(0) Obligation:
Clauses:
duplicate([], []).
duplicate(.(X, Y), .(X, .(X, Z))) :- duplicate(Y, Z).
Queries:
duplicate(g,a).
(1) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
duplicate_in: (b,f)
Transforming 
Prolog into the following 
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
duplicate_in_ga([], []) → duplicate_out_ga([], [])
duplicate_in_ga(.(X, Y), .(X, .(X, Z))) → U1_ga(X, Y, Z, duplicate_in_ga(Y, Z))
U1_ga(X, Y, Z, duplicate_out_ga(Y, Z)) → duplicate_out_ga(.(X, Y), .(X, .(X, Z)))
The argument filtering Pi contains the following mapping:
duplicate_in_ga(
x1, 
x2)  =  
duplicate_in_ga(
x1)
[]  =  
[]
duplicate_out_ga(
x1, 
x2)  =  
duplicate_out_ga(
x2)
.(
x1, 
x2)  =  
.(
x1, 
x2)
U1_ga(
x1, 
x2, 
x3, 
x4)  =  
U1_ga(
x1, 
x4)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
 
(2) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
duplicate_in_ga([], []) → duplicate_out_ga([], [])
duplicate_in_ga(.(X, Y), .(X, .(X, Z))) → U1_ga(X, Y, Z, duplicate_in_ga(Y, Z))
U1_ga(X, Y, Z, duplicate_out_ga(Y, Z)) → duplicate_out_ga(.(X, Y), .(X, .(X, Z)))
The argument filtering Pi contains the following mapping:
duplicate_in_ga(
x1, 
x2)  =  
duplicate_in_ga(
x1)
[]  =  
[]
duplicate_out_ga(
x1, 
x2)  =  
duplicate_out_ga(
x2)
.(
x1, 
x2)  =  
.(
x1, 
x2)
U1_ga(
x1, 
x2, 
x3, 
x4)  =  
U1_ga(
x1, 
x4)
 
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
DUPLICATE_IN_GA(.(X, Y), .(X, .(X, Z))) → U1_GA(X, Y, Z, duplicate_in_ga(Y, Z))
DUPLICATE_IN_GA(.(X, Y), .(X, .(X, Z))) → DUPLICATE_IN_GA(Y, Z)
The TRS R consists of the following rules:
duplicate_in_ga([], []) → duplicate_out_ga([], [])
duplicate_in_ga(.(X, Y), .(X, .(X, Z))) → U1_ga(X, Y, Z, duplicate_in_ga(Y, Z))
U1_ga(X, Y, Z, duplicate_out_ga(Y, Z)) → duplicate_out_ga(.(X, Y), .(X, .(X, Z)))
The argument filtering Pi contains the following mapping:
duplicate_in_ga(
x1, 
x2)  =  
duplicate_in_ga(
x1)
[]  =  
[]
duplicate_out_ga(
x1, 
x2)  =  
duplicate_out_ga(
x2)
.(
x1, 
x2)  =  
.(
x1, 
x2)
U1_ga(
x1, 
x2, 
x3, 
x4)  =  
U1_ga(
x1, 
x4)
DUPLICATE_IN_GA(
x1, 
x2)  =  
DUPLICATE_IN_GA(
x1)
U1_GA(
x1, 
x2, 
x3, 
x4)  =  
U1_GA(
x1, 
x4)
We have to consider all (P,R,Pi)-chains
 
(4) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
DUPLICATE_IN_GA(.(X, Y), .(X, .(X, Z))) → U1_GA(X, Y, Z, duplicate_in_ga(Y, Z))
DUPLICATE_IN_GA(.(X, Y), .(X, .(X, Z))) → DUPLICATE_IN_GA(Y, Z)
The TRS R consists of the following rules:
duplicate_in_ga([], []) → duplicate_out_ga([], [])
duplicate_in_ga(.(X, Y), .(X, .(X, Z))) → U1_ga(X, Y, Z, duplicate_in_ga(Y, Z))
U1_ga(X, Y, Z, duplicate_out_ga(Y, Z)) → duplicate_out_ga(.(X, Y), .(X, .(X, Z)))
The argument filtering Pi contains the following mapping:
duplicate_in_ga(
x1, 
x2)  =  
duplicate_in_ga(
x1)
[]  =  
[]
duplicate_out_ga(
x1, 
x2)  =  
duplicate_out_ga(
x2)
.(
x1, 
x2)  =  
.(
x1, 
x2)
U1_ga(
x1, 
x2, 
x3, 
x4)  =  
U1_ga(
x1, 
x4)
DUPLICATE_IN_GA(
x1, 
x2)  =  
DUPLICATE_IN_GA(
x1)
U1_GA(
x1, 
x2, 
x3, 
x4)  =  
U1_GA(
x1, 
x4)
We have to consider all (P,R,Pi)-chains
 
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 1 less node.
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
DUPLICATE_IN_GA(.(X, Y), .(X, .(X, Z))) → DUPLICATE_IN_GA(Y, Z)
The TRS R consists of the following rules:
duplicate_in_ga([], []) → duplicate_out_ga([], [])
duplicate_in_ga(.(X, Y), .(X, .(X, Z))) → U1_ga(X, Y, Z, duplicate_in_ga(Y, Z))
U1_ga(X, Y, Z, duplicate_out_ga(Y, Z)) → duplicate_out_ga(.(X, Y), .(X, .(X, Z)))
The argument filtering Pi contains the following mapping:
duplicate_in_ga(
x1, 
x2)  =  
duplicate_in_ga(
x1)
[]  =  
[]
duplicate_out_ga(
x1, 
x2)  =  
duplicate_out_ga(
x2)
.(
x1, 
x2)  =  
.(
x1, 
x2)
U1_ga(
x1, 
x2, 
x3, 
x4)  =  
U1_ga(
x1, 
x4)
DUPLICATE_IN_GA(
x1, 
x2)  =  
DUPLICATE_IN_GA(
x1)
We have to consider all (P,R,Pi)-chains
 
(7) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(8) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
DUPLICATE_IN_GA(.(X, Y), .(X, .(X, Z))) → DUPLICATE_IN_GA(Y, Z)
R is empty.
The argument filtering Pi contains the following mapping:
.(
x1, 
x2)  =  
.(
x1, 
x2)
DUPLICATE_IN_GA(
x1, 
x2)  =  
DUPLICATE_IN_GA(
x1)
We have to consider all (P,R,Pi)-chains
 
(9) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DUPLICATE_IN_GA(.(X, Y)) → DUPLICATE_IN_GA(Y)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
 
(11) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 
From the DPs we obtained the following set of size-change graphs:
- DUPLICATE_IN_GA(.(X, Y)) → DUPLICATE_IN_GA(Y)
The graph contains the following edges 1 > 1 
 
(12) TRUE
(13) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
duplicate_in: (b,f)
Transforming 
Prolog into the following 
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
duplicate_in_ga([], []) → duplicate_out_ga([], [])
duplicate_in_ga(.(X, Y), .(X, .(X, Z))) → U1_ga(X, Y, Z, duplicate_in_ga(Y, Z))
U1_ga(X, Y, Z, duplicate_out_ga(Y, Z)) → duplicate_out_ga(.(X, Y), .(X, .(X, Z)))
The argument filtering Pi contains the following mapping:
duplicate_in_ga(
x1, 
x2)  =  
duplicate_in_ga(
x1)
[]  =  
[]
duplicate_out_ga(
x1, 
x2)  =  
duplicate_out_ga(
x1, 
x2)
.(
x1, 
x2)  =  
.(
x1, 
x2)
U1_ga(
x1, 
x2, 
x3, 
x4)  =  
U1_ga(
x1, 
x2, 
x4)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
 
(14) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
duplicate_in_ga([], []) → duplicate_out_ga([], [])
duplicate_in_ga(.(X, Y), .(X, .(X, Z))) → U1_ga(X, Y, Z, duplicate_in_ga(Y, Z))
U1_ga(X, Y, Z, duplicate_out_ga(Y, Z)) → duplicate_out_ga(.(X, Y), .(X, .(X, Z)))
The argument filtering Pi contains the following mapping:
duplicate_in_ga(
x1, 
x2)  =  
duplicate_in_ga(
x1)
[]  =  
[]
duplicate_out_ga(
x1, 
x2)  =  
duplicate_out_ga(
x1, 
x2)
.(
x1, 
x2)  =  
.(
x1, 
x2)
U1_ga(
x1, 
x2, 
x3, 
x4)  =  
U1_ga(
x1, 
x2, 
x4)
 
(15) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
DUPLICATE_IN_GA(.(X, Y), .(X, .(X, Z))) → U1_GA(X, Y, Z, duplicate_in_ga(Y, Z))
DUPLICATE_IN_GA(.(X, Y), .(X, .(X, Z))) → DUPLICATE_IN_GA(Y, Z)
The TRS R consists of the following rules:
duplicate_in_ga([], []) → duplicate_out_ga([], [])
duplicate_in_ga(.(X, Y), .(X, .(X, Z))) → U1_ga(X, Y, Z, duplicate_in_ga(Y, Z))
U1_ga(X, Y, Z, duplicate_out_ga(Y, Z)) → duplicate_out_ga(.(X, Y), .(X, .(X, Z)))
The argument filtering Pi contains the following mapping:
duplicate_in_ga(
x1, 
x2)  =  
duplicate_in_ga(
x1)
[]  =  
[]
duplicate_out_ga(
x1, 
x2)  =  
duplicate_out_ga(
x1, 
x2)
.(
x1, 
x2)  =  
.(
x1, 
x2)
U1_ga(
x1, 
x2, 
x3, 
x4)  =  
U1_ga(
x1, 
x2, 
x4)
DUPLICATE_IN_GA(
x1, 
x2)  =  
DUPLICATE_IN_GA(
x1)
U1_GA(
x1, 
x2, 
x3, 
x4)  =  
U1_GA(
x1, 
x2, 
x4)
We have to consider all (P,R,Pi)-chains
 
(16) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
DUPLICATE_IN_GA(.(X, Y), .(X, .(X, Z))) → U1_GA(X, Y, Z, duplicate_in_ga(Y, Z))
DUPLICATE_IN_GA(.(X, Y), .(X, .(X, Z))) → DUPLICATE_IN_GA(Y, Z)
The TRS R consists of the following rules:
duplicate_in_ga([], []) → duplicate_out_ga([], [])
duplicate_in_ga(.(X, Y), .(X, .(X, Z))) → U1_ga(X, Y, Z, duplicate_in_ga(Y, Z))
U1_ga(X, Y, Z, duplicate_out_ga(Y, Z)) → duplicate_out_ga(.(X, Y), .(X, .(X, Z)))
The argument filtering Pi contains the following mapping:
duplicate_in_ga(
x1, 
x2)  =  
duplicate_in_ga(
x1)
[]  =  
[]
duplicate_out_ga(
x1, 
x2)  =  
duplicate_out_ga(
x1, 
x2)
.(
x1, 
x2)  =  
.(
x1, 
x2)
U1_ga(
x1, 
x2, 
x3, 
x4)  =  
U1_ga(
x1, 
x2, 
x4)
DUPLICATE_IN_GA(
x1, 
x2)  =  
DUPLICATE_IN_GA(
x1)
U1_GA(
x1, 
x2, 
x3, 
x4)  =  
U1_GA(
x1, 
x2, 
x4)
We have to consider all (P,R,Pi)-chains
 
(17) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 1 less node.
(18) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
DUPLICATE_IN_GA(.(X, Y), .(X, .(X, Z))) → DUPLICATE_IN_GA(Y, Z)
The TRS R consists of the following rules:
duplicate_in_ga([], []) → duplicate_out_ga([], [])
duplicate_in_ga(.(X, Y), .(X, .(X, Z))) → U1_ga(X, Y, Z, duplicate_in_ga(Y, Z))
U1_ga(X, Y, Z, duplicate_out_ga(Y, Z)) → duplicate_out_ga(.(X, Y), .(X, .(X, Z)))
The argument filtering Pi contains the following mapping:
duplicate_in_ga(
x1, 
x2)  =  
duplicate_in_ga(
x1)
[]  =  
[]
duplicate_out_ga(
x1, 
x2)  =  
duplicate_out_ga(
x1, 
x2)
.(
x1, 
x2)  =  
.(
x1, 
x2)
U1_ga(
x1, 
x2, 
x3, 
x4)  =  
U1_ga(
x1, 
x2, 
x4)
DUPLICATE_IN_GA(
x1, 
x2)  =  
DUPLICATE_IN_GA(
x1)
We have to consider all (P,R,Pi)-chains
 
(19) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(20) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
DUPLICATE_IN_GA(.(X, Y), .(X, .(X, Z))) → DUPLICATE_IN_GA(Y, Z)
R is empty.
The argument filtering Pi contains the following mapping:
.(
x1, 
x2)  =  
.(
x1, 
x2)
DUPLICATE_IN_GA(
x1, 
x2)  =  
DUPLICATE_IN_GA(
x1)
We have to consider all (P,R,Pi)-chains
 
(21) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(22) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DUPLICATE_IN_GA(.(X, Y)) → DUPLICATE_IN_GA(Y)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.