(0) Obligation:
Clauses:
sum([], [], []).
sum(.(X1, Y1), .(X2, Y2), .(X3, Y3)) :- ','(add(X1, X2, X3), sum(Y1, Y2, Y3)).
add(0, X, X).
add(s(X), Y, s(Z)) :- add(X, Y, Z).
Queries:
sum(g,g,a).
(1) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
sum_in: (b,b,f)
add_in: (b,b,f)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
sum_in_gga([], [], []) → sum_out_gga([], [], [])
sum_in_gga(.(X1, Y1), .(X2, Y2), .(X3, Y3)) → U1_gga(X1, Y1, X2, Y2, X3, Y3, add_in_gga(X1, X2, X3))
add_in_gga(0, X, X) → add_out_gga(0, X, X)
add_in_gga(s(X), Y, s(Z)) → U3_gga(X, Y, Z, add_in_gga(X, Y, Z))
U3_gga(X, Y, Z, add_out_gga(X, Y, Z)) → add_out_gga(s(X), Y, s(Z))
U1_gga(X1, Y1, X2, Y2, X3, Y3, add_out_gga(X1, X2, X3)) → U2_gga(X1, Y1, X2, Y2, X3, Y3, sum_in_gga(Y1, Y2, Y3))
U2_gga(X1, Y1, X2, Y2, X3, Y3, sum_out_gga(Y1, Y2, Y3)) → sum_out_gga(.(X1, Y1), .(X2, Y2), .(X3, Y3))
The argument filtering Pi contains the following mapping:
sum_in_gga(
x1,
x2,
x3) =
sum_in_gga(
x1,
x2)
[] =
[]
sum_out_gga(
x1,
x2,
x3) =
sum_out_gga(
x1,
x2,
x3)
.(
x1,
x2) =
.(
x1,
x2)
U1_gga(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U1_gga(
x1,
x2,
x3,
x4,
x7)
add_in_gga(
x1,
x2,
x3) =
add_in_gga(
x1,
x2)
0 =
0
add_out_gga(
x1,
x2,
x3) =
add_out_gga(
x1,
x2,
x3)
s(
x1) =
s(
x1)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x1,
x2,
x4)
U2_gga(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U2_gga(
x1,
x2,
x3,
x4,
x5,
x7)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(2) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
sum_in_gga([], [], []) → sum_out_gga([], [], [])
sum_in_gga(.(X1, Y1), .(X2, Y2), .(X3, Y3)) → U1_gga(X1, Y1, X2, Y2, X3, Y3, add_in_gga(X1, X2, X3))
add_in_gga(0, X, X) → add_out_gga(0, X, X)
add_in_gga(s(X), Y, s(Z)) → U3_gga(X, Y, Z, add_in_gga(X, Y, Z))
U3_gga(X, Y, Z, add_out_gga(X, Y, Z)) → add_out_gga(s(X), Y, s(Z))
U1_gga(X1, Y1, X2, Y2, X3, Y3, add_out_gga(X1, X2, X3)) → U2_gga(X1, Y1, X2, Y2, X3, Y3, sum_in_gga(Y1, Y2, Y3))
U2_gga(X1, Y1, X2, Y2, X3, Y3, sum_out_gga(Y1, Y2, Y3)) → sum_out_gga(.(X1, Y1), .(X2, Y2), .(X3, Y3))
The argument filtering Pi contains the following mapping:
sum_in_gga(
x1,
x2,
x3) =
sum_in_gga(
x1,
x2)
[] =
[]
sum_out_gga(
x1,
x2,
x3) =
sum_out_gga(
x1,
x2,
x3)
.(
x1,
x2) =
.(
x1,
x2)
U1_gga(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U1_gga(
x1,
x2,
x3,
x4,
x7)
add_in_gga(
x1,
x2,
x3) =
add_in_gga(
x1,
x2)
0 =
0
add_out_gga(
x1,
x2,
x3) =
add_out_gga(
x1,
x2,
x3)
s(
x1) =
s(
x1)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x1,
x2,
x4)
U2_gga(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U2_gga(
x1,
x2,
x3,
x4,
x5,
x7)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
SUM_IN_GGA(.(X1, Y1), .(X2, Y2), .(X3, Y3)) → U1_GGA(X1, Y1, X2, Y2, X3, Y3, add_in_gga(X1, X2, X3))
SUM_IN_GGA(.(X1, Y1), .(X2, Y2), .(X3, Y3)) → ADD_IN_GGA(X1, X2, X3)
ADD_IN_GGA(s(X), Y, s(Z)) → U3_GGA(X, Y, Z, add_in_gga(X, Y, Z))
ADD_IN_GGA(s(X), Y, s(Z)) → ADD_IN_GGA(X, Y, Z)
U1_GGA(X1, Y1, X2, Y2, X3, Y3, add_out_gga(X1, X2, X3)) → U2_GGA(X1, Y1, X2, Y2, X3, Y3, sum_in_gga(Y1, Y2, Y3))
U1_GGA(X1, Y1, X2, Y2, X3, Y3, add_out_gga(X1, X2, X3)) → SUM_IN_GGA(Y1, Y2, Y3)
The TRS R consists of the following rules:
sum_in_gga([], [], []) → sum_out_gga([], [], [])
sum_in_gga(.(X1, Y1), .(X2, Y2), .(X3, Y3)) → U1_gga(X1, Y1, X2, Y2, X3, Y3, add_in_gga(X1, X2, X3))
add_in_gga(0, X, X) → add_out_gga(0, X, X)
add_in_gga(s(X), Y, s(Z)) → U3_gga(X, Y, Z, add_in_gga(X, Y, Z))
U3_gga(X, Y, Z, add_out_gga(X, Y, Z)) → add_out_gga(s(X), Y, s(Z))
U1_gga(X1, Y1, X2, Y2, X3, Y3, add_out_gga(X1, X2, X3)) → U2_gga(X1, Y1, X2, Y2, X3, Y3, sum_in_gga(Y1, Y2, Y3))
U2_gga(X1, Y1, X2, Y2, X3, Y3, sum_out_gga(Y1, Y2, Y3)) → sum_out_gga(.(X1, Y1), .(X2, Y2), .(X3, Y3))
The argument filtering Pi contains the following mapping:
sum_in_gga(
x1,
x2,
x3) =
sum_in_gga(
x1,
x2)
[] =
[]
sum_out_gga(
x1,
x2,
x3) =
sum_out_gga(
x1,
x2,
x3)
.(
x1,
x2) =
.(
x1,
x2)
U1_gga(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U1_gga(
x1,
x2,
x3,
x4,
x7)
add_in_gga(
x1,
x2,
x3) =
add_in_gga(
x1,
x2)
0 =
0
add_out_gga(
x1,
x2,
x3) =
add_out_gga(
x1,
x2,
x3)
s(
x1) =
s(
x1)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x1,
x2,
x4)
U2_gga(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U2_gga(
x1,
x2,
x3,
x4,
x5,
x7)
SUM_IN_GGA(
x1,
x2,
x3) =
SUM_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U1_GGA(
x1,
x2,
x3,
x4,
x7)
ADD_IN_GGA(
x1,
x2,
x3) =
ADD_IN_GGA(
x1,
x2)
U3_GGA(
x1,
x2,
x3,
x4) =
U3_GGA(
x1,
x2,
x4)
U2_GGA(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U2_GGA(
x1,
x2,
x3,
x4,
x5,
x7)
We have to consider all (P,R,Pi)-chains
(4) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
SUM_IN_GGA(.(X1, Y1), .(X2, Y2), .(X3, Y3)) → U1_GGA(X1, Y1, X2, Y2, X3, Y3, add_in_gga(X1, X2, X3))
SUM_IN_GGA(.(X1, Y1), .(X2, Y2), .(X3, Y3)) → ADD_IN_GGA(X1, X2, X3)
ADD_IN_GGA(s(X), Y, s(Z)) → U3_GGA(X, Y, Z, add_in_gga(X, Y, Z))
ADD_IN_GGA(s(X), Y, s(Z)) → ADD_IN_GGA(X, Y, Z)
U1_GGA(X1, Y1, X2, Y2, X3, Y3, add_out_gga(X1, X2, X3)) → U2_GGA(X1, Y1, X2, Y2, X3, Y3, sum_in_gga(Y1, Y2, Y3))
U1_GGA(X1, Y1, X2, Y2, X3, Y3, add_out_gga(X1, X2, X3)) → SUM_IN_GGA(Y1, Y2, Y3)
The TRS R consists of the following rules:
sum_in_gga([], [], []) → sum_out_gga([], [], [])
sum_in_gga(.(X1, Y1), .(X2, Y2), .(X3, Y3)) → U1_gga(X1, Y1, X2, Y2, X3, Y3, add_in_gga(X1, X2, X3))
add_in_gga(0, X, X) → add_out_gga(0, X, X)
add_in_gga(s(X), Y, s(Z)) → U3_gga(X, Y, Z, add_in_gga(X, Y, Z))
U3_gga(X, Y, Z, add_out_gga(X, Y, Z)) → add_out_gga(s(X), Y, s(Z))
U1_gga(X1, Y1, X2, Y2, X3, Y3, add_out_gga(X1, X2, X3)) → U2_gga(X1, Y1, X2, Y2, X3, Y3, sum_in_gga(Y1, Y2, Y3))
U2_gga(X1, Y1, X2, Y2, X3, Y3, sum_out_gga(Y1, Y2, Y3)) → sum_out_gga(.(X1, Y1), .(X2, Y2), .(X3, Y3))
The argument filtering Pi contains the following mapping:
sum_in_gga(
x1,
x2,
x3) =
sum_in_gga(
x1,
x2)
[] =
[]
sum_out_gga(
x1,
x2,
x3) =
sum_out_gga(
x1,
x2,
x3)
.(
x1,
x2) =
.(
x1,
x2)
U1_gga(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U1_gga(
x1,
x2,
x3,
x4,
x7)
add_in_gga(
x1,
x2,
x3) =
add_in_gga(
x1,
x2)
0 =
0
add_out_gga(
x1,
x2,
x3) =
add_out_gga(
x1,
x2,
x3)
s(
x1) =
s(
x1)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x1,
x2,
x4)
U2_gga(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U2_gga(
x1,
x2,
x3,
x4,
x5,
x7)
SUM_IN_GGA(
x1,
x2,
x3) =
SUM_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U1_GGA(
x1,
x2,
x3,
x4,
x7)
ADD_IN_GGA(
x1,
x2,
x3) =
ADD_IN_GGA(
x1,
x2)
U3_GGA(
x1,
x2,
x3,
x4) =
U3_GGA(
x1,
x2,
x4)
U2_GGA(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U2_GGA(
x1,
x2,
x3,
x4,
x5,
x7)
We have to consider all (P,R,Pi)-chains
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 3 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
ADD_IN_GGA(s(X), Y, s(Z)) → ADD_IN_GGA(X, Y, Z)
The TRS R consists of the following rules:
sum_in_gga([], [], []) → sum_out_gga([], [], [])
sum_in_gga(.(X1, Y1), .(X2, Y2), .(X3, Y3)) → U1_gga(X1, Y1, X2, Y2, X3, Y3, add_in_gga(X1, X2, X3))
add_in_gga(0, X, X) → add_out_gga(0, X, X)
add_in_gga(s(X), Y, s(Z)) → U3_gga(X, Y, Z, add_in_gga(X, Y, Z))
U3_gga(X, Y, Z, add_out_gga(X, Y, Z)) → add_out_gga(s(X), Y, s(Z))
U1_gga(X1, Y1, X2, Y2, X3, Y3, add_out_gga(X1, X2, X3)) → U2_gga(X1, Y1, X2, Y2, X3, Y3, sum_in_gga(Y1, Y2, Y3))
U2_gga(X1, Y1, X2, Y2, X3, Y3, sum_out_gga(Y1, Y2, Y3)) → sum_out_gga(.(X1, Y1), .(X2, Y2), .(X3, Y3))
The argument filtering Pi contains the following mapping:
sum_in_gga(
x1,
x2,
x3) =
sum_in_gga(
x1,
x2)
[] =
[]
sum_out_gga(
x1,
x2,
x3) =
sum_out_gga(
x1,
x2,
x3)
.(
x1,
x2) =
.(
x1,
x2)
U1_gga(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U1_gga(
x1,
x2,
x3,
x4,
x7)
add_in_gga(
x1,
x2,
x3) =
add_in_gga(
x1,
x2)
0 =
0
add_out_gga(
x1,
x2,
x3) =
add_out_gga(
x1,
x2,
x3)
s(
x1) =
s(
x1)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x1,
x2,
x4)
U2_gga(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U2_gga(
x1,
x2,
x3,
x4,
x5,
x7)
ADD_IN_GGA(
x1,
x2,
x3) =
ADD_IN_GGA(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(8) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(9) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
ADD_IN_GGA(s(X), Y, s(Z)) → ADD_IN_GGA(X, Y, Z)
R is empty.
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
ADD_IN_GGA(
x1,
x2,
x3) =
ADD_IN_GGA(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(10) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ADD_IN_GGA(s(X), Y) → ADD_IN_GGA(X, Y)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(12) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- ADD_IN_GGA(s(X), Y) → ADD_IN_GGA(X, Y)
The graph contains the following edges 1 > 1, 2 >= 2
(13) TRUE
(14) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
U1_GGA(X1, Y1, X2, Y2, X3, Y3, add_out_gga(X1, X2, X3)) → SUM_IN_GGA(Y1, Y2, Y3)
SUM_IN_GGA(.(X1, Y1), .(X2, Y2), .(X3, Y3)) → U1_GGA(X1, Y1, X2, Y2, X3, Y3, add_in_gga(X1, X2, X3))
The TRS R consists of the following rules:
sum_in_gga([], [], []) → sum_out_gga([], [], [])
sum_in_gga(.(X1, Y1), .(X2, Y2), .(X3, Y3)) → U1_gga(X1, Y1, X2, Y2, X3, Y3, add_in_gga(X1, X2, X3))
add_in_gga(0, X, X) → add_out_gga(0, X, X)
add_in_gga(s(X), Y, s(Z)) → U3_gga(X, Y, Z, add_in_gga(X, Y, Z))
U3_gga(X, Y, Z, add_out_gga(X, Y, Z)) → add_out_gga(s(X), Y, s(Z))
U1_gga(X1, Y1, X2, Y2, X3, Y3, add_out_gga(X1, X2, X3)) → U2_gga(X1, Y1, X2, Y2, X3, Y3, sum_in_gga(Y1, Y2, Y3))
U2_gga(X1, Y1, X2, Y2, X3, Y3, sum_out_gga(Y1, Y2, Y3)) → sum_out_gga(.(X1, Y1), .(X2, Y2), .(X3, Y3))
The argument filtering Pi contains the following mapping:
sum_in_gga(
x1,
x2,
x3) =
sum_in_gga(
x1,
x2)
[] =
[]
sum_out_gga(
x1,
x2,
x3) =
sum_out_gga(
x1,
x2,
x3)
.(
x1,
x2) =
.(
x1,
x2)
U1_gga(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U1_gga(
x1,
x2,
x3,
x4,
x7)
add_in_gga(
x1,
x2,
x3) =
add_in_gga(
x1,
x2)
0 =
0
add_out_gga(
x1,
x2,
x3) =
add_out_gga(
x1,
x2,
x3)
s(
x1) =
s(
x1)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x1,
x2,
x4)
U2_gga(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U2_gga(
x1,
x2,
x3,
x4,
x5,
x7)
SUM_IN_GGA(
x1,
x2,
x3) =
SUM_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U1_GGA(
x1,
x2,
x3,
x4,
x7)
We have to consider all (P,R,Pi)-chains
(15) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(16) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
U1_GGA(X1, Y1, X2, Y2, X3, Y3, add_out_gga(X1, X2, X3)) → SUM_IN_GGA(Y1, Y2, Y3)
SUM_IN_GGA(.(X1, Y1), .(X2, Y2), .(X3, Y3)) → U1_GGA(X1, Y1, X2, Y2, X3, Y3, add_in_gga(X1, X2, X3))
The TRS R consists of the following rules:
add_in_gga(0, X, X) → add_out_gga(0, X, X)
add_in_gga(s(X), Y, s(Z)) → U3_gga(X, Y, Z, add_in_gga(X, Y, Z))
U3_gga(X, Y, Z, add_out_gga(X, Y, Z)) → add_out_gga(s(X), Y, s(Z))
The argument filtering Pi contains the following mapping:
.(
x1,
x2) =
.(
x1,
x2)
add_in_gga(
x1,
x2,
x3) =
add_in_gga(
x1,
x2)
0 =
0
add_out_gga(
x1,
x2,
x3) =
add_out_gga(
x1,
x2,
x3)
s(
x1) =
s(
x1)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x1,
x2,
x4)
SUM_IN_GGA(
x1,
x2,
x3) =
SUM_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U1_GGA(
x1,
x2,
x3,
x4,
x7)
We have to consider all (P,R,Pi)-chains
(17) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U1_GGA(X1, Y1, X2, Y2, add_out_gga(X1, X2, X3)) → SUM_IN_GGA(Y1, Y2)
SUM_IN_GGA(.(X1, Y1), .(X2, Y2)) → U1_GGA(X1, Y1, X2, Y2, add_in_gga(X1, X2))
The TRS R consists of the following rules:
add_in_gga(0, X) → add_out_gga(0, X, X)
add_in_gga(s(X), Y) → U3_gga(X, Y, add_in_gga(X, Y))
U3_gga(X, Y, add_out_gga(X, Y, Z)) → add_out_gga(s(X), Y, s(Z))
The set Q consists of the following terms:
add_in_gga(x0, x1)
U3_gga(x0, x1, x2)
We have to consider all (P,Q,R)-chains.
(19) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
sum_in: (b,b,f)
add_in: (b,b,f)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
sum_in_gga([], [], []) → sum_out_gga([], [], [])
sum_in_gga(.(X1, Y1), .(X2, Y2), .(X3, Y3)) → U1_gga(X1, Y1, X2, Y2, X3, Y3, add_in_gga(X1, X2, X3))
add_in_gga(0, X, X) → add_out_gga(0, X, X)
add_in_gga(s(X), Y, s(Z)) → U3_gga(X, Y, Z, add_in_gga(X, Y, Z))
U3_gga(X, Y, Z, add_out_gga(X, Y, Z)) → add_out_gga(s(X), Y, s(Z))
U1_gga(X1, Y1, X2, Y2, X3, Y3, add_out_gga(X1, X2, X3)) → U2_gga(X1, Y1, X2, Y2, X3, Y3, sum_in_gga(Y1, Y2, Y3))
U2_gga(X1, Y1, X2, Y2, X3, Y3, sum_out_gga(Y1, Y2, Y3)) → sum_out_gga(.(X1, Y1), .(X2, Y2), .(X3, Y3))
The argument filtering Pi contains the following mapping:
sum_in_gga(
x1,
x2,
x3) =
sum_in_gga(
x1,
x2)
[] =
[]
sum_out_gga(
x1,
x2,
x3) =
sum_out_gga(
x3)
.(
x1,
x2) =
.(
x1,
x2)
U1_gga(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U1_gga(
x2,
x4,
x7)
add_in_gga(
x1,
x2,
x3) =
add_in_gga(
x1,
x2)
0 =
0
add_out_gga(
x1,
x2,
x3) =
add_out_gga(
x3)
s(
x1) =
s(
x1)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x4)
U2_gga(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U2_gga(
x5,
x7)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(20) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
sum_in_gga([], [], []) → sum_out_gga([], [], [])
sum_in_gga(.(X1, Y1), .(X2, Y2), .(X3, Y3)) → U1_gga(X1, Y1, X2, Y2, X3, Y3, add_in_gga(X1, X2, X3))
add_in_gga(0, X, X) → add_out_gga(0, X, X)
add_in_gga(s(X), Y, s(Z)) → U3_gga(X, Y, Z, add_in_gga(X, Y, Z))
U3_gga(X, Y, Z, add_out_gga(X, Y, Z)) → add_out_gga(s(X), Y, s(Z))
U1_gga(X1, Y1, X2, Y2, X3, Y3, add_out_gga(X1, X2, X3)) → U2_gga(X1, Y1, X2, Y2, X3, Y3, sum_in_gga(Y1, Y2, Y3))
U2_gga(X1, Y1, X2, Y2, X3, Y3, sum_out_gga(Y1, Y2, Y3)) → sum_out_gga(.(X1, Y1), .(X2, Y2), .(X3, Y3))
The argument filtering Pi contains the following mapping:
sum_in_gga(
x1,
x2,
x3) =
sum_in_gga(
x1,
x2)
[] =
[]
sum_out_gga(
x1,
x2,
x3) =
sum_out_gga(
x3)
.(
x1,
x2) =
.(
x1,
x2)
U1_gga(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U1_gga(
x2,
x4,
x7)
add_in_gga(
x1,
x2,
x3) =
add_in_gga(
x1,
x2)
0 =
0
add_out_gga(
x1,
x2,
x3) =
add_out_gga(
x3)
s(
x1) =
s(
x1)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x4)
U2_gga(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U2_gga(
x5,
x7)
(21) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
SUM_IN_GGA(.(X1, Y1), .(X2, Y2), .(X3, Y3)) → U1_GGA(X1, Y1, X2, Y2, X3, Y3, add_in_gga(X1, X2, X3))
SUM_IN_GGA(.(X1, Y1), .(X2, Y2), .(X3, Y3)) → ADD_IN_GGA(X1, X2, X3)
ADD_IN_GGA(s(X), Y, s(Z)) → U3_GGA(X, Y, Z, add_in_gga(X, Y, Z))
ADD_IN_GGA(s(X), Y, s(Z)) → ADD_IN_GGA(X, Y, Z)
U1_GGA(X1, Y1, X2, Y2, X3, Y3, add_out_gga(X1, X2, X3)) → U2_GGA(X1, Y1, X2, Y2, X3, Y3, sum_in_gga(Y1, Y2, Y3))
U1_GGA(X1, Y1, X2, Y2, X3, Y3, add_out_gga(X1, X2, X3)) → SUM_IN_GGA(Y1, Y2, Y3)
The TRS R consists of the following rules:
sum_in_gga([], [], []) → sum_out_gga([], [], [])
sum_in_gga(.(X1, Y1), .(X2, Y2), .(X3, Y3)) → U1_gga(X1, Y1, X2, Y2, X3, Y3, add_in_gga(X1, X2, X3))
add_in_gga(0, X, X) → add_out_gga(0, X, X)
add_in_gga(s(X), Y, s(Z)) → U3_gga(X, Y, Z, add_in_gga(X, Y, Z))
U3_gga(X, Y, Z, add_out_gga(X, Y, Z)) → add_out_gga(s(X), Y, s(Z))
U1_gga(X1, Y1, X2, Y2, X3, Y3, add_out_gga(X1, X2, X3)) → U2_gga(X1, Y1, X2, Y2, X3, Y3, sum_in_gga(Y1, Y2, Y3))
U2_gga(X1, Y1, X2, Y2, X3, Y3, sum_out_gga(Y1, Y2, Y3)) → sum_out_gga(.(X1, Y1), .(X2, Y2), .(X3, Y3))
The argument filtering Pi contains the following mapping:
sum_in_gga(
x1,
x2,
x3) =
sum_in_gga(
x1,
x2)
[] =
[]
sum_out_gga(
x1,
x2,
x3) =
sum_out_gga(
x3)
.(
x1,
x2) =
.(
x1,
x2)
U1_gga(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U1_gga(
x2,
x4,
x7)
add_in_gga(
x1,
x2,
x3) =
add_in_gga(
x1,
x2)
0 =
0
add_out_gga(
x1,
x2,
x3) =
add_out_gga(
x3)
s(
x1) =
s(
x1)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x4)
U2_gga(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U2_gga(
x5,
x7)
SUM_IN_GGA(
x1,
x2,
x3) =
SUM_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U1_GGA(
x2,
x4,
x7)
ADD_IN_GGA(
x1,
x2,
x3) =
ADD_IN_GGA(
x1,
x2)
U3_GGA(
x1,
x2,
x3,
x4) =
U3_GGA(
x4)
U2_GGA(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U2_GGA(
x5,
x7)
We have to consider all (P,R,Pi)-chains
(22) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
SUM_IN_GGA(.(X1, Y1), .(X2, Y2), .(X3, Y3)) → U1_GGA(X1, Y1, X2, Y2, X3, Y3, add_in_gga(X1, X2, X3))
SUM_IN_GGA(.(X1, Y1), .(X2, Y2), .(X3, Y3)) → ADD_IN_GGA(X1, X2, X3)
ADD_IN_GGA(s(X), Y, s(Z)) → U3_GGA(X, Y, Z, add_in_gga(X, Y, Z))
ADD_IN_GGA(s(X), Y, s(Z)) → ADD_IN_GGA(X, Y, Z)
U1_GGA(X1, Y1, X2, Y2, X3, Y3, add_out_gga(X1, X2, X3)) → U2_GGA(X1, Y1, X2, Y2, X3, Y3, sum_in_gga(Y1, Y2, Y3))
U1_GGA(X1, Y1, X2, Y2, X3, Y3, add_out_gga(X1, X2, X3)) → SUM_IN_GGA(Y1, Y2, Y3)
The TRS R consists of the following rules:
sum_in_gga([], [], []) → sum_out_gga([], [], [])
sum_in_gga(.(X1, Y1), .(X2, Y2), .(X3, Y3)) → U1_gga(X1, Y1, X2, Y2, X3, Y3, add_in_gga(X1, X2, X3))
add_in_gga(0, X, X) → add_out_gga(0, X, X)
add_in_gga(s(X), Y, s(Z)) → U3_gga(X, Y, Z, add_in_gga(X, Y, Z))
U3_gga(X, Y, Z, add_out_gga(X, Y, Z)) → add_out_gga(s(X), Y, s(Z))
U1_gga(X1, Y1, X2, Y2, X3, Y3, add_out_gga(X1, X2, X3)) → U2_gga(X1, Y1, X2, Y2, X3, Y3, sum_in_gga(Y1, Y2, Y3))
U2_gga(X1, Y1, X2, Y2, X3, Y3, sum_out_gga(Y1, Y2, Y3)) → sum_out_gga(.(X1, Y1), .(X2, Y2), .(X3, Y3))
The argument filtering Pi contains the following mapping:
sum_in_gga(
x1,
x2,
x3) =
sum_in_gga(
x1,
x2)
[] =
[]
sum_out_gga(
x1,
x2,
x3) =
sum_out_gga(
x3)
.(
x1,
x2) =
.(
x1,
x2)
U1_gga(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U1_gga(
x2,
x4,
x7)
add_in_gga(
x1,
x2,
x3) =
add_in_gga(
x1,
x2)
0 =
0
add_out_gga(
x1,
x2,
x3) =
add_out_gga(
x3)
s(
x1) =
s(
x1)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x4)
U2_gga(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U2_gga(
x5,
x7)
SUM_IN_GGA(
x1,
x2,
x3) =
SUM_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U1_GGA(
x2,
x4,
x7)
ADD_IN_GGA(
x1,
x2,
x3) =
ADD_IN_GGA(
x1,
x2)
U3_GGA(
x1,
x2,
x3,
x4) =
U3_GGA(
x4)
U2_GGA(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U2_GGA(
x5,
x7)
We have to consider all (P,R,Pi)-chains
(23) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 3 less nodes.
(24) Complex Obligation (AND)
(25) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
ADD_IN_GGA(s(X), Y, s(Z)) → ADD_IN_GGA(X, Y, Z)
The TRS R consists of the following rules:
sum_in_gga([], [], []) → sum_out_gga([], [], [])
sum_in_gga(.(X1, Y1), .(X2, Y2), .(X3, Y3)) → U1_gga(X1, Y1, X2, Y2, X3, Y3, add_in_gga(X1, X2, X3))
add_in_gga(0, X, X) → add_out_gga(0, X, X)
add_in_gga(s(X), Y, s(Z)) → U3_gga(X, Y, Z, add_in_gga(X, Y, Z))
U3_gga(X, Y, Z, add_out_gga(X, Y, Z)) → add_out_gga(s(X), Y, s(Z))
U1_gga(X1, Y1, X2, Y2, X3, Y3, add_out_gga(X1, X2, X3)) → U2_gga(X1, Y1, X2, Y2, X3, Y3, sum_in_gga(Y1, Y2, Y3))
U2_gga(X1, Y1, X2, Y2, X3, Y3, sum_out_gga(Y1, Y2, Y3)) → sum_out_gga(.(X1, Y1), .(X2, Y2), .(X3, Y3))
The argument filtering Pi contains the following mapping:
sum_in_gga(
x1,
x2,
x3) =
sum_in_gga(
x1,
x2)
[] =
[]
sum_out_gga(
x1,
x2,
x3) =
sum_out_gga(
x3)
.(
x1,
x2) =
.(
x1,
x2)
U1_gga(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U1_gga(
x2,
x4,
x7)
add_in_gga(
x1,
x2,
x3) =
add_in_gga(
x1,
x2)
0 =
0
add_out_gga(
x1,
x2,
x3) =
add_out_gga(
x3)
s(
x1) =
s(
x1)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x4)
U2_gga(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U2_gga(
x5,
x7)
ADD_IN_GGA(
x1,
x2,
x3) =
ADD_IN_GGA(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(26) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(27) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
ADD_IN_GGA(s(X), Y, s(Z)) → ADD_IN_GGA(X, Y, Z)
R is empty.
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
ADD_IN_GGA(
x1,
x2,
x3) =
ADD_IN_GGA(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(28) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(29) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ADD_IN_GGA(s(X), Y) → ADD_IN_GGA(X, Y)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(30) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- ADD_IN_GGA(s(X), Y) → ADD_IN_GGA(X, Y)
The graph contains the following edges 1 > 1, 2 >= 2
(31) TRUE
(32) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
U1_GGA(X1, Y1, X2, Y2, X3, Y3, add_out_gga(X1, X2, X3)) → SUM_IN_GGA(Y1, Y2, Y3)
SUM_IN_GGA(.(X1, Y1), .(X2, Y2), .(X3, Y3)) → U1_GGA(X1, Y1, X2, Y2, X3, Y3, add_in_gga(X1, X2, X3))
The TRS R consists of the following rules:
sum_in_gga([], [], []) → sum_out_gga([], [], [])
sum_in_gga(.(X1, Y1), .(X2, Y2), .(X3, Y3)) → U1_gga(X1, Y1, X2, Y2, X3, Y3, add_in_gga(X1, X2, X3))
add_in_gga(0, X, X) → add_out_gga(0, X, X)
add_in_gga(s(X), Y, s(Z)) → U3_gga(X, Y, Z, add_in_gga(X, Y, Z))
U3_gga(X, Y, Z, add_out_gga(X, Y, Z)) → add_out_gga(s(X), Y, s(Z))
U1_gga(X1, Y1, X2, Y2, X3, Y3, add_out_gga(X1, X2, X3)) → U2_gga(X1, Y1, X2, Y2, X3, Y3, sum_in_gga(Y1, Y2, Y3))
U2_gga(X1, Y1, X2, Y2, X3, Y3, sum_out_gga(Y1, Y2, Y3)) → sum_out_gga(.(X1, Y1), .(X2, Y2), .(X3, Y3))
The argument filtering Pi contains the following mapping:
sum_in_gga(
x1,
x2,
x3) =
sum_in_gga(
x1,
x2)
[] =
[]
sum_out_gga(
x1,
x2,
x3) =
sum_out_gga(
x3)
.(
x1,
x2) =
.(
x1,
x2)
U1_gga(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U1_gga(
x2,
x4,
x7)
add_in_gga(
x1,
x2,
x3) =
add_in_gga(
x1,
x2)
0 =
0
add_out_gga(
x1,
x2,
x3) =
add_out_gga(
x3)
s(
x1) =
s(
x1)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x4)
U2_gga(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U2_gga(
x5,
x7)
SUM_IN_GGA(
x1,
x2,
x3) =
SUM_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U1_GGA(
x2,
x4,
x7)
We have to consider all (P,R,Pi)-chains
(33) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(34) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
U1_GGA(X1, Y1, X2, Y2, X3, Y3, add_out_gga(X1, X2, X3)) → SUM_IN_GGA(Y1, Y2, Y3)
SUM_IN_GGA(.(X1, Y1), .(X2, Y2), .(X3, Y3)) → U1_GGA(X1, Y1, X2, Y2, X3, Y3, add_in_gga(X1, X2, X3))
The TRS R consists of the following rules:
add_in_gga(0, X, X) → add_out_gga(0, X, X)
add_in_gga(s(X), Y, s(Z)) → U3_gga(X, Y, Z, add_in_gga(X, Y, Z))
U3_gga(X, Y, Z, add_out_gga(X, Y, Z)) → add_out_gga(s(X), Y, s(Z))
The argument filtering Pi contains the following mapping:
.(
x1,
x2) =
.(
x1,
x2)
add_in_gga(
x1,
x2,
x3) =
add_in_gga(
x1,
x2)
0 =
0
add_out_gga(
x1,
x2,
x3) =
add_out_gga(
x3)
s(
x1) =
s(
x1)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x4)
SUM_IN_GGA(
x1,
x2,
x3) =
SUM_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U1_GGA(
x2,
x4,
x7)
We have to consider all (P,R,Pi)-chains
(35) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(36) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U1_GGA(Y1, Y2, add_out_gga(X3)) → SUM_IN_GGA(Y1, Y2)
SUM_IN_GGA(.(X1, Y1), .(X2, Y2)) → U1_GGA(Y1, Y2, add_in_gga(X1, X2))
The TRS R consists of the following rules:
add_in_gga(0, X) → add_out_gga(X)
add_in_gga(s(X), Y) → U3_gga(add_in_gga(X, Y))
U3_gga(add_out_gga(Z)) → add_out_gga(s(Z))
The set Q consists of the following terms:
add_in_gga(x0, x1)
U3_gga(x0)
We have to consider all (P,Q,R)-chains.
(37) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- SUM_IN_GGA(.(X1, Y1), .(X2, Y2)) → U1_GGA(Y1, Y2, add_in_gga(X1, X2))
The graph contains the following edges 1 > 1, 2 > 2
- U1_GGA(Y1, Y2, add_out_gga(X3)) → SUM_IN_GGA(Y1, Y2)
The graph contains the following edges 1 >= 1, 2 >= 2
(38) TRUE