4)
U2_gga(x1, x2, x3, x4, x5, x6, x7)  =  U2_gga(x5, x7)
SUM_IN_GGA(x1, x2, x3)  =  SUM_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4, x5, x6, x7)  =  U1_GGA(x2, x4, x7)
ADD_IN_GGA(x1, x2, x3)  =  ADD_IN_GGA(x1, x2)
U3_GGA(x1, x2, x3, x4)  =  U3_GGA(x4)
U2_GGA(x1, x2, x3, x4, x5, x6, x7)  =  U2_GGA(x5, x7)

We have to consider all (P,R,Pi)-chains

(22) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

SUM_IN_GGA(.(X1, Y1), .(X2, Y2), .(X3, Y3)) → U1_GGA(X1, Y1, X2, Y2, X3, Y3, add_in_gga(X1, X2, X3))
SUM_IN_GGA(.(X1, Y1), .(X2, Y2), .(X3, Y3)) → ADD_IN_GGA(X1, X2, X3)
ADD_IN_GGA(s(X), Y, s(Z)) → U3_GGA(X, Y, Z, add_in_gga(X, Y, Z))
ADD_IN_GGA(s(X), Y, s(Z)) → ADD_IN_GGA(X, Y, Z)
U1_GGA(X1, Y1, X2, Y2, X3, Y3, add_out_gga(X1, X2, X3)) → U2_GGA(X1, Y1, X2, Y2, X3, Y3, sum_in_gga(Y1, Y2, Y3))
U1_GGA(X1, Y1, X2, Y2, X3, Y3, add_out_gga(X1, X2, X3)) → SUM_IN_GGA(Y1, Y2, Y3)

The TRS R consists of the following rules:

sum_in_gga([], [], []) → sum_out_gga([], [], [])
sum_in_gga(.(X1, Y1), .(X2, Y2), .(X3, Y3)) → U1_gga(X1, Y1, X2, Y2, X3, Y3, add_in_gga(X1, X2, X3))
add_in_gga(0, X, X) → add_out_gga(0, X, X)
add_in_gga(s(X), Y, s(Z)) → U3_gga(X, Y, Z, add_in_gga(X, Y, Z))
U3_gga(X, Y, Z, add_out_gga(X, Y, Z)) → add_out_gga(s(X), Y, s(Z))
U1_gga(X1, Y1, X2, Y2, X3, Y3, add_out_gga(X1, X2, X3)) → U2_gga(X1, Y1, X2, Y2, X3, Y3, sum_in_gga(Y1, Y2, Y3))
U2_gga(X1, Y1, X2, Y2, X3, Y3, sum_out_gga(Y1, Y2, Y3)) → sum_out_gga(.(X1, Y1), .(X2, Y2), .(X3, Y3))

The argument filtering Pi contains the following mapping:
sum_in_gga(x1, x2, x3)  =  sum_in_gga(x1, x2)
[]  =  []
sum_out_gga(x1, x2, x3)  =  sum_out_gga(x3)
.(x1, x2)  =  .(x1, x2)
U1_gga(x1, x2, x3, x4, x5, x6, x7)  =  U1_gga(x2, x4, x7)
add_in_gga(x1, x2, x3)  =  add_in_gga(x1, x2)
0  =  0
add_out_gga(x1, x2, x3)  =  add_out_gga(x3)
s(x1)  =  s(x1)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x4)
U2_gga(x1, x2, x3, x4, x5, x6, x7)  =  U2_gga(x5, x7)
SUM_IN_GGA(x1, x2, x3)  =  SUM_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4, x5, x6, x7)  =  U1_GGA(x2, x4, x7)
ADD_IN_GGA(x1, x2, x3)  =  ADD_IN_GGA(x1, x2)
U3_GGA(x1, x2, x3, x4)  =  U3_GGA(x4)
U2_GGA(x1, x2, x3, x4, x5, x6, x7)  =  U2_GGA(x5, x7)

We have to consider all (P,R,Pi)-chains

(23) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 3 less nodes.

(24) Complex Obligation (AND)

(25) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

ADD_IN_GGA(s(X), Y, s(Z)) → ADD_IN_GGA(X, Y, Z)

The TRS R consists of the following rules:

sum_in_gga([], [], []) → sum_out_gga([], [], [])
sum_in_gga(.(X1, Y1), .(X2, Y2), .(X3, Y3)) → U1_gga(X1, Y1, X2, Y2, X3, Y3, add_in_gga(X1, X2, X3))
add_in_gga(0, X, X) → add_out_gga(0, X, X)
add_in_gga(s(X), Y, s(Z)) → U3_gga(X, Y, Z, add_in_gga(X, Y, Z))
U3_gga(X, Y, Z, add_out_gga(X, Y, Z)) → add_out_gga(s(X), Y, s(Z))
U1_gga(X1, Y1, X2, Y2, X3, Y3, add_out_gga(X1, X2, X3)) → U2_gga(X1, Y1, X2, Y2, X3, Y3, sum_in_gga(Y1, Y2, Y3))
U2_gga(X1, Y1, X2, Y2, X3, Y3, sum_out_gga(Y1, Y2, Y3)) → sum_out_gga(.(X1, Y1), .(X2, Y2), .(X3, Y3))

The argument filtering Pi contains the following mapping:
sum_in_gga(x1, x2, x3)  =  sum_in_gga(x1, x2)
[]  =  []
sum_out_gga(x1, x2, x3)  =  sum_out_gga(x3)
.(x1, x2)  =  .(x1, x2)
U1_gga(x1, x2, x3, x4, x5, x6, x7)  =  U1_gga(x2, x4, x7)
add_in_gga(x1, x2, x3)  =  add_in_gga(x1, x2)
0  =  0
add_out_gga(x1, x2, x3)  =  add_out_gga(x3)
s(x1)  =  s(x1)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x4)
U2_gga(x1, x2, x3, x4, x5, x6, x7)  =  U2_gga(x5, x7)
ADD_IN_GGA(x1, x2, x3)  =  ADD_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(26) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(27) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

ADD_IN_GGA(s(X), Y, s(Z)) → ADD_IN_GGA(X, Y, Z)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
ADD_IN_GGA(x1, x2, x3)  =  ADD_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(28) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(29) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ADD_IN_GGA(s(X), Y) → ADD_IN_GGA(X, Y)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(30) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • ADD_IN_GGA(s(X), Y) → ADD_IN_GGA(X, Y)
    The graph contains the following edges 1 > 1, 2 >= 2

(31) TRUE

(32) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

U1_GGA(X1, Y1, X2, Y2, X3, Y3, add_out_gga(X1, X2, X3)) → SUM_IN_GGA(Y1, Y2, Y3)
SUM_IN_GGA(.(X1, Y1), .(X2, Y2), .(X3, Y3)) → U1_GGA(X1, Y1, X2, Y2, X3, Y3, add_in_gga(X1, X2, X3))

The TRS R consists of the following rules:

sum_in_gga([], [], []) → sum_out_gga([], [], [])
sum_in_gga(.(X1, Y1), .(X2, Y2), .(X3, Y3)) → U1_gga(X1, Y1, X2, Y2, X3, Y3, add_in_gga(X1, X2, X3))
add_in_gga(0, X, X) → add_out_gga(0, X, X)
add_in_gga(s(X), Y, s(Z)) → U3_gga(X, Y, Z, add_in_gga(X, Y, Z))
U3_gga(X, Y, Z, add_out_gga(X, Y, Z)) → add_out_gga(s(X), Y, s(Z))
U1_gga(X1, Y1, X2, Y2, X3, Y3, add_out_gga(X1, X2, X3)) → U2_gga(X1, Y1, X2, Y2, X3, Y3, sum_in_gga(Y1, Y2, Y3))
U2_gga(X1, Y1, X2, Y2, X3, Y3, sum_out_gga(Y1, Y2, Y3)) → sum_out_gga(.(X1, Y1), .(X2, Y2), .(X3, Y3))

The argument filtering Pi contains the following mapping:
sum_in_gga(x1, x2, x3)  =  sum_in_gga(x1, x2)
[]  =  []
sum_out_gga(x1, x2, x3)  =  sum_out_gga(x3)
.(x1, x2)  =  .(x1, x2)
U1_gga(x1, x2, x3, x4, x5, x6, x7)  =  U1_gga(x2, x4, x7)
add_in_gga(x1, x2, x3)  =  add_in_gga(x1, x2)
0  =  0
add_out_gga(x1, x2, x3)  =  add_out_gga(x3)
s(x1)  =  s(x1)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x4)
U2_gga(x1, x2, x3, x4, x5, x6, x7)  =  U2_gga(x5, x7)
SUM_IN_GGA(x1, x2, x3)  =  SUM_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4, x5, x6, x7)  =  U1_GGA(x2, x4, x7)

We have to consider all (P,R,Pi)-chains

(33) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(34) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

U1_GGA(X1, Y1, X2, Y2, X3, Y3, add_out_gga(X1, X2, X3)) → SUM_IN_GGA(Y1, Y2, Y3)
SUM_IN_GGA(.(X1, Y1), .(X2, Y2), .(X3, Y3)) → U1_GGA(X1, Y1, X2, Y2, X3, Y3, add_in_gga(X1, X2, X3))

The TRS R consists of the following rules:

add_in_gga(0, X, X) → add_out_gga(0, X, X)
add_in_gga(s(X), Y, s(Z)) → U3_gga(X, Y, Z, add_in_gga(X, Y, Z))
U3_gga(X, Y, Z, add_out_gga(X, Y, Z)) → add_out_gga(s(X), Y, s(Z))

The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
add_in_gga(x1, x2, x3)  =  add_in_gga(x1, x2)
0  =  0
add_out_gga(x1, x2, x3)  =  add_out_gga(x3)
s(x1)  =  s(x1)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x4)
SUM_IN_GGA(x1, x2, x3)  =  SUM_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4, x5, x6, x7)  =  U1_GGA(x2, x4, x7)

We have to consider all (P,R,Pi)-chains

(35) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(36) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U1_GGA(Y1, Y2, add_out_gga(X3)) → SUM_IN_GGA(Y1, Y2)
SUM_IN_GGA(.(X1, Y1), .(X2, Y2)) → U1_GGA(Y1, Y2, add_in_gga(X1, X2))

The TRS R consists of the following rules:

add_in_gga(0, X) → add_out_gga(X)
add_in_gga(s(X), Y) → U3_gga(add_in_gga(X, Y))
U3_gga(add_out_gga(Z)) → add_out_gga(s(Z))

The set Q consists of the following terms:

add_in_gga(x0, x1)
U3_gga(x0)

We have to consider all (P,Q,R)-chains.

(37) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • SUM_IN_GGA(.(X1, Y1), .(X2, Y2)) → U1_GGA(Y1, Y2, add_in_gga(X1, X2))
    The graph contains the following edges 1 > 1, 2 > 2

  • U1_GGA(Y1, Y2, add_out_gga(X3)) → SUM_IN_GGA(Y1, Y2)
    The graph contains the following edges 1 >= 1, 2 >= 2

(38) TRUE