(0) Obligation:

Clauses:

reverse([], X, X).
reverse(.(X, Y), Z, U) :- reverse(Y, Z, .(X, U)).

Queries:

reverse(g,g,a).

(1) PrologToPrologProblemTransformerProof (SOUND transformation)

Built Prolog problem from termination graph.

(2) Obligation:

Clauses:

reverse1([], T5, T5).
reverse1(.(T28, []), .(T28, T29), T29).
reverse1(.(T43, .(T40, T41)), T42, T45) :- reverse1(T41, T42, .(T40, .(T43, T45))).

Queries:

reverse1(g,g,a).

(3) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
reverse1_in: (b,b,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

reverse1_in_gga([], T5, T5) → reverse1_out_gga([], T5, T5)
reverse1_in_gga(.(T28, []), .(T28, T29), T29) → reverse1_out_gga(.(T28, []), .(T28, T29), T29)
reverse1_in_gga(.(T43, .(T40, T41)), T42, T45) → U1_gga(T43, T40, T41, T42, T45, reverse1_in_gga(T41, T42, .(T40, .(T43, T45))))
U1_gga(T43, T40, T41, T42, T45, reverse1_out_gga(T41, T42, .(T40, .(T43, T45)))) → reverse1_out_gga(.(T43, .(T40, T41)), T42, T45)

The argument filtering Pi contains the following mapping:
reverse1_in_gga(x1, x2, x3)  =  reverse1_in_gga(x1, x2)
[]  =  []
reverse1_out_gga(x1, x2, x3)  =  reverse1_out_gga(x3)
.(x1, x2)  =  .(x1, x2)
U1_gga(x1, x2, x3, x4, x5, x6)  =  U1_gga(x6)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(4) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

reverse1_in_gga([], T5, T5) → reverse1_out_gga([], T5, T5)
reverse1_in_gga(.(T28, []), .(T28, T29), T29) → reverse1_out_gga(.(T28, []), .(T28, T29), T29)
reverse1_in_gga(.(T43, .(T40, T41)), T42, T45) → U1_gga(T43, T40, T41, T42, T45, reverse1_in_gga(T41, T42, .(T40, .(T43, T45))))
U1_gga(T43, T40, T41, T42, T45, reverse1_out_gga(T41, T42, .(T40, .(T43, T45)))) → reverse1_out_gga(.(T43, .(T40, T41)), T42, T45)

The argument filtering Pi contains the following mapping:
reverse1_in_gga(x1, x2, x3)  =  reverse1_in_gga(x1, x2)
[]  =  []
reverse1_out_gga(x1, x2, x3)  =  reverse1_out_gga(x3)
.(x1, x2)  =  .(x1, x2)
U1_gga(x1, x2, x3, x4, x5, x6)  =  U1_gga(x6)

(5) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

REVERSE1_IN_GGA(.(T43, .(T40, T41)), T42, T45) → U1_GGA(T43, T40, T41, T42, T45, reverse1_in_gga(T41, T42, .(T40, .(T43, T45))))
REVERSE1_IN_GGA(.(T43, .(T40, T41)), T42, T45) → REVERSE1_IN_GGA(T41, T42, .(T40, .(T43, T45)))

The TRS R consists of the following rules:

reverse1_in_gga([], T5, T5) → reverse1_out_gga([], T5, T5)
reverse1_in_gga(.(T28, []), .(T28, T29), T29) → reverse1_out_gga(.(T28, []), .(T28, T29), T29)
reverse1_in_gga(.(T43, .(T40, T41)), T42, T45) → U1_gga(T43, T40, T41, T42, T45, reverse1_in_gga(T41, T42, .(T40, .(T43, T45))))
U1_gga(T43, T40, T41, T42, T45, reverse1_out_gga(T41, T42, .(T40, .(T43, T45)))) → reverse1_out_gga(.(T43, .(T40, T41)), T42, T45)

The argument filtering Pi contains the following mapping:
reverse1_in_gga(x1, x2, x3)  =  reverse1_in_gga(x1, x2)
[]  =  []
reverse1_out_gga(x1, x2, x3)  =  reverse1_out_gga(x3)
.(x1, x2)  =  .(x1, x2)
U1_gga(x1, x2, x3, x4, x5, x6)  =  U1_gga(x6)
REVERSE1_IN_GGA(x1, x2, x3)  =  REVERSE1_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4, x5, x6)  =  U1_GGA(x6)

We have to consider all (P,R,Pi)-chains

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

REVERSE1_IN_GGA(.(T43, .(T40, T41)), T42, T45) → U1_GGA(T43, T40, T41, T42, T45, reverse1_in_gga(T41, T42, .(T40, .(T43, T45))))
REVERSE1_IN_GGA(.(T43, .(T40, T41)), T42, T45) → REVERSE1_IN_GGA(T41, T42, .(T40, .(T43, T45)))

The TRS R consists of the following rules:

reverse1_in_gga([], T5, T5) → reverse1_out_gga([], T5, T5)
reverse1_in_gga(.(T28, []), .(T28, T29), T29) → reverse1_out_gga(.(T28, []), .(T28, T29), T29)
reverse1_in_gga(.(T43, .(T40, T41)), T42, T45) → U1_gga(T43, T40, T41, T42, T45, reverse1_in_gga(T41, T42, .(T40, .(T43, T45))))
U1_gga(T43, T40, T41, T42, T45, reverse1_out_gga(T41, T42, .(T40, .(T43, T45)))) → reverse1_out_gga(.(T43, .(T40, T41)), T42, T45)

The argument filtering Pi contains the following mapping:
reverse1_in_gga(x1, x2, x3)  =  reverse1_in_gga(x1, x2)
[]  =  []
reverse1_out_gga(x1, x2, x3)  =  reverse1_out_gga(x3)
.(x1, x2)  =  .(x1, x2)
U1_gga(x1, x2, x3, x4, x5, x6)  =  U1_gga(x6)
REVERSE1_IN_GGA(x1, x2, x3)  =  REVERSE1_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4, x5, x6)  =  U1_GGA(x6)

We have to consider all (P,R,Pi)-chains

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 1 less node.

(8) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

REVERSE1_IN_GGA(.(T43, .(T40, T41)), T42, T45) → REVERSE1_IN_GGA(T41, T42, .(T40, .(T43, T45)))

The TRS R consists of the following rules:

reverse1_in_gga([], T5, T5) → reverse1_out_gga([], T5, T5)
reverse1_in_gga(.(T28, []), .(T28, T29), T29) → reverse1_out_gga(.(T28, []), .(T28, T29), T29)
reverse1_in_gga(.(T43, .(T40, T41)), T42, T45) → U1_gga(T43, T40, T41, T42, T45, reverse1_in_gga(T41, T42, .(T40, .(T43, T45))))
U1_gga(T43, T40, T41, T42, T45, reverse1_out_gga(T41, T42, .(T40, .(T43, T45)))) → reverse1_out_gga(.(T43, .(T40, T41)), T42, T45)

The argument filtering Pi contains the following mapping:
reverse1_in_gga(x1, x2, x3)  =  reverse1_in_gga(x1, x2)
[]  =  []
reverse1_out_gga(x1, x2, x3)  =  reverse1_out_gga(x3)
.(x1, x2)  =  .(x1, x2)
U1_gga(x1, x2, x3, x4, x5, x6)  =  U1_gga(x6)
REVERSE1_IN_GGA(x1, x2, x3)  =  REVERSE1_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(9) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(10) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

REVERSE1_IN_GGA(.(T43, .(T40, T41)), T42, T45) → REVERSE1_IN_GGA(T41, T42, .(T40, .(T43, T45)))

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
REVERSE1_IN_GGA(x1, x2, x3)  =  REVERSE1_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(11) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REVERSE1_IN_GGA(.(T43, .(T40, T41)), T42) → REVERSE1_IN_GGA(T41, T42)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(13) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • REVERSE1_IN_GGA(.(T43, .(T40, T41)), T42) → REVERSE1_IN_GGA(T41, T42)
    The graph contains the following edges 1 > 1, 2 >= 2

(14) YES